Not a Free Lunch but a Cheap Lunch:
Experimental Results for Training Many Neural
Nets

Joey Green, Tilo Burghardt, Elisabeth Oswald

Department of Computer Science, University of Bristol, Merchant Venturers
Building, Woodland Road, Bristol, BS8 1UB, United Kingdom.

firstname.lastname@bristol.ac.uk

Abstract. Neural Networks have become a much studied approach in
the recent literature on profiled side channel attacks: many articles exam-
ine their use and performance in profiled single-target DPA style attacks.
This paper contributes to this ongoing discourse by taking a slightly dif-
ferent angle: we train networks for many intermediates of a typical AES
implementation on an ARM Cortex-M0 processor, and compare their
performance with classical profiling methods. Because the cost of find-
ing good hyperparameters for networks is high, we demonstrate how to
configure a network with a set of hyperparameters for a specific inter-
mediate (SubBytes) that can also be used for learning the leakage of
other intermediates. This is interesting because although we can’t beat
the no free lunch theorem (i.e. we find that different profiling methods
excel on different intermediates), we can still get “good value for money”
(i.e. reasonable classification results across many intermediates with rea-
sonable profiling effort). To put the trained classifiers into side channel
practice we integrate them not only into a standard profiled single-target
attack on SubBytes, but we use them as part of a (multi-target) belief-
propagation attack.

Keywords: AES, Inference Based Attacks, Side Channel Attacks, Tem-
plate Attacks, Deep Learning, Neural Network

1 Introduction

Profiled side channel attacks are the canonical methods to determine the level of
side channel security from a worst case perspective. Classical profiling methods
are based on building (Gaussian) templates [4] and linear regression models [§].
Such methods build an explicit statistical representation of the average leakages
for specific intermediate values and can therefore be used as predictors with
comparison-based distinguishers. Machine learning methods have also been ex-
tensively studied (predominantly as classifiers), and many have found their use
together with partition-based distinguishers.

Recently, deep learning has become a focus of attention in the side channel
community. Restricting our discussion on papers based on AES implementations,

a number of recent studies provide first results for protected and unprotected
AES implementations [39II8]. All these papers have in common that they train
networks for the “best” intermediate (i.e. SubBytes outputs are used as labels,
alongside a “window” in which the corresponding leaks are to be found in traces),
and papers utilise leaks from fairly simple processors.

The deep learning approach to side channel analysis proceeds in two stages,
similar to template attacks in a typical DPA setting. In a training phase one
acquires leakage information from (a copy of) the target device with known
inputs and key(s), which becomes the training data set. A network model is then
selected, informed by previous work [3] and carefully tuned based on the available
training data [I8], noting that adopting models built using separate data in a
different scenario is challenging. The network is trained using the training data
against appropriate labels, usually the Hamming Weight or identity value of
the targeted intermediate value. Then, during the attack phase, one is able to
query the trained model using new unseen data to recover information about
the (now) unknown key. In contrast to classical template attacks which require
the adversary to find the most leaky time points manually (or via some other
method, e.g. LDA [8] or PCA [2]), deep learning offers the tantalising promise of
learning to automatically identify the most leaky time points even in misaligned
traces [3].

Previous work utilising deep learning in side channel analysis considers batches
of traces for testing to resemble the use of deep networks as part of DPA style
attacks [I0]. We, however, are interested in the use of deep networks as part
of profiled attacks that combine the information that leaks from multiple in-
termediate values as part of an inference based attack, as described in [237].
Consequently we are interested in training networks that excel in classifying
single traces.

Should we expect that any single optimiser (learning approach) could be the
best across a range of different leakage functions? The “no free lunch” (NFL)
theorems for supervised learning suggest that a truly best learning algorithm
cannot exist in general [24]. The reasoning behind the NFL is that we cannot
know what we have not seen: in other words, any learning algorithm only knows
the “structure” of the training data, but, assuming that the training data does
not represent to full input space, it cannot be expected to generalise to the unseen
test data. Specifically theorem 2 from [24] says that for a number of probabilistic
measures of “error” (on a data set distinct from the training set), the average
performance of any (pair of) algorithms is the same. Putting this more concretely,
any algorithm that turns out to generalise well for some particular dataset will
perform badly for some other dataset. Only if we have some priori knowledge,
and the training and test data are known to have the same distribution, we can
choose an a priori best algorithm (e.g. if we know that data is linearly separable
in both the training and the test data set then an optimal classifier can be
configured accordingly but that means we didn’t need to learn this fact).

In the case of typical power or EM leakage we tend to encounter a variety
of leakage functions: “tame” 8-bit devices (such as those used in [I1]) often just

leak the Hamming weight, but slightly more complex devices already might leak
the Hamming distance between consecutive data values; typical 32-bit ARM
processors of the CORTEX M family have confirmed second-order leakage [16],
and more complex devices (whether they feature cryptographic hardware or not)
have leakage functions with statistically significant higher order terms.

In the case of simple linear leakage functions (noiseless or very little noise),
there is the possibility of an optimal classifier (given very large sets of sample
data): previous work has shown that a deep linear net will converge to a true
global minimum for the training [I]; but such a simple function can be very
effectively characterised with standard statistics and does not benefit from any
more sophisticated approach.

In the case of more complex leakage functions where the training dataset
cannot adequately reflect the nature of the test data, the NFL applies: this means
that we cannot expect to find any learning algorithm (may this be some form of
deep neural net, a classical machine learning approach, or Bayesian classification)
that is optimal across all possible leakage functions. Thus for any intermediate
value on an “interesting device” a different learning approach could beat the
others (i.e. it generalises best for some test data). It is practically infeasible to
try and find the optimal learning algorithm for each intermediate — in particular
if neural nets are of interest because there are many different types, each of which
requires finding the best set of hyperparameters.

1.1 Related work

Song et al. [20] provides an overview on the various deep learning models that
have been employed in recent literature, ranging from Multi-Layer Perceptrons
to Convolutional Neural Networks. They provide insight into the current research
situation, highlighting the success of published attacks against classical power
analysis methods.

