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Abstract. Token management systems were the first application of blockchain
technology and are still the most widely used one. Early implementations
such as Bitcoin or Ethereum provide virtually no privacy beyond basic
pseudonymity: all transactions are written in plain to the blockchain,
which makes them perfectly linkable and traceable.
Several more recent blockchain systems, such as Monero or Zerocash,
implement improved levels of privacy. Most of these systems target the
permissionless setting, just like Bitcoin. Many practical scenarios, in con-
trast, require token systems to be permissioned, binding the tokens to
user identities instead of pseudonymous addresses, and also requiring
auditing functionality in order to satisfy regulation such as AML/KYC.
We present a privacy-preserving token management system that is de-
signed for permissioned blockchain systems and supports fine-grained
auditing. The scheme is secure under computational assumptions in bi-
linear groups, in the random-oracle model.

Keywords: Privacy preserving payments · Hyperledger Fabric tokens ·
Zero Knowledge · Threshold signature schemes.

1 Introduction

Token management systems were the first application of blockchain technology
and are still the most widely used one. Early implementations such as Bitcoin or
Ethereum provide virtually no privacy beyond basic pseudonymity: all transac-
tions are written in plain to the blockchain, which makes them perfectly linkable
and traceable.

Several approaches exist for adding different levels of privacy to blockchain-
based transactions. Tumblers combine several transactions of different users and
obscure the relation between payers and payees. In mix-in-based systems, trans-
actions reference multiple superfluous payers that are however not changed by
the transaction and only serve as a cover-up for the actual payer. Confidential
Assets [29] hide the amounts in a payment but leave the payer-payee relation in
the open. Finally, several advanced systems both encrypt the amounts and fully
hide the payer-payee relation.
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While the privacy of transactions is important, it should not void the require-
ments of transparency and auditability, especially in permissioned networks that
come with strong identity management and promise to ensure accountability and
non-deniability. This paper introduces a solution dedicated to the permissioned
setting to cover this gap: it hides the content of transactions without preventing
authorized parties from auditing them.

Another goal of this paper is to move away from complex setup assumptions
that underpin zkSNARK-based schemes and work with standard assumptions
to build our solution. Restricting ourselves to the permissioned setting allows us
to leverage a combination of signatures and standard ZK-proofs to achieve our
security goals.

Results. In this paper we introduce a token management system for permis-
sioned networks with the following properties:

– Privacy Transactions written on the blockchain conceal both the values that
are transferred and the payer-payee relationship. The transaction leaks no
information about the outputs spent in this transaction beyond the fact that
they are valid and unspent.

– Authorization Users authorize transactions via certificates; i.e., the autho-
rization for spending a token is bound to the user’s identity instead of a
pseudonym (or address). The authorization is privacy-preserving.

– Auditability Each user has an assigned auditor that is allowed to see the
transaction information related to that particular user.

Satisfying all three requirements is crucial for implementing a payment sys-
tem that protects user privacy but at the same time complies with regulation.

Our system is based on the unspent transaction output (UTXO) model pi-
oneered by Bitcoin [26] and supports multi-input-multi-output transactions. It
inherits several ideas from prior work, such as the use of Pedersen commitments
from Confidential Assets [29] and the use of serial numbers to prevent double-
spending from Zerocash [2]. These are combined with a blind certification mech-
anism that guarantees the validity of tokens via threshold signatures, and with
an auditing mechanism that allows flexible and fine-grained assignment of users
to auditors.

We use a selection of cryptographic schemes that are based in the discrete-
logarithm or pairing settings and are structure-preserving, such as Dodis-Yampolskiy
VRF [14], ElGamal encryption [15], Groth signatures [20], Pedersen commit-
ments [28], and Pointcheval-Sanders signatures [30]. This allows us to use the
relatively efficient Groth-Sahai proofs [22] and achieve security under standard
assumptions, in the random-oracle model.

Related work. Various solutions for improving privacy in blockchain-based
token systems exist. We briefly review the most related ones.

Miers et al. [25] introduced Zerocoin, which allows users to anonymize their
bitcoins by converting them into zerocoins that rely on hiding commitments
and zero-knowledge proofs. Zerocoins can be changed back to Bitcoins without
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leaking their origin. Zerocoin however does not offer any transacting or auditing
capabilites.

Zerocash is a fully anonymous decentralized payment scheme introduced by
Ben-Sasson et al. [2]. Zerocash uses commitments and zero-knowledge proofs to
validate payments and prevent double-spending. Zerocash offers unconditional
anonymity, to the extent that users can repudiate their participation in a trans-
action. On the downside, Zerocash requires a trusted setup and its security relies
on non-falsifiable assumptions.

Extensions to Zerocash have been proposed [16] to support expressive va-
lidity rules to provide accountability: notably, the proposed solution ensures
regulatory closure (i.e. allowing exchanges of assets of the same type only), en-
forcing spending limits and tracing tainted coins. In terms of accountability, the
proposed scheme allows the tracing of certain tainted coins, while not really ex-
tensively and consistently allowing transactions to be audited. By building on
Zerocash, the proposed scheme inherits many properties such as the computa-
tional assumptions.

Solidus [13] is a privacy-preserving protocol for asset transfer that is suitable
for intermediated bilateral transactions, where banks act as mediators. Solidus
conceals the transaction graph and values by using banks as proxies. The authors
leverage ORAMs for banks to keep track of the transactions that took place
without publicly revealing the exact type of account access that took place, and
they augment ORAM with zero-knowledge proofs to enable public verifiability of
the correctness of the inserted changes. Solidus only gives way to intermediated
auditability.

The zkLedger protocol of Narula, Vasquez, and Virza [27] is a permissioned
asset transfer scheme that hides transaction amounts as well as the payer-payee
relationship and supports auditing. One main difference with our approach is
the transaction model: zkLedger uses balances, whereas our system uses UTXO.
Their transaction format grows linearly with the number of participants in the
system, whereas our transaction size grows only with the number of inputs and
outputs that are actually used in a transaction. On the flip side, the statements
zkLedger has to prove in zero knowledge are simpler than ours, which results in
better efficiency. Due to these different properties, the systems target different
use cases and are complementary.

2 Preliminaries

2.1 Notation

We use sans-serif fonts to denote special values such as true or false, and typewriter

fonts to denote string constants. All cryptographic algorithms are parametrized
by a so-called security parameter λ ∈ N given (sometimes implicitly) to the
algorithms. We generally denote the message space of algorithms by M.

To succinctly represent proofs of knowledge, we use the common notation
introduced by Camenisch and Stadler [8], namely PK {(witness) : statement} to
denote a proof of knowledge of witness for statement.
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2.2 Cryptographic schemes

The section presents cryptographic schemes that we use to build the protocol.
We only present them briefly, and provide more information on concrete instan-
tiations later in the paper.

Commitment schemes. A commitment scheme COM consists of three algo-
rithms crsgen, commit, and open. The commit algorithm is a probabilistic al-
gorithm that, on input of a vector (m1, . . . ,m`) of messages, outputs a pair
(cm, rcm)←$ commit(crs, (m1, . . . ,m`)) of commitment cm and an opening rcm.
Finally, there is a deterministic opening algorithm open(crs, cm, (m1, . . . ,m`), rcm)
that outputs either true of false.

Commitments must be hiding in the sense that, without knowledge of rcm,
they do not reveal information on the committed messages, and they must be
binding in the sense that it must be infeasible to find a different set of messages
m′1, . . . ,m

′
` and r ′cm that are valid for the same commitment.

Digital signature schemes. A digital signature scheme SIG consists of three algo-
rithms sigkeygen, sign, and verify. The key generation algorithm (sk , pk)←$ sigkeygen(λ)
takes as input the security parameter λ and outputs a pair of private (or secret)
key sk and public key pk . Signing algorithm s ←$ sign(sk ,m) takes as input
private key sk and message m, and produces a signature s. Deterministic verifi-
cation algorithm b ← verify(pk ,m, s) takes as input public key pk , message m,
and signature s, and outputs a Boolean b that signifies whether s is a valid signa-
ture on m relative to public key pk . The standard definition of signature scheme
security, existential unforgeability under chosen-message attack, has been intro-
duced by Goldwasser, Micali, and Rivest [19]. It states that the probability for
an efficient adversary, given an oracle for producing valid signatures, to output
a valid signature on a message that has not been queried to the oracle must be
negligible. The security of a signature scheme can also be described by an ideal
functionality Fsig, which we include in the appendix.

Threshold signature schemes. A non-interactive threshold signature scheme TSIG
consists of four algorithms threshKeygen, sign, combine, and verify. Threshold
key generation (sk1, . . . , skn, pk1, . . . , pkn, pk)←$ threshKeygen(λ, n, t) gets as
input security parameter λ, total number of parties n, and threshold t. Each
party can sign with their own secret key sk i as above to generate a partial sig-
nature si. Any t valid signatures can be combined using combine into a full
signature s, which is verified as in the non-threshold case. A signature produced
honestly by any t parties verifies correctly, but any signature produced by less
than t parties will not verify.

Public-key encryption. A public-key encryption scheme PKE consists of three al-
gorithms pkeKeygen, enc, and dec. Key-generation algorithm (sk , pk)←$ pkeKeygen(λ)
takes as input security parameter λ and outputs a pair of private key sk and
public key pk . Probabilistic encryption algorithm c←$ enc(pk ,m) takes as in-
put message m and public key pk and produces ciphertext c. We also write c ←
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enc(pk ,m; r) where we want to emphasize that the encryption uses randomness
r. Deterministic decryption b← dec(sk , c) takes as input ciphertext c and private
key sk and recovers message m. Correctness requires that dec(sk , enc(pk ,m)) =
m for all (sk , pk) generated by pkeKeygen. For our work we require seman-
tic security as first defined by Goldwasser and Micali [18]. The scheme must
additionally satisfy key privacy as defined by Bellare, Boldyreva, Desai, and
Pointcheval [1], which states that, given a ciphertext c, it must be hard to de-
termine the public key under which the ciphertext is encrypted.

