
Minicrypt Primitives with Algebraic Structure and Applications

Navid Alamati∗ Hart Montgomery † Sikhar Patranabis‡ Arnab Roy§

February 5, 2019

Abstract

Algebraic structure lies at the heart of much of Cryptomania as we know it. An interesting question
is the following: instead of building (Cryptomania) primitives from concrete assumptions, can we build
them from simple Minicrypt primitives endowed with additional algebraic structure? In this work, we
affirmatively answer this question by adding algebraic structure to the following Minicrypt primitives:

• One-Way Function (OWF)

• Weak Unpredictable Function (wUF)

• Weak Pseudorandom Function (wPRF)

The algebraic structure that we consider is group homomorphism over the input/output spaces of these
primitives. We also consider a “bounded” notion of homomorphism where the primitive only supports an
a priori bounded number of homomorphic operations in order to capture lattice-based and other “noisy”
assumptions. We show that these structured primitives can be used to construct many cryptographic
protocols. In particular, we prove that:

• (Bounded) Homomorphic OWFs (HOWFs) imply collision-resistant hash functions, Schnorr-style
signatures, and chameleon hash functions.

• (Bounded) Input-Homomorphic weak UFs (IHwUFs) imply CPA-secure PKE, non-interactive key
exchange, trapdoor functions, blind batch encryption (which implies anonymous IBE, KDM-secure
and leakage-resilient PKE), CCA2 deterministic PKE, and hinting PRGs (which in turn imply
transformation of CPA to CCA security for ABE/1-sided PE).

• (Bounded) Input-Homomorphic weak PRFs (IHwPRFs) imply PIR, lossy trapdoor functions, OT
and MPC (in the plain model).

In addition, we show how to realize any CDH/DDH-based protocol with certain properties in a generic
manner using IHwUFs/IHwPRFs, and how to instantiate such a protocol from many concrete assumptions.
We also consider primitives with substantially richer structure, namely Ring IHwPRFs and L-composable
IHwPRFs. In particular, we show the following:

• Ring IHwPRFs with certain properties imply FHE.

• 2-composable IHwPRFs imply (black-box) IBE, and L-composable IHwPRFs imply non-interactive
(L + 1)-party key exchange.

Our framework allows us to categorize many cryptographic protocols based on which structured Minicrypt
primitive implies them. In addition, it potentially makes showing the existence of many cryptosystems
from novel assumptions substantially easier in the future.
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1 Introduction

An important question in the theory of cryptography is also one of the simplest to state: what implies
public-key cryptography? Ever since the (public) invention of public-key encryption [DH76, RSA78], people
have debated this important question.

The history of symmetric-key cryptography goes back millenia–the Caesar cipher is a classic example of
old cryptography–and it has continued to evolve through the centuries in different ways. There is a long list
of ciphers, notably including the Viginère cipher, the Enigma machine, and even modern ciphers like AES,
that can be thought of as the output of an enormous amount of human effort to build secure symmetric-key
encryption.

On the other hand, public-key cryptography is a very recent development compared to symmetric-key
cryptography. Many people thought that public-key cryptography was impossible before the seminal work by
Diffie and Hellman [DH76]. Although we can build symmetric-key ciphers from many different assumptions,
including some very simple ones, the known methods for realizing public-key cryptography require at least
some kind of mathematical structure. This has led many to conjecture that public-key cryptography does, in
fact, require some mathematical structure.

Barak ruminated on this question in his recent work “The Complexity of Public Key Cryptography” [Bar17].
As he puts it, “... it seems that you can’t throw a rock without hitting a one-way function” but public-key
cryptography is somehow “special”. Barak implicitly argues that there is some mathematical structure
inherent in public-key cryptography: “One way to phrase the question we are asking is to understand what
type of structure is needed for public-key cryptography.”

But many cryptosystems that interest people today are substantially more complicated than basic
public-key encryption (PKE). In recent years, primitives like identity-based encryption [BF01, Coc01], fully
homomorphic encryption [Gen09], and functional encryption [BSW11] have captivated cryptographers. It is
natural to ask: is there any sort of mathematical structure that is inherent to these primitives as well? While
there has been a substantial amount of work relating relatively similar primitives, to our knowledge no one
has attempted to comprehensively examine the relationship between a broader collection of these higher-level
primitives.

In a celebrated work, Impagliazzo [Imp95] proposed “five worlds” of relative complexity, which range
from Algorithmica–where “efficient” algorithms for all (worst-case) problems in NP exist and cryptography is
essentially nonexistent–to Cryptomania, a world in which public-key cryptography exists. Only two of these
worlds allow for cryptography: Minicrypt, where symmetric cryptographic primitives exist but public-key
cryptography does not, and the aforementioned Cryptomania.

It turns out that Minicrypt is a fairly simple world. A number of famous works have shown how to build
the most commonly studied and used Minicrypt primitives from one-way functions in a generic manner. For
instance, one-way functions imply pseudorandom generators [BM82, HILL99], which in turn can be used to
build pseudorandom functions [GGM84]. From these primitives, it has long been known how to generically
build symmetric-key encryption schemes and digital signature schemes [Rom90].

On the other hand, Cryptomania is a significantly more complicated class. It contains primitives
that are very different, and it seems difficult to relate them in a generic manner. We cannot expect to,
say, build FHE from PKE in a black-box manner, and there are many black-box separation results for
cryptosystems in Cryptomania (we discuss this more in our related work section). In fact, recently it has even
become popular to separate Cryptomania into two worlds: a world where indistinguishability obfuscation
(iO) [BGI+01, GGH+13b] doesn’t exist, and a world called Obfustopia [GPSZ17] where it does.

This, of course, raises a fundamental question in the complexity of public-key cryptography: can we
construct classes of primitives within Cryptomania (i.e. “continents” of Cryptomania) that are tightly tied
to each other through generic constructions? Ideally, we would want these “continents” to have strong
relationships with a particular primitive (similar to the relationship between one-way functions and Minicrypt)
where all of the cryptographic algorithms in the class could be built from the given primitive in a generic
manner, and the given primitive would be conceptually the simplest function in the class.

The fact that most of the concrete assumptions that imply PKE (and also many other cryptographic
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primitives) have some algebraic structure seems to imply that perhaps we can classify cryptosystems by the
algebraic structure necessary for them to function. This leads us to the following question:

Is it possible to construct Cryptomania primitives from simple Minicrypt primitives that are
additionally equipped with some algebraic structure?

1.1 Our Contributions

In this work, we provide a constructive answer to the question of building PKE (and other primitives in
Cryptomania) from Minicrypt primitives with algebraic structure. Let’s start by considering the following
Minicrypt primitives:

1. One-way Functions

2. Weak Unpredictable Functions

3. Weak Pseudorandom Functions

To add algebraic structure to the mentioned primitives, we assume that they are (Input-)Homomorphic: the
input and output spaces of the primitive are groups, and the primitive is (bounded) homomorphic with
respect to an efficiently computable group homomorphism. We use the following primitives and abbreviations
throughout the paper:1

• Homomorphic One-way Functions (HOWFs)2

• Input-Homomorphic Weak Unpredictable Functions (IHwUFs)

• Input-Homomorphic Weak Pseudorandom Functions (IHwPRFs)3

In the body of the paper we also consider “bounded” homomorphisms, where the number of allowed
homomorphisms is bounded by some function γ = γ(λ) where λ is the security parameter, which lets us work
with lattice-based and other “noisy” cryptographic assumptions.

At this point we can informally state our main contribution: we present a framework for building
cryptographic primitives from HOWFs/IHwUFs/IHwPRFs (see Figure 1). This framework lets us categorize
cryptographic primitives by the type of structured Minicrypt primitive that implies them. However, we need
to be able to instantiate the above general primitives from concrete assumptions to have a useful framework.
It turns out that we can instantiate our primitives (in most cases) from a wide variety of assumptions,
typically including the assumptions that would be expected for such applications.

Instantiations from Concrete Assumptions. We show that “mainstream” cryptographic assumptions
such as DDH and LWE naturally imply (bounded) HOWFs/IHwUFs/IHwPRFs. We also show that a
(bounded) group-homomorphic PKE implies a (bounded) IHwPRF. This allows instantiating these primitives
from any concrete assumption that implies a (bounded) homomorphic PKE (e.g. QR and DCR). Unfortunately,
there is a caveat to this: the transformation from homomorphic PKE to IHwPRF comes with a disadvantage
that the input space may depend on the key.4 The reader may refer to Figure 2 for an overview of instantiations
from concrete assumptions.5

1We define these primitives precisely in Section 2.
2When the function does not have a key (i.e. a one-way function) we will drop the “I” and refer to the function as simply

homomorphic.
3In case of IHwUFs/IHwPRFs we do not assume any homomorphism on the key space.
4This property is necessary to realize certain cryptographic primitives from IHwUFs or IHwPRFs. We refer to Appendix 3.4

for a discussion on this property and the details of the instantiations.
5Notice that search to decision reductions are mostly for Gaussian-like distributions, and there are certain distributions for

which search to decision reduction is not available.
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Minicrypt and Homomorphism
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Chameleon
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Key Exchange
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Blind Batch
Encryption

(Anonymous) IBE

Hinting PRG

Transformation of
CPA to CCA for
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Homomorphic PKE

Homomorphic
AC Smooth HPS

U,§B.3

§A.1

§A.2

§A.3

*§4.1

§4.2

*§4.3

*§4.4

§4.5

§5.1

§5.2

§5.3

§B.1

§B.2[BLSV18]

[KW18]

99K: Homomorphism over Abelian groups.
U: Unbounded Homomorphism

*: Input space of IHwUF is independent of the the key.

Figure 1: Cryptographic primitives from Minicrypt and Homomorphism.

Building Cryptosystems from New Assumptions. One of the benefits of our work is the implications
for new assumptions. Rather than manually building lots of different cryptosystems from a new assumption,
researchers only need to build one (or more) of our simple structured primitives, and the existence of a whole
host of cryptosystems immediately follows.

To illustrate how this might be useful, let’s look at the history of lattice-based cryptography: Ajtai
and Dwork [AD97] gave a lattice-based PKE (following Ajtai’s worst-case to average-case reductions for
lattice problems [Ajt96]), but lattice cryptography may began in earnest with Regev’s LWE paper [Reg05] in
2005. This work, in addition to introducing the LWE problem, showed how to build a basic PKE scheme
from LWE as well. However, it took a while for the cryptographic community to “catch up” to other
group-based cryptosystems: for instance, the first private information retrieval scheme from lattices was
presented in [AMG07], and the first identity-based encryption was given in [GPV08].

These works used sophisticated techniques on lattices in order to extend the range of lattice-based
cryptosystems. With our work, the existence of all of these types of cryptosystems based on the LWE
assumption follows immediately from the simple observation that LWE implies a (bounded) IHwPRF. While
the necessary tools for many of our constructions were not around in 2008 (particularly [DG17b] and the
line of work following it), we do hope that this paper is useful for public-key cryptography assumptions
in the future in terms of feasibility results. Ideally, it will be easy to show the existence of many types of
cryptosystems for new assumptions using the tools from this paper.
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(Bounded) HOWF (Bounded) IHwUF (Bounded) IHwPRF

Discrete Log

search
(ring-)LWE

Square Root
Finding

CDH

RSA

DDH/MDDH/DLIN

decision
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Quadratic Residuosity

Nth Residiosity

Approximate GCD

Hidden Number Problem

Finite Field Isomorphism

(Bounded) Homomorphic PKE

U,§B.3

*

*

99K: Homomorphism over Abelian groups.
U: Unbounded Homomorphism

*: Input space depends on the the key.

Figure 2: Instantiations from Concrete Assumptions

More Primitives from Richer Structures. Although the main focus of this work is to construct many
cryptographic primitives from IHwUFs/IHwPRFs, one might ask: what if we consider richer structures?
For instance, what would happen if we have a ring homomorphism for an IHwPRF instead of just a group
homomorphism? To partially answer this question, we consider two additional structures over wPRFs:

• Ring Homomorphism: We consider Ring IHwPRFs (RIHwPRFs) where the input and output spaces
are rings, and the homomorphism is with respect to ring operations (instead of just group operations).

• L-composability : We consider L-composable IHwPRFs, where L levels of IHwPRF operations compose
with each other under certain conditions.

We summarize our results for these richly structured primitives in Figure 3. We remark that “*” means
the order of the output ring of RIHwPRF is polynomial in the security parameter. In Appendices C and D,
we provide a thorough treatment of these two primitives.

IBE
(L + 1)-Party

Key Exchange

L-composable
IHwPRF, L ≥ 2

RIHwPRF FHE

*

Figure 3: Cryptographic primitives from richer structures.

While the structure of 2-composability appears similar to that of bilinear pairing groups, we partially explore
a possible separation between the two. We show in Appendix C that 2-composability suffices to achieve
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three-party non-interactive key exchange and simple black-box constructions of IBE. Subsequently, we also
present a discussion on why this primitive does not naturally yield other cryptographic protocols implied by
bilinear pairings, e.g., NIZK and unique signatures. This leaves open the interesting question of whether
there exists some concrete assumption that implies 2-composability but not bilinear pairings. The separation
seemingly extends to the general L-composability setting, in the sense that the structure of L-composability
appears to be weaker than that of a full-fledged multilinear map [GGH13a].

On the Categorization of Primitives. This work enables us to categorize different primitives based
upon which structured Minicrypt primitive implies them. But it is also possible to ask whether a given
cryptosystem may be constructed from some other structured Minicrypt primitive. For instance, is it possible
to construct PKE from a HOWF? A positive answer would imply that one can base PKE on the discrete log
problem, a long-standing (and potentially possible) goal in cryptography. We can build PKE from IHwUFs,
but can we hope to do better? Our work gives rise to interesting questions like this for future work, and we
discuss this more later in the paper.

It is easy to see that none of the three primitives HOWF/IHwUF/IHwPRF can be built from PKE in
a black-box manner [HHRS07], as all of them imply collision-resistant hash functions. In addition to input
homomorphisms, one may consider other structures on Minicrypt primitives.

Dual-computable Functions

IHwUF

IHwPRF

L-composable

Figure 4: Implication Landscape

One of the simplest structures is what we term dual-computable.
This notion is certainly folklore, and some earlier works on PKE and
key exchange implicitly constructed this primitive. A dual-computable
primitive is a tuple of keyed functions (F1, G1, F2, G2) such that
G1 (k1, F2 (k2, x)) = G2 (k2, F1 (k1, x)) where x represents the input and
ki represent keys. The reader may notice that this primitive is almost
an abstraction of key exchange if the functions are unpredictable. It
is not clear what kind of (minimal) structure over OWFs would imply
dual-computable functions.

1.2 Related Works

Realizing public-key cryptography via some form of structure and hardness has been studied seemingly since
its invention. However, several recent works have discussed this relationship in more detail. For instance,
[BDV17] examined the relationship of structure and hardness through obfuscation lens, while a recent work by
Berman et al. showed that laconic zero-knowledge protocols imply PKE [BDRV18]. Pietrzak and Sjdin [PS08]
showed that a certain input property of weak PRFs implies PKE. A recent survey [BR17] briefly discusses
structure and PKE through the lens of (strengthened) PRFs.

A number of works have shown how to build certain cryptosystems from cryptographic primitives with
algebraic structure. These include commitment schemes, CRHF, IND-CCA secure PKE, PIR, and key-
dependent message (KDM) secure PKE [IKO05, HO12, KO97, HKS16]. Of particular relevance to us is the
work of Hajiabadi et al. [HKS16] on using homomorphic weak PRFs to build KDM secure PKE.1

There are other related black-box constructions (or implications in a non-black-box way) between
cryptographic primitives, some of which we utilize in our work. For instance, Ishai et al. showed how to
construct secure computation protocols from enhanced trapdoor functions (or homomorphic PKE) [IKLP06].
Rothblum [Rot11] showed a transformation of a secret-key encryption (SKE) scheme with some special form
of weak homomorphism into a PKE that has similar properties. Black-box constructions have been shown for
resettable zero-knowledge arguments [OSV15] and cryptographic accumulators [DHS15]. Many cryptographic
primitives have been realized in a black-box manner from lossy trapdoor functions [PW08, BHY09, GPR16].
Very recently, Friolo et al. [FMV18] showed how to build secure multi-party computation from what they
call strongly uniform key agreement and Fischlin and Harasser [FH18] showed the equivalence of invisible
sanitizable signatures and PKE.

1As mentioned earlier, we refer to this primitive as Input-Homomorphic weak PRF (IHwPRF) to emphasize that the
homomorphism is on the input space and not on the key space.
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Understanding the complexity of various public-key primitives also requires knowledge of black-box
separations, which have been extensively studied in the literature. This (non-exhaustively) includes studies
separating IBE from CRHFs (and thus FHE) [MM16], separating indistinguishability obfuscation (iO) from
certain primitives (for instance, CRHFs) [AS15, MMN+16], separating succinct non-interactive arguments
from falsifiable assumptions [GW11], and showing that garbling of circuits having one-way function gates
are not sufficient to realize PKE [GHMM18]. These separations (and related works) allow us to clearly
see that some primitives are not equivalent, at least modulo certain assumptions. We refer the reader
to [RTV04, Fis12, BBF13] for a survey on black-box reductions and separations.

1.3 Paper Outline

The rest of the paper is organized as follows: in Section 1.4, we explain the intuition of our constructions
at a high level. In addition, we show how to construct a PKE from an IHwUF/IHwPRF and how to
instantiate this construction with the DDH assumption. We also illustrate the power of our framework by
showing constructions of recently proposed primitives such as batch encryption [BLSV18] from an IHwUF.
In Section 1.5, we conclude by offering some more commentary on our work and suggest some promising
directions for future work. The preliminaries and detailed constructions (and proofs) are organized as follows:

• Section 2 presents preliminary background material.

• Appendix A formalizes the definition of (bounded) HOWFs, describes how to construct many primitives
from them, and discusses instantiations from concrete assumptions.

• Section 3 formally defines (bounded) IHwUFs/IHwPRFs, describes a general protocol to build primitives
from them, and discusses instantiations from concrete assumptions.

• Section 4/5 shows constructions of different primitives from (bounded) IHwUFs/IHwPRFs, and describes
how to instantiate them from the general protocol.

• Appendix B shows more applications from IHwUFs/IHwPRFs over abelian groups.

• Appendices C and D formally define composable IHwPRFs and Ring IHwPRFs, respectively, and show
applications of these primitives. We also included a discussion on a potential separation of composable
IHwPRFs from algebraic maps in Appendix C.

1.4 Technical Overview

In this section, we aim to explain some of the intuition behind our results. We will start by focusing on one
particular primitive–the input homomorphic weak PRF–and some of its applications. The results for other
primitives are not exactly the same, but the general structure of how we build cryptosystems from these
other primitives is relatively similar. We will discuss these other primitives later in this section.

1.4.1 PKE from IHwUFs/IHwPRFs

Let’s start by considering the notion of a general input-homomorphic weak PRF, or, as we have been
abbreviating, an IHwPRF, which we will define as a function F : K × X → Y. Recall that, informally
speaking, a weak PRF is a function that is indistinguishable from a random function with respect to uniformly
sampled inputs. This “weakness” as compared to a regular PRF will be critical.

We will also endow our weak PRF F with a homomorphism over the input. Suppose our input space
X and our output space Y are groups with group operations ⊕ and ⊗, respectively. Roughly speaking, an
IHwPRF is just a regular weak PRF with the following property:

F (k, x1 ⊕ x2) = F (k, x1)⊗ F (k, x2) .

8



We also consider what we call γ-bounded IHwPRFs. These IHwPRFs have a homomorphism that can only
be computed a maximum of γ times, where γ is a pre-determined parameter. This concept lets us consider
noisy assumptions like LWE, which are only approximately homomorphic. The notion is very similar to
definitions of the almost key-homomorphic PRFs of [BLMR13]. γ-bounded IHwPRFs work for almost all
of the applications that we consider in almost the same way that full IHwPRFs do. For the rest of this
technical overview, though, we will assume we have a “full” IHwPRF. Also, we occasionally refer to an
Input-Homomorphic weak Unpredictable Function (IHwUF), which has the same properties as IHwPRF
except for the fact that its output on a uniformly random input is just unpredictable and not necessarily
pseudorandom.

DDH-based Instantiation of IHwPRF. In general, it is simple to build IHwPRFs from assumptions
that are widely used in cryptography. We defer most of these to Section 3.4, but we show how to build an
IHwPRF from the DDH assumption here. Let G be a group of prime order q where the DDH problem is
hard. For a uniformly sampled key k ← Zq and an input x ∈ G, consider the following function:

F (k, x) = xk.

If we are only allowed to see the evaluation of F on random inputs xi (as the weak PRF definition requires),
then it is easy to see that F is a weak PRF based on the DDH assumption. Moreover, the homomorphism
property is also satisfied:

xk1 · xk2 = (x1 · x2)
k
.

Thus F is an IHwPRF. Building a bounded IHwPRF from LWE is similarly straightforward, but we defer
this to later in the paper.

On the Input Space. It is useful to note that the “discrete logarithm problem” on the input space
of an IHwPRF must be hard by its weak pseudorandomness property. Concretely, given two evaluations
(x1, F (k, x1)) and (x2, F (k, x2)), an adversary can compute some value c such that xc1 = x2, then they can
check if

F (k, x1)
c

= F (k, x2)

and use this to break the (weak) pseudorandomness of F . In the context of (bounded) IHwPRFs over
arbitrary groups, we note that there must exist an equivalent “discrete log” problem that allows us to capture
the aforementioned property.1 This property is crucial to the security of nearly all constructions presented in
this paper.

PKE Construction. We now illustrate how to construct a CPA-secure PKE given an IHwPRF. To provide
more intuition, we will present an instantiation of the encryption scheme using the DDH assumption in
parallel. The construction from IHwPRF is highlighted for clarity.

Setup:

• IHwPRF Construction: Select an IHwPRF F : K × X → Y over groups (X ,⊕) and (Y,⊗)
with key space K, input space X , and output space Y and some integer n > 3 log (|X |). Select a
set X of 2n uniform “base elements” from X as

X = {xj,b ← X}j∈[n],b∈{0,1} .

Select a random key k ← K. Create a tuple Y of 2n elements from Y as

Y = {yj,b}j∈[n],b∈{0,1}

1For our LWE-based bounded IHwPRF, the “discrete log” problem equivalent is the ISIS problem.
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such that yj,b = F (k, xj,b). Output the secret key and public key as:1

sk = k, pk = (X,Y) .

• DDH Instantiation: Let F : Zq × G → G be the function defined as F (k ∈ Zq, g ∈ G) = gk. Select a
set G of 2n randomly sampled elements from G as

G = {gj,b ← G}j∈[n],b∈{0,1} .

Select a random key k ← Zq. Create a tuple H of 2n elements from G as

H = {hj,b}j∈[n],b∈{0,1}

such that hj,b = gkj,b. Output the secret key and the public key as

sk = k, pk = (G,H) .

Encrypt:

• IHwPRF Construction: On input a message m ∈ Y , sample a vector s = (s1, . . . , sn)← {0, 1}n.
Set

x∗ =
⊕
j∈[n]

xj,sj , y∗ =
⊗
j∈[n]

yj,sj .

Output the ciphertext ct = (x∗, y∗ ⊗m).

• DDH Instantiation: On input a message m ∈ G, sample a vector s = (s1, . . . , sn)← {0, 1}n. Set

g∗ =

n∏
j=1

gj,sj , h∗ =

n∏
j=1

hj,sj .

Output the ciphertext ct = (g∗, h∗ ·m).

By the leftover hash lemma, our “subset sum” process gives us outputs that are statistically close to
uniform for arbitrary groups. This may be viewed as a generalization of the “exponentiation” operation
to arbitrary groups.

Decrypt:

• IHwPRF Construction: On input a ciphertext ct = (ct1, ct2) ∈ X × Y, output

m′ = [F (k, ct1)]
−1 ⊗ ct2.

If (ct1, ct2) = (x∗, y∗ ⊗m), we have

m′ = [F (k, ct1)]
−1 ⊗ ct2 = (y∗)−1 ⊗ (y∗ ⊗m) = m.

1We implicitly assume that the description of IHwPRF is publicly available. This is similar to the assumption that in a
DDH-based encryption scheme like ElGamal, the description of the cyclic group G is public.

10



• DDH Instantiation: On input a ciphertext ct = (ct1, ct2) ∈ G×G, output

m′ =
(
ctk1

)−1

· ct2.

If (ct1, ct2) = (g∗, h∗ ·m), we have

m′ =
(
ctk1

)−1

· ct2 = (h∗)−1 · (h∗ ·m) = m.

Note that the decryption in the IHwPRF construction works even when X and Y are non-abelian groups.
We summarize the main steps in the construction of PKE from IHwPRF in Figure 5, and compare it with

the DDH-instantiation over cyclic groups of prime order. Observe that the DDH-based PKE described above
is very similar to ElGamal encryption [ElG84]. In fact, it can be viewed as a form of ElGamal encryption
where we use a less efficient method to create the group elements (g, h) and (g∗, h∗): namely, in order to
get a random element, we take a subset product of many public elements rather than just raising a single
element to a random power.