Benadjila et al. [18] proposed an independent study of deep learning algo-
rithms when applied to side channel analysis. They give an example of how one
would choose the architecture and training parameters of Multi-Layer Percep-
trons (MLPs) and Convolutional Neural Networks (CNNs) in order to optimise
the network for their dataset: a masked implementation of the AES algorithm,
with a degree of clock jitter. They conclude, after comparing a trained MLP
to a trained CNN, that the MLP outperforms the CNN in a jitter-free scenario,
whereas the CNN is more resilient against clock jitter. This is expected given the
shift invariance of the convolutional operation. Other work in this area [3] showed
that using data augmentation on available training data through a combination
of methods (shifting and add-remove) one can get even better performance with
CNNs on jittery traces. This outperforms an implementation of a Gaussian tem-
plate attack with trace realignment.

Kim et al. [9] compare a number of CNN network structures against four
separate data sets: the DPAcontest v4 (masked AES), an unprotected AES-128
on an FPGA, an AES implementation with a random delay software counter-
measure, and the ASCAD dataset as previously described. They conclude that

CNNs even with slight changes to their network structure have varying success
rates on different data sets; therefore, network parameters and structures must
be tuned according to their required target data. They propose the need of a
suite of CNN instances, in which the user can switch their CNN structure to
find the best network for their use case. The paper additionally proposes adding
Gaussian noise to the training set, as they show this allows the network to be
more resilient to noise in the attack phase, as they use the ASCAD model as an
example.

Martinasek et al. [14] proposes preprocessing the training data set by cal-
culating the average trace and finding the difference between this average and
all other traces. By using an MLP in an example, they show that they increase
the success rate of the classification by using this preprocessing method. How-
ever, they include that this method has drawbacks: it suppresses the alternative
probabilities, meaning that an attacker would not be able to try a second key
guess if the most probable value is incorrect. In our work, we will show that this
suppression is severely detrimental to inference based attacks.

The same MLP was then used to target the DPAcontest v4.2 [I5]. Although
the authors mention this method is not fully explored, as they encounter some
problems on the seventh dataset, but they are successfully able to recover the
key on the other datasets. The MLP was compared to a template attack in [13].
Their metric for success was guessing entropy. Unfortunately, perhaps due to the
paper length, there was no mention of how the hyperparameters were chosen for
this MLP. Instead, they conclude that the template attack performs three times
better than the MLP approach when the training data has not been preprocessed.
After preprocessing (using the methods described in [14]) they conclude the
success of the MLP matches that of the template attack.

We can see from the rather different findings reported in the previous studies
that there is no clear best learning or profiling approach: we suggest that this is
not in any way unexpected or that papers contradict each other. It seems more
likely to be a manifestation of the ‘no free lunch’ theory. Given that there is
no optimal learning algorithm, and the cost of training and tuning deep nets
in particular, is there any practical way forward in contexts where we want to
take advantage of the many leaking intermediates that typical cryptographic
implementations offer?

1.2 Contributions and Outline of this Paper

Contributions Our approach is based on training MLPs for many intermediate
values from an AES FURIOUS [I7] implementation on an ARM Cortex M0 proces-
sor. Alongside training the networks we also build classical (Gaussian) templates
and LDA based templates. The ARM Cortex MO is a well characterised and un-
derstood processor: previous work has shown that its leakage function has linear
terms as well as statistically significant second order terms (Hamming distance
leaks, as well as bit interactions). The noise is not significantly different for dif-
ferent instructions. Thus by training networks on this platform we are able to

examine the case where the leakages from different intermediates are very sim-
ilar and they are all complex enough to be interesting (i.e. they are not pure
Hamming weight).

In contrast to other work, we concentrate the tuning of our deep networks
to maximise the per trace classification performance (instead of using a batch
of test traces). Because our training sets have size one, cross validation does not
make sense in estimating the networks performance.

Our findings confirm that the NFL may have a role to play: across all in-
termediates (trained networks, and classical profiling methods) there is no clear
winner: even for the same type of intermediate (e.g. the leakage corresponding to
a byte undergoing SubBytes) different algorithms perform differently across the
16 state bytes. Another interesting aspect of our work is related to the choice of
metric to judge the classification performance of a network. Initially we utilised
the “median rank” metric (as per [18]) to judge the classification performance,
and by doing so selecting the best network configuration (hyperparameters). Us-
ing “median rank” only led to networks that behaved in a rather arbitrary and
poor manner when trained for different intermediates. We switched to using the
“median probability” as a measure and determined the best hyperparameters
for a network learning the leakage related to SubBytes: this particular network
configuration was able to learn very efficiently the leakage for all other interme-
diate values. Thus our conclusion that even though a free lunch isn’t possible,
we can still get a relatively cheap lunch.

Outline We briefly review the working principle of profiled attacks, focusing
on standard univariate templating methods and Linear Discriminant Analysis
in Section [2| Alongside this we provide information about our attack setup, as
well the relevant implementation details of the AES implementation on which we
base our experiments. In the same section we discuss the details of multi-layer
perceptrons in the context of side channel analysis, with a focus on the results
of [1§].

In Section [3| we investigate whether reusing the MLP architecture from [18]
could work and conclude that the performance is too weak, measured by three
different metrics: median rank, median probability and mean probability. The
rank metric shows that the MLPs are nearly as bad as a random guess. There
is an interesting difference between the median probability and the mean prob-
ability outcomes, in particular for the ASCAD CNN which has very low median
probability but a high mean probability indicating that it is confident but wrong.

Thus we require a different network structure, which we initially attempt
to determine by using a rank based metric. In Section [4] we show that, in our
use case, using the ‘rank’ of the classified value is an inappropriate metric that
leads to poor results. We propose to use the median probability to fine tune the
network hyperparameters, which results in a large improvement in the results.