Verifiable random functions. A verifiable random function VRF consists of three
algorithms vrfKeygen, eval, and check. Key generation (vsk , vpk)←$ vrfKeygen(λ)
takes as input the security parameter and outputs a pair of private key vsk and
public key vpk . Deterministic evaluation (y, ψ)← eval(vsk , x) takes as input se-
cret key vsk and input value x, and produces as output the value y with proof ψ.
Deterministic verification b← check(vpk , x, y, ψ) takes as input public key vpk ,
input x, output y, and proof ψ, and outputs a Boolean that signifies whether
the proof should be accepted.

The scheme satisfies correctness if honest proofs are always accepted. Sound-
ness means that it is infeasible to produce a proof for a wrong output value.
The scheme must satisfy pseudorandomness which means that, given only vpk ,
the output y for a fresh input x is indistinguishable from a random output.

2.3 Universal composition and MUC

In this section, we only recall basic notation and specific parts of the model that
we need in this work. Details can be found in [9, 11, 10].

The UC framework follows the simulation paradigm, and the entities taking
part in the protocol execution (protocol machines, functionalities, adversary, and
environment) are described as interactive Turing machines (ITMs). The execu-
tion is an interaction of ITM instances (ITIs) and is initiated by the environment
Z that provides input to and obtains output from the protocol machines, and
also communicates with adversary A resp. simulator S. The adversary has access
to the protocols as well as functionalities used by them. Each ITI has an identity
that consists of a party identifier pid and a session identifier sid . The environ-
ment and adversary have specific, constant identifiers, and ideal functionalities
have party identifier ⊥. The understanding here is that all ITIs that share the
same code and the same sid are considered a session of a protocol. It is natural
to use the same pid for all ITIs that are considered the same party.

ITIs can invoke other ITIs by sending them messages, new instances are
created adaptively during the protocol execution when they are first invoked
by another ITI. In order to use composition, some additional restrictions on
protocols are necessary. In a protocol ρφ→π , which means that all calls within ρ
to protocol φ are replaced by calls to protocol π, both protocols φ and π must
be subroutine respecting. This means, in a nutshell, that while those protocols
may have further subroutines, all inputs to and outputs from subroutines of φ or
π must only be given and obtained through φ or π, never by directly interacting
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with their subroutines. This requirement is natural, since a higher-level protocol
should never directly access the internal structure of φ or π; this would obviously
hurt composition1. Also, protocol ρ must be compliant. This roughly means that
ρ should not be invoking instances of π with the same sid as instances of φ, as
otherwise these instances of π would interact with the ones obtained by the
operation ρφ→π .

In summary, a protocol execution involves the following types of ITIs: the
environment Z, the adversary A, instances of the protocol machines π, and
(possibly) further ITIs invoked by A or any instance of π (or their subroutines).
The contents of the environment’s output tape after the execution is denoted by
the random variable execπ,A,Z(λ, z), where λ ∈ N is the security parameter and
z ∈ {0, 1}∗ is the input to the environment Z. The formal details of the execution
are specified in [10]. We say that a protocol π UC-realizes a functionality F if

∀A ∃S ∀Z : execπ,A,Z ≈ execφ,S,Z ,

where “≈” denotes indistinguishability of the respective distribution ensembles,
and φ is the dummy protocol that simply relays all inputs to and outputs from
the functionality F.

Multi-protcocol UC The standard UC framework does not allow to modularly
prove protocols in which, e.g., a zero-knowledge proof system is used to prove
that a party has performed a certain evaluation of a cryptographic scheme cor-
rectly. Camenisch, Drijvers, and Tackmann [4] recently showed how this can be
overcome. In a nutshell, they start from the standard FRnizk-functionality which
is parametrized by a relation R, and show that if R is described in terms of
evaluating a protocol, then the protocol can equivalently be evaluated outside
of the functionality, and even used to realize another functionality F. This re-
sults in a setting where Fnizk validates a pair (y, w) of statement y and witness
w by “calling out” to the other functionality F. We use this proof technique
extensively in this work.

2.4 Set-up functionalities

Our protocol requires a number of set-up functionalities to be available. Most
of these functionalities are widely used in the literature, which is why we only
briefly describe them here and specify them in detail in the appendix.

Common reference string. Functionality Fcrs provides a string that is sampled
at random from a given distribution and accessible to all participants. All parties
can simply query Fcrs for the reference string. The functionality is generally used
to generate common public parameters used in a cryptographic scheme.

Transaction ledger. We describe a simplified transaction ledger functionality as
Fledger in Figure 1. In a nutshell, every party can append bit strings to a globally
available ledger, and every party can retrieve the current ledger.
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Ledger functionality Fledger

Functionality Fledger stores an initially empty list L of bit strings.

– Upon input (append, x) from a party P , append x to L. If P is corrupt then send
(append, x, P ) to A, else return to P .

– Upon input retrieve from a party P or A, return L.

Fig. 1. Ledger functionality.

The functionality intentionally idealizes the guarantees achieved by a real-
world ledger; transactions are immediately appended, final, and available to all
parties. We also use Fledger as a local functionality. These simplifications are
intended to keep the paper more digestible.

Non-interactive zero-knowledge. The guarantees provided by non-interactive
zero-knowledge proofs of knowledge can be formalized via the functionality Fnizk

proposed by Groth, Ostrovsky, and Sahai [21]. In a nutshell, the (honest or dis-
honest) prover inputs statement and witness and obtains a proof, the adversary
only learns the statement. The verification operates by inputting statement and
proof, and the functionality provides the consistent response.

Secure and private message transfer. Functionality Fsmt provides a message
transfer mechanism between parties. The functionality builds on the ones de-
scribed by Canetti and Krawczyk [12], but additionally hides the sender and
receiver of a message, if both are honest. This is required since our protocol
passes information between transacting parties, and leaking the communication
pattern to the adversary would revoke the anonymity otherwise provided by our
protocol.

Registration functionality. The registration functionality Freg models a public-
key infrastructure. It allows each party P to input one value x ∈ {0, 1}∗ and
makes the pair (P, x) available to all other parties. This is generally used to
publish public keys, binding them to the identity of a party.

Anonymous authentication. As our protocol is in the permissioned setting but
supposed to provide privacy, we need anonymous credentials to authorize trans-
actions. Our schemes integrate well with the Identity Mixer family of proto-
cols [7]. Yet, as these topics are not the core interest of this paper, we abstract
the necessary mechanisms in the functionality Fa-auth as depicted in Figure 2.

In a nutshell, the functionality allows parties to first register and then “au-
thorize” commitments; the functionality returns “proofs” ψ assuring that the
party’s identity is contained in a certain position of that commitment. The ex-
act reason for this mechanism will become clear in Section 3.1.

Our description of Fa-auth is simplistic and tailored to an easy treatment
in our proofs. For a complete composable model of anonymous authentica-
tion schemes, see e.g. the work of Camenisch, Dubovitskaya, Haralambiev, and
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Extended anonymous registration functionality Fa-auth

Functionality Fa-auth is parametrized by a commitment opening algorithm open. It
stores an initially empty U of registered users, and an initially empty list of records.

– Upon input register from a party P where P /∈ U , set U ← U ∪ {P} and output
(registered, P ) to A.

– Upon input (lookup, P ′) from a party P , return (the result of) P ′ ∈ U .
– Upon input (prove-issue, crs, cm, rcm, v , ρ) from party P , if

open(crs, cm, (v , P, ρ), rcm) then generate a proof ψ, store the record
(issue, crs, cm, ψ) internally and output ψ to P .

– Upon input (prove-transfer, crs, cm, rcm, v , ρ,m) from party P , if
open(crs, cm, (v , P, ρ), rcm) then generate a proof ψ, store the record
(transfer, crs, cm, ψ,m) internally and output ψ to P .

– Upon input (verify-issue, crs, cm, ψ̃) from some P , look up if there is a record
(issue, crs, cm, ψ̃) and output success (only) if we did so.

– Upon input (verify-transfer, crs, cm, ψ̃,m) from some P , look up if there is a
record (transfer, crs, cm, ψ̃,m) and output success (only) if we did so.

Fig. 2. Extended anonymous registration functionality.

Kohlweiss [5]. We chose this simplified version since this part of the mechanism
is not the focus of this work.

3 Warm-up: Simplified protocol

We present in this section a simplified version of the protocol, and add complexity
step by step. The goal of this section is to arrive at a still minimal but functional
version, which is then extended with further functionality in the subsequent
sections.

3.1 First outline

Functionality. The goal of the simplified protocol is the realization of function-
ality Fs-token specified in Figure 3. In a nutshell, the functionality allows for
privacy-preserving single-input single-output transactions between users. The
functionality has a specific issuer I that is allowed to issue new tokens; this can
easily be generalized to a set I of issuers each issuing tokens in their own name.
Tokens are always bound to the (identity of the) current owner.

Each party first has to register by sending register to Fs-token. At any
later time, a party can send read to Fs-token to obtain a list of items (cm, v ) ∈
{0, 1}∗ × N, where cm is an identifier for the token and v is its value. The
issuer I can input (issue, v ) to mint a new token with value v . The response
of the functionality is the identifier cm of the newly minted token. A party that
owns a token cm can transfer it to receiver R by inputting (transfer, cm,R)
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SISO token functionality Fs-token

Functionality Fs-token stores a list of registered users and an initially empty map
Records. The session identifier is of the form sid = (A,C , I , sid ′).

– Upon input init from P ∈ {A,C , I }, output to A (initialized, P ). (This must
happen for all three before anything else.)

– Upon input register from a party P , if P is unregistered, then mark P as regis-
tered and output (registered, P ) to A. (Otherwise ignore.)

– Upon input read from a registered party P , issue read? to A. Upon receiving
response read! from A, return to P a list of all records of the type (cm, v ) that
belong to P .

– Upon input (issue, v ) from I , output (issue, v ) to A. Receiving from A a response
(issue, cm), if Records[cm] 6= ⊥ then abort, else set Records[cm] ← (v , P, alive).
Return (issued, cm) to I .

– Upon receiving an input (issue, v , cm) from A, where I is corrupt, check and
record the commitment as in the previous step. Return to A.

– Upon input (transfer, cm,R) from an honest party P , where both P and R are
registered, proceed as follows.
1. If Records[cm] = ⊥ then abort, else set (v , P ′, st)← Records[cm].
2. If st 6= alive or P ′ 6= P , then abort.
3. If R and C are honest, output transfer to A. If R is honest but C is corrupt,

output (transfer, cm) If R is corrupt, output (transfer, P,R, cm, v ) to A.
4. Receiving from A a response (transfer, cm ′), if Records[cm ′] 6= ⊥ then

abort, else set Records[cm ′] ← (v ,R, delayed) and set Records[cm] ←
(v , P, consumed).