Setup:

F : K ×X → Y ! (G, q)
X = {xj,b ← X}j∈[n],b∈{0,1} ! G = {gj,b ← G}j∈[n],b∈{0,1}
k ← K ! k ← Zq
Y = {yj,b = F (k, xj,b)}j∈[n],b∈{0,1} ! H =

{
hj,b = gkj,b

}
j∈[n],b∈{0,1}

sk = k, pk = (X,Y) ! sk = k, pk = (G,H)

Encrypt:

m ∈ Y ! m ∈ G
s← {0, 1}n ! s← {0, 1}n
x∗ =

⊕
j∈[n] xj,sj ! g∗ =

∏n
j=1 gj,sj

y∗ =
⊗

j∈[n] yj,sj ! h∗ =
∏n
j=1 hj,sj

ct = (x∗, y∗ ⊗m) ! ct = (g∗, h∗ ·m)

Decrypt:

ct = (ct1, ct2) ! ct = (ct1, ct2)

m′ = [F (k, ct1)]
−1 ⊗ ct2 ! m′ =

(
ctk1
)−1 · ct2

Figure 5: PKE from IHwPRF and DDH Instantiation

This leads us to the following question: how far can we go if we take traditional DDH-based schemes
and write them as IHwPRFs? For schemes that require two exponentiations, we could write the first
exponentiation as a “subset sum”, and then the second as a IHwPRF evaluation. This is essentially how our
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DDH-based instantiation of PKE from IHwPRF works. In what follows, we illustrate this comparison via a
non-interactive key exchange protocol.

We show a non-interactive key exchange protocol from IHwPRFs in Figure 6. For illustration, we compare
it with the Diffie-Hellman key exchange protocol. In the IHwPRF setting, the (randomly sampled) “base
elements” {xj,b}j∈[n],b∈{0,1} are publicly available to both parties at the beginning of the protocol. Given the
“base elements”, there are two ways to arrive at the final secret y∗. The first way is to apply the IHwPRF
on the “base elements”, followed by applying a “subset-product” in the output space of the IHwPRF. The
second way is to first do a “subset-sum” on the base elements, and then apply the IHwPRF. The two parties
involved in the protocol each use one of these strategies. Security of the protocol follows from the weak
pseudorandomness of F and one-wayness of “subset-sums” in its input space, where the latter is also implied
by the weak pseudorandomness of F .

{xj,b} {yj,b}

x∗ y∗

⊕
−→s

F (k, ·)

⊗
−→s

F (k, ·)

g gα

gβ gαβ

α

β

α

β

Figure 6: Visualization of Non-Interactive Key Exchange from IHwPRF

Finally, the reader may observe that the protocol is secure even if the function F is an IHwUF instead of
an IHwPRF, provided that both parties extract a “hardcore bit” from the secret y∗ and use it as the key.1

Similarly, one can construct a CPA-secure PKE from IHwUF by using the hardcore bit of the secret y∗ to
mask the message bit.

1.4.2 Extending the Scheme with a General Protocol

It turns out that we can do substantially more than just PKE, as an examination of the above protocol
might suggest. It turns out we can take any one-round2 CDH/DDH-based protocol and convert it into a (less
efficient) protocol using a general IHwUF/IHwPRF. We defer the details to Section 3.3, but the basic idea is
the following: visualize one-round CDH/DDH schemes as protocols played by two parties with the following
four phases. Below is a rough description of this protocol (see Section 3.3 for the precise mathematical flow
and definitions):

• Initialization: Setting up the group and any random elements needed for the protocol.

• Pre-Evaluation: The first party exponentiates some (or all) of the random elements from the
initialization stage and sends some (or all) of these to the second player.

• Evaluation: The second party exponentiates some of the elements from the first player and potentially
some of the elements from initialization as well. The second player potentially publishes some of these
elements as well.

1Note that the protocol assumes that the input space of the IHwUF/IHwPRF is independent of the choice of key. See
Section 4.1 for more details.

2Informally, in our context this means a protocol that can be “played” by two parties with a simple out-and-back communication
flow, along with any PPT computation the parties choose to do before, during, or after the communication.
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• Post-Evaluation: Either party can multiply/invert/process the elements, and may publish some
outputs of these.

It turns out that the vast majority of CDH/DDH-based cryptosystems fall into this archetype, and
thus we can build them using an IHwUF/IHwPRF. Among other implications, this approach encompasses
recent constructions such as (anonymous) IBE from CDH/DDH and a number of other works in the same
vein [DG17b, DG17a, BLSV18, DGHM18, GH18, KW18, GGH18]. Although these works use many novel
techniques, we show that the CDH/DDH-related portion of the constructions can be boiled down to something
that fits within the above framework. The few protocols that cannot be handled involve at least three
exponentiations (and cannot be rewritten as less efficient protocols with two or less exponentiations).

We can use our general protocol and the ideas around it to build many cryptosystems. In the following
subsection, we outline some of the constructions that we consider interesting.

1.4.3 Batch Encryption from IHwUFs

In a recent work, Brakerski et al. [BLSV18] introduced and formalized a powerful cryptographic primitive
called batch encryption. Roughly speaking, the basic idea of batch encryption is the following: a user encrypts
a 2×N matrix of bits, and decryption selectively reveals only N of these bits–one in each column. For a
given column, which bit is revealed depends on the value of the secret key used for decryption.

Brakerski et al. showed that batch encryption can be used in conjunction with garbled circuits to construct
identity-based encryption (IBE).1 In fact, when equipped with a stronger property called “blinding”, batch
encryption was shown to imply anonymous IBE, KDM-CPA secure PKE, and leakage resilient PKE [BLSV18].
The authors of [BLSV18] showed how to construct batch encryption from concrete assumptions, so it is
natural to ask the following question: is there a generic primitive that implies batch encryption?

In this subsection, we answer this question in the affirmative by showing that IHwUFs are sufficient to
construct blind batch encryption. This in turn implies that IHwUFs are sufficient to construct anonymous
IBE, KDM-secure PKE and leakage-resilient PKE as well.2 We begin by defining blind batch encryption
informally, and then illustrate how to construct the same from any IHwUF family. 3

Batch Encryption. A batch encryption scheme is a public-key encryption scheme in which the key
generation algorithm Gen “projects” a secret string s ∈ {0, 1}n onto a corresponding hash value h ∈ {0, 1}`,
such that ` < n. Corresponding to this “projection” function, there should exist encryption and decryption
algorithms such that:

• The encryption algorithm Enc(pp, h, i, (m0,m1)) takes as input the public parameter pp associated

with the projection function, a hash h ∈ {0, 1}`, a position index i ∈ [n] and a pair of message-bits

(m0,m1) ∈ {0, 1}2, and outputs a ciphertext ct.

• The decryption algorithm Dec (pp, s, i, ct) takes as input a ciphertext ct and a secret string s, and then
recovers msi where si is the value of the ith-bit of s, provided that ct was generated using h = Gen(pp, s).

In other words, a decryptor can use the knowledge of the preimage s of a hash output string h ∈ {0, 1}` to
decrypt exactly one of the two encrypted messages, depending on the ith-bit of s. The security requirement
is roughly that the distributions

{pp, s,Enc(pp, h = Gen(pp, s), i, (msi ,m1−si))}s∈{0,1}n and

{pp, s,Enc(pp, h = Gen(pp, s), i, (msi ,m
∗))}s∈{0,1}n,m∗←{0,1}

1An equivalent cryptosystem, named as hash encryption, was introduced by Döttling et al.in [DGHM18].
2The construction of anonymous IBE requires an additional primitive - “blind garbled circuits” besides blind batch encryption.

However, blind garbled circuits are implied by any one-way function, and are hence also implied by IHwUFs.
3We can analogously construct blind batch encryption from γ-bounded IHwUFs. For simplicity, we show the construction

from a “full” IHwUF here. The reader may refer to Section 4.4 for the details of the construction from γ-bounded IHwUFs.
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are computationally indistinguishable. In fact, as Brakerski et al. pointed out in [BLSV18], a weaker selective
notion of security suffices, where the adversary commits to a string s ∈ {0, 1}n and an index i ∈ [n] before
the public parameter pp is published.

Note that the adaptive security guarantee implicitly requires the projection function to be collision-resistant;
otherwise, a PPT adversary could distinguish an encryption of m1−si from random with non-negligible
probability simply by generating a different preimage s′ of h such that s′i 6= si.

An additional security requirement, called “blindness” was formalized with respect to batch encryption
in [BLSV18]. Roughly, a batch encryption scheme is said to be blind if the ciphertext ct can be decomposed
into parts (ct1, ct2) such that the marginal distribution of ct1 is independent of both the image string h
and the message pair (m0,m1), while the marginal distribution of ct2 is uniform whenever the message pair

(m0,m1) is uniform in {0, 1}2.

Projection Function from IHwUF. The first step in instantiating a batch encryption scheme is to
realize the projection function. Given an IHwUF F : K ×X → Y, we define GenIHwUF(pp, s) to output

h =
⊕
j∈[n]

xj,sj ,

where {xj,b}j∈[n],b∈{0,1} is a set of uniformly random elements in the input group of the IHwUF, published as

part of the public parameter pp. We claim that this function is both one-way and collision resistant, provided
that n > 3 log |X |.1

One-wayness. To see that this function is one-way, consider a PPT adversary A that, given uniformly
random group elements {xj,b}j∈[n],b∈{0,1} and a “target” element x∗, outputs a vector s ∈ {0, 1}n such that

x∗ =
⊕
j∈[n]

xj,sj .

One can then construct a PPT algorithm B that on input {xj,b, F (k, xj,b)}j∈[n],b∈{0,1} (where each xj,b is

uniformly random) and a uniformly random target element x∗, invokes A as a subroutine on the tuple{
x∗, {xj,b}j∈[n],b∈{0,1}

}
to obtain s ∈ {0, 1}n and outputs

F (k, x∗) =
⊗
j∈[n]

F
(
k, xj,sj

)
,

which violates the weak unpredictability of the function F . Note that the reduction is valid since for
n > 3 log |X |, the existence of some s ∈ {0, 1}n such that x∗ =

⊕
j∈[n] xj,sj is guaranteed for almost all

x∗ ∈ X by the leftover hash lemma [IZ89].

Collision-Resistance. To see that this function is collision-resistant, consider a PPT adversary A that,
given uniformly random group elements {xj,b}j∈[n],b∈{0,1}, outputs (s, s′) ∈ {0, 1}n × {0, 1}n such that s 6= s′

and ⊕
j∈[n]

xj,sj =
⊕
j∈[n]

xj,s′j .

One can then construct a PPT algorithm B that on input {xj,b, F (k, xj,b)}j∈[n],b∈{0,1} (where each xj,b is

uniformly random) and a random target element x∗, uniformly guesses i← [n], resets xi,0 := x∗ and invokes
A as a subroutine on the modified set {xj,b}j∈[n],b∈{0,1} to obtain a collision (s, s′). If si = s′i, it aborts.

Otherwise, it exploits the homomorphism of the function F to output F (k, x∗). Since the probability that s
and s′ differ in the ith bit is at least 1/n, B breaks the weak unpredictability of F .

1We note that it is possible to use a smaller constant, but we use 3 through the whole paper for the sake of simplicity.
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Encryption and Decryption. Corresponding to the projection function as described above, we realize
our encryption procedure EncIHwUF(pp, h, i, (m0,m1)) as follows: sample k0, k1 ← K and set the following

y
(0)
j,0 = F (k0, xj,b) , y

(1)
j,1 = F (k1, xj,b) for j ∈ [n] \ {i}, b ∈ {0, 1}

y
(0)
i,0 = F (k0, xi,0) , y

(1)
i,0 = ⊥,

y
(0)
i,1 = ⊥ , y

(1)
i,1 = F (k1, xi,1) .

Next, mask the messages (m0,m1) ∈ {0, 1} × {0, 1} as follows:1

e0 = XOR (HardCore (F (k0, h)) ,m0)

e1 = XOR (HardCore (F (k1, h)) ,m1) .

Output the ciphertext as

ct =

(
ct1 =

{
y

(0)
j,b , y

(1)
j,b

}
j∈[n],b∈{0,1}

, ct2 = (e0, e1)

)
.

Given a preimage string s, our decryption algorithm DecIHwUF (pp, s, i, ct) now recovers msi as

msi = XOR

(
HardCore

( ⊗
j∈[n]

y
(si)
j,sj

)
, esi

)
.

Correctness follows from the homomorphic property of the function F . Observe that irrespective of the value

of the bit si, msi can always be recovered as the decryptor has access to y
(b)
i,b for each b ∈ {0, 1}. However, it

cannot recover m1−si since it does not have access to y
(b)
i,1−b for either b = 0 or b = 1. In addition, we note

that, unlike existing constructions, our construction does not require the groups (X ,⊕) and (Y,⊗) to be
abelian for correctness to hold.

Security. We now sketch our security proof. Suppose we are given an adversary A that breaks the security
of this scheme. We construct a PPT algorithm B that breaks the weak unpredictability of the function F .
We assume that B has oracle access to an IHwUF F with key k.

In our security game, B receives a uniformly random challenge element x∗ and a bit e∗ ∈ {0, 1} such that
e∗ = HardCore (F (k, x∗)) (the “real” case) or e∗ is a uniform bit (the “random” case). The goal of B is to
output a bit b, such that

b =

{
0 if e∗ = HardCore (F (k, x∗))

1 if e∗ ← {0, 1}

In other words, B must distinguish the hardcore bit associated with the output of F (k, x∗) from random
(which is equivalent to constructing the entire output F (k, x∗))2 using the adversary A.

We note here that the exact value of n is typically chosen by the adversary A at the beginning of the
game, subject to the restriction that n > 3 log |X |. For simplicity, we describe the interaction between B and
A after the value of n has been chosen.

• The adversary A chooses an arbitrary preimage string s ∈ {0, 1}n and an index i ∈ [n], and provides
(s, i) to B.

1We assume that each group element y ∈ Y has a deterministic hardcore bit, denoted as HardCore(y). If a deterministic
hardcore bit is not known then we can use the Goldreich-Levin [GL89] construction.

2By the Goldreich-Levin Theorem [GL89], this can be used to build an algorithm that constructs F (k, x∗) with only
polynomial loss in advantage.
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• B queries the IHwUF F a total of 2n times, getting a tuple of the form

{xj,b, F (k, xj,b)}j∈[n],b∈{0,1} .

• B now resets

xi,si :=

( ⊕
j∈[i−1]

xj,sj

)−1

⊕ x∗ ⊕
( ⊕
j∈[i+1,n]

xj,sj

)−1

,

and provides pp = {xj,b}j∈[n],b∈{0,1} to A. In other words, B fixes x∗ to be the image of s under the

projection function parameterized by pp.

• The adversary A generates m(0) =
(
m

(0)
0 ,m

(0)
1

)
and m(1) =

(
m

(1)
0 ,m

(1)
1

)
such that m

(0)
si = m

(1)
si , and

sends them to B.

• In response, B samples k′ ← K, and implicitly fixes ksi := k′ and k1−si := k. It then sets the following

y
(si)
j,sj

= F
(
k′, xj,sj

)
, y

(1−si)
j,sj

= F
(
k, xj,sj

)
for j ∈ [n] \ {i}, b ∈ {0, 1},

y
(si)
i,si

= F (k′, xi,si) , y
(1−si)
i,si

= ⊥,

y
(si)
i,1−si = ⊥ , y

(1−si)
i,1−si = F (k, xi,1−si) .

To mask the messages, B sets the following

e(0)
si = XOR

(
HardCore (F (k′, x∗)) ,m(0)

si

)
, e

(0)
1−si = XOR

(
e∗,m

(0)
1−si

)
,

e(1)
si = XOR

(
HardCore (F (k′, x∗)) ,m(1)

si

)
, e

(1)
1−si = XOR

(
e∗,m

(1)
1−si

)
.

Finally, B samples b∗ ← {0, 1} and sends ct to A where

ct =

(
ct1 =

{
y

(0)
j,b , y

(1)
j,b

}
j∈[n],b∈{0,1}

, ct2 =
(
e
(b∗)
0 , e

(b∗)
1

))
.

• A outputs a bit b′. If b∗ = b′, B outputs 1. Otherwise it outputs 0.

Note that when e∗ = HardCore (F (k, x∗)), the challenge ciphertext is generated perfectly. On the other

hand, when e∗ is a uniform bit, the adversary A has no advantage since m
(0)
si = m

(1)
si by definition. Hence,

the advantage of B is negligibly different from the advantage of A.

Blindness. The aforementioned batch encryption scheme is additionally “blind”. This follows from the fact
that the ciphertext component ct1 is independent of both the image string h and the message-pair (m0,m1).

Additionally, if (m0,m1) is uniform in {0, 1}2, then the distribution of ct2 is also uniform.

1.4.4 More Primitives

Recyclable OWFE. In a recent work, Garg and Hajiabadi [GH18] introduced a cryptographic primitive
called recyclable one-way function with encryption (OWFE), and showed that recyclable OWFEs imply
trapdoor functions (TDFs) with negligibly small inversion error. They also showed how to construct recyclable
OWFE from the CDH assumption, which in turn gave the first TDF construction from the CDH assumption.
In a more recent follow-up, Garg et al. [GGH18] introduced a strengthened version of recyclable OWFE called
smooth recyclable OWFE, and showed how to realize the same from CDH assumption. They showed that
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this strengthened primitive implies TDFs with almost-perfect correctness and CCA2-secure deterministic
encryption, where the CCA2-security holds with respect to plaintexts sampled from distributions with
super-logarithmic min-entropy.

We show in Section 4.3 that IHwUFs imply smooth recyclable OWFE, thereby answering the question of
whether this cryptosystem can be constructed from a generic primitive. This shows that IHwUFs also imply
TDFs with almost-perfect correctness and CCA2-secure deterministic encryption for plaintexts sampled from
distributions with super-logarithmic min-entropy. The techniques for this construction are similar to those
presented for batch encryption. We refer the reader to Section 4.3 for the details of the construction.

Hinting PRG. A “hinting PRG” is a stronger variant of traditional PRGs introduced by Koppula and
Waters in [KW18], who show that hinting PRGs can be used to generically transform any CPA-secure
attribute-based encryption scheme or one-sided predicate encryption scheme into a CCA-secure counterpart.
Informally, a hinting PRG takes n bits as input and outputs n · ` output bits with the restriction that no PPT
adversary can distinguish between 2n uniformly random strings and 2n strings such that half the strings are
output by the PRG, and the remaining half are uniformly random, where the strings are arranged as a 2× n
matrix as follows: in the ith column of this matrix, the top entry is pseudorandom and the bottom entry is
random if the ith bit of the seed is 0; otherwise the bottom entry is pseudorandom and top entry is random.

Koppula and Waters [KW18] showed explicit constructions of hinting PRG families from the CDH and
LWE assumptions. We show in Section 4.3 that any IHwUF family can be used to construct a hinting PRG,
thereby answering the question of whether hinting PRGs can be constructed from a generic primitive. The
techniques for our construction are also similar to those presented for batch encryption. We refer the reader
to Section 4.3 for the details of the construction.

CRHF and More from HOWF. Informally, a HOWF is just a one-way function f : X → Y with the
following additional properties: the input space X and the output space Y are groups with group operations
⊕ and ⊗, respectively, and

f (x1 ⊕ x2) = f (x1)⊗ f (x2) .

In this paper, we show that any HOWF can used to construct a collision-resistant hash function (CRHF)
family that maps bit strings to elements in the output space of the HOWF. In addition, we show constructions
of Schnorr signatures and chameleon hash functions from HOWFs. The reader may refer to Appendix A for
the details of these constructions, and instantiations of HOWF from concrete assumptions.1

1.4.5 Richer Structures

As mentioned earlier, we can also consider richer structures than just a group homomorphism over a Minicrypt
primitive. In this section, we provide more details for two of these more structured primitives, namely Ring
IHwPRFs and L-composable IHwPRFs.

Ring IHwPRFs. We first informally define a Ring Input-Homomorphic weak PRF (RIHwPRF). Let

(R,+,×) and ( R ,�,�) be two efficiently samplable rings such that the ring operations are efficiently
computable. An RIHwPRF is a weak PRF

F : K × R → R

(with input space R and output space R) such that for every key k ∈ K the mapping F (k, ·) : R → R is a

ring homomorphism from R to R.2

1Here we use “full” HOWF for simplicity. We also consider “bounded” HOWFs for which only a bounded number of
homomorphic operations is allowed. The notion of bounded HOWFs works for all of the applications that we consider in almost
the same way that full HOWFs do.

2It is also possible to define (bounded) RIHwPRFs similar to IHwPRFs, but we only consider unbounded homomorphism
here for the sake of simplicity.

17



We outline a simple construction of symmetric-key FHE from an RIHwPRF F provided that the size of
output space of F is polynomial in the security parameter, i.e., |R| ≤ poly(λ). Using the generic transformation
in [Rot11], one can obtain a public-key FHE from a symmetric-key FHE. For the description of the scheme,
see Appendix D. The construction is as follows:

• Given an RIHwPRF F : K × R → R, publish its description as the public parameters. To generate a
secret key sample a key k ← K.

• To encrypt a bit m ∈ {0, 1} under key k, sample a preimage ct ← R such that F (k, ct) = mR and
publish ct as the ciphertext.1 (Notice that 0R and 1R are the multiplicative and the additive identity
elements of R, respectively.)

• To decrypt a ciphertext ct ∈ R under key k, output m′ where

m′ =


0 if F (k, r ) = 0R

1 if F (k, r ) = 1R

⊥ otherwise.

• To evaluate a (homomorphic) NAND(ct, ct′) operation, output 1 � ct� ct′ where 1 is the identity

element of R with respect to addition, and � is the subtraction in the ring R .

The security of the scheme follows from a standard hybrid argument. Observe that by ring-homomorphism
of F , if ct and ct′ are valid ciphertexts encrypting m and m′ respectively, decrypting 1 � ct � ct′ gives
NAND(m,m′).

L-Composable IHwPRFs. We first describe 2-Composable IHwPRFs before generalizing to L ≥ 2.
Informally, a two-composable IHwPRF is a collection of two functions and two “composers”

F1 : K ×X1 → Y1 , F2 : K ×X2 → Y2,

C1 : Y1 ×X2 → Z , C2 : Y2 ×X1 → Z.

such that the functions are IHwPRFs and the composers are weak PRFs. Additionally, the following
composition property holds: for every k ∈ K and for every x1, x2 ∈ X , we have:

C1 (F1 (k, x1) , x2) = C2 (F2 (k, x2) , x1) , both denoted FT (k, (x1, x2)).

This primitive gives us 3-party non-interactive key exchange (NIKE) in the following way: the public key
includes vectors x(1) and x(2). Two of the parties generate secret subsets s1 and s2, and publish the group
elements ⊕

j∈[n]

x
(1)
j,s1,j

,
⊕
j∈[n]

x
(2)
j,s2,j

,

respectively. The 3rd party generates a secret key k and publishes F1(k,x(1)) and F2(k,x(2)). Each party
computes the shared key:

FT

(
k,

( ⊕
j∈[n]

x
(1)
j,s1,j

,
⊕
j∈[n]

x
(2)
j,s2,j

))
,

which can be computed from any party’s secret and the other parties’ outputs, using the composition property
and input homomorphism of F1 and F2. Security follows by the weak PRF properties and LHL.

We give formal definitions and proofs in Appendix C, where we also show that an analog of Boneh-Franklin
IBE [BF01] can be constructed from 2-composable IHwPRFs. However, we still argue in Appendix C that

1Such a preimage can be efficiently sampled by weak pseudorandomness of F and the fact that the order of the ring is
polynomial.
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2-composable IHwPRFs are seemingly much weaker than bilinear pairing groups. Specifically, we argue
that the general abstraction of dual system groups (DSG [CGW15]) is hard to capture in the 2-Composable
IHwPRF setting due to the following limitations:

1. DSG seems to require properties that translate to the requirement of key homomorphism in the
2-composable IHwPRF setting.

2. DSG also requires algebraic interaction on both of the coordinates. Realizing this in the IHwPRF
setting forces both the coordinate domains X1 and X2 to be ring homomorphic on a single ring, where
all the algebra can take place.

The currently known constructions of rich ABEs like fuzzy IBEs [SW05], spatial encryption [BH08] and
monotone span program ABEs [GPSW06] from bilinear groups all require at least one of the properties just
described. Since the only instantiation of 2-composable IHwPRFs we know of are bilinear groups, it seems
difficult to achieve these rich ABEs without restricting 2-composable IHwPRFs to almost traditional bilinear
groups.

Thus we see a seeming separation in the amount of structure that we need for 3-party NIKE and simple
IBE (in RO) from that seemingly necessary for NIZKs (without RO) and rich ABEs. This poses a tantalizing
question: Can we construct a 3-party NIKE protocol from a weaker primitive than bilinear pairing groups?
In other words, can we achieve the structure of 2-composability from concrete assumptions, e.g., lattice-based
assumptions, that do not naturally imply bilinear pairings?