Section compares the results of the newly configured MLP with classi-
cal univariate templates and LDA based multivariate templates. We still find

evidence of the no free lunch theorem: different methods “win” for different
intermediates.

Finally we compare the learning algorithms in the context of two attacks (a
DPA attack on SubBytes and a belief propagation attack on the first two AES
rounds) in Section

2 Preliminaries

We provide a brief description of our setup and the necessary background for
the learning methods that we use.

2.1 Attack Setup and Implementation Details

Fig. 1: Factor Graph representation of the first column of the first round of the
AES FURIQUS implementation

The AES FURIOUS algorithm has been used widely in both commercial devices
and for attacking purposes; we use an adaptation of this algorithm written in
the ARM Thumb assembly language. It is a native 8 bit implementation which
performs the SubBytes step as a table lookup. Figure [1}is provided as a visual
aid, showing the first column of the first round, providing insight into how the
MixColumns step is performed.

The physical device we target is based on an ARM Cortex-MO0 of the LPC
series, and contains an on board signal amplifier and filter. To ensure we do not
capture any clock jitter, we use a stable external 8MHz clock. We record the
power leakage with a PicoScope 2000 Series oscilloscope, with a sampling rate
of 125MS/s.

Using this setup, we took 210000 traces from the target device, split into
three groups:

— 190000 traces with random keys and random plaintexts, to be used for train-
mg

— 10000 traces with random keys and random plaintexts, to be used for vali-
dation

— 10000 traces with a fixed key and random plaintexts, to be used for testing

Our traces have 51250 time points, ranging from the start of AES to the end
of the second round.

We implemented the (Gaussian) template building in Python following [I1].
To implement Linear Discriminant Analysis (LDA), we use the scikit-learn
module, which comes packaged with an LDA classifier. To implement the neural
networks, we used the Keras API, using TensorFlow as a backend (identical to
[13)).

In this work, we aim to use the output of our distinguishers as the input
to an inference based attack. The key idea behind inference based attacks is
to combine information from multiple intermediate values, via a method called
belief propagation. This type of attack requires the construction of a so-called
factor graph, and we use the best factor graph for AES FURIQUS as provided in [6]
(see Figure [1] for a graphical representation of part of that factor graph). This
particular cyclic graph contains leakage information from the first two rounds
of AES. Using the classification results as initial distributions in this graph, we
run the Belief Propagation algorithm and extract a ranking of the key upon
termination.

2.2 Classical Profiling

(Gaussian) Templates A template is defined as a mean vector and a standard
deviation vector pair (u, o). These are created during the template building phase
(often referred to as the offline phase) by finding the point of interest within
the traces where the target leakage occurs. Suppose we are targeting the first
output byte of the SubBytes operation in AES. We acquire a large number of
traces from the copy of our target device, using random keys and plaintexts.
By partitioning the traces according to the value of the first output byte of the
SubBytes operation, then only selecting the power value at our point of interest,
we end up with 256 sets of power values. By taking the mean and standard
deviation of each set, we end up with 256 templates.

The template matching phase (or online phase) involves matching the tem-
plates to unseen power leakage. We use Bayes’ rule to obtain predictions:

PXly=cPly=c¢) PXly=c)Ply=c)
P(X) > Ply=ilX) Py =1)

Ply = ¢ X) =

By calculating the Gaussian probability density function of a leakage value
with all our templates, we get a vector of probabilities that correspond to how

likely that value was at being the correct identity of the target. We can normalise
and combine these probabilities over multiple traces to form a ranking of the
possible key.

Linear Discriminant Analysis Linear Discriminant Analysis (LDA) is a gen-
eralisation of Fisher’s linear discriminant, which is a statistical method used to
find a linear combination of features that characterises multiple classes of ob-
jects. LDA is closely related to regression analysis, and is a widely used tool as a
linear classifier. By considering data over a large window surrounding a point of
interest, the LDA approach is an example of a multivariate templating method.

We consider multiclass LDA, as we wish to classify each intermediate byte
(256 values). In the training phase, LDA models the conditional distribution of
P(X|y = ¢) for each class ¢ (and a vector of power values X). In the classification
phase, LDA uses Bayes’ rule to obtain predictions, in an identical manner to the
Gaussian templating method.

2.3 Neural Networks

Neural networks are frameworks for machine learning algorithms to process com-
plex data inputs. These networks have the ability to “learn” how to perform tasks
when provided with input data, even without having any knowledge on how to
perform the task in advance. Neural networks are used extensively in the field of
image recognition, where they are able to identify images that contain specific
objects, by analysing some training data where the images have been marked
whether the specific object is present (or not). Our aim was to use a Neural
Network to classify an intermediate variable. That is, if we provide the network
with the power consumption of the target device over the period of time when an
intermediate variable is computed (and stored in a register), then the network
will provide us with a likelihood vector of the possible intermediate values.

A neural network has an input layer, an output layer, and a number of
‘hidden’ layers. Each layer is made up of a number of neurons (often called nodes)
which mimic the function of a neuron in the brain. The neurons perform an
evaluation of its input data, and pass the result of these evaluations onto the next
layer in the network. There are multiple ways of structuring this network, and
hence many models from which to choose; some excelling in different scenarios.
For our leakage classification use case, we will be using a Multi-Layer Perceptron.
This is because the results presented in [I8] show the MLP outperforms other
models (a CNN and VGGI16) in a jitter-free scenario.

Multi-Layer Perceptron A Multi-Layer Perceptron is an example of a feed-
forward artificial neural network - it does not contain any cycles. Typically, an
MLP has at least three layers: an input layer, a hidden layer (or multiple hidden
layers), and an output layer. All layers are dense (also called fully connected):
every input is connected to every output by a weight. Each node (bar the input
nodes) is a neuron that uses a nonlinear activation function.

MLPs use backpropagation for training; this technique is commonly used in
networks with multiple hidden layers. The advantage of an MLP over a standard
linear perceptron is that it is able to distinguish data that is not linearly sepa-
rable. In practice, they are a very quick network to train and test, compared to
some of the more complex models.