5. Return (transferred, cm ′) to P .
– Upon receiving an input (transfer, Ps,R, cm0, cm1) where Ps is corrupt, proceed

analogously to the above. (That is, check whether cm0 is alive and controlled by
Ps, and update the records accordingly.)

– Upon receiving an input (deliver, cm) fromA with Records[cm]← (v , P, delayed)
for some v , set Records[cm]← (v , P, alive).

Fig. 3. SISO token functionality.

to Fs-token. The response is the new identifier cm ′ that can be used by R to
address that token.

The adversary learns when new tokens are issued; in particular it learns the
value and the issuer. Token transfers between honest users are private: only the
fact that a transfer occurs is leaked. If either the sender or the receiver is corrupt,
the adversary learns the full details of the transaction.

(Incomplete) protocol. The protocol represents tokens as commitments (cm, rcm)←$ commit(crs, (v , P ))
that stored on Fledger, where v is the value and P is the current owner. Issuers
can create new tokens in their own name. Transferring tokens (v , P ) to a party
R means replacing the record with a record (v ,R). We now describe all protocol
steps in more detail, but still at an informal level.
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A party first registers in the system by invoking register at its protocol. The
protocol then inputs register at functionality Fa-auth. This step corresponds
to registering at an identity provider. The protocol also retrieves the CRS crs
used for the commitments from Fcrs.

Issuer I can invoke (issue, v ) at its protocol. The protocol then generates
a new commitment (cm, rcm)←$ commit(crs, (v , I )), which means a token with
value v is created with owner I . The protocol generates a proof

ψ0 ← PK {(rcm) : open(crs, cm, rcm, (v , I )) = true} ,

which shows that the commitment contains the expected information. It also
generates a proof ψ2 by calling prove-issue at Fa-auth, which effectively shows
that I is authorized to generate this transaction. The information written to
Fledger is (issue, v , cm, ψ0, ψ2).

A party can transfer a token identified by a commitment cm to a receiver
R by invoking (transfer, v ,R). The protocol generates a new commitment
(cm ′, r ′cm)←$ commit(crs, (v ,R)). It generates a NIZK ψ1 showing that cm ′ con-
tains the correct information and a proof ψ2 (via Fa-auth) showing that P con-
trols cm. The information written to Fledger is (transfer, cm ′, ψ1, ψ2). At this
point, we cannot yet describe how P proves that (a) cm is a valid commitment on
the ledger—we cannot include cm in the transaction as that would hurt privacy—
and (b) that P is not double-spending cm. These aspects will be covered in the
next sections. Party P additionally sends the message (token, cm ′, r ′cm, v ) to R
via Fsmt.

Furthermore, a party can invoke read to obtain the list of tokens a party
owns. Each invocation (of issue, transfer, or read) at a party begins with
querying Fledger for new transactions and verifying them, and querying Fsmt

for incoming messages, which are also verified against the information stored on
the ledger.

Security. The protocol guarantees privacy since the token data is stored on the
ledger in a commitment that is only opened by the sender and the receiver of
that transaction, together with zero-knowledge proofs. The proofs obtained via
Fa-auth bind the transaction to the owner of a token. The consistency guar-
antees will only become fully clear in the next subsections, but intuitively it
should already be clear that the NIZK ψ1 in transfer will guarantee that the
commitments cm and cm’ contain the same token value and issuer.

3.2 Certification via blind signatures

The problem of verification of token validity during transfer will be resolved by
certification. We consider a specific party, called a certifier C , which will vouch
for the validity of the token by issuing a signature. We later show in Section 4.2
how the certification task can be distributed, so that no single party has to be
trusted for verification.

Moreover, we use a blind signature protocol that implements the functionality
Fblindsig specified in Figure 4. (We specify the threshold version directly, for
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(Threshold) blind signature functionality F (TSIG,commit)
blindsig

Functionality Fblindsig requires that sid = ((C1, . . . ,Cn), t, `, sid ′), where C1, . . . ,Cn are
the party identifiers of the signers. It is parametrized by the (deterministic) commit
algorithm of the commitment as well as the a threshold signature scheme TSIG =
(threshKeygen, sign, verify). The functionality keeps an initially empty set S of signed
messages.

– Upon init from some Ci, run (sk1, . . . , skn, pk1, . . . , pkn, pk)←$ threshKeygen(λ, n, t, `),
where λ is obtained from the security parameter tape, and store (sk1, . . . , skn, pk).
Output (init,Ci) to A.

– Upon input pubkey from party P , return (pubkey, pk).
– On input (request, crs, rcm, (m1, . . . ,m`)) from party P :

1. Compute cm ← commit(crs, (m1, . . . ,m`); rcm) and store it internally along
with the messages and randomness.

2. Send delayed output (request, P, crs, cm) to each Ci, i ∈ {1, . . . , n}.
– Upon input (sign, cm) from Ci:

1. If no record with commitment cm exists, then abort.
2. If there is a record ((m1, . . . ,m`), S) ∈ S with S ⊆ {C1, . . . ,Cn}, update the

record with S ← S ∪ {Ci}. Else set S ← S ∪ {((m1, . . . ,m`), {Ci})}.
3. If |S| ≥ t, then compute s ← sign(sk , (m1, . . . ,m`)) and output s to requestor

P .
– Upon input (verify, pk ′, (m1, . . . ,m`), s) from P , compute b ←

verify(pk ′, (m1, . . . ,m`), s). If pk = pk ′ ∧ b∧
(
((m1, . . . ,m`), S) /∈ S ∨ |S| < t

)
then

output (result, false) to P . Else output (result, b) to P .
– Upon input (seckey, i) from A, if Ci is corrupted, then return sk i.

Fig. 4. Blind signature functionality, threshold version.

the setting described here one uses Fblindsig(1) with a single certifier C1. In
that case, the threshold signature scheme can be replaced by a simple signature
scheme.) The functionality allows all parties to obtain the public key pk of
the signature scheme through the get-pk call. A party P can subsequently use
the call (request, crs, rcm, (m1, . . . ,m`)) to request a blind signature on the
vector (m1, . . . ,m`) of messages. The functionality provides to the signer C
the commitment cm ← commit(crs, (m1, . . . ,m`); rcm). Party C can now check
whether cm indeed exists in Fledger, and if so, it can input (sign, cm), which
in turn leads to a signature s on (m1, . . . ,m`) being created and output to P .
All parties can also use (verify, pk , s, (m1, . . . ,m`)) to verify the signature.

We will provide more information on the protocol that realizes Fblindsig and
the instantiation with a concrete signature scheme later in the paper.

Functionality Fblindsig is used by a party P during transfer: the user provides
as input the contents (v , P ) of the commitment cm they want to spend, along
with the opening rcm, which leads to C learning cm. Certifier C then checks
whether cm is valid (i.e. appears on Fledger), and if so C signs. Thereby, P
learns a signature of C on (v , P ) and can prove knowledge of this signature to
other parties.
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3.3 Serial numbers prevent double-spending

Double-spending prevention is achieved via a scheme that is inspired by Zero-
cash [2] in that it uses a VRF to compute serial numbers for tokens when they
are spent. The VRF key is here, however, bound to a user identity via a signa-
ture from a certification authority. On a very high level, the protocol described
in Section 3.2 is extended as follows.

1. Each user P creates a VRF key pair (vsk , vpk). They obtain a signature sA
from certification authority A that binds vsk to their identity P .

2. Each commitment contains an additional value ρ ∈M.
3. During transfer, the value ρ is used to derive the serial number (sn, ψ) ←

eval(vsk , ρ). The transaction stored in Fledger also contains sn.
4. We cannot store ψ in Fledger, as this would deanonymize P . Therefore, P

proves knowledge of signature sA, which binds vpk to its identity, and proves
check(vpk , ρ, sn, ψ) through a NIZK proof.

It is important to note that authority A must be trusted for preventing double-
spending, since it could easily certify two different VRF keys for the same user.
It is therefore suggested to implement A in a distributed fashion.

We first describe the complete protocol πs-token in the following. We then go
on to prove that it realizes Fs-token if the commitment is perfectly hiding and
computationally binding, and the VRF is secure. The protocol uses functionali-
ties Fblindsig, Fsig, and Fnizk.

Complete protocol πs-token. The protocol has a bit registered ← false and keeps
an initially empty list of commitments. We begin by describing the protocol for
a regular user P of the system.

– Upon input register, if registered is set, then return. Else, retrieve the
public keys of A and C from Freg. Query crs from Fcrs. Generate a VRF key
pair (vsk , vpk) and send a message (register, vpk) to A via Fsmt to obtain
a signature sA on (P, vpk). If all steps succeeded, then set registered ← true
send register to Fa-auth.

– Process pending messages. (This is a subroutine called from functions below.)
Retrieve new data from Fledger.
• For transactions tx = (issue, v , cm, ψ0, ψ2) from Fledger, validate ψ0 by

inputting (verify, (crs, cm, v , I ), ψ0) to Fnizk and verify ψ2 by giving
(verify-issue, cm, ψ2) to Fa-auth. If both checks succeed, record cm as
a valid commitment.
• For transactions tx = (transfer, sn, cm, ψ1, ψ2), check the serial num-

ber sn for uniqueness, validate ψ1 via Fnizk and verify ψ2 via (verify-transfer, cm, ψ2, (sn, cm, ψ1))
to Fa-auth. If all checks succeed, then store cm as valid.
• For each incoming message (token, cm, rcm, v , ρ) buffered from Fsmt, test

whether the commitment is correct, i.e. whether it holds that open(crs, cm, rcm, (v , P, ρ)) =
true. Check whether there is a transaction tx that appears in Fledger

with tx = (transfer, sn, cm, ψ1, ψ2). If all checks are successful, store
the information in the internal list.
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– Upon input read, if ¬registered then abort, else first process pending mes-
sages. Then return a list of all unspent assets (cm, v ) owned by the party.