Generalizing to L ≥ 2. In the general setting, which we formalize in Appendix C.3, we consider L inner
IHwPRFs Fi and L different composers which satisfy an analogous composition property as the 2-composable
setting. By a straightforward generalization, we get an (L+ 1)-party non-interactive key exchange from an
L-Composable IHwPRF, which is not known from any (< L)-Composable IHwPRFs. We also do not know
how to construct such a protocol from any hard (< L)-multilinear group. We still observe an analogous
seeming separation in the amount of structure that we need for multi-party non-interactive key exchange
from that seemingly necessary for circuit ABEs and iOs. The corresponding open question is whether we can
build the former from weaker primitives that may lack the structure needed for the latter.

1.5 Conclusion and Future Work

In this paper, we presented a framework to build many cryptosystems from Minicrypt primitives with
structure. Our framework allows us to categorize many cryptosystems based on which structured Minicrypt
primitive implies them, and potentially makes showing the existence of many cryptosystems from novel
assumptions substantially easier in the future. In addition, some of our constructions are novel in their own
right. Although our framework does yield new constructions from less studied assumptions, the main focus of
this work is to investigate what kind of structure, when added to to simple and natural Minicrypt primitives,
implies advanced cryptosystems like IBE. Hence, we are not explicitly examining new constructions from
a mainstream assumption. We believe that our work opens up a substantial number of questions, some of
which we mention here.

Primitives from Weaker Assumptions. A pertinent open question is: can we build some of the
Cryptomania primitives discussed in this paper from weaker Minicrypt primitives with structure. For instance,
can we build PKE from HOWFs (which would imply PKE from discrete log)? Can we build PIR/lossy TDFs
from IHwUFs (which would imply the first PIR/lossy TDFs from CDH)? Is it possible to build round-optimal
OT and MPC in the plain model from IHwUFs/IHwPRFs?

More Primitives. While we constructed many popularly used Cryptomania primitives from our framework,
we could not encompass many others. These (non-exhaustively) include primitives implied by bilinear pairings
such as NIZK, unique signatures, VRFs, ABE and PE, and primitives known from specific assumptions such
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as worst-case smooth hash proof systems, KDM-CCA secure PKE and dual-mode cryptosystems. It is open
to construct one or more of these primitives from simple Minicrypt primitives with structure.

New Assumptions. One of the nicest aspects of our work is the implications for new assumptions. If a new
assumption implies one of the Minicrypt primitives with structure discussed in this paper, then it immediately
implies a whole host of cryptographic primitives. We leave it open to build HOWFs/IHwUFs/IHwPRFs from
new concrete assumptions, which in conjunction with our framework would allow building a large number of
Cryptomania primitives from such assumptions.

“Continents” of Cryptomania. We leave it open to explore if there are even weaker forms of structure
that, when endowed upon Minicrypt primitives, lead to interesting implications in Cryptomania. It is also
interesting to explore non-trivial separations between these structured primitives, e.g., between HOWFs
and IHwUFs. Such separations would potentially allow us to divide the world of Cryptomania into many
“continents” of primitives, where each “continent” is entirely implied by some simple Minicrypt primitive with
structure.

2 Preliminaries

Notation. For any positive integer n, we use [n] to denote the set {1, . . . , n}. We use λ for the security
parameter. We use the symbols ⊕ and ⊗ as group operations defined in the context. For two equal-length
strings s1 and s2 we denote their bitwise XOR as XOR(s1, s2). For a finite set S, we use s← S to sample
uniformly from the set S.
Unpredictable Functions. Informally, an efficiently computable function is called unpredictable if there
exists no PPT adversary that can predict its output on a new input that has not been queried. More formally,
a UF family is an efficiently computable function family {F (k, ·) : X → Y}k∈K (where K, X and Y are
indexed by the security parameter λ) such that for all PPT adversaries A we have

Pr[AF (k,·) = (x∗, F (k, x∗))] ≤ negl(λ),

where k ← K and x∗ is any arbitrary group element in X .

Weak Unpredictable Functions. A weaker notion of unpredictability requires the unpredictability
guarantee to hold when the adversary sees evaluations of the UF on uniformly random inputs, and should
predict its output on a new uniformly random input. More formally, let F $(k) be a randomized oracle that
when queried samples x← X and outputs (x, F (k, x)). A weak UF (wUF) family is an efficiently computable
function family {F (k, ·) : X → Y}k∈K (where K, X and Y are indexed by the security parameter λ) such
that for all PPT adversaries A we have

Pr[AF
$(k)(x∗) = F (k, x∗)] ≤ negl(λ),

where k ← K and x∗ is an uniformly randomly sampled group element in X .

Pseudorandom Functions. Informally, an efficiently computable function is called pseudorandom if there
exists no PPT adversary that can distinguish it from a truly random function. More formally, a PRF family
is an efficiently computable function family {F (k, ·) : X → Y}k∈K (where K, X and Y are indexed by the
security parameter λ) such that for all PPT adversaries A we have∣∣∣Pr[AF (k,·)(1λ) = 1]− Pr[Af(·)(1λ) = 1]

∣∣∣ ≤ negl(λ),

where k ← K and f : X → Y is a (truly) random function.
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Weak Pseudorandom Functions. A weaker variant of pseudorandomnness requires the aforementioned
indistinguishability guarantee to hold only when the PRF is fed with uniformly random inputs. More formally,
let F $(k, ·) be a randomized oracle that responds to queries by sampling x← X and outputting (x, F (k, x)).
A weak PRF (wPRF) family is an efficiently computable function family {F (k, ·) : X → Y}k∈K (where K, X
and Y are indexed by the security parameter λ) such that for all PPT adversaries A we have∣∣∣Pr[AF

$(k,·)(1λ) = 1]− Pr[Af(·)(1λ) = 1]
∣∣∣ ≤ negl(λ),

where k ← K and f : X → Y is a (truly) random function.

The Leftover Hash Lemma. Let (X ,⊕) be a finite group of size |X |, and let n > 3 log |X |. For any fixed
2n-vector of group elements x = {xj,b}j∈[n],b∈{0,1} ∈ X

2n, denote by Sx the following distribution:

Sx =

⊕
j∈[n]

xj,rj : (r1, · · · , rn)← {0, 1}n


Also, let UX denote the uniform distribution over X , and let SD (D1,D2) denote the statistical distance
between the distributions D1 and D2. We will use the following special case of leftover hash lemma [IZ89].
The proof is almost identical to the proof of Claim 5.3 in [Reg05].1

Lemma 2.1. (Leftover Hash Lemma.) For any finite group (X ,⊕) and n > 3 log |X |, for all but at most a(
1/
√
|X |
)

-fraction of vectors x ∈ X 2n, it holds that the distribution Sx is statistically
(

1/
√
|X |
)

-close to

the uniform distribution over X . In other words, the following holds:

Pr
x∈X 2n

[
SD (Sx,UX ) > 1/

√
|X |
]
≤ 1/

√
|X |

3 A Framework Based on Homomorphic Keyed Functions

3.1 Building Blocks

Definition 3.1. (Input-Homomorphic Weak UF.) We call a family of functions {F (k, ·) : X → Y}k∈K an
IHwUF family if the following conditions hold:

1. {F (k, ·) : X → Y}k∈K is a weak UF family.

2. (X ,⊕) and (Y,⊗) are both efficiently samplable groups.

3. The group operations ⊕ and ⊗, and inverse operation in each group are efficiently computable.

4. For every k ∈ K and for every x1, x2 ∈ X , we have

F (k, x1 ⊕ x2) = F (k, x1)⊗ F (k, x2) .

Definition 3.2. (Input-Homomorphic Weak PRF.) We call a function family {F (k, ·) : X → Y}k∈K an
IHwPRF family if it satisfies the aforementioned requirements and additionally, F is a weak PRF family.

We also consider a notion of bounded homomorphism, in the sense that input-homomorphism is preserved
only for an apriori bounded number of group operations in the source group of the UF/PRF. We formally
describe this notion as γ-bounded homomorphism, where the parameter γ reflects the maximum number of
group operations that the homomorphism can tolerate.

1Notice that the proof of Claim 5.3 in [Reg05] also works for non-abelian groups if the “summation” of group elements is
always done in a fixed order.
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Definition 3.3. (γ-Bounded Input-Homomorphic Weak UF.) We call a function family {F (k, ·) : X → Y}k∈K
a γ-bounded IHwUF family if there exists a universal mapping R : Y → Z such that:

1. {F (k, ·) : X → Y}k∈K and {R (F (k, ·)) : X → Z}k∈K are weak UF families.

2. (X ,⊕) and (Y,⊗) are both efficiently samplable groups.

3. The group operations ⊕ and ⊗, and inverse operations in each group are efficiently computable.

4. For every L-length input vector (x1, . . . , xL) ∈ XL, we have:

R
(
F

(
k,
⊕
j∈[L]

xj

))
= R

( ⊗
j∈[L]

F (k, xj)

)
subject to the restriction that L ≤ γ.

Definition 3.4. (γ-Bounded Input-Homomorphic Weak PRF.) A function family {F (k, ·) : X → Y}k∈K is
called a γ-bounded IHwPRF family if it satisfies the aforementioned requirements and additionally, F is a
weak PRF family.

We state two useful lemmas that are used in the security proofs of cryptographic primitives constructed from
(γ-Bounded) IHwUFs/IHwPRFs.The proofs of these lemmas are a straightforward application of leftover
hash lemma.

Lemma 3.5. Let F : K × X → Y be an IHwUF, and let n > 3 log |X |. Let r = (r1, . . . , rn) ← {0, 1}n and
k ← K be sampled randomly. Given 2n pairs {(xj,b, F (k, xj,b))}j∈[n],b∈{0,1} where xj,b ← X and a challenge
x∗ =

⊕
j∈[n] xj,rj , no PPT adversary can predict F (k, x∗) with non-negligible probability.

Lemma 3.6. Let F : K ×X → Y be an IHwPRF, and let n > 3 log |X |. Let r = (r1, . . . , rn)← {0, 1}n and
k ← K be sampled randomly. Given 2n pairs {(xj,b, F (k, xj,b))}j∈[n],b∈{0,1} where xj,b ← X and a challenge
x∗ =

⊕
j∈[n] xj,rj , no PPT adversary can distinguish between F (k, x∗) and a random element y ← Y with

non-negligible probability.

It is easy to see that the aforementioned lemmas hold equivalently for γ-bounded IHwUFs/PRFs if γ ≥ n.

3.2 A Family of Collision-Resistant One-Way Functions

The starting point of the PKC framework is a family of CR-OWFs from IHwUFs (and hence, IHwPRFs).
Informally, given an IHwUF F : K×X → Y , subset-sum on uniformly random vectors x ∈ Xn is both one-way
and collision-resistant when n is sufficiently large. This family has a few interesting features. Firstly, the
evaluation procedure involves n homomorphic operations, where n is apriori bounded, meaning that the family
is equivalently implied by any γ-bounded IHwUF for γ ≥ n. Secondly, evaluation correctness, one-wayness
and collision-resistance hold even if the input and output group of the IHwUF are non-abelian. Thirdly,
the resulting function family does not use the key space of F explicitly. As we will see later, this feature
will be helpful to construct asymmetric cryptographic primitives. Notice that given any weak unpredictable
function (not necessarily input homomorphic) F̃ : K̃ × X̃ → Ỹ, one can easily define a one-way function

fx̃ : K̃ → Ỹ as fx̃(k̃) := F̃ (k̃, x̃) for some randomly chosen x̃ ∈ X̃ .

Construction. Let F : K × X → Y be an IHwUF. Fix n > 3 log |X | and sample 2n uniformly random
group elements from X as:

x = {xj,b ← X}j∈[n],b∈{0,1} .

Define the family of functions OWFx : {0, 1}n → X as

OWFx (r = (r1, · · · , rn)) =
⊕
j∈[n]

xj,rj .
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One-Wayness. We first prove the one-wayness of the aforementioned family of functions. Let F : K×X → Y
be an IHwUF. For a fixed n > 3 log |X |, define the experiment ExptOWF−IHwUF as in Figure 7.

1. The challenger uniformly samples group elements {xj,b ← X}j∈[n],b∈{0,1} and a binary string
r = (r1, · · · , rn)← {0, 1}n.

2. The challenger computes x∗ =
⊕

j∈[n] xj,rj and sends the following tuple to the adversary A:(
{xj,b}j∈[n],b∈{0,1} , x

∗
)

3. Eventually, the adversary A outputs a bit-string r′ = (r′1, · · · , r′n) ∈ {0, 1}n.

Figure 7: Experiment for OWF-IHwUF security.

For any PPT adversary A we define AdvOWF−IHwUF(A) to be the probability of x∗ =
⊕

j∈[n] xj,r′j .

Lemma 3.7. For all PPT adversaries A, we have AdvOWF−IHwUF(A) = negl(λ).

Proof. Suppose that there exists a PPT adversary A such that AdvOWF−IHwUF(A) is non-negligible. We
construct a PPT algorithm B such that B breaks the weak unpredictability of F . B proceeds as follows:

1. B queries its oracle 2n times and receives {xj,b, yj,b = F (k, xj,b)}j∈[n],b∈{0,1}. The algorithm B also

gets a (uniformly random) challenge query x∗ ∈ X .

2. B forwards the tuple
(
{xj,b}j∈[n],b∈{0,1} , x

∗
)

to the adversary A.

3. Eventually, A outputs a bit-string r = (r1, · · · , rn) ∈ {0, 1}n.

4. If x∗ =
⊕

j∈[n] xj,rj , B outputs y∗ =
⊗

j∈[n] yj,rj . Otherwise B outputs a uniformly random y∗ ← Y.

By the leftover hash lemma, given a uniformly random vector x ∈ X 2n, a uniform element x∗ ∈ X , and a
uniform binary string r ∈ {0, 1}n we know that (x,

⊕
j∈[n] xj,rj ) is statistically indistinguishable from (x, x∗).

Hence B correctly simulates the one-wayness game for A. By input-homomorphism of F , we have

F (k, x∗) = F

k,⊕
j∈[n]

xj,rj

 =
⊗
j∈[n]

yj,rj = y∗.

It follows that AdvIHwUF(B) is negligibly different from AdvOWF−IHwUF(A), as desired.

Collision-Resistance. We prove that the aforementioned OWF family is also collision-resistant. Let
F : K × X → Y be an IHwUF. For a fixed n > 3 log |X |, define the experiment ExptCRHF−IHwUF as in
Figure 8.
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1. The challenger uniformly samples group elements {xj,b ← X}j∈[n],b∈{0,1} sends them to the
adversary A.

2. A outputs r = (r′1, · · · , r′n) ∈ {0, 1}n and r′ = (r′1, · · · , r′n) ∈ {0, 1}n.

Figure 8: Experiment for CRHF-IHwUF security.

For any PPT adversary A we define AdvCRHF−IHwUF(A) to be the probability of the event that⊕
j∈[n]

xj,rj =
⊕
j∈[n]

xj,r′j .

Lemma 3.8. For all PPT adversaries A, we have AdvCRHF−IHwUF(A) = negl(λ).

Proof. Assume the existence of a PPT adversary A such that AdvCRHF−IHwUF(A) is non-negligible. We
construct a PPT algorithm B with the same advantage in breaking the weak unpredictability of F . B proceeds
as follows:

1. B queries its oracle 2n times and receives {xj,b, yj,b = F (k, xj,b)}j∈[n],b∈{0,1}. The algorithm B also

gets a (uniformly random) challenge query x∗ ∈ X .

2. B uniformly randomly picks i ← [n] and b∗ ← {0, 1}, and sets xi,b∗ := x∗. It then forwards
{xj,b}j∈[n],b∈{0,1} to the adversary A.

3. A outputs r = (r1, · · · , rn) ∈ {0, 1}n and r′ = (r′1, · · · , r′n) ∈ {0, 1}n.

4. B proceeds as follows:

• If
⊕

j∈[n] xj,rj 6=
⊕

j∈[n] xj,r′j or ri = r′i, B outputs a random y∗ ← Y.

• Otherwise, assume wlog that ri = b∗. Then, the following must hold:

x∗ =

 ⊕
j∈[i−1]

xj,rj

−1

⊕

⊕
j∈[n]

xj,r′j

⊕
 ⊕
j∈[i+1,n]

xj,rj

−1

,

where the right-hand side is independent of x∗. B now outputs y∗ as

y∗ =

 ⊗
j∈[i−1]

yj,rj

−1

⊗

⊗
j∈[n]

yj,r′j

⊗
 ⊗
j∈[i+1,n]

yj,rj

−1

.

By the input-homomorphism of F , we have F (k, x∗) = y∗.

Observe that if A outputs a valid collision (r, r′), the probability that r and r′ differ in the ith bit for a
randomly chosen i← [n] is at least 1/n. It follows that

AdvIHwUF(B) ≥

(
AdvCRHF−IHwUF(A)

n

)
,

which is non-negligible, as desired.

Note 3.9. The aforementioned OWF/CRHF family may be analogously instantiated using a γ-bounded
IHwUF family, subject to the restriction that n ≤ γ. The proofs of one-wayness and collision resistance also
follow similarly.
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3.3 The Framework

In this section, we present a framework for designing public-key cryptographic primitives from a combination
of IHwUF (or IHwPRF) operations and “subset-sums” over group elements. The protocol consists of four
phases — initialization, pre-evaluation, evaluation and post-evaluation. The evaluation phase is based on
UF (or PRF) operations, while the pre-evaluation and post-evaluation phases are based on “subset-sum”
operations over group elements. For the sake of clarity, we exemplify each phase of the framework using a
“conceptually” equivalent framework in the discrete-log based group-theoretic setting. More specifically, we
show how our framework subsumes a generic methodology of constructing cryptographic primitives from the
CDH/DDH assumptions over prime order groups.

1. Initialization:

• Publish
(
G, g,N∗, N̄ , N̂

)
, where G describes a cyclic group (G, ·) of prime order p with uniform

generator g, and N∗ = N∗(λ), N̄ = N̄(λ) and N̂ = N̂(λ) are fixed functions.

• Let F be the description of an IHwUF/IHwPRF F : K × X → Y over groups (X ,⊕) and (Y,⊗).

Fix n > 3 log (|X |), N∗ = N∗(λ), N̄ = N̄(λ) and N̂ = N̂(λ), and publish
(
F ,X, n,N∗, N̄ , N̂

)
,

where X is a tuple of 2n uniform “base elements” from X as

X = {xj,b ← X}j∈[n],b∈{0,1} .

2. Pre-Evaluation:

• Given the generator g, sample N∗ random elements from Zq as

{αn∗ ← Zq}n∗∈[N∗] ,

and output the tuple
A = {gn∗ = gαn∗}n∗∈[N∗] .

• Given the tuple of “base elements” X, sample N∗ random strings as

{sn∗ = (sn∗,1 . . . , sn∗,n)← {0, 1}n}n∗∈[N∗] ,

and output the tuple

X∗ =

x∗n∗ =

n⊕
j=1

xj,sn∗,j


n∗∈[N∗]

.

3. Evaluation:

• Given the generator g and the pre-evaluation output A, sample N̄ elements β1, . . . , βN̄ ← Zq and
output B,B∗ where

B =
{
hn̄ = gβn̄

}
n̄∈[N̄ ]

, B∗ =
{
hn̄,n∗ = (g∗n∗)

βn̄

}
n̄∈[N̄ ],n∗∈[N∗]

.
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• Given “base elements” X and the pre-evaluation output X∗, sample N̄ keys k1, . . . , kN̄ ← K and
output the tuple (Y,Y∗), where

Y =

{
y

(n̄)
j,b = F (kn̄, xj,b)

}
n̄∈[N̄ ],j∈[n],b∈{0,1}

,

Y∗ =

{
y∗n̄,n∗ = F (kn̄, x

∗
n∗)

}
n̄∈[N̄ ],n∗∈[N∗]

.

4. Post-Evaluation:

• Given the generator g and the evaluation outputs (h1, . . . , hN̄ ), sample N̂ random elements from
Zq as

{γn̂ ← Zq}n̂∈[N̂ ] ,

and output

C =
{
ĝn̂ = gγn̂ , ĥn̄,n̂ = hγn̂n̄

}
n̄∈[N̄ ],n̂∈[N̂ ]

.

• Given X and the evaluation output Y =
{
y

(1)
j,b , . . . , y

(N̄)
j,b

}
j∈[n],b∈{0,1}

, sample N̂ random binary

vectors as
{rn̂ = (rn̂,1 . . . , rn̂,n)← {0, 1}n}n̂∈[N̂ ] ,

and output (X̂, Ŷ), where

X̂ =

x̂n̂ =

n⊕
j=1

xj,rn̂,j


n̂∈[N̂ ]

, Ŷ =

ŷn̄,n̂ =

n⊗
j=1

y
(n̄)
j,rn̂,j


n̄∈[N̄ ],n̂∈[N̂ ]

.

Functionality. The following claim is a direct consequence of the input-homomorphism of the function F .

Claim 3.10. For each n∗ ∈ [N∗], n̂ ∈ [N̂ ], n̄ ∈ [N̄ ], we have:

y∗n̄,n∗ = F (kn̄, x
∗
n∗) =

⊗
j∈[n]

y
(n̄)
j,sn∗,j

ŷn̄,n̂ =
⊗
j∈[n]

y
(n̄)
j,sn̂,j

= F (kn̄, x̂n̂)

Remark 3.11. If F is a γ-bounded IHwUF/IHwPRF for γ > n, the relations above are modified as follows:

R
(
y∗n̄,n∗

)
= R (F (kn̄, x

∗
n∗)) = R

( ⊗
j∈[n]

y
(n̄)
j,sn∗,j

)

R (ŷn̄,n̂) = R
( ⊗
j∈[n]

y
(n̄)
j,sn̂,j

)
= R (F (kn̄, x̂n̂))
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Security (IHwPRF). The following theorem captures the security guarantees provided by the general
framework when instantiated using an IHwPRF.

Theorem 3.12. Let F : K × X → Y be an IHwPRF. Then for any n > 3 log (|X |), for all functions

N∗ = N∗(λ), N̄ = N̄(λ) and N̂ = N̂(λ), and for any PPT adversary A, it holds that∣∣∣∣Pr
[
A
(

X,X∗, X̂,Y,Y∗, Ŷ
)

= 1
]
− Pr

[
A
(
UX,UX∗ ,UX̂,UY,UY∗ ,UŶ

)
= 1
] ∣∣∣∣

is negligible in the security parameter λ, where:

• The tuple (X,X∗, X̂,Y,Y∗, Ŷ) is as defined in the protocol above.

• UX,UX∗ and UX̂ are tuples of 2n,N∗ and N̂ uniformly sampled group elements from X .

• UY, UY∗ and UŶ are tuples of (2n · N̄), (N∗ · N̄) and (N̂ · N̄) uniform group elements from Y.

Proof. The proof proceeds in two stages. The first stage applies the leftover hash lemma, while the second
stage relies on the pseudorandomness of F .

Applying LHL. Let UX∗ = {u∗1, . . . , u∗N∗} be a tuple of N∗ uniformly sampled group elements in X , and
let

ŨY∗ =
{
y∗1,n∗ , . . . , y

∗
N̄,n∗

}
n∗∈[N∗]

,

where y∗n̄,n∗ = F (kn̄, u
∗
n∗) for each n̄ ∈ [N̄ ], n∗ ∈ [N∗], and k1, . . . , kN̄ ∈ K are the same PRF keys as used in

the “real” protocol. We use the following claim.

Lemma 3.13. For any n > 3 log (|X |), for all functions N∗ = N∗(λ), N̄ = N̄(λ) and N̂ = N̂(λ), and for
any PPT adversary A, we have∣∣∣∣Pr

[
A
(

X,X∗, X̂,Y,Y∗, Ŷ
)

= 1
]
− Pr

[
A
(

X,UX∗ , X̂,Y, ŨY∗ , Ŷ
)

= 1
] ∣∣∣∣

is negligible in the security parameter λ. The proof of this lemma follows from Lemma 3.6. Next, let
UX̂ =

{
û1, . . . , ûN̂

}
be a tuple of N̂ uniformly sampled group elements in X , and let

ŨŶ =
{
ŷ1,n∗ , . . . , ŷN̄,n̂

}
n̂∈[N̂ ]

,

where ŷn̄,n∗ = F (kn̄, ûn∗) for each n̄ ∈ [N̄ ] and each n̂ ∈ [N̂ ], and k1, . . . , kN̄ ∈ K are the same PRF keys as
used in the “real” protocol. We also use the following claim.

Lemma 3.14. For any n > 3 log (|X |), for all functions N∗ = N∗(λ), N̄ = N̄(λ) and N̂ = N̂(λ), and for
any PPT adversary A, we have∣∣∣∣Pr

[
A
(

X,UX∗ , X̂,Y, ŨY∗ , Ŷ
)

= 1
]
− Pr

[
A
(

X,UX∗ ,UX̂,Y, ŨY∗ , ŨŶ

)
= 1
] ∣∣∣∣

is negligible in the security parameter λ. The proof of this lemma again follows from Lemma 3.6.
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Pseudorandomness. We now use the pseudorandomness of F to prove the following lemma.