When constructing and training an MLP, there are several hyperparame-
ters that must be considered. All of these can vastly change the effectiveness
of a trained model, so appropriate values must be selected accordingly. These
include the following: number of hidden layers, number of nodes per hidden
layer, activation function for hidden layers, number of training epochs, batch
size, learning rate, and the optimiser.

The universal approximation theorem states that networks with two hidden
layers and a suitable activation function can approximate any continuous func-
tion on a compact domain to any desired accuracy [5I7]. However, the size of
such a shallow neural network would be prohibitive: the number of neurons per
layer would be exponential in the input size. Deep neural nets trade the number
of layers for the the number of neurons per layer, and are suspected to learn
"natural functions” fast with fewer neurons [21].

The activation function of a node defines the output of that node given a set of
inputs. Common activation functions consist of ReLU (a linear unit employing a
‘rectifier’, which takes the positive part of its argument) and Softmax (a function
that normalises an input vector into a probability distribution).

The batch size is the number of samples processed before the model is up-
dated, and the number of epochs is the number of complete passes through the
training dataset. The learning rate is how quickly the model learns; that is, a
network with a larger learning rate will abandon old beliefs quicker, whereas a
network with a low learning rate will be less susceptible to outliers.

Optimisation algorithms are used to minimise the objective function; in our
case, categorical cross entropy. RMSProp [22] is a commonly used optimiser in
classification networks.

Literature in Deep Learning does not provide much insight into how one
chooses these hyperparameters. One either employs a manual search (guess pa-
rameters and compare results, selecting the one that gives the best results), or
uses some automatic parameter selection method, such as grid search or random
search.

Training In order to train our network to classify a variable node x, we require
training data and training labels. We provide a large window of power values
within which we are certain the targeted intermediate is loaded / stored in
memory. This is to ensure we capture the leaking value without providing the
entire trace, which would be providing redundant information. Along with the
training data we provide our training labels in the form of the correct value of
variable x for each trace. We are able to know this value as we use the copy of the
target device to generate the training information - by using a known plaintext
and a known key, we can compute the values of all intermediate variables.

To train our networks, we use 190000 traces. All of these traces use a random
key and a random plaintext. This number was chosen as we found it to be
sufficient to generate accurate models to classify the data.

Validating The validation data also uses random keys and random plaintexts.
This data is used during training to validate the current effectiveness of the
model in training against unseen data, using the specified loss function. Tools
such as TensorBoard provide us with a visual graph depicting the accuracy and
loss of the training, and allows us to pinpoint the exact time in which the model
starts to overfit. The loss function used throughout this work (and in previous
works) is categorical cross entropy.

Testing The testing data was produced in an identical fashion to the training
data, but this time the key was fixed. In our actual attack scenario (targeting
a real device) the key will remain constant among all traces, so by using a
fixed key in the testing data, we can get an accurate analysis of how the model
would perform in an attack scenario. Due to the work presented in [19], as the
AES SubBytes operation has the EIS property (equal images under different
subkeys), we test based on a single key. Because we are interested in the per
trace classification performance, our testing essentially uses testing sets of size
one. Consequently cross validation is not necessary (or possible).

Success metrics The result of using a classifier on some new test data is a
vector d that represents an estimated probability distribution for the unknown
subkey k € K. Several metrics exist in the side channel context that measure the
performance of a classifier based on d. The classification outcome for the correct
subkey value k* is given by d[k*].

We define the rank of k* given a new trace 7" in Eq[I] as an integer between
1 (the best and largest probability relative to others) and |K| (the worst).

rank(k*,T) = |{k € K|d[k] > d[k*]}| 1)

The rank is a random variable and thus measuring it based on a single new
test trace is not useful. A better metric will take multiple new test traces T into
account, and we will be studying the behaviour of the median rank, alongside
the median probability, defined in Eq. [2] and Eq. [3] respectively.

medianRank(k*, T) = quglilgn(rank(kz*, T)) (2)
medianProbability (k*, T) = mgdjlgn(d[k*}) (3)
€

Training labels are one-hot encoded; they are vectors of size 256 where all
values are zeros, bar a single 1 at index k*, as shown in Eq. [

oneHot(k*):((g,...,17...,0) (4)

Therefore, the loss function cross entropy can be defined in Eq.

255
crossEntropy (d, k*) = — Z (i == k*)logd[i] = —log(d[k™]) (5)
i=0

2.4 The ASCAD MLP and results

The paper titled Study of Deep Learning Techniques for Side-Channel Analy-
sis and Introduction to ASCAD Database [I8] was a significant step towards
studying the effects of Deep Learning when applied in a Side Channel Analysis
context. They work with an AES implementation (similar to AES FURIQUS) on a
simple 8-bit device, which is known to predominantly leak the Hamming weight
of intermediate values.

The paper featured a number of important contributions regarding the use
and performance of two different types of deep neural nets. For our work the
following aspects are of particular importance:

— they provide a detailed discussion of choosing hyperparameters in the context
of learning the leakage from an AES SubBytes intermediate;

— they compare an MLP to a CNN (the CNN is best suited to learn misaligned
traces, but the MLP is marginally better for aligned traces; template attacks
outperformed both deep learning approaches).

Because the interest of our study is not to defeat hiding or masking counter-
measures, but to explore if it was possible to build many neural nets (for many
intermediates) efficiently, we opted to use an MLP as our basic choice of neural
net.

In the ASCAD paper they split their choice of hyperparameters into two
parts: training parameters and architecture parameters. The authors select hyper
parameters either one by one or two at a time, and manually test their network
using 10-fold cross validation with different sizes of dataset. Upon finding a
locally optimal value for a hyperparameter, this parameters is saved and used
when determining the next hyperparameter. In order to determine the hyper
parameters, the training set is partitioned into 50,000 profiling traces and 10,000
validation traces.