– Upon input (issue, v ), assuming that registered , process pending messages
and proceed as follows.
1. Choose uniformly random ρ←$M. Create a commitment (cm, rcm)←$ commit(crs, (v , P, ρ)).
2. Compute a proof

ψ0 ← PK {(rcm, ρ) : open(crs, cm, rcm, (v , P, ρ)) = true} ,

where P and v are publicly known. (This is achieved by sending (prove, y, w)
to Fnizk, where the statement is y = (crs, cm, v , P ) and the witness is
w = (rcm, ρ).)

3. Send (prove-issue, cm, rcm, v , ρ) to obtain ψ2.
4. Send to Fledger the input (append, (issue, v , cm, ψ0, ψ2)).
5. Store tuple (cm, rcm, v , ρ) internally and return (issued, cm).

– Upon input (transfer, cm0,R), assuming that registered , query (lookup,R)
to Freg in order to make sure that R is registered. Then process pending
messages and proceed as follows.
1. If there is no record (cm0, r

0
cm, v , ρ

in), then abort.
2. Choose uniformly random ρout←$M. Create a commitment (cm1, r

1
cm)←$ commit(crs, (v ,R, ρout)).

3. Compute the serial number as (sn0, π0)← eval(vsk , ρin).
4. Input (request, r0

cm, (v , P, ρin)) to Fblindsig, and wait for a response sC .
5. Compute a proof

ψ1 ← PK
{(

rcm, sA, sC ,R, P, ρ
in, ρout, π0, v

)
:

verify(pkC , (v , P, ρ
in), sC ) ∧ open(crs, cm, (v ,R, ρout), rcm)

∧ verify(pkA, (P, vpk), sA) ∧ check(vpk , ρin, sn0, π0)
}

by inputting statement y = (pkC , crs, cm, pkA, sn0) and witness w =
(rcm, sA, sC ,R, P, ρ

in, ρout, π0, v ) to Fnizk.
6. Send (prove-transfer, cm0, r

0
cm, v , ρ

in, (sn0, cm1, ψ1)) to obtain ψ2.
7. Send (token, cm1, r

1
cm, v , ρ

out) to R via Fsmt and send to Fledger the
input (append, (transfer, sn0, cm1, ψ1, ψ2)).

8. Delete cm0 from the internal state of the protocol and return output
(transferred, cm1).

– Upon receiving (sent, S, P,m) from Fsmt, buffer it for later processing. Re-
spond ok to sender S

The protocol machines for parties C and A are easier to describe. Certifier
C checks the validity of a commitment and signs if it finds the commitment in
the ledger. In more detail:

1. Upon input init obtain crs from Fcrs and input init to Fblindsig.
2. Upon receiving (request, P, crs ′, cm) from Fblindsig, check that crs = crs ′.

Query Fledger for the entire ledger. For each yet unprocessed transaction
tx on Fledger, validate the proofs as described in the party protocol. Check
whether cm is marked as a valid commitment.
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3. If the above check is successful, send (sign, cm) to Fblindsig.

Certification authority A signs VRF public keys of parties.

1. Upon init, generate a key pair (skA, pkA)←$ sigkeygen(λ) for the signature
scheme and input (register, pkA) to Freg.

2. When activated, input retrieve to Fsmt to obtain the next message. Let
it be m from P . If no message has been signed for P yet, then sign sA ←
sign(skA, (P,m)) and send sA via Fsmt back to P .

We use the composition result of [4] to prove this, since we want to prove
correctness of the evaluation of the verification algorithm.

Theorem 1. Assume that COM = (crsgen, commit, open) is a commitment
scheme that is perfectly hiding and computationally binding. Assume that VRF =
(vrfKeygen, eval, check) is a verifiable random function. Then πs-token realizes
Fs-token with static corruption. Corruption is malicious for I and users, and
honest-but-curious for C . A is required to be honest, but is inactive during the
main protocol phase.

The restriction that C can only be corrupted in an honest-but-curious model
is necessary: Otherwise C can issue signatures on arbitrary commitments, even
ones that are not stored in Fledger.

Proof. We use the proof technology of Camenisch et al. [4] in instantiating the
functionalities Fnizk, Fsig, and Fblindsig in a way that Fnizk can call out to Fsig

and Fblindsig for the verification of signatures. This has the advantage that the
respective clauses in the statement are ideally verified.

We then need to describe a simulator. Simulator S emulates functionalities
Fledger, Freg, Fa-auth, Fnizk, Fsig, and Fsmt. To emulate Fledger, S manages an
initially empty internal ledger and allows A to read it via retrieve or append
messages as described below. S initially sets initialized ← false. We start by
describing the behavior of S upon outputs provided by Fledger.

– Upon receiving (initialized, P ) for P ∈ {A,C}, generate a signature key
pair for the respective party and simulate the public key of the respective
party being registered at Freg. After receiving this for both A and C , set
initialized ← true.

– Upon receiving (registered, P ) from Fs-token, mark P as registered and
generate output (registered, P ) as a message from Fa-auth to A.

– Processing of pending messages (several occasions, see below): For every
record tx marked for delayed processing, proceed as follows.

• If I is corrupt and tx = (issue, P ′, v , cm0, ψ0, ψ2), then issue (verify, y, ψ0)
to A as an output of Fnizk, with y = (crs, cm0, v , P

′), and expect as re-
sponse a witness w. If w = (rcm, ρ

in) is valid for cm0, and proof ψ2 is
valid according to the simulated instance of Fa-auth, then provide the
input (issue, v , cm0) to Fs-token.
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• If tx = (transfer, sn, cm1, ψ1, ψ2), then issue (verify, y, ψ1) to A as an
output of Fnizk, with y = (pkC , crs, cm1, pkA, sn). Expect as response
from adversary A a witness w = (r1

cm, sA, sC ,R, P, ρ
in, ρout, π0, v ). If w

is valid, and (ψ2 is valid according to the simulated instance of Fa-auth),
and a corresponding message (token, cm1, r

1
cm, v , ρ

out) has been sent to
R, then provide a request (transfer, P,R, cm0, cm1) to Fs-token.

– Upon receiving read? from Fs-token, process pending messages and return
read! to Fs-token.

– Upon receiving (issue, v ) from Fs-token, first process pending messages.
Then, generate a new all-zero commitment (cm∗, r∗cm)←$ commit(crs, (0, 0, 0)).
Next, emulate an output (prove, y) from Fnizk for the statement y = (crs, cm∗, v , P )
and proceed upon an input (done, ψ∗0) for the same instance of Fnizk. Emu-
late the proof ψ∗2 as in Fa-auth, storing the respective instance as a record.
Append (issue, v , cm∗, ψ∗0 , ψ

∗
2) to the internal ledger. Input (issue, cm∗) to

Fs-token.
– Upon receiving transfer from Fs-token, first process pending messages.

Then generate a random serial number sn∗ and a commitment (cm∗, r∗cm)←$ commit(crs, (0, 0, 0)).
Next, emulate the output (prove, y) from Fnizk for instance y = (pkC , crs, cm∗, pkA, sn∗)
and record the proof ψ∗1 returned by A. Emulate the proof ψ∗2 as in Fa-auth.
Append transaction (append, sn∗, cm∗, ψ∗1 , ψ

∗
2) to the internal ledger and em-

ulate transmission of a message of the same length as (token, cm∗, r1
cm, v , ρ)

on Fsmt (i.e., append the length to the internal queue). Respond with (transfer, cm∗)
to Fs-token. Emulate a private delayed message on Fsmt; when A delivers this
message, input (deliver, cm∗) to Fs-token.

– Upon receiving (transfer, cm), first process pending messages. Record cm
in the state of the simulated party C , and proceed as in the above case.

– Upon receiving (transfer, P,R, v , cm) from Fs-token, first process all pend-
ing messages. Generate at random a value ρout←$M and a random serial
number sn∗ and compute commitment (cm∗, r∗cm)←$ commit(crs, (v ,R, ρout)).
Emulate output (prove, y) from Fnizk with y = (pkC , crs, cm∗, pkA, sn∗) as
above and wait for A to supply the proof ψ∗1 . Emulate the proof ψ∗2 as above.
Append (append, sn∗, cm∗, ψ∗1 , ψ

∗
2) to the internal ledger. If serial number

sn∗ does not appear on the ledger, then respond with (transfer, cm∗) to
Fs-token. Emulate a public delayed message (P,R, (token, cm∗, r∗cm, v , ρ

out))
on Fsmt; once this message is delivered by A, provide input (deliver, cm∗)
to Fs-token.

– Upon input (append, s, P ′) from A for a corrupt P ’, append s to the ledger
and mark for delayed processing. Return to A.

If S obtains from A a query to Fa-auth in the name of a corrupt party P
that is marked as registered, then S internally handles the inputs prove-issue,
prove-transfer, verify-issue, as well as verify-transfer just like Fa-auth.
If A provides an input message x to Fsmt on behalf of a corrupted party P , then
the message is ignored unless it is of the format x = (token, cm, rcm, v , ρ). If it
has the right format, then S checks whether the corresponding transaction tx
exists on Fledger; if it does, then provide input (transfer, P,R, cm0, cm1) with
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the respective values from tx to Fs-token. If such a transaction does not exist,
then store the message x for later.

Our goal is now to prove that if the commitment and the VRF are secure,
then the ideal and real experiments are indistinguishable. We prove this by
describing a sequence of experiments, where exec0 is the real experiments and
we transform it step-by-step into the ideal experiment, showing for each adjacent
pair of steps that they are indistinguishable. The overall statement then follows
via the triangle inequality.

Experiment exec1 is almost the same as exec0 but commitments generated
during (issue, v ) at an honest party P as well as commitments generated during
(transfer, cm,R) at an honest party P , where R is also honest, are replaced
by commitments generated via (cm, rcm)←$ commit(crs, (0, 0, 0)). Functionality
Fnizk is changed so that it does not actually check the input of honest parties.

Experiments exec0 and exec1 are equivalent since the commitment is per-
fectly hiding and therefore the distribution of the output to the adversary is
unchanged. As all inputs of the honest parties’ protocols to Fnizk are correct,
omitting the checks has no effect.

Experiment exec2 is almost the same as exec1 but serial numbers output
by honest parties are replaced by uniformly random values from the same set.
Experiments exec2 and exec1 are indistinguishable because of the pseudoran-
domness of VRF, which is easily proved by reduction. Note that the environment
never sees honestly generated proofs.