Lemma 3.15. For any n > 3 log (|X |), for all functions N∗ = N∗(λ), N̄ = N̄(λ) and N̂ = N̂(λ), and for
any PPT adversary A, we have∣∣∣∣Pr

[
A
(

X,UX∗ ,UX̂,Y, ŨY∗ , ŨŶ

)
= 1
]
− Pr

[
A
(
X,UX∗ ,UX̂,UY,UY∗ ,UŶ

)
= 1
] ∣∣∣∣

is negligible in the security parameter λ, where UY, UY∗ and UŶ denote tuples of (2n ·N̄), (N∗ ·N̄) and (N̂ ·N̄)

uniform elements in Y , respectively, while ŨY∗ and ŨŶ are as described in Lemmas 3.13 and 3.14, respectively.

We prove this lemma through a sequence of hybrid arguments. Define the collection {Y(n̄)}m∈[0,N̄ ] as follows.

• Y(0) is identical to Y as output by the “real world” protocol.

• Y(N̄) is identical to UY.

• For each n̄ ∈ [N̄ ], Y(n̄) is identical to Y(n̄−1) except that the sub-tuple of elements {y(n̄)
j,b }j∈[n],b∈{0,1} is

replaced by 2n elements sampled uniformly at random from Y.

Similarly, define the collection {Ũ(n̄)
Y∗ }m∈[0,N̄ ] as follows.

• Ũ
(0)
Y∗ is identical to ŨY∗ as described in Lemma 3.13.

• Ũ
(N̄)
Y∗ is identical to UY∗ .

• For each n̄ ∈ [N̄ ], Ũ
(n̄)
Y∗ is identical to Ũ

(n̄−1)
Y∗ except that the sub-tuple of elements {y∗n̄,n∗}n∗∈[N∗] is

replaced by N∗ elements sampled uniformly at random from Y.

Finally, define the collection {Ũ(n̄)

Ŷ
}m∈[0,N̄ ] as follows.

• Ũ
(0)

Ŷ
is identical to ŨŶ as described in Lemma 3.14.

• Ũ
(N̄)

Ŷ
is identical to UŶ.

• For each n̄ ∈ [N̄ ], Ũ
(n̄)

Ŷ
is identical to Ũ

(n̄−1)

Ŷ
except that the sub-tuple of elements {ŷn̄,n̂}n̂∈[N̂ ] is

replaced by N̂ elements sampled uniformly at random from Y.

We first prove the following auxiliary lemma.

Lemma 3.16. For any n > 3 log (|X |), for all functions N∗ = N∗(λ), N̄ = N̄(λ) and N̂ = N̂(λ), and for
any PPT adversary A,∣∣∣∣Pr

[
A
(

X,UX∗ ,UX̂,Y
(n̄−1), Ũ

(n̄−1)
Y∗ , Ũ

(n̄−1)

Ŷ

)
= 1
]
− Pr

[
A
(

X,UX∗ ,UX̂,Y
(n̄), Ũ

(n̄)
Y∗ , Ũ

(n̄)

Ŷ

)
= 1
] ∣∣∣∣

is negligible in the security parameter λ.

To prove this lemma, suppose that there exists a PPT adversary A such that∣∣∣∣Pr
[
A
(

X,UX∗ ,UX̂,Y
(n̄−1), Ũ

(n̄−1)
Y∗ , Ũ

(n̄−1)

Ŷ

)
= 1
]
− Pr

[
A
(

X,UX∗ ,UX̂,Y
(n̄), Ũ

(n̄)
Y∗ , Ũ

(n̄)

Ŷ

)
= 1
] ∣∣∣∣

is non-negligible for some n̄ ∈ [N̄ ]. We construct a PPT algorithm B that breaks the weak pseudorandomness
of F . B proceeds as follows:
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1. B queries its oracle (2n+N∗ + N̂) times and receives the following tuples{
{xj,b, yj,b}j∈[n],b∈{0,1} , {x

∗
n∗ , y

∗
n∗}n∗∈[N∗] , {x̂n̂, ŷn̂}n̂∈[N∗]

}
.

2. It then samples (N̄ − n̄) PRF keys as kn̄+1, . . . , kN̄ ← K and sets the following for each n′k ∈ [N̄ ]:

y
(n′k)
j,b =


yj,b if n′k = n̄

F (kn′k , xj,b) if n′k > n̄

y ← Y otherwise.

for j ∈ [n], b ∈ {0, 1}

y∗n′k,n∗
=


y∗n∗ if n′k = n̄

F (kn′k , x
∗
n∗) if n′k > n̄

y ← Y otherwise.

for n∗ ∈ [N∗]

ŷn′k,n̂ =


ŷn̂ if n′k = n̄

F (kn′k , x̂n̂) if n′k > n̄

y ← Y otherwise.

for n̂ ∈ [N̂ ]

3. B then sets the following:

X = {xj,b}j∈[n],b∈{0,1} , UX∗ = {x∗n∗}n∗∈[N∗] , UX̂ = {x̂n̂}n̂∈[N∗]

Y′ =
{
y

(1)
j,b , . . . , y

(N̄)
j,b

}
j∈[n],b∈{0,1}

Ũ′Y∗ =
{
y∗1,n∗ , . . . , y

∗
N̄,n∗

}
n∗∈[N∗]

, Ũ′
Ŷ

=
{
ŷ1,n̂, . . . , ŷN̄,n̂

}
n̂∈[N∗]

and sends the tuple
(

X,UX∗ ,UX̂,Y
′, Ũ′Y∗ , Ũ

′
Ŷ

)
to A.

4. Eventually, A outputs a bit b. B outputs the same bit b.

Observe the following:

• When B interacts with the “real” PRF oracle, the distribution of
(

Y′, Ũ′Y∗ , Ũ
′
Ŷ

)
is identical to the

distribution of
(

Y(n̄−1), Ũ
(n̄−1)
Y∗ , Ũ

(n̄−1)

Ŷ

)
.

• When B interacts with a “random” oracle, the distribution of
(

Y′, Ũ′Y∗ , Ũ
′
Ŷ

)
is identical to the

distribution of
(

Y(n̄), Ũ
(n̄)
Y∗ , Ũ

(n̄)

Ŷ

)
.

It follows that AdvIHwUF(B) is negligibly different from the advantage of A, which completes the proof of
Lemma 3.16.
To prove Lemma 3.15, observe that∣∣∣∣Pr

[
A
(

X,UX∗ ,UX̂,Y, ŨY∗ , ŨŶ

)
= 1
]
− Pr

[
A
(
X,UX∗ ,UX̂,UY,UY∗ ,UŶ

)
= 1
] ∣∣∣∣

≤
N̄∑
m=1

∣∣∣∣Pr
[
A
(

X,UX∗ ,UX̂,Y
(n̄−1), Ũ

(n̄−1)
Y∗ , Ũ

(n̄−1)

Ŷ

)
= 1
]
−

Pr
[
A
(

X,UX∗ ,UX̂,Y
(n̄), Ũ

(n̄)
Y∗ , Ũ

(n̄)

Ŷ

)
= 1
] ∣∣∣∣ ≤ negl(λ)

This completes the proof of Lemma 3.15.
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Putting Everything Together. Using Lemmas 3.13, 3.14, and 3.15 we have∣∣∣∣Pr
[
A
(

X,X∗, X̂,Y,Y∗, Ŷ
)

= 1
]
− Pr

[
A
(
UX,UX∗ ,UX̂,UY,UY∗ ,UŶ

)
= 1
] ∣∣∣∣

≤
∣∣∣∣Pr

[
A
(

X,X∗, X̂,Y,Y∗, Ŷ
)

= 1
]
− Pr

[
A
(

X,UX∗ , X̂,Y, ŨY∗ , Ŷ
)

= 1
] ∣∣∣∣+∣∣∣∣Pr

[
A
(

X,UX∗ , X̂,Y, ŨY∗ , Ŷ
)

= 1
]
− Pr

[
A
(

X,UX∗ ,UX̂,Y, ŨY∗ , ŨŶ

)
= 1
] ∣∣∣∣+∣∣∣∣Pr

[
A
(

X,UX∗ ,UX̂,Y, ŨY∗ , ŨŶ

)
= 1
]
− Pr

[
A
(
X,UX∗ ,UX̂,UY,UY∗ ,UŶ

)
= 1
] ∣∣∣∣+∣∣∣∣Pr

[
A
(
X,UX∗ ,UX̂,UY,UY∗ ,UŶ

)
= 1
]
− Pr

[
A
(
UX,UX∗ ,UX̂,UY,UY∗ ,UŶ

)
= 1
] ∣∣∣∣

≤ negl(λ)

since X and UX are both distributed uniformly over X 2n. This completes the proof of Theorem 3.12.

Security (IHwUF). The following theorem captures the security guarantees provided by the general
framework when instantiated using an IHwUF.

Theorem 3.17. Let F : K × X → Y be an IHwUF. Then for any n > 3 log (|X |), for all functions

N∗ = N∗(λ), N̄ = N̄(λ) and N̂ = N̂(λ), for any arbitrary (n∗, n̂, n̄) ∈ [N∗]× [N̂ ]× [N̄ ], and for any PPT
adversary A = (A∗, Â), we have

Pr
[
A∗
(

X,X∗, X̂,Y
)

= y∗n̄,n∗
]

+ Pr
[
Â
(

X,X∗, X̂,Y
)

= ŷn̄,n̂

]
≤ negl(λ),

where the tuple (X,X∗, X̂,Y, y∗n̄,n∗ , ŷn̄,n̂) for (n∗, n̂, n̄) ∈ [N∗]× [N̂ ]× [N̄ ] is as defined in the protocol above.

Proof. Suppose that there exists a PPT adversary A = (A∗, Â) such that

Pr
[
A∗
(

X,X∗, X̂,Y
)

= y∗n̄,n∗
]

+ Pr
[
Â
(

X,X∗, X̂,Y
)

= ŷn̄,n̂

]
is non-negligible for some (n∗, n̂, n̄) ∈ [N∗]× [N̂ ]× [N̄ ].

• Assume there exists (n∗, n̄) ∈ [N∗]× [N̄ ] such that Pr
[
A∗
(

X,X∗, X̂,Y
)

= y∗n̄,n∗
]

is non-negligible. We

construct a PPT algorithm B that breaks the weak unpredictability of F . B proceeds as follows:

1. B queries its oracle 2n times and receives the tuple {xj,b, yj,b}j∈[n],b∈{0,1}, and a challenge x∗ ∈ X .

2. It then samples (N̄ − 1) PRF keys as k1, . . . , kn̄−1, kn̄+1, . . . , kN̄ ← K and sets the following for
each n′k ∈ [N̄ ], j ∈ [n], b ∈ {0, 1}:

y
(n′k)
j,b =

{
yj,b if n′k = n̄

F (kn′k , xj,b) otherwise.

3. B then samples (N∗ − 1) random group elements as

x∗1, . . . , x
∗
n∗−1, x

∗
n∗+1, x

∗
N∗ ← X

and sets x∗n∗ = x∗, where x∗ is the input challenge to B.
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4. B additionally samples N̂ group elements {x̂n̂}n̂∈N̂ and sends the tuple
(

X,X∗, X̂,Y
)

to A, where

X = {xj,b}j∈[n],b∈{0,1} , X∗ = (x∗1, . . . , x
∗
N∗) , X̂ =

(
x̂1, . . . , x̂N̂

)
,

Y =
{
y

(1)
j,b , . . . , y

(N̄)
j,b

}
j∈[n],b∈{0,1}

.

5. Eventually, A outputs y∗ ∈ Y. B outputs the same y∗.

By the leftover hash lemma, the distributions of X∗ and X̂ are statistically indistinguishable from that in
the “real” protocol, while the distributions of X and Y are identical to that in the “real” protocol from
the definition of the UF-oracle in the weak unpredictability experiment. It follows that AdvIHwUF(B)
is negligibly different from the advantage of A∗.

• A similar argument shows that if there exists (n̂, n̄) ∈ [N̂ ]× [N̄ ] such that Pr
[
Â
(

X,X∗, X̂,Y
)

= ŷn̄,n̂

]
is non-negligible, then there exists an attacker against the weak unpredictability of F with non-negligible
advantage.

Combining the aforementioned inferences, for any (n∗, n̂, n̄) ∈ [N∗]× [N̂ ]× [N̄ ], and for any PPT adversary
A = (A∗, Â), we have

Pr
[
A∗
(

X,X∗, X̂,Y
)

= y∗n̄,n∗
]

+ Pr
[
Â
(

X,X∗, X̂,Y
)

= ŷn̄,n̂

]
≤ negl(λ),

which completes the proof of Theorem 3.17.

3.4 Instantiations from Cryptographic Assumptions

In this subsection, we provide instantiations of IHwUFs/IHwPRFs from concrete assumptions. We start with
Diffie-Hellman assumption as an easy example. We then provide an example of IHwPRF where the input
space depends on the secret key. After that we provide an example of IHwPRF where a bounded number of
homomorphisms are allowed. Finally, we prove that any (group-)homomorphic PKE implies an IHwPRF
family, providing constructions of IHwPRF family from different concrete assumptions.

CDH/DDH. Given a group (G, ·) of order q with generator g, define the function F : Zq × G → G as
F (k, h) = hk. We prove that F is an IHwPRF assuming DDH assumption. It is easy to see that for any
h1, h2 ∈ G we have F (k, h1 ·h2) = F (k, h1)·F (k, h2). Let A be an attacker against the weak pseudorandomness
of F , and let n be the number of queries of the attacker. It is enough to show that

((gx1 , gkx1), (gx2 , gkx2), . . . , (gxn , gkxn))
c
≈ ((gx1 , gr1), (gx2 , gr2), . . . , (gxn , grn)),

where k, xi, ri ← Zq are uniform and independent for i ∈ [n], and (gxi , gkxi) is the answer to the ith query.
Given a DDH-challenge tuple (gk, gx

∗
, y) where y is either gkx

∗
or a random element of G, the reduction

first samples n pairs of random elements: {(si, ti)← Z2
q}i∈[n]. It then outputs the following tuple:(

(gs1(gx
∗
)t1 , (gk)s1yt1), . . . , (gsn(gx

∗
)tn , (gk)snytn)

)
.

Observe that when y = gkx
∗

the tuple above is identical to the “real” game where all queries answered
as PRF output, and y random corresponds to the “ideal” game where all queries answered as a random
function. Therefore, an attacker against the weak pseudorandomness of F with advantage ε implies a DDH
distinguisher with advantage ε. A similar argument shows that F is an IHwUF under CDH assumption.
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Matrix-DDH. The DDH problem has been generalized to several different algebraic problems, like
Decisional Linear (DLIN [BBS04]) and k-linear [HK07, Sha07]. Escala et al [EHK+13] generalized all
these assumptions into one framework called the matrix-DDH assumptions. Given a cyclic group (G, ·) of
order q with generator g and a Zq-matrix A, they adopted the notation [A] to denote the component-wise
exponentiation gA. The matrix-DDH problem is parameterized by a distribution Dl,k on Zl×kq matrices with

(l > k), where the top k×k matrix, denoted Ā, is overwhelmingly invertible. The remaining (l−k)×k bottom
matrix is denoted A. The Dl,k matrix-DDH assumption states that with A← Dl,k and (w, r)← Zkq × Zl−kq :(

[Āw], [Aw]
) c
≈
(
[Āw], [r]

)
,

We now show that any Dl,k-matrix-DDH assumption can give us an IHwPRF. The key sampling algorithm
is as follows: first sample A ← Dl,k and then compute key K = Ā−1A. Now we define the function

F : Zk×(l−k)
q × Gk → Gl−k as F (K, [x]) = K[x] = [Kx]. We prove that F is an IHwPRF assuming the

Dl,k-Matrix-DDH assumption. It is easy to see that for any [x1], [x2] ∈ Gk we have

F (K, [x1 + x2]) = F (K, [x1]) + F (K, [x2]).

Let A be an attacker against the weak pseudorandomness of F , and let n be the number of queries of the
attacker. It is enough to show that

(([x1], [Kx1]), . . . , ([xn], [Kxn]))
c
≈ (([x1], [r1]), . . . , ([xn], [rn])) ,

where xi, ri are uniform and independent for i ∈ [n], and [xi], [Kxi] is the answer to the i-th query.
It was shown in [EHK+13] that by the random self-reducibility of matrix-DDH samples, the distinguishing

advantage of the above distributions is bounded by a multiplicative factor of (l − k) over a single sample
matrix-DDH advantage. Therefore, an attacker against the weak pseudorandomness of F with advantage ε
implies a Matrix-DDH distinguisher with advantage ε/(l − k). Instead of decisional, if we assume that F is
unpredictable, then a similar argument shows that F is an IHwUF under the computational matrix-DDH
assumption.

Quadratic Residuosity. Let N = pq be a composite modulus where p and q are randomly generated equal-
size primes, and let J +1

N be the set of all elements in Z∗N with Jacboi symbol 1. Define F (k = (p, q), x ∈ J +1
N )

as follows:

F (k, x) =

{
0 if x ∈ QRN
1 if x /∈ QRN

First, given the factorization of N one can efficiently determine whether an element x ∈ J +1
N is a quadratic

residue. Moreover, Observe that for any x1, x2 ∈ J +1
N we have F (k, x1x2) = F (k, x1) + F (k, x2) where x1x2

is the product of x1 and x2 in Z∗N , and + is addition modulo 2.1 A simple hybrid argument similar to the
case of DDH construction implies the weak pseudorandomness of F . It follows that F is an IHwPRF under
QR assumption.

Remark 3.18. We note that although F is an IHwPRF (and hence IHwUF), it has a limitation that the input
space depends on the key. In some applications, it is necessary to know the input space before generating the
key.

By a similar argument it is also possible to construct an IHwUF from RSA assumption. However, like the
case of QR, the input space (implicitly) depends on the choice of the key.

1Recall that for any x1, x2 ∈ J+1
N , the product x1x2 is a quadratic non-residue if and only if exactly one of them is a

quadratic non-residue.
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LWE. We now sketch the construction of IHwPRF from LWE asumption [Reg05]. Let n, q be the parameters
of the LWE assumption where n is the dimension of the secret and q is the modulus. Also, let χ denote the
(Gaussian-like) noise distribution. Let GSamp be a Gaussian sampler algorithm that on a uniformly random

chosen input u← {0, 1}`, outputs a sample according to χ. First, we use a weak PRF FN : KN ×Znq → {0, 1}`
to generate the randomness for GSamp algorithm.1 We define the bounded IHwPRF2 F : K × Znq → Zq as

F ((k, s),a) = 〈s,a〉+ GSamp(FN (k,a))

R(b ∈ Zq) =

{
0 |b| ≤ q/4
1 |b| > q/4

where K = KN × Znq , k ← KN and s← Znq . The weak pseudorandomness of F follows from a simple hybrid
argument, and we omit the details here. As for bounded homomorphism, observe that if q is sufficiently large
(superpolynomial in n), for any γ ≤ q/n we have

R

F ((k, s),
∑
i∈[γ]

ai)

 = R

∑
i∈[γ]

F ((k, s),ai)

.
Remark 3.19. It is easy to see that if q is polynomial, the probability that the equality above does not hold
is bounded by 1/poly(n). We remark that for almost all of the applications in the paper (except the case of
non-interactive key exchange) one can use polynomial modulus simply by repeating cryptographic protocol
with independent randomness.3 Observe that one can analogously construct a bounded IHwPRF family
based on the Ring LWE assumption [LPR10].

Note 3.20. A similar argument shows that the function family fA(s, e) = As + e where A ← Zm×nq and
s← Znq and e← χm, is a bounded HOWF family based on search LWE. 4

DCR/FFI/AGCD/HNP. We now show that an IHwUF/IHwPRF is implied by any assumption that
yields a (group-)homomorphic PKE. Informally, the decryption algorithm of any homomorphic PKE can be
viewed as an IHwPRF, where the ciphertext space and the message space are the input space and the output
space of the IHwPRF, respectively. We stress that here we use a slight generalization of the definition of weak
pseudorandomness where the input/key is sampled according to some efficiently samplable distribution over
the input/key space and these distributions are not necessarily uniform. However, most of the instantiations
from concrete assumptions results in a uniform distribution over the key/input space.

Lemma 3.21. Let (Gen,Enc,Dec) be a CPA-secure homomorphic PKE. Let K, (M,⊗), and (C,⊕) be the
key space, message space, and ciphertext space of Π, respectively. The function family F defined as

(sk, pk)← Gen(1λ), F (sk ∈ K, c ∈ Cpk) = Dec(sk, c) = m ∈M,

is an IHwPRF family, where Cpk denotes to set of all valid ciphertexts under the public key pk.

Proof. Observe that by homomorphism of Π, for any c1, c2 ∈ Cpk we have

F (sk, c1 ⊕ c2) = F (sk, c1)⊗ F (sk, c2),

1Note that we do not need any homomorphism property for FN , and it is just used to generated the noise for LWE samples.
2See Definition 3.4 for a formal definition of bounded IHwPRF.
3As an example, for the case of PKE, the encryptor publishes polynomially many encryptions of the same message, and the

decryptor can recover the message with probability 1− negl(λ) simply by taking a majority over the decrypted messages.
4Note that although there are a variety of search to decision reductions for LWE (for Gaussian-like distributions), there are

certain distributions for which decision LWE is easy, but search LWE is hard.
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which implies the homomorphism of F . Now we show the weak pseudorandomness of F . We define a
distribution D over Cpk as follows. To sample according to D, first generate a uniform m ← M and let
c = Enc(pk,m) be the encryption of m using a fresh randomness. Let A be an adversary against the weak
pseduorandomness of F , and let n be the number of queries made by A. We define n+1 hybrids as follows. Let
Hj be a hybrid that the first j − 1 queries of the adversary are answered as (ci ← D, F (sk, ci)) for i ∈ [j − 1],
and the remaining queries are answered as (ci,mi) where mi is generated randomly and independent of ci. It
is enough to show that for each i ∈ [n] the hybrids Hi−1 and Hi are computationally indistinguishable. To
do so, given an attacker A that distinguishes Hi−1 and Hi, we build an attacker B that breaks the semantic
security of Π. First B asks its challenger and receives the public key pk. It then runs A. The attacker B
answers jth query of A as follows:

• If j ∈ [i− 1], B samples m←M and computes c← Enc(pk,m). It then sends (c,m) to A.

• If i = j, B samples two uniform messages m(0),m(1) ← M and sends them to its challenger. Upon
receiving c∗ (challenge ciphertext), B sends (c∗,m(1)) to A.

• If i+ 1 ≤ j ≤ n, B samples m←M and computes c← Enc(pk,m). It then sends (c, r) to A where r is
sampled independently and uniformly over M.

If A outputs 1, B also outputs 1. Otherwise, B outputs 0. Since both of m(0) and m(1) generated uniformly
at random c∗ is distributed according to D. If c∗ is an encryption of m(1) we have F (sk, c∗) = m(1) and hence
the reduction maps encryption of m(1) to a valid weak PRF output. On the other hand, if c∗ is an encryption
of m(0), then c∗ is independent of m(0) and hence the reduction maps encryption of m(0) to a random pair
(c∗,m(0)) where c∗ is distributed according to D and m(0) is uniform. Therefore, the advantage of B in the
CPA security game is equal to the advantage of A in distinguishing Hi−1 and Hi.

Observe that a similar proof also shows that a γ-bounded homomorphic PKE implies a bounded IHwPRF.
Therefore, Lemma 3.21 immediately yields an IHwPRF from the Decisional Composite Residuosity [Pai99].
It also yields constructions of (γ-bounded) IHwPRF family from several assumptions, e.g., Approximate
GCD [How01], Finite Field Isomorphism [DHP+18], Hidden Number Problem [BV96].

4 Primitives from IHwUF

In this section, we present constructions of various cryptographic primitives from (γ-bounded) IHwUFs.
Interestingly, none of these constructions require the source or target groups of the IHwUF to be abelian.

4.1 Two-Party Non-Interactive Key Exchange

We present a non-interactive key exchange protocol between non-uniform PPT algorithms A = (A0,A1) and
B = (B0,B1). It allows exchange of a single key-bit and is obtained from an IHwUF in a black-box manner
(note that Ab and Bb operate in parallel for b ∈ {0, 1}).

• Setup(1λ): Given the security parameter λ, the setup algorithm creates a description FIHwUF for an
IHwUF F : K × X → Y. It uniformly samples {xj,b ← X}j∈[n],b∈{0,1} for a fixed n > 3 log (|X |), and

outputs the public parameter pp as

pp =
(
FIHwUF , {xj,b}j∈[n],b∈{0,1}

)
.

• A0 (pp): On input pp =
(
FIHwUF, {xj,b}j∈[n],b∈{0,1}

)
, the algorithm A0 first samples a uniformly

random s = (s1, . . . , sn)← {0, 1}n and then outputs (stA, x
∗
A), where

stA = s , x∗A =
⊕
j∈[n]

xj,sj .
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• B0 (pp): On input pp =
(
FIHwUF, {xj,b}j∈[n],b∈{0,1}

)
, the algorithm B0 first samples a key k ← K and

computes yj,b = F (k, xj,b) for each j ∈ [n] and b ∈ {0, 1}. It then outputs (stB,yB), where

stB = k , yB =
(
{yj,b}j∈[n],b∈{0,1}

)
.