In a first step the training parameters are determined. Table [I| shows the
training parameters (parameter, set from which to choose from, actual choice)
in the order in which they were chosen (i.e. firstly the size of the training set
(along with epochs, to keep a constant computational time for fair comparison),
followed by the Batch Size and the Number of Epochs, and last the Learning
Rate and Optimiser).

In a second step the architecture parameters are chosen. Table [2] lists the
parameters again in the order by which they were determined. The output layer
of the network consists of the Softmax function, which “converts” the output to
a probability distribution. The loss function is always chosen to be categorical
cross entropy, and no other loss functions are considered. There are a number

11

Table 1: The tested values and best values for chosen training parameters for
the MLP in the ASCAD paper.

Parameter ‘ Tested Values ‘ Best Value

10000, 20000, 30000,

Size of Training Set 50000, 70000, 90000 50000
Number of Epochs 100, 200, 400 200
Batch Size 50, 100, 200, 500 100

Learning Rate 1077,107°, ..., 1073 1075

Adadeita, Adagrad,

Adam, RMSProp, SGD RMSProp

Optimiser

of performance figures shown in the ASCAD paper, but it is not entirely clear if
they are related to attacking always the same SubBytes leakage (we assumed this
to be the case). With this assumption we can summarise their findings for the
aligned traces as follows: the MLP performs marginally better than the CNN,
whereby the MLP reaches (stable) first order success after around 300 traces.

3 Initial study: (re)using the ASCAD MLP and CNN on
the MO data

The starting point for our investigation was the ASCAD MLP (and CNN) be-
cause although we use a more complex processor, the intermediate values pro-
duced by AES FURIQUS are all 8 bit values (thus architecturally the implemen-
tations are similar). However, as elaborated in the introduction, the MO pro-
cessor features a range of (interesting enough) leakage functions. We were thus
interested if the ASCAD networks (i.e. an MLP configured with the ASCAD
hyperparameters, a CNN with the ASCAD parameters, as well as the actual
best ASCAD MLP and CNN) could be the basis for training also for the MO0 (we
fix a single SubBytes for this experiment). Given that the MO leakage functions
all include a strong Hamming weight component (like the ASCAD leakages),
and are also based on 8-bit intermediate values, we hypothesised that the AS-
CAD MLP (and CNN) would be a reasonable initial choice (reusing existing
network configurations is an accepted strategy in computer vision and was also
the starting point in the ASCAD paper).

Table 3| shows the classification results. The first column refers to the type of
learning (CNN/MLP Pretrained are the actual ASCAD networks, CNN/MLP
are based on the ASCAD hyperparameters but newly trained on the M0 data,
Univariate refers to Gaussian templates). We provide the expected values for
random guessing as “Uniform” classifier in the first row of the table.

It should be evident that the pretrained models are unsuccessful at classi-
fying the new data; this can be seen by the median classification probability
being equal to or less than guessing randomly (out of 256 possible values). The

12

Table 2: The tested values and best values for chosen architecture parameters
for the MLP in the ASCAD paper.

Parameter ‘ Tested Values ‘Best Value
. 3,4, 5,6,
Number of Hidden Layers 7.8 11 4
Number of Nodes 20, 50, 100, 150, 200, 200

per Hidden Layer 250, 300, 500

Hard Sigmoid, Linear, ReLU, Sigmoid,

Softmax, Softplus, Softsign, Tanh ReL.U

Activation Functions

CNN trained solely on our data sports a confident mean probability, but an
exceptionally low median probability. This is due to the neural network being
confident but wrong more often than not. The MLP model is able to improve
upon the uniform distribution, and is just able to outperform the standard uni-
variate templating method. However, the MLP is outperformed by the standard
machine learning LDA approach. The ASCAD MLP and CNN architectures do
not generalise at all to the MO data. [[]

Table 3: Classification results using different learning algorithms, attacking the
first SubBytes output byte

Classifier Median Rank Median Probability Mean Probability
Uniform 128 0.00390625 0.00390625

CNN, Pretrained|127 0.001150969 0.003813843
MLP, Pretrained |128 0.003908087 0.003909754
CNN 126 2.69421e-21 0.006996953
MLP 73 0.004286217 0.008182878
Univariate 98 0.004243865 0.004606495
LDA 64 0.005063529 0.007880825

4 Mind your Metric

Reusing the ASCAD MLP or CNN leads to entirely unsatisfactory results on the
MO data. This could be because the ASCAD networks were trained on masked
data and thus their architecture is specific to learning the combination of mask

! We are aware the the ASCAD architectures train on masked data, such that the net-

work learns the bivariate distribution of the mask and the real value. We understand
this may factor into the lack of generalisation of the ASCAD networks.

13

and masked SubBytes leakages rather than predominantly the SubBytes leak-
ages. Therefore we have to reconsider the choice for the hyperparameters and
essentially determine them from scratch.

Following the established approach of determining the hyperparameters re-
cursively, we set out to determine a “best” MLP for the SubBytes leakages first.
Concretely this implied that for a number of choices for a hyperparameter we
tested the performance of the resulting network via a custom “testing” phase.
Initially we followed the recommendations of the ASCAD paper; in particular
the recommendation to utilise the mean rank (as defined over a single Sub-
Bytes output, which we chose to be the one on the first state byte) to judge the
performance of a network. The mean rank is estimated from the test dataset
via cross validation, which is known to result in a reliable estimation. Our test
datasets consist of single traces however, and the subkey ranks after a single
observation are too variable to be useful. Thus the mean rank is not a suitable
metric for our use case. The median rank may be a much more robust choice,
which we utilised instead.

4.1 Rank as metric

Figure 2a] shows the performance figures for the 16 SubBytes leakages, where the
MLP was optimised for the first SubBytes leakage. The performance is a marked
improvement over the results from (re)using the ASCAD networks, but the most
striking feature of the results is their variability. Intuitively we would expect the
performance for the first SubBytes operation to be slightly better because this
should correspond best to the training data, but the performance of the other
SubBytes leakage should be nearly identical; after all, it is the same Assembly
instruction sequence and there are no other processes running on the device that
could influence the leakage (or noise). It is also striking that the performance of
the classical profiling methods is extremely variable (for no apparent reason).