In the following, we describe the response to environment queries in both
exec2 and the ideal experiment and point out the differences. We assume that
the state in terms of valid commitments is the same prior to the input, and show
when the output to the query is the same and when the state in terms of valid
commitments remains consistent. The consistency of the input-output behavior
is relatively straightforward to check for most inputs. We focus here on the ones
used in transfer.

– On input (transfer, cm,R) from an honest user P , if not both of P and R
are registered, then the request is ignored in both cases. Also if no trans-
ferable commitment cm exists and is associated to user P , both invocations
abort. The protocol πs-token then generates a new commitment cm ′ and
sends it for the proof to Fnizk, which requests a proof ψ1 from A. Upon re-
turn, πs-token generates an additional proof ψ2 via Fa-auth, sends the trans-
action (transfer, sn, cm ′, ψ1, ψ2) to Fledger and the token message to Fsmt.
If R is corrupt, this latter invocation means that A learns (r1

cm, v , ρ
out) as

well as the sender P via Fsmt in addition.
The functionality Fs-token provides either just transfer—if R is honest—or
(transfer, P,R, v )—if R is corrupt. In the first case, S generates a com-
mitment to all-zero messages and requests the proof ψ1 from A via Fnizk-
interaction, in the second case S has all the data available to perform the
same computations as the protocol.
The output distribution is the same since in both cases the commitment is
an all-zero commitment and the serial number is uniformly random.
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– Processing of pending transactions. For all new (possibly adversarial) trans-
actions on Fledger, the honest parties first attempt to verify the proofs via
Fnizk. For adversarially-generated proofs, the first attempt for each such
proof may lead to a message from Fnizk requesting the witness from A. The
same messages are generated by S, which then records the messages and
issues the proper requests to Fs-token. (Note that this processing in Fs-token

takes place at this point in time, but the timing is indistinguishable from
that in the protocol as each honest user input leads to that user processing
the pending transactions in the protocol.)

For adversarial transfers sent to the party via Fsmt, it may mean that the
message sent on Fsmt is not proper (so it is ignored by both πs-token and
S), or that it parses correctly does not have a corresponding transaction in
Fledger (in the sense that the commitment cm∗ in the message does not
exist there—then it is also ignored), or that both message and transaction
can be found, in which case the view of the party changes when the tokens
are found.

The only difference between the two above executions is when the adversary
fabricates a transaction in the name of a corrupt party that makes a state tran-
sition that is different from the one that is done in Fs-token. Let us first consider
issue transactions, where the statement is y = (crs, cm∗, v , P ′). When an hon-
est party verifies the proof with Fnizk, then A has to provide a proper witness
(r∗cm, ρ) such that the commitment opens to open(crs, cm∗, (v , P, ρ∗), r∗cm) =
true.

Consider a transaction tx = (transfer, sn∗, cm∗, ψ∗1 , ψ
∗
2) input by the adver-

sary. When this is verified by the honest party, then A is given the statement y =
(pkC , crs, cm∗, pkA, sn∗) and provides a witness w = (rcm, sA, sC ,R, P, ρ

in, ρout, π0, v ),
which satisfies the PK-statement

ψ1 ← PK
{(

rcm, sA, sC ,R, P, ρ
in, ρout, π0, v

)
:

verify(pkC , (v , P, ρin), sC ) ∧ open(crs, cm∗, (v ,R, ρout), rcm)

∧ verify(pkA, (P, vpk), sA) ∧ check(vpk , ρin, sn∗, π0)
}
.

As verify(pkC , (v , P, ρ
in), sC ) is evaluated via Fblindsig, and C checks the correct-

ness of crs, we also know that sC was generated for an input (request, crs, r∗cm, (v , P, ρ
in)),

and the commitment cm∗ = commit(crs, (v , P, ρin); r∗cm) indeed exists on the
ledger. Then either cm∗ was created during a previous transaction with the
same input (v , P, ρin) or we can turn Z into an adversary that breaks the bind-
ing property of COM.

As verify(pkA, (P, vpk), sA) is evaluated via a call to Fsig, and the correctness
of both Fsig and the honesty of A implies that vpk is the unique VRF public
key associated to P . So at this point we know that vpk and ρin are correct.
As check(vpk , ρin, sn∗, π0) = true, either (sn∗, )← eval(vsk , ρin) or we can turn
Z into an adversary against the soundness of VRF. This means that sn∗ is
also correct, no double-spending occurred, and we know an opening to the new
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commitment cm∗, namely open(crs, cm∗, (v ,R, ρout), rcm), which means that the
state transition is consistent.

The construction has negligible correctness error due to collision of sequence
numbers.

3.4 Instantiation

We describe briefly the concrete schemes that are used to instantiate the mech-
anisms described in the previous subsections efficiently.

Pedersen commitments. The commitment scheme is instantiated with Peder-
sen commitments [28] on multiple values. Consider a group G and generators
g0, g1, . . . , g` ∈ G such that the relative discrete logarithms between the gi are
not known. A commitment to a vector (x1, . . . , x` ∈ {1, . . . , |G|}) of inputs
is computed by choosing a uniformly random r ∈ {1, . . . , |G|} and computing
(cm, rcm) ← (gr0 gx1

1 · · · g
x`

` , r). Pedersen commitments are perfectly hiding and
computationally binding under the discrete-logarithm assumption in group G.

Pointcheval-Sanders (PS) signatures. We use the signature scheme of Pointcheval
and Sanders [30] to implement the blind signatures. We modify the signature
generation slightly to make it deterministic; security still holds in the random-
oracle model. We parametrize the signature algorithm by a collision-resistant
function f : Z`p × {0, 1}∗ → {0, 1}k and allow it to take as input an auxiliary
string aux . The scheme operates in an asymmetric pairing setting with groups
G1 and G2 of size p, and target group GT and a bilinear map e : G1 × G2 → GT.
Key generation sigkeygen chooses g̃ ∈ G2 and (x, y1, . . . , y`) ∈ Z`+2

p and sets
sk ← x, y1, . . . , y`) and pk ← (g̃, g̃x, g̃y1 , . . . , g̃y`) = (g̃, X, Y1, . . . , Y`). A signa-
ture s = sign(sk , (m1, . . . ,m`), aux ) on message vector (m1, . . . ,m`) ∈ Z`p is

computed as a ← f(m1, . . . ,m`, aux ) and sign ← (h, hx+
∑

j yjmj ) with h ←
HG1(a). Verification of signature s = (s1, s2) is performed by checking s 6= 1G1
and e(s1, X

∏
j Y

mj

l ) = e(s2, g̃).
PS signatures are CMA under an interactive computational assumption. In

follow-up work, Pointcheval and Sanders [31] showed that the scheme can be
modified to be secure under a non-interactive assumption, by adding another
random element, which can be instantiated with m0 ← HZp(cm) in our case to
keep the scheme deterministic. For simplicity, we keep the simpler version in this
description.

Certification through blind signatures. The functionality Fblindsig is instantiated
by the following protocol πblindsig, which operates in the {Fnizk,Freg,Fsmt}-
hybrid model.

– Upon input init, certifier C generates a new key pair (sk , pk) with sk =
(y, y1, . . . , y`) and pk = (g̃, X, Y1, . . . , Y`), and sends (register, pk) to Freg.

– Upon input pubkey, P sends (query,C ) to Freg and outputs the result.
– Upon input (request, crs, rcm, (m1, . . . ,m`)), proceed as follows.
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1. Pick r←$ Zp and compute V ← gr. Compute cm ← gr0
∏`
i=1 gmi

i and
Q← HG(cm).

2. For each i = 1, . . . , `, choose ri←$ Zp, Ai ← V ri , and Bi ← Qmigri .
3. Obtain the proof

ζ ← PK
{(

(mi, ri)
`
i=1, rcm

)
:∧̀

i=1

(Ai = V ri ∧Bi = Qmigri) ∧ cm = grcm
0

∏̀
i=1

gmi
i

}
on input (prove, y, w) at Fnizk with y = (cm, Q, V,A1, . . . , A`, B1, . . . ,
B`) and w = ((mi, ri)

`
i=1, rcm).

4. Call Fsmt with (send,C , (ζ, crs, cm, V, (Ai, Bi)
`
i=1)).

– Upon receiving (sent, P, (ζ, crs, cm, V, (Ai, Bi)
`
i=1)) from Fsmt, certifier C

proceeds as follows:
1. Verify ζ via Fnizk and compute Q← HG(cm). If verification fails, input

(send, P,⊥) to Fsmt and stop.
2. Store (ζ, crs, cm, V, (Ai, Bi)

`
i=1, Q) internally and output to signer C

message (request, P, crs, cm).
– Upon input (sign, cm), signer C proceeds as follows:

1. If no record for commitment cm is stored, stop.
2. Compute m0 ← HZp(cm), pick r̄←$ Zp.
3. Compute B̄ ← g r̄Qx

∏`
i=1A

yi
i and Ā← V r̄

∏`
i=1A

yi
i .

4. Call Fsmt with (send, P, (Ā, B̄)).
– Upon receiving (sent,C , m̄) from Fsmt, receiver P proceeds as follows:

1. If m̄ cannot be parsed as (Ā, B̄) ∈ G2 output (result,⊥) and stop.

2. Compute Q′ ← B̄Ā1/r and check e(Q, X̃
∏`
i=1 Ỹ

mi
i )

?
= e(Q′, g). If the

check fails, output (result,⊥) and stop. Else output (result, (Q,Q′)).

Lemma 1. Protocol πblindsig realizes Fblindsig under Assumption 2 of Pointcheval
and Sanders [30], given that C is honest-but-curious and A does not have access
to the secret key of C .

A similar protocol has been provided as part of the Coconut systems by
Sonnino, Al-Bassam, Bano, Meiklejohn, and Danezis [32], but the protocol there
is slightly less efficient.