• A1 (pp, stA,yB): On input stA = s and yB, the algorithm A1 computes the final key-bit as

k∗ = HardCore

( ⊗
j∈[n]

yj,sj

)
.

• B1 (pp, stB, x
∗
A): On input stB = k and x∗A, the algorithm B1 computes the final key-bit as

k∗ = HardCore (F (k, x∗A)) .

Instantiation from General Protocol. The aforementioned NIKE scheme can be instantiated from the
general protocol described in Section 3.3 as follows:

• Initialization. Instantiate the protocol using an IHwUF F : K ×X → Y with description FIHwUF, a
fixed n > 3 log |X |, N∗ = 1, N̄ = 1 and N̂ = 0. Set pp = X.

• Pre-Evaluation: Let X∗ = {x∗} be the output of the pre-evaluation phase. Set x∗A = x∗.

• Evaluation: Let Y and Y∗ = {y∗} be the outputs of the evaluation phase. Set yB = Y and
k∗ = HardCore (y∗).

Correctness and security of the scheme follow from Claim 3.10 and Theorem 3.17, respectively.

Note 4.1. The aforementioned construction has an apriori bounded number of homomorphic operations,
which allows it to be instantiated equivalently using a γ-bounded IHwUF if γ ≥ n, with the following minor
modification to the final key-generation step:

k∗ = HardCore

(
R
( ⊗
j∈[n]

yj,sj

))
= HardCore (R (F (k, x∗A))) ,

where R : Y → Z is a universal map (see Definition 3.3).

Note 4.2. The aforementioned NIKE protocol can only be instantiated using an IHwUF family for which the
input space is independent of the choice of key. 1

4.2 CPA-Secure PKE

We present a CPA-secure public-key encryption scheme from any IHwUF. First we provide a formal definition
of a CPA-secure PKE scheme and next we state the construction.

Definition 4.3. (CPA-Secure PKE.) Let Π = (Setup,Gen,Enc,Dec) be a public-key encryption scheme. Π

is said to be CPA-secure if for all PPT adversaries A, the views of A in the games Exptind-cpa
0 and Exptind-cpa

1

are computationally indistinguishable.

1Note that this property does not hold for some instantiations from concrete assumptions, e.g., QR. See Section 3.4 for more
details.
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Experiment Exptind-cpa
b :

1. The challenger runs the setup algorithm and generates (pk, sk)← Gen (pp), and provides pk to the
adversary A.

2. The adversary A issues a challenge encryption query for a pair of messages (m0,m1). The challenger
creates the challenge ciphertext

ct∗ ← Enc (pk,mb) ,

and sends ct∗ to the adversary A.

We now present a CPA-secure PKE from any IHwUF family.

• Setup(1λ): The setup algorithm creates a description FIHwUF for an IHwUF F : K × X → Y. It also
fixes some integer n > 3 log |X |. The algorithm outputs FIHwUF and n as the public parameter pp.

• Gen (pp): The key-generation algorithm uniformly samples 2n elements in X as {xj,b ← X}j∈[n],b∈{0,1}
and a key k ← K, and outputs

sk = k , pk = {xj,b, yj,b}j∈[n],b∈{0,1},

where yj,b = F (k, xj,b) for each j ∈ [n] and b ∈ {0, 1}.

• Enc (pk,m): Given the public-key pk = {xj,b, yj,b}j∈[n],b∈{0,1} and a message-bit m ∈ {0, 1}, the
encryption algorithm uniformly samples an n-bit string r = (r1, . . . , rn) ← {0, 1}n and outputs the
ciphertext ct = (c, e), where

c =
⊕
j∈[n]

xj,rj , e = XOR

(
HardCore

( ⊗
j∈[n]

yj,rj

)
,m

)
.

• Dec (sk, ct): Given the secret-key sk = k and the ciphertext ct = (c, e), the algorithm outputs the bit

m′ = XOR (HardCore (F (k, c)) , e) .

Instantiation from General Protocol. The aforementioned PKE scheme can be instantiated from the
general protocol described in Section 3.3 as follows:

• Initialization. Instantiate the protocol using an IHwUF F : K ×X → Y with description FIHwUF, a
fixed n > 3 log |X |, N∗ = 0, N̄ = 1 and N̂ = 1. Set pk1 = X.

• Evaluation: Set sk = k (where k ∈ K is the IHwUF key) and pk2 = Y, where Y is the output of the
evaluation phase. Output (sk, pk = (pk1, pk2)).

• Post-Evaluation: Let X̂ = {x̂} and Ŷ = {ŷ} be the outputs of the post-evaluation phase. Set:

c = x̂, e = XOR (HardCore(ŷ),m) ,

where m is the message-bit.

Correctness and security of the scheme follow from Claim 3.10 and Theorem 3.17, respectively.
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Note 4.4. The aforementioned construction has an apriori bounded number of homomorphic operations,
which allows it to be instantiated equivalently using a γ-bounded IHwUF if γ ≥ n, with the following minor
modification to the encryption algorithm:

e = XOR

(
HardCore

(
R
( ⊗
j∈[n]

yj,rj

))
,m

)
,

and the following minor modification to the decryption algorithm:

m′ = XOR (HardCore (R (F (k, c))) , e)

where R : Y → Z is a universal map (see Definition 3.3).

Note 4.5. The aforementioned PKE can also be instantiated using an (γ-bounded) IHwUF family for which
the input space is dependent of the choice of key with the following minor modification: the setup algorithm
only outputs the description of the key space and the output space of the IHwUF, while the description of
the input space is published along with the public key by the key generation algorithm.

4.3 Trapdoor Functions

In this subsection, we show that IHwUFs imply trapdoor functions with almost-perfect correctness. Garg and
Hajiabadi [GH18] introduced a primitive called recyclable one-way function with encryption (OWFE), and
they showed that recyclable OWFEs imply TDFs (in a black-box way) with negligibly small inversion error.
In this section, we demonstrate how to construct recyclable OWFE from IHwUF. We begin by presenting the
formal definition of recyclable OWFE from [GH18], followed by our construction.

Definition 4.6. (Recyclable One-Way Function with Encryption.) A recyclable OWFE scheme is a tuple of
four PPT algorithms OWFE = (Setup,OWF,Enc,Dec) defined as follows:

• Setup
(
1λ
)
: Given the security parameter λ, it sets n = n(λ) and ` = `(λ) for some fixed polynomial

functions and outputs pp for a one-way function OWF : {0, 1}n → {0, 1}`.

• OWF (pp, s): Given the public parameter pp, it maps a string s ∈ {0, 1}n to an image h ∈ {0, 1}`.

• Enc (pp, h, (i, b∗)): Given the public parameter pp, an image h ∈ {0, 1}`, an index i ∈ [n] and a bit
b∗ ∈ {0, 1}, it outputs a ciphertext ct and an additional bit e ∈ {0, 1}.

• Dec (pp, s, (i, b∗), ct):1 Given the public parameter pp, a preimage string s, an index i ∈ [n], a bit
b∗ ∈ {0, 1} and a ciphertext ct, it outputs e′ ∈ {0, 1} ∪ {⊥}.

The following correctness and security properties must be satisfied:

• Correctness: If pp ← Setup
(
1λ
)
, then for all s = (s1, . . . , sn) ∈ {0, 1}n and all i ∈ [n], letting

h = OWF (pp, s) and b∗ = si, it holds with overwhelming probability over the randomness of Enc that if
(ct, e)← Enc (pp, h, (i, b∗)), then we have

Dec (pp, s, (i, b∗), ct) = e.

• One-Wayness: For any PPT adversary A we have

Pr[OWF(pp,A(h)) = h] ≤ negl(λ),

where pp← Setup(1λ), s← {0, 1}n and h = OWF(pp, s).

1Notice that although e is part of the output of the encryption algorithm, the decryption algorithm does not take e as part of
its input. The aim of the decryption algorithm is in fact to output e given only the ciphertext ct. This property is used in the
construction of TDFs. See [GH18] for details.
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• Security: For b ∈ {0, 1}, define the experiment Exptind-OWFE
b between a challenger and an adversary

A as follows:

Experiment Exptind-OWFE
b :

1. The adversary A takes as input 1n and 1`, and sends a string s = (s1, . . . , sn) ∈ {0, 1}n and an
index i ∈ [n] to the challenger.

2. The challenger generates the public parameters pp ← Setup
(
1λ
)
. It computes h = OWF (pp, s)

and (ct∗, e∗0)← Enc (pp, h, (i, 1− si)). Finally, it samples e∗1 ← {0, 1} and sends (pp, ct∗, e∗b) to the
adversary.

An OWFE encryption scheme (Setup,OWF,Enc,Dec) is said to be secure if for all PPT adversaries A,
the views of the adversary in Exptind-OWFE

0 and Exptind-OWFE
1 are computationally indistinguishable.

• Recyclability: An OWFE scheme is said to be recyclable if for all pp ∈ Setup
(
1λ
)
, all s1, s2 ∈ {0, 1}n,

all i ∈ [n], all b∗ ∈ {0, 1} and all randomness r, letting (ct1, e1)← Enc (pp, h1 = OWF (pp, s1) , (i, b∗) ; r)
and (ct2, e2)← Enc (pp, h2 = OWF (pp, s2) , (i, b∗) ; r) we have ct1 = ct2. 1

Recently, Garg et al. [GGH18] introduced an enhanced version of recyclable OWFE called smooth recyclable
OWFE. A recyclable OWFE = (Setup,OWF,Enc,Dec) is said to be (`, n)-smooth if for any two (`, n)-sources
S1 and S2 and for any PPT adversary A, we have

|Pr [A(pp,OWF(pp, s1)) = 1]− Pr [A(pp,OWF(pp, s2)) = 1]| ≤ negl(λ),

where pp← Setup(1λ), s1 ← S1 and s2 ← S2.

Construction from IHwUF. We show a black-box construction of smooth recyclable OWFE from any
IHwUF family.

• Setup
(
1λ
)
: Given the security parameter λ the setup algorithm creates a description FIHwUF for an

IHwUF F : K ×X → Y, and fixes some integer n = n(λ) > 3 log |X |. It samples 2n uniform elements
from X as {xj,b ← X}j∈[n],b∈{0,1} and outputs the public parameter pp as

pp =
(
FIHwUF, {xj,b}j∈[n],b∈{0,1}

)
.

• OWF (pp, s): Given pp and a string s = (s1, . . . , sn) ∈ {0, 1}n, generate the corresponding image as

h =
⊕
j∈[n]

xj,sj .

• Enc (pp, h, (i, b∗)): Given pp, an image h, an index i ∈ [n] and b∗ ∈ {0, 1}, the encryption algorithm
randomly samples k ← K and computes the following

yi,b∗ = F (k, xi,b∗) , yi,1−b∗ = ⊥,

yj,b = F (k, xj,b) for j ∈ [n] \ {i} , b ∈ {0, 1} .
It finally outputs the pair

(ct, e) =
(
{yj,b}j∈[n],b∈{0,1} ,HardCore (F (k, h))

)
.

1Informally, this says that the ct component is independent of the image h.

38



• Dec (pp, s, (i, b∗), ct): Given pp, a string s = (s1, . . . , sn) and a ciphertext ct =
(
{yj,b}j∈[n],b∈{0,1}

)
, the

decryption algorithm outputs

e′ =

{
HardCore

(⊗
j∈[n] yj,sj

)
if si = b∗

⊥ otherwise.

Instantiation from General Protocol. The aforementioned OWFE scheme can be instantiated from
the general protocol described in Section 3.3 as follows:

• Initialization. Instantiate the protocol using an IHwUF F : K ×X → Y with description FIHwUF, a
fixed n > 3 log |X |, N∗ = 1, N̄ = 1 and N̂ = 0. Set pp = (FIHwUF,X).

• Pre-Evaluation. In the generic protocol, the pre-evaluation phase samples a uniformly random binary
string s ∈ {0, 1}n. One may view this as an input to the OWF. Consequently, if X∗ = {x∗} is the
output of the post-evaluation phase, set the image h = x∗.

• Evaluation: Let Y = {yj,b}j∈[n],b∈{0,1} and Y∗ = {y∗} be the outputs of the evaluation phase. For a
given i ∈ [n] and b∗ ∈ {0, 1}n, set the ciphertext ct = Y \ {yi,1−b∗} and the bit e = HardCore (y∗).

To see that the instantiation satisfies the desired properties of a recyclable OWFE scheme, consider the
following:

• Correctness follows from Claim 3.10. More specifically, given a binary string s = (s1, . . . , sn) ∈ {0, 1}n
and ct such that (ct, e) = Enc (pp, h, (i, b∗)) for h = OWF(pp, s) and si = b∗, the decryption algorithm
does not need yi,1−b∗ to recover the bit e.

• One-wayness follows from Lemma 3.7.

• Security follows from Theorem 3.17.

• Recyclability follows from the fact that ct does not depend on the image-string h.

Finally, the aforementioned OWFE scheme is (`, n)-smooth for any choice of ` ≥ log |X |+ω(log λ). This follows
directly from the leftover hash lemma. More specifically, let (S1,S2) be (`, n)-sources for ` ≥ log |X |+ω(log λ).
Then, for any pp← Setup(1λ), s1 ← S1 and s2 ← S2, the distributions of OWF(pp, s1) and OWF(pp, s2) are
statistically negligibly close to uniform by Lemma 2.1.

Implications. Garg et al. [GGH18] showed that an (`, n)-smooth recyclable OWFE scheme implies:

1. TDFs with almost-perfect correctness, which is an improvement over TDFs with negligible inversion
error (see [GH18] and [GGH18] for details).

2. CCA2-secure deterministic encryption, where the CCA2-security guarantee holds w.r.t. plaintexts
sampled from (`, n)-sources.

Note 4.7. The aforementioned construction has an apriori bounded number of homomorphic operations,
which allows it to be instantiated equivalently using a γ-bounded IHwUF if γ ≥ n, with the following minor
modification to the encryption algorithm:

e = HardCore (R (F (k, h))) ,

and the following minor modification to the decryption algorithm:

e′ =

HardCore

(
R
(⊗

j∈[n] yj,sj

))
if si = b∗

⊥ otherwise.

where R : Y → Z is a universal map (see Definition 3.3). Finally, the aforementioned construction can only
be instantiated from an IHwUF family for which the input space is independent of the choice of key.
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4.4 Blind Batch Encryption

In this subsection, we show that IHwUFs imply “batch encryption”, a cryptographic primitive introduced by
Brakerski et al. in [BLSV18]. 1 We now present the formal definition of blind batch encryption, followed by
our construction.

Definition 4.8. (Batch Encryption.) A batch encryption scheme is a tuple of four PPT algorithms
(Setup,Gen,Enc,Dec) defined as follows:

• Setup
(
1λ
)
: Given the security parameter λ, it outputs the public parameter pp.

• Gen (pp, s): Given pp, it projects the string s ∈ {0, 1}n to a hash value h where n = n(λ) is some fixed
polynomial included in pp.

• Enc (pp, h, (i,m0,m1)): Given pp, a hash value h, an index i ∈ [n] and a message pair (m0,m1), it
outputs a ciphertext ct = (ct1, ct2).

• Dec (pp, s, i, ct): Given pp, a string s, an index i ∈ [n] and a ciphertext ct, it outputs a string m.

The following completeness, succinctness, security, and blindness properties must be satisfied:

• Correctness: If pp← Setup
(
1λ
)
, then for all s = (s1, . . . , sn) ∈ {0, 1}n, all i ∈ [n], and all message-

pairs (m0,m1), letting h = Gen (pp, s) and ct ← Enc (pp, h, (i,m0,m1)) it holds with overwhelming
probability over the randomness of Enc that

Dec (pp, s, i, ct) = msi .

• Succinctness. A batch encryption scheme is fully succinct if for some string s ∈ {0, 1}n, letting
pp← Setup

(
1λ
)

and h = Gen (pp, s) , we have |h| ≤ poly (λ) for some fixed polynomial in the security
parameter λ.

• Security: For each bit b ∈ {0, 1}, define the following experiment Exptind-batch
b between a challenger

and an adversary A:

Experiment Exptind-batch
b :

1. The adversary A takes as input 1λ and 1n. It chooses an index i ∈ [n] and a binary string
s = (s1, . . . , sn) ∈ {0, 1}n, and sends (s, i) to the challenger.

2. The challenger generates pp← Setup
(
1λ
)
, and sends pp to the adversary A.

3. The adversary A generates m(0) =
(
m

(0)
0 ,m

(0)
1

)
and m(1) =

(
m

(1)
0 ,m

(1)
1

)
such that m

(0)
si = m

(1)
si ,

and sends them to the challenger.

4. The challenger computes the hash h = Gen (pp, s), generates the ciphertext

ct∗ ← Enc
(
pp, h,

(
i,m

(b)
0 ,m

(b)
1

))
,

and sends ct∗ to the adversary A.

A batch encryption scheme (Setup,Gen,Enc,Dec) is said to be secure if for all PPT adversaries A, the
views of the adversary in Exptind-batch

0 and Exptind-batch
1 are computationally indistinguishable.

1An equivalent cryptosystem, nomenclatured as hash encryption, was introduced by Döttling and Garg in [DGHM18].
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• Blindness: Let (Setup,Gen,Enc,Dec) be a batch encryption scheme, such that one can view a ciphertext
produced by the encryption algorithm as ct = (ct1, ct2), where ct1 is produced by the sub-routine Enc1

and ct2 is produced by the sub-routine Enc2. Also, for b ∈ {0, 1}, define the experiment Exptblind-batch
b

between a challenger and an adversary A as follows:

Experiment Exptblind-batch
b :

1. The adversary A takes as input 1λ and 1n, and sends a binary preimage string s = (s1, . . . , sn) ∈
{0, 1}n , i ∈ [n] to the challenger.

2. The challenger generates pp← Setup
(
1λ
)

and h = Gen (pp, s).

3. The challenger randomly generates m = (m0,m1) and creates:

ct∗1 ← Enc1 (pp, h, (i,m0,m1))

ct∗2 ← Enc2 (pp, h, (i,m0,m1)) .

– If b = 0, the challenger sets ct∗ = (ct∗1, ct
∗
2).

– If b = 1, the challenger sets ct∗ = (ct∗1, σ
∗) where σ∗ ← {0, 1}|ct

∗
2 |.

4. Finally, the challenger sends (pp, ct∗) to the adversary A.

A batch encryption scheme (Setup,Gen,Enc,Dec) is said to be blind if:

1. The encryption subroutine Enc1 does not depend on either the hash value h or the message pair
(m0,m1). Hence we can write the first subroutine as Enc1 (pp, h, (i,m0,m1) ; r) = Enc1 (pp, i; r).

2. For all PPT adversaries A, the views of the adversary in Exptblind-batch
0 and Exptblind-batch

1 are
computationally indistinguishable.

Construction from IHwUF. We present a construction of fully succinct blind batch encryption from
any IHwUF family.

• Setup
(
1λ
)
: Given the security parameter λ the setup algorithm creates a description FIHwUF for an

IHwUF F : K × X → Y. It then fixes some integer n = n(λ) > 3 log |X | and samples 2n uniform
elements from X as {xj,b ← X}j∈[n],b∈{0,1} and outputs the public parameter pp as

pp =
(
FIHwUF, {xj,b}j∈[n],b∈{0,1}

)
.

• Gen (pp, s): Given pp =
(
FIHwUF, {xj,b}j∈[n],b∈{0,1}

)
and a binary string s = (s1, . . . , sn), generate the

corresponding hash value h as

h =
⊕
j∈[n]

xj,sj .

• Enc (pp, h, (i,m0,m1)): Given pp =
(
FIHwUF, {xj,b}j∈[n],b∈{0,1}

)
, a hash value h, an index i ∈ [n] and

(m0,m1) ∈ {0, 1} × {0, 1}, the encryption algorithm randomly samples k0, k1 ← K and computes the
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following

y
(0)
i,0 = F (k0, xi,0) , y

(1)
i,1 = F (k1, xi,1)

y
(0)
i,1 = y

(1)
i,0 = ⊥

y
(0)
j,b = F (k0, xj,b) for j ∈ [n] \ {i} , b ∈ {0, 1}

y
(1)
j,b = F (k1, xj,b) for j ∈ [n] \ {i} , b ∈ {0, 1}
e0 = XOR (HardCore (F (k0, h)) ,m0)

e1 = XOR (HardCore (F (k1, h)) ,m1) .

It finally outputs the ciphertext

ct =

(
ct1 =

{
y

(b′)
j,b

}
j∈[n],(b,b′)∈{0,1}×{0,1}

, ct2 = (e0, e1)

)
.

• Dec (pp, s, i, ct): Given pp, a string s = (s1, . . . , sn) and a ciphertext ct the decryption algorithm outputs

m′si = XOR

(
HardCore

( ⊗
j∈[n]

y
(si)
j,sj

)
, esi

)
,

where ct =

({
y

(b′)
j,b

}
j∈[n],(b,b′)∈{0,1}×{0,1}

, (e0, e1)

)
.

Instantiation from General Protocol. The aforementioned BE scheme can be instantiated from the
general protocol described in Section 3.3 as follows:

• Initialization. Instantiate the protocol using an IHwUF F : K × X → Y with description FIHwUF,
a fixed n > 3 log |X |, N∗ = 1, N̄ = 2 and N̂ = 0. Set pp = (FIHwUF,X), where X is the set of base
elements.

• Pre-Evaluation. In the general protocol, the pre-evaluation phase samples a uniformly random binary
string s ∈ {0, 1}n. One may view this as an input to the generation algorithm. Consequently, if
X∗ = {x∗} is the output of the post-evaluation phase, set the image h = x∗.

• Evaluation: Let Y = {y(0)
j,b , y

(1)
j,b }j∈[n],b∈{0,1} and Y∗ = (y∗0 , y

∗
1) be the tuples output by the evaluation

phase. For a given i ∈ [n], set ct = (ct1, ct2) where

ct1 = Y \
{
y

(0)
i,1 , y

(1)
i,0

}
,

ct2 =
(
e0 = HardCore (y∗0) , e1 = HardCore (y∗1)

)
.

To see that the instantiation satisfies the properties of a blind batch encryption scheme, consider the following:

• Correctness follows from Claim 3.10. More specifically, given a binary string s = (s1, . . . , sn) ∈ {0, 1}n
and a ciphertext ct = Enc (pp, h, (i,m0,m1)) such that h = Gen(pp, s) and si = b∗, the decryption

algorithm does not need y
(b∗)
i,1−b∗ to recover the message m.

• One-wayness follows from Lemma 3.7.

• Security follows from Theorem 3.17.

• Blindness follows from the fact that the ciphertext component ct1 does not depend on the image h.
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Implications. Brakerski et al. [BLSV18] showed that fully succinct blind batch encryption scheme along
with blind garbled circuit (which can be constructed from any one-way function) imply:

1. Anonymous IBE,

2. Bounded KDM-secure PKE,

3. Leakage-resilient PKE with resilience to leakage of a (1− o (1))-fraction of the secret-key.

We showed that IHwUF implies blind batch encryption. As IHwUF is also enough to construct blind garbled
circuits, it follows that any IHwUF implies the above three primitives.

Note 4.9. The aforementioned construction has an apriori bounded number of homomorphic operations,
which allows it to be instantiated equivalently using a γ-bounded IHwUF if γ ≥ n, with the following minor
modification to the encryption algorithm:

e0 = XOR (HardCore (R (F (k0, h))) ,m0) ,

e1 = XOR (HardCore (R (F (k1, h))) ,m1) .

and the following minor modification to the decryption algorithm:

m′si = XOR

(
HardCore

(
R
( ⊗
j∈[n]

y
(si)
j,sj

))
, esi

)
,

where R : Y → Z is a universal map (see Definition 3.3). Finally, the aforementioned construction can only
be instantiated from an IHwUF family for which the input space is independent of the choice of key.

4.5 Hinting PRGs

In this subsection, we show that IHwUFs imply hinting PRGs, which are a stronger variant of traditional
PRGs introduced by Koppula and Waters in [KW18]. Hinting PRGs can be used to generically transform
any CPA-secure ABE into a CCA-secure one.

Informal Description. Informally, a hinting PRG takes n bits as input and outputs n · ` output bits for
some fixed polynomials n = n(λ) and ` = `(λ), such that no PPT adversary can distinguish between 2n
uniformly random strings and 2n strings such that half the strings are output by the PRG, and the remaining
half are uniformly random, even if the strings are arranged as a 2 × n matrix as the follows: in the ith

column of this matrix, the top entry is pseudorandom if the ith bit of the seed is 0; else, the bottom entry is
pseudorandom. Note that such a matrix-based arrangement carries some information (or “hint”) about the
seed, and the indistinguishability guarantee in the presence of such an arrangement is what makes a hinting
PRG stronger than a traditional PRG.

Definition 4.10. (Hinting PRG.) A hinting PRG is a tuple of PPT algorithms HPRG = (Setup,Eval) defined
as follows:

• Setup
(
1λ
)
: Given the security parameter λ, it sets n = n(λ) and ` = `(λ) for some fixed polynomial

functions and outputs (pp, n, `), where pp is the public parameter.