Figure 2B shows the performance figures for the 16 AddRoundKey leak-
ages (we reused the MLP that we trained for the first SubBytes). We certainly
wouldn’t expect it to perform much better here, but it is again striking that
the performance figures for all classifiers are extremely variable for no apparent
reason.

Given that the performance figures are variable for all classifiers and different
intermediate leakages, our hypothesis for the explanation of this phenomenon
may not be related to the classifiers (as they are all very different) but how we
measure their performance—via the median rank.

The subkey rank is a useful measure because it directly relates to how we
evaluate attack outcomes, and is defined in Eq[l] However, typically this met-
ric is used in conjunction with DPA style attacks, where due to the fact that
we use many (enough) leakages, we produce stable ranks. In the classification
experiments we judge the classification per trace and thus it is possible that
the classifier produces rather erroneous ranks. By only utilising the rank of the
classification results, rather than the resulting distribution, we throw away in-
formation that may tell us that the network is in fact not very confident about

14

Table 4: Table comparing the locally optimal parameter values between various
networks

Parameter ASCAD Network|Rank Network|Probability Network
Number of Hidden Layers 4 2 3

Number of Nodes in Hidden Layers||200 200 100

Activation Functio ReLU ReLU ReLU

Number of Epochs 200 6000 100

Window Size 700 700 2000

Batch Size 100 200 50

Learning Rate 107° 107° 107°

Optimiser RMSProp RMSProp RMSProp

% The output layer uses the Softmax activation function to ensure the network outputs
a normalised probability distribution

the resulting classification result. Thus maybe a better strategy for judging the
classification performance could be to utilise the median probability as a met-
ric.

4.2 Probability as metric

Our next experiment consisted of optimising the MLP by judging its performance
via the median probability, as defined in Eq. 3] Utilising the median probability
as metric dramatically changed to configuration of the network, see Table [4] for
an overview of the hyperparameters of the ASCAD MLP, the rank based MLP,
and the probability based MLP. The network based on rank has the fewest
hidden layers but requires a large number of epochs, whereas the number of
hidden layers for the probability based network is between the ASCAD and the
rank based network. Noticeably it utilises the largest window size (i.e. it asks
for the most trace points of all networks). This may indicate that it best utilises
the available information: the SubBytes output is fetched from memory, and we
know that on this particular MO implementation there is a buffer between the
registers and the external memory which causes values to “hang around’ in the
architecture for several cycles; in addition we know that the SubBytes values
utilised again as part of MixColumns.

There is also a dramatic difference in the number of epochs between the rank
based network and both the ASCAD and the probability based network. We
investigated the behaviour on the training and validation data sets and noticed
that the model overfits after around 2000 epochs, see Fig. Before this point,
the model continues to ‘learn’ more about the task. However, upon comparing
the median probability results on different numbers of epochs, we found a local
optimum when using 100 epochs. This seems unusual; Fig. [3b|shows the network
after 100 epochs, and it appears it is still learning. However, past this point, we
find a lower median probability classification result. This is most likely due to
the discrepancy between the cross entropy loss function (used to calculate the

15

128
0 Univariate Template

M N 0o LDA
n - (0 Neural Network

Median Rank
[=2]
e
[
|

32 |

T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SubBytes Output Byte s
(a) Plot showing the classification results of the SubBytes output
using Median Rank as a performance metric

128
00 Univariate Template
0o LDA
- - o S (0 Neural Network
96 |- Al B M. - _ |

Median Rank
[=2]
e

T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
AddRoundKey Output Byte ¢
(b) Plot showing the classification results of the AddRoundKey output
using Median Rank as a performance metric

256 | | | | | | | | | | | | |

0 Univariate Template
24 |- o 4 |0o LDA

i m (0 Neural Network
192 + - - n

160 |- A - L B

128 f

96 H

Median Rank

32 H

T T T T T T T T T T T T
1 2 3 4 5 6 7 8 910111
Key Byte k&

T T T T
2 13 14 15 16
(c) Plot showing the classification results of the key bytes using Me-
dian Rank as a performance metric

Fig. 2: Plot showing the classification réults of various intermediates using Me-
dian Rank as a performance metric

training and validation accuracy) and the median probability metric we use to
find the best model.

0.12 - -

TensorBoard Accuracy
(=2}
=
9
N
|

—— Training
—— Validation

| | | | | |
0 1,000 2,000 3,000 4,000 5,000 6,000
Steps

(a) TensorBoard Training Plots training for s; using 6000 epochs
1072
345 — | —

3 -

v}
(2]
|

TensorBoard Accuracy

0.5 — —— Training | —
—— Validation

I I I I I I I I [[[
0 10 20 30 40 50 60 70 8 90 100

Steps

(b) TensorBoard Training Plots training for si using 100 epochs

Fig.3: TensorBoard Training Plots training for s; using different numbers of
epochs; network parameters maximising the Median Probability metric

4.3 No Free Lunch

We now compare the probability based deep networks to the univariate templat-
ing method, along with Linear Discriminant Analysis.

17

Figure [4a] compares the median probability classification of the probabil-
ity networks to the standard univariate templating method along with linear
discriminant analysis, when targeting the output of the SubBytes step. In com-
parison to Figures and the classification performance is much more
stable, which gives us more confidence in the quality of the deep networks.

It is evident that for some targets (e.g. s2, S9), the neural networks perform
much better than the other classification methods. However, this is not always
the case; sometimes (e.g. ss, $11), the neural networks are outperformed by the
univariate templating method and/or the LDA classifier.

These observations are echoed when targeting the AddRoundKey outputs and
the key bytes directly, as shown in Figures and respectively. Although
the neural networks outperform the other templating methods most of the time,
there exist intermediate variables that are better classified by either univariate
or LDA classifiers (e.g. t3, k11).