Groth signatures. We use Groth’s structure preserving signatures [20]. The sig-
nature scheme operates in a pairing setting with groups G1, G2, and GT and
g2 is a generator of G2. Key generation sigkeygen(λ, `) selects a vector sk =
(x, y1, . . . , y`−1)←$ Z`p and a random g̃←$ G1, and computes pk ← (g̃, X, Y1, . . . , Y`) =
(g̃, gx2 , g

y1
2 , . . . , gy`2 ). Signature sign(sk , (m1, . . . ,m`)) selects uniformly at random

r←$ Zp, computes R← g
1/r
2 , S ← (g̃gx1 )r, and T ← (g̃xmn

∏`
i=1 myi

i )r, and sets
s ← (R,S, T ). Verification of signature s = (R,S, T ) for messages (m1, . . . ,m`)
operates by verifying two pairing equations e(S,R) = e(g̃, g2)e(g , X) as well as

e(T,R) = e(g̃, X)e(mn, g2)
∏̀
i=1

e(mi, Yi).
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Dodis-Yampolskiy VRF We use the VRF of Dodis and Yampolskiy [14] that
operates in the pairing setting. Key generation vrfKeygen(λ) chooses a random
sk ←$ Zp and sets pk ← gsk

1 . Evalutation eval(sk , x) aborts if sk + x /∈ Z×p . It

computes output y ← e(g1, g2)1/(sk+x) ∈ GT and proof π ← g
1/(sk+x)
2 ∈ G2.

Verification check(pk , x, y, π) checks whether e(g1, π) = y and e(pk · gx1 , π) = 1.

Groth-Sahai NIZK We use Groth-Sahai proofs [22] to instantiate Fnizk for rela-
tions in bilinear groups. Since all equations we have to verify—for the Pointcheval-
Sanders signatures, the Pedersen commitment, the Groth signatures, and the
Dodis Yampolskiy VRF—are defined in terms of bilinear groups,

4 Privacy-preserving auditable UTXO

In this section we describe three mechanisms in the protocol that are crucial for
its use in practice, and that extend the simpler protocol presented in Section 3.
We start in Section 4.1 with multi-input multi-output transactions. Section 4.2
shows how the certification mechanism described in Section 3.2 can be thresh-
oldized to protect against misbehaving certifiers. Section 4.3 finally introduces
the extension that makes the protocol auditable.

4.1 Multi-input multi-output transactions

Multi-input multi-output transaction allow a sender to transfer tokens contained
in multiple commitments at once, and to split the accumulated value into mul-
tiple outputs for potentially different receivers. We therefore modify the trans-
action format to contain multiple inputs and multiple outputs. We also have to
extend the NIZK: besides the fact that we have to prove consistency of multiple
inputs and multiple outputs, we now have to show that the sum of the inputs
equals the sum of the outputs.

Due to arithmetic in finite algebraic structures, we also have to prove that no
wrap-arounds occur. This is achieved, as in previous work, by the use of range
proofs. For a given value max ∈ {1, . . . , p}, the condition is that 0 ≤ v ≤ max
for any value v that appears in an output commitment.

The functionality changes as described in Figure 5. The interface that a user
employs to transfer tokens has become more complex: they can specify multiple
commitments as input and multiple value/receiver pairs for the outputs.

MIMO protocol. The protocol πtoken that realizes Ftoken is based on protocol
πs-token. Most parts of the protocol can remain unchanged, only those that deal
with generating or processing transfer transaction must be adapted.

Upon input
(
transfer, (cmi)

m
i=1, (vout

j ,Rj)
n
j=1

)
, assuming that registered ,

query (lookup,Rj) to Freg for all j = 1, . . . , n in order to make sure that Rj is
registered. Then process pending messages and proceed as follows.

1. If, for any i ∈ {1, . . . ,m}, there is no recorded commitment (cmi, r
i
cm, v

in
i , ρ

in
i ),

then abort.
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2. If
∑m
i=1 v in

i 6=
∑m
j=1 vout

j then abort.

3. Choose uniformly random ρout
j ←$M for j = 1, . . . , n, and create commit-

ments (cmj , r
j
cm)←$ commit(crs, (vout

j ,Rj , ρ
out
j )).

4. Compute the serial numbers as (sni, πi)← eval(vsk , ρin
i ), for i = 1, . . . ,m.

5. Input (request, r icm, (v in
i , P, ρ

in
i )) to Fblindsig, and wait for a response si, for

each i = 1, . . . ,m.

6. Compute a proof

ψ1 ← PK
{(

r1
cm, (si, v

in
i , ρ

in
i , πi)

m
i=1,R, P, (r

j
cm, v

out
j , ρout

j )nj=1

)
:

∀i ∈ {1, . . . ,m} : verify(pk , (v in
i , P, ρ

in
i ), si)

∧ ∀j ∈ {1, . . . , n} : open(crs, cmj , (vout
j ,Rj , ρ

out
j ), r jcm)

∧ verify(pkA, (P, vpk), sreg)

∧ ∀i ∈ {1, . . . ,m} : check(vpk , ρin
i , sni, πi)

∧
m∑
i=1

v in
i =

m∑
j=1

vout
j

∧ ∀j ∈ {1, . . . , n} : 0 ≤ vout
j ≤ max

}
.

7. Set tx∗ ← ((sni)
m
i=1, (cmj)

n
j=1, ψ1) For each i = 1, . . . ,m, send (prove-transfer, cm in

i , ri, v
in
i , ρ

in
i )

to obtain ψ2,i.

8. Send (coin, cmj , r
j
cm, v

out
j , ρout

j ) to Rj via Fsmt (for each j ∈ {1, . . . , n} and
send to Fledger the input

(append, (transfer, (sni, ψ2,i)
m
i=1, (cmj)

n
j=1, ψ1)).

9. Delete cm in
i from the internal state and return (transferred, (cmj)

n
j=1).

The processing of the transaction is analogously modified to check this more
complex NIZK. We now argue that the statement proved in the NIZK indeed
guarantees the consistency of the system.

The first sub-statement (together with the honesty of C ) guarantees that
all commitments used as inputs indeed exist in the ledger, and the fact that
the commitment is binding further implies that the values (v in

i , P, ρ
in
i ) indeed

correspond to the expected state of the system. The second sub-statement shows
that the output commitments indeed contain the expected values (vout

j ,Rj , ρ
out
j ).

The subsequent two statements prevent double-spending by showing that vpk is
the user’s VRF public key, and the serial numbers are computed correctly. This
is all analogous to the SISO case.

The final two equations guarantee the global consistency of the system: the
range proof shows that all outputs contain a value in the valid range, which avoids
wrap-arounds. Finally, the summation equation then shows that no tokens have
been created or destroyed in this transaction.
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4.2 Distributing certification

The Pointcheval-Sanders signature scheme can be extended into a non-interactive
t-out-of-n threshold signature scheme. Consider n signers C1, . . . ,Cn from which
a recipient P collects at least t signature shares that can be combined into
a complete signature. We describe the process with a trusted key generation,
however, notices that it is straightforward to convert the key generation mech-
anism into a multiparty computation between the signers (see e.g. [17]). We
describe the key generation algorithm threshKeygen and the reconstruction al-
gorithm combine. The algorithm to produce a signature share is identical to
original signing algorithm (taking secret key share as input instead of the over-
all secret key). That is, to sign a message (m1, . . . ,mn), signer Ci calls algo-
rithm (h, h′)←$ sign(sk i, (m1, . . . ,mn))) with sk j = (xj , y0j , . . . , y`j). The re-
sulting signature share is a valid Pointcheval-Sanders signature for public key
pk j = (X̃j , Ỹ0j , . . . , Ỹ`j).

Algorithm threshKeygen(λ, n, t, `) computes (sk j , pk j)
n
j=1, pk as follows:

– Pick `+1 random polynomials px, py1 , . . . py` of degree k−1 with coefficients
from Zp.

– Compute X̃ ← gpx(0), Ỹ0 ← gpy0 (0), . . . , Ỹ` ← gpy` (0).
– Compute all X̃j = gxj and Ỹij ← gyji .

– Set pk = (X̃, Ỹ0 = gpy0 (0), . . . , Ỹ` = gpy` (0)), and pk j = (X̃1, Ỹ01, . . . , Ỹ`1).
Set sk j = (px(j), py0(j), . . . , py`(j)) and output (sk1, . . . , skn, pk1, . . . , pkn, pk).

Algorithm combine, on input {(si, pk i)}i∈S , (m1, . . . ,m`), for a set S ⊆ {1, . . . , n}
with |S| = t, proceeds as follows.

– Output ⊥ if not all {(si, pk i)}i∈S with si = (hi, h
′
i) have the same h and if

verify((X̃i, Ỹ1i, . . . , Ỹ`i), (m1, . . . ,m`), (h, h
′
i)) does not hold for all i ∈ S.

– Compute Lagrange coefficients λj =
∏
i∈S\j

i
i−j for all j ∈ S.

– Compute and output (m0, h, h
′ =

∏
j∈S h

′
j
λj ).

Protocol πblindsig from Section 3.4 has to be modified as follows:

– Instead of generating a key locally at C , all signers C1, . . . ,Cn together use
Fdkg to generate the set of keys. Signer C1 registers the public key pk at
Freg.

– Requestor P sends the request message to parties C1, . . . ,Cn until it has
collected t signatures that verify. It then uses combine to combine that into
a single signature that verifies relatively to pk .

Theorem 2. Let n ∈ N and t < n. The above-described variant of the protocol
realizes the threshold variant of Fblindsig.

No further adaptations to the users’ protocol beyond the use of the threshold
functionality are necessary, as the verification equation for the signatures remains
the same.
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4.3 Auditing

The auditing capability we implement associates to each user U an auditor AU .
Auditor AU has the capabilities to decrypt all transaction information associated
to U , such as the transaction outputs that are associated with U , as well as the
full transactions issued by U . The set of auditors is denoted by AU . Furthermore,
there is a binder B whose role is to set up the connection between auditors and
binders.

We formalize the guarantees in a functionality Fatoken described in the follow-
ing. Functionality Fatoken stores a list of registered users and an initially empty
map Records. The session identifier is of the form sid = (A,C , I ,B ,AU , sid ′).

– Upon input init from P ∈ {A,B ,C} ∪AU , output to A (initialized, P ).
(This must happen for both before anything else.)

– Inputs register, read, and issue are treated as in Ftoken.
– Upon input (bind,U ,AU ) where U is a registered user and AU ∈ AU is an

initialized auditor, and there is not yet a pair (U ,AU ′) with AU 6= AU ′ ∈
AU , record the pair (U ,AU ) and output (bound,U ,AU ) to A.