• Eval(pp, s, i∗): Given the public parameter pp, a seed s ∈ {0, 1}n and an index i∗ ∈ [n]∪ {0}, it outputs

a string e ∈ {0, 1}`.
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Security. For b ∈ {0, 1}, define the experiment ExptHPRG
b between a challenger and an adversary A as

follows:

Experiment ExptHPRG
b :

1. The challenger generates (pp, n, `)← Setup
(
1λ
)

and provides the same to the adversary A.

2. The challenger uniformly samples s = (s1, . . . , sn)← {0, 1}n and sets the following.

y
(0)
0 = Eval(pp, s, 0), y

(1)
0 ← {0, 1}`,

y
(0)
i,si

= Eval(pp, s, i), y
(1)
i,1−si ← {0, 1}

`
for each i ∈ [n],

y
(1)
i,b′ ← {0, 1}` for each i ∈ [n], b′ ∈ {0, 1}.

and sends
(
y

(b)
0 , {y(b)

j,b′}j∈[n],b′∈{0,1}

)
to the adversary A.

An HPRG (Setup,Eval) is secure if for all PPT adversaries A, the views of the adversary in ExptHPRG
0 and

ExptHPRG
1 are computationally indistinguishable.

Construction from IHwUF. We show a black-box construction of HPRG from any IHwUF family.

• Setup
(
1λ
)
: Given the security parameter λ the setup algorithm creates a description FIHwUF for an

IHwUF F : K × X → Y, and fixes some integer n = n(λ) > 3 log |X | and some integer ` = `(λ). It
samples 2n group elements from X and 2(n+ 1) · ` keys from K as

{xj,b ← X}j∈[n],b∈{0,1} , {ki1,i2,β ← K}i1∈[n]∪{0},i2∈[`],β∈{0,1} .

For each i2 ∈ [`], it creates a 2× n matrix H0,i2 ∈ Y2×n such that

H0,i2 [b, j] = F (k0,i2,0, xj,b) for each j ∈ [n], b ∈ {0, 1}.

Additionally, for each i1 ∈ [n], i2 ∈ [`], β ∈ {0, 1}, it creates a 2× n matrix Hi1,i2,β ∈ Y2×n such that
for each j ∈ [n], b ∈ {0, 1}, we have

Hi1,i2,β [b, j] =

{
⊥ if (i1, β) = (j, b)

F (ki1,i2,β , xj,b) otherwise.

Finally, it outputs (pp, n, `), where 1

pp =
(
FIHwUF, {H0,i2}i2∈[`] , {Hi1,i2,β}i1∈[n],i2∈[`],β∈{0,1}

)
.

• Eval(pp, s, i∗): On input pp =
(
{H0,i2}i2∈[`] , {Hi1,i2,β}i1∈[n],i2∈[`],β∈{0,1}

)
and s = (s1, . . . , sn), the

evaluation algorithm outputs e = (e1, . . . , e`), where for each i2 ∈ [`], we have

ei2 =


HardCore

(⊗
j∈[n] H0,i2 [sj , j]

)
if i∗ = 0

HardCore
(⊗

j∈[n] Hi∗,i2,si∗ [sj , j]
)

otherwise.

1In [KW18], Koppula and Waters explicitly include the randomness for generating hardcore bits in pp. Here, we implicitly
assume that every element in the output group of the IHwUF has a deterministic hardcore bit. If this is not the case, the
randomness for hardcore bit generation should be included in pp.
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Instantiation from General Protocol. The aforementioned HPRG can be instantiated from the general
protocol described in Section 3.3 as follows:

• Initialization. Instantiate the protocol using an IHwUF F : K ×X → Y with description FIHwUF, a
fixed n > 3 log |X |, N∗ = 0, N̄ = 2(n+ 1) · ` and N̂ = 1. Set pp1 = (FIHwUF,X).

• Evaluation: Let Y =

{
y

(n̄)
j,b

}
n̄∈[N̄ ],j∈[n],b∈{0,1}

be the tuple of elements output by the evaluation phase.

For each i2 ∈ [`], create a 2× n matrix H0,i2 ∈ Y2×n such that

H0,i2 [b, j] = y
(i2)
j,b for each j ∈ [n], b ∈ {0, 1}.

Additionally, for each i1 ∈ [n], i2 ∈ [`], β ∈ {0, 1}, create a 2× n matrix Hi1,i2,β ∈ Y2×n such that for
each j ∈ [n], b ∈ {0, 1}, we have

Hi1,i2,β [b, j] =

{
⊥ if (i1, β) = (j, b)

y
(2(i1·`+i2)+(β+1))
j,b otherwise.

Set the public parameter pp for the HPRG as pp = (pp1, pp2), where

pp2 =
(
{H0,i2}i2∈[`] , {Hi1,i2,β}i1∈[n],i2∈[`],β∈{0,1}

)
.

• Post-Evaluation. Recall that in the general protocol, the post-evaluation phase samples a uniformly
random binary string r ∈ {0, 1}n. One may view this as the input string to the evaluation algorithm of
the HPRG, along with the auxiliary input index i∗ ∈ [n]∪ {0}. Let Ŷ = {ŷn̄}n̄∈[N̄ ] be the output of the

post-evaluation phase. For each i2 ∈ [`], set

ei2 =


HardCore (ŷi2) if i∗ = 0

HardCore
(
ŷ(2(i∗·`+i2)+(β+1))

)
otherwise.

and set the evaluation output for the HPRG as e = (e1, . . . , e`).

Finally, security of the HPRG follows from Theorem 3.17.

Note 4.11. The aforementioned construction has an apriori bounded number of homomorphic operations,
which allows it to be instantiated equivalently using a γ-bounded IHwUF if γ ≥ n, with the following minor
modification to the evaluation algorithm:

ei2 =


HardCore

(
R
(⊗

j∈[n] H0,i2 [sj , j]

))
if i∗ = 0

HardCore

(
R
(⊗

j∈[n] Hi∗,i2,si∗ [sj , j]

))
otherwise.

where R : Y → Z is a universal map (see Definition 3.3).

Note 4.12. This construction can be instantiated using an (γ-bounded) IHwUF family for which the input
space is dependent of the choice of key with the following minor modification to the setup algorithm: each
matrix output by the setup algorithm is built using a different 2n-vector, sampled from a different input space
corresponding to the choice of key for that matrix. This in turn allows instantiating the hinting PRG scheme
from all concrete assumptions that give rise to (γ-bounded) IHwUFs, including the ones with key-dependent
input space such as QR and DCR (see Section 3.4).
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5 Primitives from IHwPRF

In this section, we present constructions of various cryptographic primitives from (γ-bounded) IHwPRFs.
Once again, none of these constructions require the input or output groups of the IHwPRF to be abelian.

5.1 Private Information Retrieval

A (single-database) private information retrieval (PIR) scheme is a two-party protocol between a sender and
a receiver. The sender holds a public database (say, for concreteness, a string s = (s1, . . . , sn) ∈ {0, 1}n),
and the receiver wishes to query an item in the database (say, the bit si for some i ∈ [n]) without revealing
which item was queried (that is, i is not revealed to the sender). Note that in this model, the database is
public, which implies that the unqueried items/bits need not be hidden from the receiver. A trivial solution
is where the sender sends s to the receiver in the clear, which of course preserves receiver privacy. The total
communication in such a protocol, measured as the number of bits exchanged between the sender and the
receiver, is n. A non-trivial PIR protocol is one that securely achieves the aforementioned functionality with
communication strictly smaller than n bits, where n is the size of the database. Black-box constructions of
PIR protocols are known from different assumptions, e.g., group-homomorphic encryption [KO97], smooth
subgroup assumptions [CMS99, GR05], and trapdoor permutations [KO00]

As a warm-up, we first demonstrate an inefficient PIR protocol that has a communication overhead of
O(n · `(λ)) bits, where ` is the maximum number of bits needed to encode a group element in either X or Y .
While this is even worse than the trivial protocol, we subsequently show how the efficiency of this protocol
may be boosted to achieve a non-trivial PIR protocol, without any additional assumptions.

Inefficient PIR from IHwPRFs. Let F : K ×X → Y be an IHwPRF:

1. On input an index i ∈ [n], the receiver uniformly samples 2 elements from X as {xj,b ← X}j∈[n],b∈{0,1}
and k ← K. It also samples a uniform ỹ in Y subject to the restriction that ỹ is not the identity element
of Y. It then sets the following

yi,0 = F (k, xi,0)

yi,1 = F (k, xi,1)⊗ ỹ
yj,b = F (k, xj,b) for j ∈ [n] \ {i}, b ∈ {0, 1}

and sends
(
{xj,b, yj,b}j∈[n],b∈{0,1}

)
to the sender.

2. The sender, on input a string s = (s1, . . . , sn) ∈ {0, 1}n and
(
{xj,b, yj,b}j∈[n],b∈{0,1}

)
, sends (x∗, y∗) to

the receiver where

(x∗, y∗) =

( ⊕
j∈[n]

xj,sj ,
⊗
j∈[n]

yj,sj

)
.

3. The receiver retrieves the bit si as

si =

{
0 if y∗ = F (k, x∗)

1 otherwise.

Boosting Efficiency. We now apply a generic efficiency-boosting technique introduced in [KO97] to convert
the inefficient protocol into a PIR protocol with a communication overhead of O(

√
n · `(λ)) bits. Quite

evidently, such a PIR protocol is non-trivial in the sense that the overall communication complexity is strictly
smaller than n bits for sufficiently large n. The idea is to view the database string s = (s1, . . . , sn) ∈ {0, 1}n

as a binary matrix S ∈ {0, 1}
√
n×
√
n

such that:

Sj1,j2 = s(j1−1)
√
n+j2 for j1, j2 ∈ [

√
n]
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The receiver now sends across only 2
√
n group elements in its first message to the sender, as opposed to 2n

in the inefficient protocol, while the receiver performs
√
n “subset-sum” operations over these elements (one

per column of the matrix S) and sends back 2
√
n group elements to the receiver. The detailed protocol is as

follows:

1. On input an index i ∈ [n], the receiver uniformly samples 2
√
n elements from X as {xj1,b ← X}j1∈[

√
n],b∈{0,1}

and k ← K. It also samples a uniform ỹ from Y subject to restriction that ỹ is not the identity element
of Y. Let i1 = di/

√
ne. The receiver sets the following

yi1,0 = F (k, xi1,0)

yi1,1 = F (k, xi1,1 ⊕ x̃)

yj1,b = F (k, xj1,b) for j1 ∈ [
√
n] \ {i1}, b ∈ {0, 1}

and sends
(
{xj1,b, yj1,b}j1∈[

√
n],b∈{0,1}

)
to the sender.

2. The sender, on input a string s = (s1, . . . , sn) ∈ {0, 1}n and
(
{xj1,b, yj1,b}j1∈[

√
n],b∈{0,1}

)
, creates a

binary matrix S ∈ {0, 1}
√
n×
√
n

where

Sj1,j2 = s√n(j1−1)+j2 for j1, j2 ∈ [
√
n].

It then sends
(
{x∗j2 , y

∗
j2
}j2∈[

√
n]

)
to the receiver where

x∗j2 =
⊕

j1∈[
√
n]

xj1,Sj1,j2
for j2 ∈ [

√
n]

y∗j2 =
⊗

j1∈[
√
n]

yj1,Sj1,j2
for j2 ∈ [

√
n].

3. The receiver computes i2 = i mod
√
n and retrieves the bit si as

si =

{
0 if y∗i2 = F

(
k, x∗i2

)
1 otherwise.

Note 5.1. The aforementioned construction has an apriori bounded number of homomorphic operations,
which allows it to be instantiated equivalently using a γ-bounded IHwPRF if γ ≥ n, with the following minor
modification to the final step:

si =

{
0 if R

(
y∗i2
)

= R
(
F
(
k, x∗i2

))
1 otherwise.

where R : Y → Z is a universal map (see Definition 3.4).

Note 5.2. The aforementioned construction can also be instantiated using a (γ-bounded) IHwPRF family
for which the input space is dependent of the choice of key. In particular, since the receiver chooses the
PRF key, it can set up the input space accordingly, and sample a random 2n-vector of elements from this
space. This in turn allows instantiating the PIR scheme from all concrete assumptions that give rise to
(γ-bounded) IHwPRFs, including the ones with key-dependent input space (see Section 3.4).
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Instantiation from General Protocol. Let |DB| denote the size of the database string in the PIR
scheme. This scheme can be instantiated from the general protocol described in Section 3.3 as follows:

• Initialization. Instantiate the protocol using an IHwPRF F : K × X → Y, a fixed n =
√
|DB| such

that n > 3 log |X |, N∗ = 0, N̄ = 1 and N̂ =
√
|DB|.

• Evaluation: Let Y = {yj,b}j∈[
√
|DB|],b∈{0,1} be the output of the evaluation phase. For a given

i ∈ [|DB|], set i1 = di/
√
|DB|e and reset yi1,1 := yi1,1 ⊗ ỹ, where ỹ is a uniform non-identity element in

Y. Set the first message of the receiver to the sender as (X,Y).

• Post-Evaluation: Recall that in the protocol, the post-evaluation phase samples n̂ =
√
|DB| binary

strings, each of size n =
√
|DB|. One may view this as a random binary matrix of size

√
|DB| ×

√
|DB|.

Consequently, if X̂ and Ŷ are the outputs of the post-evaluation phase, set the message from the sender
to the receiver as (X̂, Ŷ).

Correctness and security of the scheme follow from Claim 3.10 and Theorem 3.12, respectively.

5.2 Lossy Trapdoor Functions

We begin with the formal definition of a lossy trapdoor function family from [PW08], and then we show how
to construct lossy TDF family from IHwPRFs.

Definition 5.3. (Lossy Trapdoor Function.) A lossy trapdoor function family is a tuple of four PPT
algorithms LTDF = (GenInjective,GenLossy,Eval, Invert) defined as follows:

• GenInjective
(
1λ
)
: Given the security parameter λ, the algorithm outputs the public parameter pp for

an injective function, along with a trapdoor t.

• GenLossy
(
1λ
)
: Given the security parameter λ, the algorithm outputs the public parameter pp for a

lossy function. It does not produce a trapdoor. (See below for a formal definition of lossiness.)

• Eval (pp, s): Given the public parameter pp and a preimage string s ∈ {0, 1}n (where n = n(λ) is
included in pp), the evaluation algorithm outputs the corresponding image h.

• Invert (t, h): Given the trapdoor t and an image h, the inversion algorithm outputs s′ ∈ {0, 1}n.

The following completeness and security properties must be satisfied:

• Completeness: If (pp, t)← GenInjective
(
1λ
)
, then for all preimage strings s ∈ {0, 1}n, it holds with

overwhelming probability over the random coins of GenInjective that 1

Invert (t, h = Eval (pp, s)) = s.

• One-Wayness without Trapdoors: For any PPT adversary A we have

Pr[Eval(pp,A(h)) = h] ≤ negl(λ),

where pp← GenInjective(1λ), s← {0, 1}n and h = Eval(pp, s).

• Lossiness: A TDF family (GenInjective,GenLossy,Eval, Invert) is said to be ε-lossy if for any unbounded
adversary A we have Pr[A(h) = s] ≤ ε where pp← GenLossy(1λ), s← {0, 1}n and h = Eval(pp, s).

• Indistinguishability of Modes: For any PPT adversary A we have∣∣Pr[A(pp0) = 1]− Pr[A(pp1) = 1]
∣∣ ≤ negl(λ),

where pp0 ← GenInjective(1λ) and pp1 ← GenLossy(1λ).
1Note that if a string h does not lie in the image space of the TDF, then the output behavior of Invert (t, h) is unspecified.

Hence, in certain applications, one may need to verify the output of the inversion algorithm on a random image string h.
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Construction from IHwPRFs. We present a black-box construction of a lossy TDF family from any
IHwPRF family. The construction is inspired by the DDH-based lossy TDF family proposed by Peikert and
Waters in [PW08].

• GenInjective
(
1λ
)
: In the injective mode, the algorithm creates a description FIHwPRF for an IHwPRF

F : K × X → Y, fixes some n = n(λ) > 3 log |X | and samples 2n uniform elements from X as
{xj,b ← X}j∈[n],b∈{0,1}. It samples n uniform keys as {ki ← K}i∈[n] and n uniform non-identity elements

from Y as {mi ← Y \ {yid}}i∈[n], and sets the following:

yi,i,0 = F (ki, xi,0) for i ∈ [n]

yi,i,1 = F (ki, xi,1)⊗mi for i ∈ [n]

yi,j,b = F (ki, xj,b) for i, j ∈ [n], i 6= j, b ∈ {0, 1} .

It outputs the public parameter pp and the trapdoor t as

pp =
(
FIHwPRF, {xj,b}j∈[n],b∈{0,1} , {yi,j,b}i,j∈[n],b∈{0,1}

)
t =

(
{ki}i∈[n]

)
.

• GenLossy
(
1λ
)
: The algorithm creates a description FIHwPRF for an IHwPRF F : K×X → Y , and fixes

some integer n = n(λ) > 3 log |X |. It samples 2n uniform elements from X as {xj,b ← X}j∈[n],b∈{0,1}
and n uniform keys as {ki ← K}i∈[n], and sets the following

yi,j,b = F (ki, xj,b) for i, j ∈ [n], b ∈ {0, 1} .

It outputs the public parameter pp as

pp =
(
FIHwPRF, {xj,b}j∈[n],b∈{0,1} , {yi,j,b}i,j∈[n],b∈{0,1}

)
.

• Eval (pp, s): Given pp =
(
FIHwPRF, {xj,b}j∈[n],b∈{0,1} , {yi,j,b}i,j∈[n],b∈{0,1}

)
and s ∈ {0, 1}n, the evalua-

tion algorithm computes

x∗ =
⊕
j∈[n]

xj,sj

y∗i =
⊗
j∈[n]

yi,j,sj for i ∈ [n].

It then outputs the image h =
(
x∗, {y∗i }i∈[n]

)
.

• Invert (t, h): Given the trapdoor t =
(
{ki}i∈[n]

)
and h =

(
x∗, {y∗i }i∈[n]

)
, the inversion algorithm

recovers the preimage bit si for each i ∈ [n] as:

si =

{
0 if y∗i = F (ki, x

∗)

1 otherwise.

Finally, it outputs the recovered string s = (s1, . . . , sn).
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Instantiation from General Protocol. The lossy TDF family described above can be instantiated from
the general protocol described in Section 3.3 as follows:

• Initialization. Instantiate the protocol using an IHwPRF F : K ×X → Y with description FIHwPRF,
a fixed n such that n > 3 log |X |, N∗ = 0, N̄ = n and N̂ = 1.

• Evaluation: Let Y =
{
y

(1)
j,b , . . . , y

(n)
j,b

}
j∈[n],b∈{0,1}

be the tuple output by the evaluation phase. Sample

a uniform non-identity element m from Y.

– In the lossy mode, output pp = (FIHwPRF,X,Y).

– In the injective mode, reset y
(i)
i,1 := y

(i)
i,1 ⊗m for each i ∈ [n] and output pp = (FIHwPRF,X,Y).

• Post-Evaluation: Recall that in the protocol, the post-evaluation phase uniformly samples a binary
string s ∈ {0, 1}n. One may view this as an input to the lossy TDF. Consequently, if X̂ and Ŷ are the
outputs of the post-evaluation phase, set the evaluation output of the lossy TDF as (X̂, Ŷ).

To see that the instantiation satisfies the properties of a lossy TDF family, consider the following:

• Completeness in the injective mode follows from Claim 3.10.

• One-wayness without trapdoors follows from Lemma 3.7.

• Indistinguishability of modes follows from Theorem 3.12.

• To argue lossiness, let h = (x∗, {y∗i }i∈[n]) be the output of the evaluation algorithm on input s ∈ {0, 1}n

in the lossy mode. By Claim 3.10, for each i ∈ [n] we have y∗i = F (ki, x
∗) where x∗ is a function of

the input s, and ki is fixed by the public parameter pp. Therefore, the number of possible outputs
in the lossy mode is upper bounded by |X |, while the number of possible inputs is 2n for some fixed
n > 3 log |X |. Hence, the “lossiness” of the TDF family is at least n− log |X | ≥ 2 log |X |.

Implications. The following are some implications of lossy TDFs.

• CCA-Secure PKE. Peikert and Waters [PW08] showed that CCA2-secure PKE can be constructed
from any lossy TDF family. Their construction uses a primitive called All-But-One TDF (which can be
built from any lossy TDF family). The decryption algorithm in the resulting PKE is witness recovering.
Since (γ-bounded) IHwPRFs imply lossy TDF family, it immediately follows that (γ-bounded) IHwPRFs
are sufficient to construct CCA2-secure PKE.

• Selective Opening Attack (SOA)-Secure PKE. Bellare et al. [BHY09] showed that PKE schemes
that are secure against selective opening attacks can be constructed from any lossy TDF family. 1 It
follows that (γ-bounded) IHwPRFs are sufficient to construct SOA-secure PKE.

• Non-Interactive Statistically Binding Commitments. Suppose that LTDF be a lossy trapdoor
function family. Then LTDF = (GenInjective,GenLossy,Eval, Invert) yields a non-interactive statistically
binding commitment scheme as follows:

– Commitment: To commit to a string s ∈ {0, 1}n, the committer samples (pp, t)← GenInjective
(
1λ
)

and outputs (pp, h = Eval (pp, s)).

– Open: To decommit, the committer outputs s′.

– Verification: Given a commitment (pp, h) and a decommitment s′, check if h = Eval (pp, s′).

1See [BHY09] for the details of the construction.
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Statistical binding follows from the fact that pp sampled using GenInjective describes a family of injective
one-way functions, while computational hiding follows from the “one-wayness without trapdoors”
property of any lossy TDF in the injective mode. It follows that (γ-bounded) IHwPRFs are sufficient
to construct non-interactive statistically binding commitment schemes.

• Three-Round Non-Malleable Commitments. Goyal et al. [GPR16] showed that any non-interactive
statistically binding commitment scheme yields a black-box construction of non-malleable commitments
with three rounds of interaction. Hence, any (γ-bounded) IHwPRF family implies a three-round
non-malleable commitment scheme.

Note 5.4. The aforementioned construction has an apriori bounded number of homomorphic operations,
which allows it to be instantiated equivalently using a γ-bounded IHwPRF if γ ≥ n, with the following minor
modification to the inversion algorithm:

si =

{
0 if R (y∗i ) = R (F (ki, x

∗))

1 otherwise.

where R : Y → Z is a universal map (see Definition 3.4).

Note 5.5. The aforementioned lossy TDF construction can be instantiated using an (γ-bounded) IHwPRF
family for which the input space is dependent of the choice of key with the following minor modification to
the setup algorithms: in both the lossy and the injective modes, each column of the Y-matrix output by the
setup algorithm is built using a different 2n-vector, sampled from a different input space corresponding to
the choice of key for that column.

5.3 Oblivious Transfer and Multi-Party Computation

In this subsection we show how to construct maliciously secure OT1 and MPC in the plain model from
IHwPRFs. We use a recent result of Friolo et al. [FMV18] in which they showed that: 2

1. A CPA-secure PKE with pseudorandom public keys (i.e., the distribution of public keys should be
computationally indistinguishable from the uniform distribution over an efficiently samplable group)
implies (in a black-box way) a two-round strongly uniform key-exchange protocol, where the distribution
of messages sent by one of the parties is computationally indistinguishable from the uniform distribution
over an efficiently samplable group, even when the other party is malicious.

2. For any t ∈ N, a t-round strongly uniform secure key-exchange protocol is black-box equivalent to a
t-round strongly uniform semi-honestly secure OT protocol in the plain model, where the distribution of
all the messages sent by the receiver are computationally indistinguishable from the uniform distribution
over an efficiently samplable group, even when the sender is malicious.

3. For any odd t ∈ N, a t-round strongly uniform semi-honestly secure OT protocol in the plain model,
together with a non-interactive statistically binding commitment scheme, implies (in a black-box
manner) a (t+ 1)-round maliciously secure OT protocol in the plain model.

A recent breakthrough result of Benhamouda and Lin [BL18] showed that for any t ∈ N such that t ≥ 5, a
t-round fully maliciously secure OT protocol implies a t-round fully maliciously secure MPC protocol.

1One can construct a 2-round semi-honest OT in the plain model using lossy TDFs [BL18], which can be based on IHwPRFs.
2For the sake of succinctness, we state the results informally. See [FMV18] for the formal description.
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Construction from IHwPRFs. We now demonstrate that the framework of Friolo et al. [FMV18] can
be instantiated using any IHwPRF family.

• PKE with pseudorandom public keys. We use an IHwPRF (instead of an IHwUF) in the
construction of 4.2 to get a PKE with pseudorandom public keys. As a result, pk and sk for the modified
scheme will have the form

sk = k, pk = {(xj,b, yj,b = F (k, xj,b))}j∈[n],b∈{0,1},

where yj,b are the evaluations of the IHwPRF. It is easy to see that the new scheme is still CPA-secure.
In addition, any PPT algorithm that can efficiently distinguish the public key in the modified scheme
from a unifomly random tuple in (X × Y)

2n
breaks the weak pseudorandomness of F .