This behaviour is, from our point of view, a manifestation of the no free
lunch theorem, i.e. even restricted to a type of intermediate it is very likely that
there is no single learning approach that always outperforms the other learning
approaches. In our study though, the deep networks delivered the best classifica-
tion performance for a majority of the intermediate values, which indicates that
they should have the edge also when it comes to using them in concrete attacks.

5 Performance in Attacks

Our main attack scenario is that of a multi target attack that represents the worst
case attacker. In this setting, an attack strategy that combines the information
derived from the leakage of multiple intermediate values via belief propagation
is currently regarded as the most effective.

5.1 Multi target using belief propagation

A concrete attack in the belief propagation setting samples a new leakage trace
(for an unknown key), utilises some classifiers to extract information about the
intermediate values, and feeds their classification results (in the form of prob-
ability distributions) into an implementation of belief propagation ([6] in our
case). The result of the belief propagation algorithm is then a set of probability
distributions (one for each subkey). Using a canonical key rank algorithm (e.g.
[12]) we can derive the rank of the (known) key in our (certification) attacks.
Successively adding one trace at a time, we create a performance graph for the
three classifiers (univariate templates, multivariate LDA, deep networks).
Figure[5a]shows the results of using different classification methods. Following
on from the results shown in Section [4] the rank based network performs badly
and seems to show no significant improvements from about 80 traces onwards.
The best attack performance comes from using the probability based network,
which achieves first order success after around 30 traces, and outperforms both
the univariate and the LDA classification methods. It brings the key space down

18

00 Univariate Template
- 0o LDA

0.8 | |00 Neural Network
3> —
E 06 - - .
2
~
g 04
st
Q
=

0.2

0 T T T T

L — T LS —
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SubBytes Output Byte s

(a) Plot showing the classification results of the SubBytes output
using Median Probability as a performance metric

1072
1 | | | | | |
[0 Univariate Template
0o LDA
0.8 - | |00 Neural Network
£
E 06] i
2
o9
Z 04 |
3
()
=
0.2 H
0 T T T T T T T T T T T T T

T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
AddRoundKey Output Byte ¢

(b) Plot showing the classification results of the AddRoundKey output
using Median Probability as a performance metric

1072
1 | | | | | |
00 Univariate Template
0o LDA
0.8 | |00 Neural Network
. -
E 06] B - i
2
Q_‘ |
g o4l
kst
Q
=
0.2
0 I

T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Key Byte k&

(c) Plot showing the classification results of the key bytes using Me-
dian Probability as a performancggnetric

Fig. 4: Plot showing the classification results of various intermediates using Me-
dian Probability as a performance metric

/§_ 94f — Univariate -
S) A LDA _
= \ —— NN Median Rank
& 64 —— NN Median Probability |-
>y \
2 A8 - -
E
g 32 -
€
§ 16 —_ -
: ‘ -

0 L | —

0 20 4 60 80 100

Number of Traces

(a) Running a multi target attack using belief propagation.
| | | | |

|
947 —— HW Based CPA |~
80 j“\ Univariate
\\ — LDA

64 — —— Neural Networks

Mean Final Key Rank (log2)
o
e 2]
|

0 L | "T':::: — I 1

0 20 40 60 80 100
Number of Traces

(b) Running attacks using different templating methods, solely targeting the SubBytes
output (DPA style attack).

Fig. 5: Plots showing attack results

to an easily enumerable 232 with less than 10 traces and thus is extremely efficient

at utilising the available information.

5.2 Single target using correlation

A question that naturally arises is whether our tuning for single trace classifica-
tion impacts on the use of our trained deep networks in DPA style template at-
tacks. Figure [ob| compares the attack performance when targeting the SubBytes
output using different profiling/learning methods. We also include the perfor-
mance of a non-profiled DPA style attack using correlation as a distinguisher
and the Hamming weight of intermediates as a power model. The profiled at-
tacks outperform the non-profiling DPA, with the deep network based classifier
being again the most efficient. It successfully recovers the key with first-order
success in 60 traces.

20

6 Conclusions

This paper examines the challenge to determine a neural network architecture
that works well as a basis to train Neural Nets for many (i.e. one hundred) in-
termediate values of an AES implementation, to be used in a worst-case belief
propagation attack. Determining the network architecture is about finding suit-
able hyperparameters for a chosen type of neural net (an MLP in our specific
use case), which is an onerous task because it involves training nets for many
different hyperparameter configurations and validating them.

In our attempt to tackle the challenge of determining a good base architecture
we initially utilise a recommended validation metric (median rank) and deter-
mine the hyperparameters that are best for one particular intermediate value
(one instance of a SubBytes output). When we utilise the resulting best base
architecture to train neural nets for other intermediate values our experimental
results show that the best base architecture generalises badly (the validation
results indicate poor performance for other intermediate values). We also ob-
serve poor generalisation when utilising other classical profiling methods. This
enables us to make a novel observation: whilst the learning approach that we
use for profiling differ, we utilised the same validation metric (median rank). We
hypothesise that it is the choice of metric which leads to our unsatisfactory re-
sults. Median rank as a performance metric is intuitive when determining batch
classification performance, but perhaps in our use case we should choose a metric
that more accurately represent the per trace classification performance.

Consequently we reproduce our experimental results utilising this proposed
novel metric (the median probability) during the validation phase to determine
the best hyperparameters (aka network architecture). The resulting network
shows a very different configuration to the previously determined network and
generalises well across all the intermediate values.

Thus we are the first to demonstrate an architecture that can generalise to
more than one target intermediate in the context of side channel attacks, and we
put forward an interesting observation regarding the choice of validation metric
that should be of interest for further study.

Following our experimental results, we nevertheless conclude that the ‘no free
lunch’ theorem holds in our context; our results show that there was no clear
winner in classification method (comparing a Gaussian univariate templating
method, a multivariate Linear Discriminant Analysis classifier, and the Neural
Networks) over all intermediates. However, we are the first to demonstrate that it
is possible to find a Neural Network architecture that generalises across different
intermediate values, and thus provides the best overall classification results.