– Upon input
(
transfer, (cmi)

m
i=1, (v

out
j ,Rj)

n
j=1

)
from an honest party P ,

where P and all Rj for j = 1, . . . , n are registered, proceed as follows.
1. If, for any i ∈ {1, . . . ,m}, Records[cmi] = ⊥ then abort, else set (v in

i , P
′
i , st i)←

Records[cmi].
2. If, for any i ∈ {1, . . . ,m}, st i 6= alive or P ′i 6= P , then abort.
3. If

∑m
i=1 v in

i 6=
∑n
j=1 vout

j then abort.
4. Let L be an empty list. For all j = 1, . . . , n, if Rj or its auditor AU j are

corrupt, then append to L the information (P,Rj , v
out
j ). If the auditor

AU of P is corrupt, include the information for all inputs and all outputs.
Output (transfer, L) to A.

5. Receiving fromA a response (transfer, (cmout
j )nj=1), if Records[cmout

j ] 6=
⊥ for any j ∈ {1, . . . , n} then abort, else set Records[cmout

j ]← (vout
j ,Rj , alive)

for all j ∈ {1, . . . , n} and set Records[cmi] ← (v in
i , P

′, consumed) for all
i ∈ {1, . . . ,m}.

6. Return (transferred, (cmout
j )nj=1) to P .

– Upon input (audit, cm) from auditor AU , if Records[cm] = ⊥ then return
⊥. Otherwise, set (v in, P, st)← Records[cm]. If P is not audited by AU , then
return ⊥, else return (v , P ).

The protocol is adapted as follows. First, each commitment also contains the
identity of the previous owner. This is helpful for proving that the auditable
information is correct. The binding between the auditor and the user is achieved
through a Groth signature from A. The auditing functionality is implemented as
follows: A party P that executes a transfer encrypts the following information:

– To its own auditor, for each input the value v in and current owner P . For
each output the value vout

j , sender P , and receiver Rj .
– For each output to Rj , to the auditor of Rj the value vout

j , sender P , and
receiver Rj .
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This is achieved by encrypting the information, including the ciphertext in the
transfer, and proving that the encryption is consistent with the information in
the commitment.

For concreteness, consider an input described by commitment cm = commit(crs, (v in, P, P ′, ρin); rcm).
We encrypt current owner c1 = enc(pkAU , P ; r1) and value ∧c2 = enc(pkAU , v , r2).
Then we generate a NIZK proof:

PK
{(

v in, P, P ′, ρin, s, pkAU , r1, r2

)
: verify(pkC , (v

in, P, P ′, ρin), s)

∧ verify(pkA, (P, pkAU ), sA) ∧ c1 = enc(pkAU , P ; r1)

∧ c2 = enc(pkAU , v
in, r2)

}
where pkC and pkB are public, and c1 and c2 are part of the transaction.

Similarly, for a transfer from P to R and an output commitment cm =
commit(crs, (vout,R, P, ρout); rcm), we encrypt to the auditor (here we use the
one of P ) the sender c1 = enc(pkAU , P ; r1), the receiver c2 = enc(pkAU ,R; r2),
and the value c3 = enc(pkAU , v

out; r3). We then generate a NIZK proof:

PK
{(

vout,R, P, ρout, rcm, pkAU , sA
)

:

open(crs, cm, (vout,R, P, ρout), rcm)

∧ verify(pkA, (P, pkAU ), sA) ∧ c1 = enc(pkAU , P ; r1)

∧ c2 = enc(pkAU ,R, r2) ∧ c3 = enc(pkAU , v
out; r3)

}
with public parameters crs and pkA, as well as cm, c1, c2, and c3 taken from
the transaction.

4.4 Instantiation

Most of the schemes have already been introduced in Section 3.4. We provide
here descriptions of the schemes for range proofs and encryption.

Range proof. The MIMO version of the protocol requires a range proof to ensure
that no field wrap-arounds are used and that the number of existing coins is not
changed in a transfer. The range proof we use is based on the work of Camenisch,
Chaabouni, and shelat [3], instantiated with Pointcheval-Sanders signatures.

ElGamal public-key encryption We use ElGamal encryption [15] encryption. Key
generation pkeKeygen(λ) chooses a uniformly random exponent sk ←$ {1, . . . , |G|}
and computes pk ← gsk . Encryption enc(pk ,m) chooses a uniformly random
r←$ {1, . . . , |G|} and computes c ← (gr, pkrm). Decryption dec(sk , c) with
c = (c1, c2) computes m ← c2c−sk1 . The encryption scheme is semantically
secure under the Decisional Diffie-Hellman assumption.
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5 Implementation and performance

We invented a slightly modified variant of the scheme where some instances of
the GS protocol were replaced by instances of Schnorr’s protocol, for efficiency
purposes. The transaction sizes for that protocol variant are described in Table 1.
Further details can be found in Appendix B.

Setup

Param gen. Me1 + 7e2 + tce2
Audit init 7e1 + 1e2

Issue Transaction Transaction validation
generation Ledger Certification

Out consist. (9e1 + 2p)no 3e2no (same as below)

Transfer Transaction Transaction validation
generation Ledger Certification

Input val. 18e2ni (6e1 + 19e2+ (per output)
+2p)ni C:(48 + tc +Nc)e1

Inp-out cons. (4ni + 3no + 5)e1 (5ni + 4no + 4)e1 +6tce2 + 2tcp
Input own. (20e1 + 10e2+ (28e1 + 10e2+

+2p)ni +18p)ni S: 44e1
Auditability (136e1 + 8e2)no (64e1 + 64p)no

Table 1. This table shows the computation overhead of each phase in our system,
setup, asset issue and asset transfer in terms of number of exponentiations, in G1, G2
denoted by e1, e2, respectively and pairings in the two groups by p. Our results consider
the number of request’s inputs ni, and outputs no, the overall Nc and threshold tc of
certifiers, the base used for range proofs M . Finally in certification phase “C” and “S”
represent the client and server computation respectively.

6 Conclusion

We described a privacy-preserving and auditable token-management scheme for
permissioned blockchains, which can be instantiated without knowledge assump-
tions. Through the use of structure-preserving primitives, we achieve practical
transaction sizes and near-practical computation times that can, however, ex-
pected to become practical through the use of optimized implementations for
the underlying schemes.
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A Functionalities

We describe here in more detail some ideal functionalities that are commonly
used and that we therefore omitted from the preliminaries of the paper.

Common reference string. Functionality Fcrs is parametrized by a CRS genera-
tor crsgen, which on input security parameter λ samples a fresh string crs ←$ crsgen(λ).

Non-interactive zero-knowledge. Our functionality Fnizk is adapted from the
work of Groth et al. [21], with a few modifications of which most are mainly
stylistic. The most relevant difference is that we store a set L0 of false state-
ments that have been verified; we need this to ensure that a statement that was
evaluated as false by one honest party will also be evaluated as false by all other
honest parties. Otherwise Fnizk has the two expected types of inputs prove and
verify, and the adversary is allowed to delay proof generation unless Fnizk is
used in the context of responsive environments [6].

Secure message transmission. Functionality Fsmt models a secure channel be-
tween a sender S and a receiver R. In comparison to the functionality introduced
by Canetti and Krawczyk [12], however, our functionality additionally provides
privacy and hides the parties that are involved in the transmission.

Digital signatures. We use the variant of the signature functionality Fsig that was
introduced by Camenisch et al. [4]. This version of the functionality is compatible
with the modular NIZK proof technique introduced in the same paper.

Distributed key generation. Functionality Fdkg idealizes a distributed key-generation
protocol such as, for discrete-log based schemes, the one of Gennaro et al. [17].
The simplified functionality given in Figure 10 is not directly realizable since
it does not model that, e.g., the communication may be delayed or prevented
by the adversary. We decided to still use this version to simplify the overall
treatment.

B Implementation and measurements

Our token management system is currently in the process of being implemented
on Hyperledger Fabric as a way of enabling token management on this platform.
In this section we elaborate on the integration of the token management system
in Hyperledger Fabric. We first start with a short overview of how Hyperledger
Fabric operates.

Background. Hyperledger Fabric is a permissioned blockchain system. Hyper-
ledger Fabric entities exchange messages, called transactions, over the Hyper-
ledger Fabric network. A transaction can be used to introduce a new smart
contract (chaincode in Hyperledger Fabric terms) into the system—chaincode
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instantiation—or to introduce changes to the state (i.e., execute) of an already
instantiated chaincode. The latter process is referred to as chaincode invocation.
Special types of transactions, reconfiguration transactions are used to introduce
changes to the system’s configuration.

In a Hyperledger Fabric network, we identify three types of participating
entities. There are clients that submit transactions to the network in order to
instantiate, invoke chaincodes, or to reconfingure the system, peers that actively
participate in the chaincode execution process, and maintain a (consistent) copy
of the ledger, and a set of orderers constituting the ordering service of the sys-
tem, that jointly decide the order in which transactions appear in the ledger
of the system. For the proper operation of the system, Hyperledger Fabric in-
stallations consider one or more membership service providers (in short, MSPs)
that issue long-term identities to the system entities that fall under their author-
ity. These identities would allow system entities to securely interact with each
other. Essentially, MSPs provide the required abstractions to validate identities,
compute and verify signatures. The configuration of each MSP considered by a
Hyperledger Fabric system is included in the genesis block of its instance and is
reconfigurable via reconfiguration transactions.

Hyperledger Fabric follows an execute-order-validate model. Here, chaincodes
are speculatively executed on one or more peers upon a client’s request prior to
adding the corresponding transaction to the ledger (ordering). Client requests
for this purpose are called chaincode proposals. Execution results are signed by
the peers that generated them in chaincode endorsements and are returned to
the client who requested them. Endorsements are included in the transaction
that the client constructs and is sent to the ordering service. The latter order
the transaction among the rest of the advertised transactions to the network
outputting a first version of the ledger called raw ledger. Raw ledger is provided
to the peers of the network upon demand. Upon receiving the raw ledger, each
peer validates each transaction that appears in it to ensure that the chaincode
execution results included in the transaction have been generated correctly. After
validation completes successfully, the transaction is committed, and its specula-
tive execution results are integrated into the ledger’s state.

It is easy to see that although there is a separation in Hyperledger Fabric
between clients and peers, there is a clear communication channel between the
two, such that clients can acquire endorsements on the chaincodes they wish to
invoke, or perform queries on the ledger state. In these requests, known as pro-
posals, clients provide the chaincode execution arguments, including the name of
chaincode that is to be executed. It is also important to note that Hyperledger
Fabric supports pluggable transaction validation [23], such that in principle each
chaincode can come with its own rules on what constitutes valid transactions
that trigger its execution.