• Non-interactive statistically binding commitments. We demonstrated in Section 5.2 that any
IHwPRF family implies a non-interactive statistically binding commitment scheme.

Combining these observations with the results of Friolo et al. and Benhamouda et al. leads to the following
implications:

• Any IHwPRF implies a 4-round maliciously secure OT protocol in the plain model.

• Any IHwPRF implies a 5-round maliciously secure MPC protocol in the plain model.
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[DG17b] N. Döttling and S. Garg. Identity-based encryption from the Diffie-Hellman assumption. In
J. Katz and H. Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 537–569.
Springer, Heidelberg, August 2017.
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A Homomorphic One-Way Functions

Definition A.1. (Homomorphic One-Way Function.) A homomorphic one-way function (HOWF) f over an
input group (X ,⊕) and an output group (Y,⊗) is a one-way function f : X → Y such that for any x1, x2 ∈ X ,
we have f (x1 ⊕ x2) = f (x1)⊗ f (x2).

We also consider a notion of bounded homomorphism, in the sense that input-homomorphism is preserved
for an apriori bounded number of group operations in the source group of the OWF. We formally describe
this notion as γ-bounded homomorphism, where the parameter γ reflects the maximum number of group
operations that the homomorphism can tolerate.

Definition A.2. (γ-Bounded Homomorphic OWF.) A γ-bounded homomorphic one-way function (γ-bounded
HOWF) over an input group (X ,⊕) and an output group1 (Y,⊗) is a one-way function f : X → Y if for any
L-length input vector (x1, . . . , xL) ∈ XL, we have:

f

( ⊕
j∈[L]

xj

)
=
⊗
j∈[L]

f (xj)

subject to the restriction that L ≤ γ.

Instantiations from Cryptographic Assumptions. It is easy to see that the following assumptions
yields HOWF family. Specifically:

• The function family defined by fg(x) = gx is an HOWF family based on discrete log assumption since
fg(x1 + x2) = gx1 · gx2 = fg(x1) · fg(x2).

• Let N = pq be an RSA modulus where p and q are equal-size prime numbers. The function family defined
by fN (x) = x2 is an HOWF family based on square finding assumption since fN (x1x2) = fN (x1)·fN (x2).
(Operations are done modulo N)

• Let N = pq be an RSA modulus as above, and let e ← Z∗ϕ(N). The function family defined by

fN,e(x) = xe is an HOWF family based on RSA assumption since fN,e(x1x2) = fN,e(x1) · fN,e(x2).

It is also easy to describe instantiations of (γ-bounded) HOWF family from assumptions other than the ones
mentioned above. See Section 3.4 for more details.

In what follows, we present constructions of various cryptographic primitives from (γ-bounded) HOWFs,
including collision-resistant hash functions (CRHFs), Schnorr signatures and chameleon hash functions.
Constructing CRHFs (and Schnorr-like protocols) from structured primitives have been around for many
years. Ogata and Kurosawa [OK93] demonstrated that homomorphic one-way permutations imply claw-free
permutations and hence CRHFs. The authors of [IKO05] constructed CRHFs from homomorphic encryption
and homomorphic one-way commitments. Maurer [Mau09] showed Schnorr-style zero-knowledge proof of
knowledge protocols from (unbounded) HOWFs. For the constructions presented in this section, we explicitly
describe how to instantiate them from both unbounded and bounded HOWFs. In addition, none of these
constructions require the input or output groups of the HOWF to be abelian.

A.1 CRHF from HOWFs

In this subsection, we show that any HOWF induces a collision-resistant hash function family. Given any
HOWF f : X → Y , let x = {xj,b ← X}j∈[n],b∈{0,1} be a vector of 2n uniform elements for some fixed n = n(λ).

Define y as
y = {yj,b = f(xj,b)}j∈[n],b∈{0,1} .

1We don’t need Y to be a group. It is easy to see that the definition (and also applications) also work if image of X under f
is a group. However, we assume Y to be a group for simplicity.
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Now, define the function family Hy : {0, 1}n → Y as

Hy (r = (r1, · · · , rn)) =
⊗
j∈[n]

yj,rj .

Collision-Resistance. We now show that the aforementioned function family is collision-resistant. Let
f : X → Y be an HOWF. For some fixed function n = n(λ), define the experiment ExptCRHF−HOWF as in
Figure 9.

1. The challenger uniformly samples {xj,b ← X}j∈[n],b∈{0,1}.

2. The challenger sets yj,b = f(xj,b) for j ∈ [n], b ∈ {0, 1} and sends {yj,b}j∈[n],b∈{0,1} to the adversary
A.

3. The adversary A outputs two bit-strings r = (r1, · · · , rn) ∈ {0, 1}n and r′ = (r′1, · · · , r′n) ∈ {0, 1}n.

Figure 9: Experiment for CRHF-HOWF security.

For any PPT adversary A we define AdvCRHF−HOWF(A) to be the probability of the event that⊕
j∈[n]

yj,rj =
⊕
j∈[n]

yj,r′j .

Lemma A.3. For all PPT adversaries A, we have AdvCRHF−HOWF(A) = negl(λ).

Proof. Let A be a PPT adversary such that AdvCRHF−HOWF(A) is non-negligible. We construct a PPT
algorithm B that breaks the one-wayness of f . B proceeds as follows:

1. B receives a challenge query y∗ ∈ Y, such that y∗ = f(x∗) for some (uniformly random) x∗ ∈ X .

2. B samples 2n uniformly random elements from X as {xj,b ← X}j∈[n],b∈{0,1} and sets yj,b = f(xj,b) for

j ∈ [n], b ∈ {0, 1}.

3. B uniformly randomly picks i ← [n] and b∗ ← {0, 1}, and sets yi,b∗ := y∗. It then forwards
{yj,b}j∈[n],b∈{0,1} to the adversary A.

4. A outputs r = (r1, · · · , rn) ∈ {0, 1}n and r′ = (r′1, · · · , r′n) ∈ {0, 1}n.

5. B proceeds as follows:

• If
⊗

j∈[n] yj,rj 6=
⊗

j∈[n] yj,r′j or ri = r′i, it outputs a uniformly random x∗ ← X .

• Otherwise, assume wlog that ri = b∗. Then, the following must hold

y∗ =

 ⊗
j∈[i−1]

yj,rj

−1

⊗

⊗
j∈[n]

yj,r′j

⊗
 ⊗
j∈[i+1,n]

yj,rj

−1

.

where the right-hand side is independent of y∗. B now outputs x∗ as

x∗ =

 ⊕
j∈[i−1]

xj,rj

−1

⊕

⊕
j∈[n]

xj,r′j

⊕
 ⊕
j∈[i+1,n]

xj,rj

−1

By the input-homomorphism of f , we have f(x∗) = y∗.
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Observe that if A outputs a valid collision (r, r′), the probability that r and r′ differ in the ith bit for a
randomly chosen i← [n] is at least 1/n. It follows that

AdvHOWF(B) ≥

(
AdvCRHF−HOWF(A)

n

)
,

which is non-negligible, as desired.

Note A.4. We implicitly assumed that the distribution of the input in the OWF game is uniform. For some
constructions of HOWFs, this is not the case. With a sligh modification of the proof, one can show that
HOWFs (in general) imply CRHFs. In addition, the aforementioned CRHF family may be equivalently
instantiated from any γ-bounded HOWF family, subject to the restriction that n ≤ γ.

A.2 Schnorr-style Digital Signature from HOWFs

We show how to construct a Schnorr-style signature scheme from any HOWF family. The signature scheme is
existentially unforgeable against adaptive chosen-message attacks in the programmable random oracle model.

• Setup(1λ): The setup algorithm samples a HOWF f : X → Y. It also fixes some poly-bounded integer
n = n(λ). Finally, it chooses a hash function H : Y × {0, 1}∗ → {0, 1}n (modeled as a random oracle in
the security proof). The algorithm outputs the public parameter pp as

pp = (f, n,H) .

• Gen (pp): The key-generation algorithm uniformly samples 2n elements in X as {xj,b ← X}j∈[n],b∈{0,1}
and computes yj,b = f(xj,b) for j ∈ [n] and b ∈ {0, 1}. It outputs the signing key sk and the verification
key vk as

sk = {xj,b}j∈[n],b∈{0,1}, vk = {yj,b}j∈[n],b∈{0,1}.

• Sign (sk,m): Given the signing key sk = {xj,b}j∈[n],b∈{0,1} and a message m ∈ {0, 1}∗, the algorithm
uniformly samples x∗ ← X and sets y∗ = f(x∗). It then sets the vector r = (r1, . . . , rn) ∈ {0, 1}n as
r = H (y∗,m). Finally, it outputs the signature σ = (r, x̂, y∗) ∈ {0, 1}n ×X × Y, where

x̂ = x∗ ⊕
( ⊕
j∈[n]

xj,rj

)−1

.

• Ver (vk,m, σ): Given the verification key vk = {yj,b}j∈[n],b∈{0,1}, a message m ∈ {0, 1}∗ and a signature
σ = (r, x̂, y∗), where r = (r1, . . . , rn) ∈ {0, 1}n, the verification algorithm checks if both of the following
conditions hold.

y∗ = f(x̂)⊗
( ⊗
j∈[n]

yj,rj

)
, r = H (y∗,m) .

If yes, it validates the signature. Otherwise, it outputs ⊥.

Correctness follows from the homomorphism of f . In order to prove existential unforgeability under an
adaptively chosen-message attack in the programmable random oracle model, we resort to the forking
lemma [PS00]. We first prove the following lemma.

Lemma A.5. If H is modeled as a random oracle, there exists a PPT simulator S that produces, with
non-negligible probability, a signature σ̃ on any arbitrary message m without the knowledge of the signing key
sk such that the distribution of σ̃ is statistically indistinguishable from that of σ ← Sign (sk,m) .
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Proof. The simulator S receives the verification key vk = {yj,b}j∈[n],b∈{0,1} and proceeds as follows:

• The simulator S uniformly samples r̃ = (r̃1, . . . , r̃n)← {0, 1}n and x̃← X .

• It sets ỹ∗ = f(x̃)⊗
(⊗

j∈[n] yj,r̃j

)
and returns the signature σ̃ = (r̃, x̃, ỹ∗).

Observe that in the simulation, we must have ỹ∗ = f (x̃∗), where

x̃∗ = x̃⊕
( ⊕
j∈[n]

xj,r̃j

)
.

Since x̃ is uniform in X , so is x̃∗. Hence, the distribution of (x̃, ỹ∗ = f (x̃∗)) in the simulation is statistically
indistinguishable from that of (x̂, y∗ = f (x∗)) in the “real” signing algorithm. Finally, under the assumption
that H is a random oracle, the distribution of the string r̃ in the simulation is also statistically indistinguishable
from that of the string r = H(y∗,m) in the “real” signing algorithm. This completes the proof of Lemma A.5.

Let A be a PPT adversary that performs an existential forgery under an adaptively chosen-message
attack against the aforementioned signature scheme with probability ε, while making Q1 = Q1(λ) signing
queries and Q2 = Q2(λ) random oracle queries, such that ε ≥ 10(Q1 + 1)(Q1 +Q2)/2λ. Let (m,σ) be the
message-signature pair corresponding to this forgery, where σ = (r, x̂, y∗). As shown by Pointcheval and
Stern in [PS00], Lemma A.5 implies the following “forking lemma”.

Lemma A.6. A poly-time replay of the adversary A, where its interactions with the signing oracle are
replaced by interactions with the simulator S as described above, produces with non-negligible probability two
valid message-signature pairs

(m,σ = (r, x̂, y∗)), (m,σ′ = (r′, x̂′, y∗))

on the same message m, such that r 6= r′, and hence, σ 6= σ′.

Finally, given a PPT adversary that forges a pair of non-identical signatures on the same message with
non-negligible probability, one can construct a PPT adversary that induces collisions on the family of CRHFs
described in Section A.1 with the same probability. This completes the proof of existential unforgeability for
our signature scheme.

Note A.7. The aforementioned signature scheme has an apriori bounded number of homomorphic operations,
which allows it to be instantiated using a γ-bounded HOWF family, subject to the restriction that n ≤ γ.

A.3 Chameleon Hash Functions from HOWFs

We now show how to construct a chameleon hash function family from any HOWF. The formal definition of
chameleon hash functions is presented below.

Definition A.8. (Chameleon Hash Functions.) A chameleon hash function family is defined as a tuple of
PPT algorithms (Setup,CHash,TrpCollision) described below.

• Setup
(
1λ
)
: Given λ, it outputs the public parameter pp and a trapdoor t.

• CHash (pp, s; r): Given pp, a string s ∈ {0, 1}n (where n = n(λ) is included in pp) and randomness r, it
outputs a hash h.

• TrpCollision (t, (s, r) , s′): Given the trapdoor t, a string s ∈ {0, 1}n, some randomness r, and a string
s′ ∈ {0, 1}n, it outputs some randomness r′.

The following properties must be satisfied:
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• Uniformity: If (pp, t)← Setup
(
1λ
)
, then for all string pairs s, s′ ∈ {0, 1}n and all uniformly sampled

randomness pairs (r, r′), the two distributions CHash (pp, s; r) and CHash (pp, s′; r′) are statistically
indistinguishable.

• Collision-Resistance: For all PPT adversariesA, letting pp← Setup
(
1λ
)

and ((s, r), (s′, r′))← A(pp)
(such that (s, r) 6= (s′, r′)), we have

Pr[CHash (pp, s; r) = CHash (pp, s′; r′)] ≤ negl(λ).

• Trapdoor Collisions: If (pp, t)← Setup
(
1λ
)
, then for all s, s′ ∈ {0, 1}n and randomness r, it holds

that
CHash (pp, s; r) = CHash (pp, s′; r′) ,

where r′ = TrpCollision (pp, (s, r) , s′).

Construction from HOWFs. We construct a chameleon hash function family from any HOWF as follows.

• Setup
(
1λ
)
: The setup algorithm samples a HOWF f : X → Y. It samples 2n elements from X as

{xj,b ← X}j∈[n],b∈{0,1} for some polynomial n = n(λ) and outputs the public parameter pp and a

trapdoor t as:

pp =
(
f, {yj,b}j∈[n],b∈{0,1}

)
, t = {xj,b}j∈[n],b∈{0,1}

where yj,b = f (xj,b) for j ∈ [n] and b ∈ {0, 1}.

• CHash (pp, s; r): Given the public parameter pp =
(
f, {yj,b}j∈[n],b∈{0,1}

)
, a string s ∈ {0, 1}n, and

randomness r ← X , the hashing algorithm outputs the hash h as

h =

( ⊗
j∈[n]

yj,sj

)
⊗ f (r) .

• TrpCollision (t, (s, r) , s′): Given the trapdoor t = {xj,b}j∈[n],b∈{0,1}, a string s = (s1, . . . , sn) ∈ {0, 1}n,

some randomness r ∈ X , and another string s′ = (s′1, . . . , s
′
n) ∈ {0, 1}n, the equivocation algorithm

outputs r′ ∈ X as

r′ =

⊕
j∈[n]

xj,s′j

−1

⊕
( ⊕
j∈[n]

xj,sj

)
⊕ r.

We now argue that the aforementioned construction satisfies the desired properties of a chameleon hash
function.

• Uniformity: Let s = (s1, . . . , sn) ∈ {0, 1}n and s′ = (s′1, . . . , s
′
n) ∈ {0, 1}n be arbitrary binary strings,

and let r, r′ ← X be uniformly random elements in X . Let

x∗ =

( ⊕
j∈[n]

xj,sj

)
⊕ r, x′

∗
=

( ⊕
j∈[n]

xj,s′j

)
⊕ r′.

It is easy to see that both x∗ and x′
∗

are uniformly distributed over X so long as r and r′ are uniform.
This in turn implies that the distributions

CHash (pp, s; r) = f (x∗) , CHash (pp, s′; r′) = f
(
x′
∗)
,

are both statistically close to the distribution {f(x)}x←X , and are hence statistically indistinguishable.
This completes the proof of uniformity.
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• Collision-Resistance. Suppose that there exists a PPT adversary A that produces with non-negligible
probability ε a tuple ((s, r), (s′, r′)) such that (s, r) 6= (s′, r′) and

CHash (pp, s; r) = CHash (pp, s′; r′) .

An argument very similar to the one used in proof of Theorem A.3 can be used to demonstrate the
existence of a a PPT algorithm B that breaks the one-wayness of f with non-negligible probability.

• Trapdoor Collisions: Finally, it is straightforward to verify that trapdoor collisions produced by the
scheme are valid.

Note A.9. The aforementioned chameleon hash construction has an apriori bounded number of homomorphic
operations, which allows it to be instantiated similarly using a γ-bounded HOWF family, subject to the
restriction that n ≤ γ.

Implications. The following are some implications of chameleon hash functions:

• Chameleon hash functions imply statistically hiding and computationally binding (non-interactive)
trapdoor commitment schemes [KR00], which in turn imply resettable zero-knowledge proofs for
NP [CGGM00].

• Chameleon hash functions yield chameleon signature schemes [KR00], which are non-interactive
undeniable signatures [CA89], and guarantee both non-repudiation and non-transferability.

All of the aforementioned primitives are therefore implied by any (γ-bounded) HOWF family.

B Homomorphism over Abelian Groups

In this section, we present constructions of primitives from IHwUFs/IHwPRFs that require the underlying
input and output groups to be abelian.

B.1 Group-Homomorphic PKE

Definition B.1. (Group-Homomorphic PKE.) A public-key encryption scheme Π = (Gen,Enc,Dec) over
a message group (M,⊕) and a ciphertext group (C,⊗) is group-homomorphic if it satisfies the following:
letting (pk, sk) ← Gen

(
1λ
)
, for all messages m1,m2 ∈ M, it holds with overwhelming probability over the

randomness of Enc that

Dec (sk,Enc (pk,m1 ⊕m2)) = Dec (sk,Enc (pk,m1))⊗ Dec (sk,Enc (pk,m2))

Construction of Group-Homomorphic PKE. We present a group-homomorphic CPA-Secure PKE
from any IHwPRF with abelian input and output groups.

• Setup(1λ): The setup algorithm creates a description FIHwPRF for an IHwPRF F : K×X → Y . It also
fixes some integer n > 3 log |X |. The algorithm outputs FIHwPRF and n as the public parameter pp.

• Gen (pp): The key-generation algorithm uniformly samples 2n elements in X as {xj,b ← X}j∈[n],b∈{0,1}
and a key k ← K, and outputs

sk = k, pk = {xj,b, yj,b}j∈[n],b∈{0,1},

where yj,b = F (k, xj,b) for each j ∈ [n] and b ∈ {0, 1}.
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• Enc (pk,m): Given the public-key pk = {xj,b, yj,b}j∈[n],b∈{0,1} and a message m ∈ Y, the encryption
algorithm uniformly samples an n-bit string r = (r1, . . . , rn) ← {0, 1}n and outputs the ciphertext
ct = (c, e), where

c =
⊕
j∈[n]

xj,rj , e =

( ⊗
j∈[n]

yj,rj

)
⊗m.

• Dec (sk, ct): Given the secret-key sk = k and the ciphertext ct = (c, e), the algorithm outputs

m′ = (F (k, c))
−1 ⊗ e.

Instantiation from General Protocol. The aforementioned PKE scheme can be instantiated from the
general protocol described in Section 3.3 as follows:

• Initialization. Instantiate the protocol using an IHwPRF F : K×X → Y such that (X ,⊕) and (Y,⊗)
are abelian groups, a fixed n > 3 log |X |, N∗ = 0, N̄ = 1 and N̂ = 1. Set pk1 = X.

• Evaluation: Set sk = k (where k ∈ K is the IHwUF key) and pk2 = Y, where Y is the output of the
evaluation phase. Output (sk, pk = (pk1, pk2)).

• Post-Evaluation: Let X̂ = {x̂} and Ŷ = {ŷ}. Set:

c = x̂, e = ŷ ⊗m,

where m ∈ Y is the message.

Correctness and security of the scheme follow from Claim 3.10 and Theorem 3.17, respectively.

Group-Homomorphism. To see that the aforementioned PKE scheme is group-homomorphic, consider a
pair of ciphertexts (ct1, ct2) = ((c1, e1) , (c2, e2)), where

c1 =
⊕
j∈[n]

xj,rj,1 , e1 =

( ⊗
j∈[n]

yj,rj,1

)
⊗m1,

c2 =
⊕
j∈[n]

xj,rj,2 , e2 =

( ⊗
j∈[n]

yj,rj,2

)
⊗m2.

for some m1,m2 ∈ Y. Now consider the ciphertext ct3 = (c3, e3), where

c3 = c1 ⊕ c2, e3 = e1 ⊗ e2.

By the leftover hash lemma, there exists a string r3 = (r1,3, . . . , rn,3) ∈ {0, 1}n such that

c3 =
⊕
j∈[n]

xj,rj,3 , e3 = F

(
k,
⊕
j∈[n]

xj,rj,3

)
⊗ (m1 ⊗m2),

where the second equality additionally exploits the abelian nature of the group (Y,⊗). Quite evidently, ct3 is
a valid ciphertext for the message m3 = m1 ⊗m2.

Note B.2. The aforementioned construction may be instantiated using a γ-bounded IHwPRF over abelian
groups provided that γ is sufficiently larger than n 1, with the following minor modification to the encryption
algorithm:

e = R
( ⊗
j∈[n]

yj,rj

)
�m,

1The number of homomorphic operations allowed for the PKE depends on the values of γ (and n).
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and the following minor modification to the decryption algorithm:

m′ = R (F (k, c))
−1 � e

where R : Y → Z is a universal map (see Definition 3.4), with the additional property that (Z,�) is an
abelian group and the homomorphism also propagates through R (in addition to the function F ). Note that
the message space is now Z instead of Y.

B.2 Hash Proof Systems

In this subsection, we show that any IHwPRF family implies an average-case smooth projective hash proof
system. We begin by briefly recalling the notion of projective hash proof systems as defined in [CS02].

Definition B.3. (Projective Hash Proof System.) Let H : HK × Σ1 → Σ2 be an efficiently computable
function, and let L ⊂ Σ1. Also, let α : HK → HP be a “projection” function. We say that the tuple
HPS = (H,HP,HK,Σ1,Σ2,L) is a projective hash proof system if the following four properties hold:

1. There exist efficient algorithms to sample uniformly from Σ1, uniformly from HK, and uniformly from
L along with a witness w that proves membership in L.

2. Given any uniformly random σ ← Σ1, no PPT algorithm can efficiently decide if σ ∈ L.

3. For any hk ∈ HK and y ∈ L, the value of H (hk, σ) is determined entirely by (σ, hp), where hp = α(hk).

4. There exists an efficient “public evaluation” algorithm that on input σ ∈ L, a witness w for the
statement that σ ∈ L, and the projection hp = α(hk), outputs H (hk, σ).

Definition B.4. (Average-Case Smooth Projective HPS.) Given HPS = (H,HP,HK,Σ1,Σ2,L), define the
following distributions:

DHPS,real = {α(hk), σ,H (hk, σ)}hk←HK,σ←Σ1

DHPS,rand = {α(hk), σ, σ̃}hk←HK,σ←Σ1,σ̃←Σ2

The projective hash proof system HPS is said to be ε-average-case smooth if we have the property
SD (DHPS,real,DHPS,rand) < ε.

Definition B.5. (Homomorphic Projective HPS.) A projective hash proof system HPS = (H,HP,HK,Σ1,Σ2,L)
is homomorphic if the following two properties hold:

1. There exist efficiently computable group operations ⊕ and ⊗ such that (Σ1,⊕) and (Σ2,⊗) are efficiently
samplable groups.

2. For every hk ∈ HK and for every σ1, σ2 ∈ Σ1, we have

H (hk, σ1 ⊕ σ2) = H (hk, σ1)⊗H (hk, σ2) .

Projective HPS from IHwPRFs. Given an IHwPRF F : K×X → Y , fix an n > 4(log|X |+ log|Y|) and
sample 2n group elements from X as

x = {xj,b ← X}j∈[n],b∈{0,1}.

Define the language Lx ⊂ Y2n as

Lx =
{
{yj,b = F (k, xj,b)}j∈[n],b∈{0,1}

}
k∈K
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Next, define the hash function H : {0, 1}n × Y2n → Y as

H
(
r = (r1, . . . , rn),y = {yj,b}j∈[n],b∈{0,1}

)
=
⊗
j∈[n]

yj,rj .

Finally, define the projection function αx : {0, 1}n → X as

αx (r = (r1, . . . , rn)) =
⊕
j∈[n]

xj,rj .

To see that
(
H,X , {0, 1}n,Y2n,Y,Lx

)
is a projective HPS, observe the following.

• One can efficiently sample a random element of Lx, along with a witness for its membership, by
generating k ← K and computing yj,b = F (k, xj,b) for each j ∈ [n] and b ∈ {0, 1}.

• If there exists a PPT algorithm A such that, given a uniformly random vector 2n-vector y ∈ Y, A can
efficiently decide with non-negligible probability if y ∈ Lx, then one can construct a PPT adversary B
that breaks the weak pseudorandomness of F with non-negligible probability.