7 Acknowledgements
Joey Green has been funded by an NCSC studentship. Elisabeth Oswald was

funded in part by EPSRC under grant agreement EP/N011635/1 (LADA) and
the ERC via the grant SEAL (Project Reference 725042).

21

A Graphical Representation of MLPs

0“0“"" g

i/\\

I/A\\ /f/n\\

(a) ASCAD MLP

ReLU ReLU Softmaz

°“"”.§\/& v/,’°

<\§» \\\

S\®

(b) Rank based MLP

ReLU ReLU

‘\ 1‘ :
Qi‘\\g\» ﬁ,ei\v ﬁg’,/%c

\W, \\0
Q SR

/
@"‘

/] Ny . , ‘\“‘
/ /@/"@("\@\\ Q

(c) Probability based MLP

Fig.6: MLP architectures

22

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

S. Arora, N. Cohen, N. Golowich, and W. Hu. A convergence analysis of gradient
descent for deep linear neural networks. ArXiv, abs/1810.02281, 2018.

L. Batina, J. Hogenboom, and J. G. J. van Woudenberg. Getting more from pca:
First results of using principal component analysis for extensive power analysis.
In O. Dunkelman, editor, Topics in Cryptology — CT-RSA 2012, pages 383—-397,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

E. Cagli, C. Dumas, and E. Prouff. Convolutional neural networks with data
augmentation against jitter-based countermeasures. In W. Fischer and N. Homma,
editors, Cryptographic Hardware and Embedded Systems — CHES 2017, pages 45—
68, Cham, 2017. Springer International Publishing.

S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In B. S. Kaliski, ¢. K. Kog,
and C. Paar, editors, Cryptographic Hardware and Embedded Systems - CHES
2002, pages 1328, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathemat-
ics of Control, Signals and Systems, 2:303-314, 1989.

J. Green, A. Roy, and E. Oswald. A systematic study of the impact of graphical
models on inference-based attacks on aes. In B. Bilgin and J.-B. Fischer, edi-
tors, Smart Card Research and Advanced Applications, pages 18-34, Cham, 2019.
Springer International Publishing.

K. Hornik, M. B. Stinchcombe, and H. White. Multi-layer feedforward networks
are uni-versal approximators. 1988.

P. Karsmakers, B. Gierlichs, K. Pelckmans, K. D. Cock, J. A. K. Suykens, B. Pre-
neel, B. D. Moor, K. H. Kempen, and I. Kleinhoefstraat. Side channel attacks on
cryptographic devices as a classification problem. 2007.

J. Kim, S. Picek, A. Heuser, S. Bhasin, and A. Hanjalic. Make some noise.
unleashing the power of convolutional neural networks for profiled side-channel
analysis. TACR Transactions on Cryptographic Hardware and Embedded Systems,
2019(3):148-179, May 2019.

P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. J. Wiener,
editor, CRYPT0’99, volume 1666 of LNCS, pages 388-397. Springer, Heidelberg,
Aug. 1999.

S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the
Secrets of Smart Cards. Springer, 2007.

D. P. Martin, L. Mather, E. Oswald, and M. Stam. Characterisation and Estima-
tion of the Key Rank Distribution in the Context of Side Channel Evaluations. In
ASIACRYPT 2016, Proceedings, Part I, pages 548-572, 2016.

Z. Martinasek, P. Dzurenda, and L. Malina. Profiling power analysis attack based
on mlp in dpa contest v4.2. pages 223-226, 06 2016.

Z. Martinasek, J. Hajny, and L. Malina. Optimization of power analysis using neu-
ral network. In A. Francillon and P. Rohatgi, editors, Smart Card Research and
Advanced Applications, pages 94-107, Cham, 2014. Springer International Publish-
ing.

7. Martinasek, L. Malina, and K. Trasy. Profiling Power Analysis Attack Based on
Multi-layer Perceptron Network, pages 317-339. Springer International Publishing,
Cham, 2015.

D. McCann, E. Oswald, and C. Whitnall. Towards practical tools for side channel
aware software engineering: 'grey box’ modelling for instruction leakages. In 26th
USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada,
August 16-18, 2017., pages 199-216, 2017.

23

17.

18

19.

20.

21.
22.

23.

24

B. Poettering. AVRAES: The aes block cipher on avr controllers, 2003.

E. Prouff, R. Strullu, R. Benadjila, E. Cagli, and C. Dumas. Study of deep learning
techniques for side-channel analysis and introduction to ASCAD database. Cryp-
tology ePrint Archive, Report 2018/053, 2018. https://eprint.iacr.org/2018/
053.

W. Schindler, K. Lemke, and C. Paar. A stochastic model for differential side chan-
nel cryptanalysis. In J. R. Rao and B. Sunar, editors, Cryptographic Hardware and
Embedded Systems — CHES 2005, pages 30-46, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

S. Song, K. Chen, and Y. Zhang. Overview of side channel cipher analysis based
on deep learning. Journal of Physics: Conference Series, 1213:022013, jun 2019.
M. Telgarsky. Benefits of depth in neural networks. CoRR, abs/1602.04485, 2016.
T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by a run-
ning average of its recent magnitude. COURSERA: Neural Networks for Machine
Learning, 2012.

N. Veyrat-Charvillon, B. Gérard, and F.-X. Standaert. Soft analytical side-channel
attacks. In P. Sarkar and T. Iwata, editors, ASIACRYPT 201}, Part I, volume
8873 of LNCS, pages 282-296. Springer, Heidelberg, Dec. 2014.

D. Wolpert. The supervised learning no-free-lunch theorems. 01 2001.

24

https://eprint.iacr.org/2018/053
https://eprint.iacr.org/2018/053

	Not a Free Lunch but a Cheap Lunch: Experimental Results for Training Many Neural Nets