Integration architecture. For our prototype implementation we used the archi-
tecture depicted in Figure 11.
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We first require that each token user, issuer and auditor operates a Hyper-
ledger Fabric client. It is easy to separate the operations of the protocol to the
ones that are used by the client side to generate the cryptographic material for
requesting a token’s issue or transfer, and the ones used by a verifier to perform
the cryptographic verification of the requests. In our prototype implementation
on Hyperledger Fabric, we integrate all the client operations (i.e., proof gener-
ation) into a prover chaincode, and we require that each client is in possession
of a peer that it trusts and which will run the prover chaincode. We claim that
this is a reasonable requirement given that it fits the setup of multiple enterprise
level clients of Hyperledger Fabric.

In our prototype we integrate the verification components into a new valida-
tion module that we plug into Hyperledger Fabric. In this way, transactions that
refer to the prover chaincode go through our custom validation component that
performs changes to the ledger directly. This is an example of how Hyperledger
Fabric architecture can be extended to support post-ordering execution based
applications.

To accommodate output certification, we leverage the communication proto-
col between the clients and the peers and an extension to the prover chaincode—
we call it for convenience certifier chaincode—that is only functional on a selec-
tive set of peers. These peers are chosen by the system at setup time as trusted to
jointly certify valid outputs that appear in the ledger. At setup, each such peer
acquires a share of the output certification signing key; this share is passed to the
certifier chaincode, whenever it processes a client request for output certification.

At the same time, we leverage the membership service infrastructure of Hy-
perledger Fabric to grant identities to the users, since they are also Hyper-
ledger Fabric clients. In particular we leverage the identity mixer MSP feature
of Hyperledger Fabric that allows privacy preserving user authentication, us-
ing constructions that are compatible with the ones of the token system. For
our prototype implementation, we issue audit credentials and assign them to
users off-band, assuming that this be accommodated by an offline service of
the identity management infrastructure of the system. Audit credentials bind
user-identities generated using the Hyperledger Fabric identity mixer MSP to
auditors.

Performance numbers. We installed Hyperledger Fabric client and peer infras-
tructure with our custom validation process on a MacBook Pro (15-inch, 2016),
with 2.7 GHz Intel Core i7, and 16 GB of RAM. All our chaincodes and client
implementation are in golang as this is the core language used in Hyperledger
Fabric, while for a token system instantiation we used EC groups on BN256
curves. We instantiated both prover and certifier chaincodes on all the peers in
the network, while we disseminated shares of the output cetification key only to
the peers that perform output certification. We measured the time required to
produce a token transfer request, and to validate it. Our measurements focused
on setup and token transfer as these are the more costly operations in traditional



Title Suppressed Due to Excessive Length 31

token management systems. We produced our results based the measurements
of forty repetitions of each operation.

Our results are shown in Table 2 for a transfer with two inputs and two
outputs. Although our schemes support any number of inputs, and outputs in
transactions, we chose this combination as it is a common configuration of SoA
schemes. In the performance evaluation of transaction generation and validation
we present separately the part of theirs that refers to the auditing needs. Our
results show an overall transaction construction time of a little more than 1s,
whereas transaction validation takes a little less than 2s. While this can be
considered poor performance for some use-cases we need to emphasise that the
go libraries we use for EC operations are not optimized. An optimisation in
the crypto libraries is expected to bring in a speedup of at least one order of
magnitude [24]. Notice that auditability operations constitute approximately one
third of this time. Output certification consumes 109.07ms on the client side and
116.65ms on the certifier side for each certifier.

Setup

Param gen 6.74
Auditor credential 183.88

Transaction generation Transaction validation

Transfer data 631.72 1329.86
Transfer auditability 467.77 400.88
Output certification [109.07↔ 116.65]tc 117.14
Table 2. This table shows the actual performance of our prototype implementation on
Hyperledger Fabric, for token issue and transfer in miliseconds (ms). The ↔ denotes
an interactive process between the client (on the left) and the certifier (on the right),
while [. . .]x denote a repetition of the interactive round x times. tc denotes the threshold
number of certifiers.
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MIMO token functionality Ftoken

Functionality Ftoken stores a list of registered users and an initially empty map Records.
The session identifier is of the form sid = (A,C , I , sid ′).

– Upon input init from P ∈ {A,C}, output to A (initialized, P ). (This must
happen for both before anything else.)

– Upon input register from a party P , if P is unregistered, then mark P as regis-
tered and output (registered, P ) to A. (Otherwise ignore.)

– Upon input read from a registered party P , issue read? to A. Upon receiving
response read! from A, return to P a list of all records of the type (cm, v ) that
belong to P .

– Upon input (issue, v ) from I , output (issue, v ) to A. Receiving from A a response
(issue, cm), if Records[cm] 6= ⊥ then abort, else set Records[cm] ← (v , P, alive).
Return (issued, cm) to I .

– Upon receiving an input (issue, v , cm) from A, where I is corrupt, check and
record the commitment as in the previous step. Return to A.

– Upon input
(
transfer, (cmi)

m
i=1, (vout

j ,Rj)
n
j=1

)
from an honest party P , where P

and all Rj for j = 1, . . . , n are registered, proceed as follows.
1. If, for any i ∈ {1, . . . ,m}, Records[cmi] = ⊥ then abort, else set (v in

i , P
′
i , st i)←

Records[cmi].
2. If, for any i ∈ {1, . . . ,m}, st i 6= alive or P ′i 6= P , then abort.
3. If

∑m
i=1 v in

i 6=
∑n

j=1 vout
j then abort.

4. Let L be an empty list. For all j = 1, . . . , n, if Rj is corrupt then append to L
the information (P,Rj , v

out
j ). Output (transfer, L) to A.

5. Receiving from A a response (transfer, (cmout
j )nj=1), if Records[cmout

j ] 6= ⊥
for any j ∈ {1, . . . , n} then abort, else set Records[cmout

j ] ← (vout
j ,Rj , alive)

for all j ∈ {1, . . . , n} and set Records[cmi] ← (v in
i , P

′, consumed) for all i ∈
{1, . . . ,m}.

6. Return (transferred, (cmout
j )nj=1) to P .

– Upon receiving an input (transfer, Ps, (cm in
i )mi=1, (Rj , v

out
j , cmout

j )nj=1) where Ps

is corrupt, proceed analogously to the above. (That is, check whether all cm in
i are

alive and controlled by Ps, and whether the sums add up, and update the records
accordingly.)

Fig. 5. MIMO token functionality.

Functionality Fcrsgen
crs

Fnizk is parametrized by a probabilistic algorithm crsgen. Initially, it sets
crs ←$ crsgen(λ).

1. On input read from a party P , return crs to P .

Fig. 6. Common reference string.
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Functionality FR
nizk

Fnizk is parametrized by a relation R for which we can efficiently check membership.
It keeps an initially empty list L of proven statements and a list L0 of proofs that do
not verify.

1. On input (prove, y, w) from a party P , such that (y, w) ∈ R,a send (prove, y) to
A.

2. Upon receiving a message (done, ψ) from A, with ψ ∈ {0, 1}∗, record (y, ψ) in L
and send (done, ψ) to P .

3. Upon receiving (verify, y, ψ) from some party P ′, check whether (y, ψ) ∈ L, then
return 1 to P , or whether (y, ψ) ∈ L0, then return 0 to P . If neither, then output
(verify, y, ψ) to A and wait for receiving answer (witness, w). Check (y, w) ∈ R
and if so, store (y, ψ) in L, else store it in L0. If (y, ψ) is valid, then output 1 to
P ′, else output 0.

a Inputs that do not satisfy the respective relation are ignored.

Fig. 7. Non-interactive zero-knowledge functionality based on the one described by
Groth et al. [21].

Secure message transmission functionality Fsmt

Functionality Fsmt is for transmitting messages in a secure and private manner.

– Upon input (send,R,m) from a party S:
• If both S and R are honest, provide a private delayed output (sent, S,R,m)

to R.
• If at least one of S and R is corrupt, provide a public delayed output

(sent, S,R,m) to A’s queue.

Fig. 8. Secure message transmission functionality.
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Functionality F (sigkeygen,sign,verify)
sig

Functionality Fsig requires that sid = (S, sid ′), where S is the party identifier of the
sender. Set C, initially empty, specifies the set of currently corrupted parties. The
functionality keeps a set S of properly signed messages.

0. Upon the first activation from S, run (sk , pk)←$ sigkeygen(λ), where λ is obtained
from the security parameter tape, and store (sk , pk).

1. Upon input pubkey from party S, output (pubkey, pk) to S.
2. Upon input (sign,m) from party S with m ∈ {0, 1}∗, compute s ←$ sign(sk ,m).

Set S ← S ∪ {m} and output s to S.
3. Upon input (verify, pk ′,m′, s′) from party P , compute b ← verify(pk ′,m′, s′). If

S /∈ C∧pk = pk ′∧b∧m′ /∈ S then output (result, 0) to P . Else output (result, b)
to P .

4. Upon input (corrupt, P ) from the adversary, set C ← C ∪ {P}. If P = S, then
additionally output sk to A.

Fig. 9. Signature functionality

Functionality Fdkg

Fdkg is parameterized by a PPT algorithm threshKeygen. The session identifier sid
specifies the total number of certifiers n and the threshold bound t.

– Upon input init from a party Ci:
• If no keys (sk1, . . . , skn, pk) are stored yet, generate

(sk1, . . . , skn, pk)←$ threshKeygen(λ, n, t).
• Return (sk i, pk) to Ci.

Fig. 10. Distributed key generation functionality
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Fig. 11. This figure shows the interactions between the entities in our system. Users
and issuers are granted identities and auditor credentials via interactions with the
MSPs. Upon a decision to issue a token, one or more token issuers are requested to
submit an “issue” request to the transaction ledger of the system. The latter would
process the request as long as it authenticates the transaction to have originated from a
valid issuer. Users use their credentials to construct transactions to transfer tokens they
own to other users, and validation of these transactions take place by the transaction
ledger that adds it to the system’s immutable ledger. Finally, auditors assigned to a
user audit that user’s transactions by reading from the ledger.