• Consider an 2n-vector y = {yj,b}j∈[n],b∈{0,1} such that there exists a key k ∈ K for which yj,b = F (k, xj,b)

for j ∈ [n] and b ∈ {0, 1}. The “public evaluation” algorithm takes as input a projection αx (r) of a
string r and the “witness” key k, and outputs H (r,y) = F (k, αx (r)).

Average-Case Smoothness. Let x and y be random vectors in X 2n and Y2n, and let x∗ = αx(r) for
r← {0, 1}n. The following lemma implies average-case smoothness for our HPS scheme.

Lemma B.6. Letting x ← X 2n, y ← Y2n, x∗ = αx(r) and y∗ = H (r,y) for r ← {0, 1}n , the following
holds for any unbounded adversary A:

Pr [A (x,y, x∗) = y∗] ≤ negl(λ).

To prove this lemma, we first recall the following lemma due to Erdos and Renyi [ER65]:

Lemma B.7. Let (X ,⊕) be a finite group, and let x = {xj,b ← X}j∈[n],b∈{0,1} be a vector of 2n random
elements. Given an element x ∈ X , let κx(x) be a random variable that denotes the number of all binary
strings r = (r1, . . . , rn) such that x =

⊕
xj,rj . If n > 2 log(1/X ) + 2 log(1/ε) + log(1/δ), then for any x ∈ X

Pr

[
(1− ε) 2n

|X |
≤ κx(x) ≤ (1 + ε)

2n

|X |

]
≥ 1− δ.

This lemma (together with the leftover hash lemma) implies that given two groups (X ,⊕) and (Y,⊗), two
random vectors x = {xj,b ← X}j∈[n],b∈{0,1} and y = {yj,b ← Y}j∈[n],{0,1}∈b, and a random binary string
r← {0, 1}n where n > 4(log|X |+ log|Y|), for any unbounded adversary A we have

Pr
x,y,r

[A(x,y, x∗) = y∗] ≤ negl(λ),

where
x∗ =

⊕
j∈[n]

xj,rj , y∗ =
⊗
j∈[n]

yj,rj .

To see this, fix two elements x∗ ∈ X and y∗ ∈ Y and apply the previous lemma on the direct product
group X × Y. Now given random vectors x and y, the number of r’s such that

⊕
xj,rj = x∗ is at least

(1− negl(λ)) · |X |3|Y|4. In addition, the number of r’s such that
⊕
xj,rj = x∗ and

⊕
yj,rj = y∗ is at most

(1 + negl(λ)) · |X |3|Y|3. It follows that there at least (1− negl(λ)) · |Y| distinct y’s such that
⊕
xj,rj = x∗

and
⊕
yj,rj = y. Since the distribution of

⊕
xj,rj and

⊗
yj,rj is negligibly close to uniform by the leftover

hash lemma, it follows that given (x,y, x∗) any unbounded adversary cannot guess y∗ with non-negligible
probability. This in turn implies Lemma B.6 and completes the proof of average-case smoothness for our
HPS scheme.
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Homomorphism. Observe that if (X ,⊕) and (Y,⊗) are abelian, the HPS is homomorphic. Define the

operation between pairs of 2n-vectors

(
y(1) =

{
y

(1)
j,b

}
j∈[n],b∈{0,1}

,y(2) =
{
y

(2)
j,b

}
j∈[n],b∈{0,1}

)
∈ Y2n×Y2n as

y(1) � y(2) :=

({
y

(1)
j,b ⊗ y

(2)
j,b

}
j∈[n],b∈{0,1}

)
.

Since Y is abelian with respect to the operation ⊗, we have

H
(
r,y(1) � y(2)

)
= H

(
r,y(1)

)
⊗H

(
r,y(2)

)
.

Note B.8. The aforementioned construction requires an IHwPRF family for which the key space does not
depend on the input space. However, since the number of homomorphic operations needed to compute a
hash is upper bounded by n, it maybe equivalently instantiated using a γ-bounded IHwPRF family, subject
to the restriction that n ≤ γ.

B.3 HOWFs from IHwUFs

In this subsection, we show that IHwUFs with unbounded homomorphism over abelian groups imply HOWFs.

Construction of HOWF. Let F : K × X → Y be an IHwUF such that (X ,⊕) and (Y,⊗) are abelian
groups. Let x = {xj ← X}j∈[n] be n uniform elements for n > 3 log |X |. Define the family of functions
HOWFx : Zn|X | → X as

HOWFx (~α = (α1, . . . , αn)) =
⊕
j∈[n]

[αj ]xj .

where [αj ]xj denotes operating xj with itself αj times by applying the group operation ⊕. Homomorphism
follows directly from the abelian property of the group (X ,⊕). For n > 3 log |X |, consider the following
experiment ExptHOWF-IHwUF

|X | :

1. The challenger samples n group elements as {xj ← X}j∈[n] and a vector ~α = (α1, . . . , αn)← Zn|X |.

2. The challenger computes x∗ =
⊕

j∈[n] [αj ]xj and sends the tuple
(
{xj}j∈[n] , x

∗
)

to the adversary.

3. Eventually, the adversary A outputs ~α′ = (α′1, . . . , α
′
n) ∈ Zn|X |.

For any PPT adversary A we define AdvHOWF-IHwUF(A) to be the probability of x∗ =
⊕

j∈[n]

[
α′j
]
xj over

all random coins in the experiment.

Lemma B.9. For all PPT adversaries we have AdvHOWF-IHwUF(A) ≤ negl(λ).

Proof. The proof is similar to the proof of Lemma 3.7.

C Composable IHwPRFs

In this section, we extend our homomorphism-based framework to allow pairs of IHwPRFs that compose
with each other. We refer to such IHwPRFs as two-composable IHwPRFs. The formal definition is presented
below.
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Definition C.1 (Two-Composable IHwPRF). A two-composable IHwPRF is a tuple of two functions
and two “composers”

F1 : K ×X1 → Y1 , F2 : K ×X2 → Y2,

C1 : Y1 ×X2 → Z , C2 : Y2 ×X1 → Z.

such that the following conditions hold:

1. (X1,⊕1), (X2,⊕2), (Y1,⊗1), (Y2,⊗2) and (Z,�) are efficiently samplable groups.

2. The group operations ⊕1, ⊕2, ⊗1, ⊗2 and �, and the inverse operations in each group, are efficiently
computable.

3. The functions F1 : K ×X1 → Y1 and F2 : K ×X2 → Y2 are IHwPRFs.

4. The “composers” C1 : Y1 ×X2 → Z and C2 : Y2 ×X1 → Z are weak PRFs.

5. For every k ∈ K and for every x1, x2 ∈ X , we have:

C1 (F1 (k, x1) , x2) = C2 (F2 (k, x2) , x1) .

We will denote either of the above equal quantities as FT (k, (x1, x2)).

Note C.2. We do not impose any homomorphism requirements on the composers C1 and C2.

Notations. We adopt some notations in this section to simplify the exposition. Given a vector x ∈ G2n

indexed by (i ∈ [n], b ∈ {0, 1}), where (G,+) is any group, and a string s ∈ {0, 1}n, we define a subset-summing
notation as follows:

〈〈x, s〉〉 =
∑
i∈[n]

xi,si

We now state a useful lemma. All constructions presented in this section depend on this lemma for their
security.

Lemma C.3 (Two-Composable IHwPRF Lemma). Let (F1, F2, C1, C2) be a two-composable IHwPRF.
Then for any n1, n2 > 3 log (max (|X1| , |X2|)) and for any PPT adversary A, the following holds:∣∣∣Pr

[
A
(
x(1),y(1),x(2),y(2), x∗1, x

∗
2, z
∗
)

= 1
]
− Pr

[
A
(
x(1),y(1),x(2),y(2), u∗1, u

∗
2, v
∗
)

= 1
]∣∣∣ ≤ negl(λ),

where:

• The vectors x(1) and x(2) are uniform in X 2n1
1 and X 2n2

2 , respectively.

• For some uniformly sampled bit strings r1 ← {0, 1}n1 and r2 ← {0, 1}n2 , we have

x∗1 =
〈〈

x(1), r1

〉〉
, x∗2 =

〈〈
x(2), r2

〉〉
.

• For some k ∈ K, we have

y(1) = F1

(
k,x(1)

)
, y(2) = F2

(
k,x(2)

)
, z∗ = FT (k, (x∗1, x

∗
2)) .

• The group elements u∗1, u∗2 and v∗ are uniform in X1, X2 and Z respectively.
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Proof. The proof of this lemma follows immediately from the following lemmas:

Lemma C.4. For any n1, n2 > 3 log (max (|X1| , |X2|)) and for any PPT adversary A, the following holds:∣∣∣Pr
[
A
(
x(1),y(1),x(2),y(2), x∗1, x

∗
2, z
∗
)

= 1
]
− Pr

[
A
(
x(1),y(1),x(2),y(2), u∗1, u

∗
2, z̃
∗
)

= 1
]∣∣∣ ≤ negl(λ),

where z̃∗ = FT (k, (u∗1, u
∗
2)).

Lemma C.5. Let F1 be an IHwPRF and and C1 be a wPRF. Then, for any PPT adversary A, the following
holds:∣∣∣Pr

[
A
(
x(1),y(1),x(2),y(2), x∗1, x

∗
2, z̃
∗
)

= 1
]
− Pr

[
A
(
x(1),y(1),x(2),y(2), u∗1, u

∗
2, v
∗
)

= 1
]∣∣∣ ≤ negl(λ),

The proof of Lemma C.4 follows from the leftover hash lemma, while the proof of Lemma C.5 follows from
the weak pseudorandomness of F1 and C1.

In the following subsections, we show that two-composable IHwPRFs imply (in a black-box way) certain
cryptoprimitives that do not have known black-box realizations from standard IHwPRFs.

C.1 Non-Interactive Three-Party Key-Exchange

We present a black-box non-interactive three-party key-exchange protocol from any two-composable IHwPRF.
Note that three-party NIKE is currently known only from bilinear maps. Our protocol is in the standard
model, and involves three non-uniform PPT algorithms A = (A0,A1), B = (B0,B1) and C = (C0, C1), where
Ab, Bb and Cb operate in parallel for b ∈ {0, 1}.

• Setup(1λ): The setup algorithm creates a description FIHCwPRF for a two-composable IHwPRF consisting
of the following functions and “composers”:

F1 : K ×X1 → Y1 , F2 : K ×X2 → Y2,

C1 : Y1 ×X2 → Z , C2 : Y2 ×X1 → Z.

It uniformly samples x(1) ← X 2n
1 and x(2) ← X 2n

2 , for n > 3 log (max (|X1| , |X2|)), and outputs the
public parameter pp as

pp =
(
FIHCwPRF,x

(1),x(2)
)
.

• A0 (pp): On input pp, the algorithm A0 samples a← {0, 1}n and outputs (stA, x
∗
A), where

stA = a, x∗A =
〈〈

x(1),a
〉〉
.

• B0 (pp): On input pp, the algorithm B0 samples b← {0, 1}n and outputs (stB, x
∗
B), where

stB = b, x∗B =
〈〈

x(2),b
〉〉
.

• C0 (pp): On input pp, the algorithm C0 samples a key k ← K and computes y(1) = F1

(
k,x(1)

)
and

y(2) = F2

(
k,x(2)

)
. It then outputs (stC ,yC), where

stC = k, yC =
(
y(1),y(2)

)
.

• A1 (pp, stA, x
∗
B,yC): Given stA = a, x∗B, and yC , the algorithm A1 computes the final key as

k∗ = C1

(〈〈
y(1),a

〉〉
, x∗B

)
.
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• B1 (pp, stB, x
∗
A,yC): Given stB = b, x∗A, and yC , the algorithm B1 computes the final key as

k∗ = C2

(〈〈
y(2),b

〉〉
, x∗A

)
.

• C1 (pp, stC , x
∗
A, x

∗
B): Given stC = k, x∗A, and x∗B, the algorithm C1 computes the final key as

k∗ = C1 (F1 (k, x∗A) , x∗B) ,

or equivalently, as
k∗ = C2 (F2 (k, x∗B) , x∗A) .

Correctness and Security. Correctness follows from the properties of a two-composable IHwPRF. When
the protocol is correctly executed, in all cases the final key computed is:

k∗ = FT

(
k,
(〈〈

(x(1),a
〉〉
,
〈〈

x(2),b
〉〉))

.

Security follows from Lemma C.3.

C.2 Black-Box IBE

We present a black-box construction of an IBE scheme from any two-composable IHwPRF. Note that the only
IBE construction from IHwPRFs is non-black-box since it requires garbled circuits (Section 4.4). Black-box
constructions of IBE (even in the random oracle model) are currently known only from group-theoretic/lattice
assumptions, such as bilinear Diffie-Hellman [BF01], QR [Coc01] and LWE [GPV08], and the techniques used
for these constructions are closely tied to the underlying assumption. Our construction, on the other hand,
makes black-box use of a generic primitive that seems to be strictly weaker than bilinear maps.

Definition C.6. (Identity-Based Encryption.) An IBE scheme over an identity space ID and message space
M is a tuple of PPT algorithms (Setup,Ext,Enc,Dec) defined as follows:

• Setup(1λ): Given the security parameter λ, outputs the public parameter pp and the master secret-key
msk.

• Ext (pp,msk, id): Given the public parameter pp, the master-secret-key msk and an identity id ∈ ID,
outputs a secret-key skid.

• Enc (pp, id ∈ ID,m): Given the public parameter pp, an identity id ∈ ID and a message m ∈ M,
outputs a ciphertext ct.

• Dec (skid, ct): Given a secret key skid and a ciphertext ct, outputs a decrypted message m′.

The following correctness and security properties must be satisfied:

• Correctness: If (pp,msk) ← Setup
(
1λ
)
, then for all id ∈ ID and all m ∈ M, it holds with

overwhelming probability over the randomness of Ext and Enc that if skid ← Ext (pp,msk, id) and
ct← Enc (pp, id ∈ ID,m), then we have

Dec (skid, ct) = m.

• Anonymous-CPA Security: For b ∈ {0, 1}, define the experiment Exptano-cpa
b between a challenger

and an adversary A as in Figure 10:
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1. The challenger samples (pp,msk)← Setup(1λ) and provides pp to A.

2. The adversary A adaptively issues key-generation queries. For each query identity id, the challenger
responds with

skid ← Ext (msk, id) .

3. The adversary A outputs identity-message pairs (id∗0,m
∗
0) and (id∗1,m

∗
1), such that id∗b∗ 6= id for each

identity id queried previously and each b∗ ∈ {0, 1}. The challenger responds to the adversary A
with the ciphertext

ct← Enc (pp, id∗b ,m
∗
b) .

4. The adversary A continues to adaptively issue key-generation queries, subject to the aforementioned
restrictions. The challenger responds as above.

Figure 10: Experiment for the Anonymous CPA security of IBE.

An IBE scheme (Setup,Ext,Enc,Dec) is said to be anonymous-CPA-secure if for all PPT adversaries A,
the views of the adversary in Exptano-cpa

0 and Exptano-cpa
1 are computationally indistinguishable.

Construction from 2-Composable IHwPRF. Our construction is inspired by the seminal Boneh-
Franklin IBE [BF01] and is both anonymous and message-hiding against adaptive adversaries in the random
oracle model.

• Setup(1λ): The setup algorithm creates a description FIHCwPRF for a two-composable IHwPRF consisting
of the following functions and “composers”:

F1 : K ×X1 → Y1 , F2 : K ×X2 → Y2,

C1 : Y1 ×X2 → Z , C2 : Y2 ×X1 → Z.

It fixes an n > 3 log (max (|X1| , |X2|)) and a hash function H : ID → X2 (modeled as a random oracle
in the security proof), where ID is the identity space for the IBE scheme. It uniformly samples a key
k ← K and 2n elements from X1 as x(1) ← X 2n

1 , and sets y(1) = F1

(
k,x(1)

)
. Finally, it outputs the

public parameter pp and the master secret-key msk as

pp =
(
FIHCwPRF, H,x

(1),y(1)
)
, msk = k.

• Ext (pp,msk, id): Given the public parameter pp, the master secret-key msk = k and an identity id ∈ ID,
the extraction algorithm outputs the secret-key skid as

skid = F2 (k,H (id)) .

• Enc (pp, id ∈ ID,m): Given the public parameter pp, an identity id ∈ ID and a message m ∈ Z, the
encryption algorithm uniformly samples a string r = (r1, . . . , rn)← {0, 1}n and outputs the ciphertext
ct = (c1, c2), where

c1 =
〈〈

x(1), r
〉〉
, c2 = C1

(〈〈
y(1), r

〉〉
, H(id)

)
�m.

• Dec (skid, ct): Given the secret-key skid and the ciphertext ct = (c1, c2), the decryption algorithm outputs
the message

m′ = C2 (skid, c1)
−1 � c2.
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Correctness. Correctness of the scheme may be verified as follows:

c2 = C1

(〈〈
y(1), r

〉〉
, H(id)

)
�m

= C1

(
F1

(
k,
〈〈

x(1), r
〉〉)

, H (id)

)
�m

= C2

(
F2

(
k,H (id)

)
,
〈〈

x(1), r
〉〉)

�m

= C2 (skid, c1)�m

Security. Suppose that there exists a PPT adversary A that can distinguish between its views in the
experiments Exptano-cpa

0 and Exptano-cpa
1 with non-negligible probability ε, while making a maximum of Q1

hash queries and Q2 secret key queries. We construct a PPT algorithm B with the advantage negligibly
smaller than ε. Suppose B receives as input a tuple(

x(1),y(1),
{
x

(2)
` , y

(2)
`

}
`∈[Q1+Q2+1]

, x∗1, x
∗
2, z
∗
)
,

as described in Lemma C.3 and interacts with A as follows.

• In the setup phase, B provides the tuple
(
x(1),y(1)

)
to the adversary A as the public parameter. It

also initializes a counter cnt := 0 and a look-up table T := φ. The table T stores tuples of the form

(`, id`, H(id`), e`) for ` ∈ N, id` ∈ ID, e` ∈ {0, 1},

and is used by B to answer random oracle queries issued by A.

• When A issues a hash query on an identity id, B first checks if an entry of the form (`, id, H(id), e)
already exists in the table T.

– If yes, it provides H(id) to A.

– If not, it samples a bit e ∈ {0, 1} such that Pr[e = 1] = δ for some δ ∈ (0, 1) and sets H(id) as

H(id) =

{
x

(2)
cnt if e = 1

x∗2 ⊕ x
(2)
cnt otherwise.

It then increments the counter as cnt := cnt + 1 and updates the table T as T := T ∪
{(cnt, id, H(id), e)}. Finally, it provides H(id) to A.

• When A issues a secret key query on an identity id`, B retrieves/creates the tuple (`, id`, H(id`, e`)) as
described above.

– If e` = 0, it outputs ⊥ and aborts.

– If e` = 1, it outputs skid` = y
(2)
` .

Quite evidently, when B does not abort, the distribution of skid` is identical to that in the “real”
experiment.

• When A outputs the challenges (id∗0,m
∗
0) and (id∗1,m

∗
1), B uniformly samples a bit b ← {0, 1} and

retrieves/creates the tuple (`∗b , id
∗
b , H(id∗b), e

∗
b) as described above.

– If e` = 1, it outputs ⊥ and aborts.

– If e` = 0, it outputs the challenge ciphertext

ct∗ =
(
x∗1, z

∗ � C2

(
y

(2)
`∗b
, x∗1

)
�m∗b

)
.
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• A continues to issue hash and secret-key queries adaptively. B responds as described above.

• Eventually, A outputs a bit b′. If b′ = b, B outputs 1. Else, it outputs 0.

When z∗ = C1 (F1 (k, x∗1) , x∗2), we have

z∗ � C2

(
y

(2)
`∗b
, x∗1

)
= C1 (F1 (k, x∗1) , x∗2)� C2

(
y

(2)
`∗b
, x∗1

)
= C1 (F1 (k, x∗1) , x∗2)� C2

(
F2

(
k, x

(2)
`∗b

)
, x∗1

)
= C1 (F1 (k, x∗1) , x∗2)� C1

(
F1 (k, x∗1) , x

(2)
`∗b

)
= C1

(
F1 (k, x∗1) , x∗2 ⊕ x

(2)
`∗b

)
= C1 (F1 (k, x∗1) , H(id∗b))

and hence, the ciphertext ct∗ is well-formed w.r.t. the bit b chosen by B. On the other hand, when z∗ is
uniform in Z, the ciphertext ct∗ is independent of the bit b chosen by B. Hence, the advantage of B in
breaking the two-composable IHwPRF assumption may be quantified as AdvB = ε− Pr[abort], where the
probability that B aborts is upper bounded as Pr[abort] ≤ δ(1− δ)Q2 , which is negligible for Q2 = poly(λ).
This completes the proof of anonymous-CPA security of our IBE scheme from two-composable IHwPRFs.

C.3 L-Composable IHwPRFs

In this section, we generalize two-composable IHwPRFs introduced in Section C to L-composable IHwPRFs
for any L ≥ 2. The formal definition is presented below.

Definition C.7 (L-Composable IHwPRF). An L-composable IHwPRF is a collection of L functions
and L “composers”

{F` : K ×X` → Y`}`∈[L] ,
{
C` : Y` ×XL\{`} → Z

}
`∈[L]

,

where
XL\{`} := X1 × . . .×X`−1 ×X`+1 × . . .×XL for each ` ∈ [L]

such that the following conditions hold:

1. {(X`,⊕`) , (Y`,⊗`)}`∈[L] and (Z,�) are efficiently samplable groups.

2. The group operations {⊕`,⊗`}`∈[L] and �, and the inverse operations in each group, are efficiently
computable.

3. For each ` ∈ [L], the function F` : K ×X` → Y` is an IHwPRF.

4. For each ` ∈ [L], the “composer” C` : Y` ×XL\{`} → Z is a wPRF.

5. For every k ∈ K, for every (x1, . . . , xL) ∈ X1 × . . .×XL, and for any choice of `1, `2 ∈ [L] the following
quantities are equal:

C`1 (F`1 (k, x`1) , x1, . . . , x`1−1, x`1+1, . . . , xL) , C`2 (F`2 (k, x`2) , x1, . . . , x`2−1, x`2+1, . . . , xL) .

We will denote each of the above equal quantities as FT (k, (x1, . . . , xL)).

Note C.8. As in the two-composable setting, we do not impose any homomorphism requirements on the
composers C1, . . . , CL.
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Notations. We adopt the same notations as in the two-linear section. Given a vector x ∈ G2n indexed by
(i ∈ [n], b ∈ {0, 1}), where (G,+) is any group, and a string s ∈ {0, 1}n, we use the subset-summing notation
as follows:

〈〈x, s〉〉 =
∑
i∈[n]

xi,si

Lemma C.9 (L-Composable IHwPRF Lemma). Let
(
{F`, C`}`∈[L]

)
be an L-composable IHwPRF. Then

for any n1, . . . , nL > 3 log (max (|X1| , . . . , |XL|)) and for any PPT adversary A, the following holds:∣∣∣∣Pr

[
A
({

x(`),y(`), x∗`

}
`∈[L]

, z∗
)

= 1

]
− Pr

[
A
({

x(`),y(`), u∗`

}
`∈[L]

, v∗
)

= 1

]∣∣∣∣ ≤ negl(λ),

where:

• For each ` ∈ [L], the vector x(`) is uniform in X 2n`

` .

• For each ` ∈ [L], we have

x∗` =
〈〈

x(`), r`

〉〉
.

where r` ← {0, 1}n` is a uniformly sampled bit string.

• For some k ∈ K, we have

y(`) = F`

(
k,x(`)

)
for each ` ∈ [L], z∗ = FT (k, (x∗1, . . . , x

∗
L)) .

• For each ` ∈ [L], the group element u∗` is uniform in X`.

• The group element v∗ is uniform in Z.

Proof. The proof of this lemma is essentially an extension of the proof of Lemma C.3.

Non-Interactive (L+ 1)-Party Key-Exchange. We present a black-box non-interactive (L+ 1)-party
key-exchange protocol from any L-composable IHwPRF. Our protocol is in the standard model, and involves
(L+ 1) non-uniform PPT algorithms {A` = (A`,0,A`,1)}`∈[0,L] such that the algorithms {A`,b}`∈[0,L] operate

in parallel for b ∈ {0, 1}.

• Setup(1λ): The algorithm creates a description F (L)
IHCwPRF for an L-composable IHwPRF consisting of

the following functions and “composers”:

{F` : K ×X` → Y`}`∈[L] ,
{
C` : Y` ×XL\{`} → Z

}
`∈[L]

.

It fixes n > 3 log (max (|X1| . . . , |XL|)), uniformly samples x(`) ← X 2n
` for each ` ∈ [L], and outputs the

public parameter pp as

pp =

(
FIHCwPRF,

{
x(`)

}
`∈[L]

)
.

• A0,0 (pp): The algorithm A0,0 samples k ← K and computes y(`) = F`
(
k,x(`)

)
for each ` ∈ [L]. It then

outputs (st0,y), where

st0 = k, y =
{

y(`)
}
`∈[L]

.
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• A`,0 (pp): For each ` ∈ [L], the algorithm A`,0 samples a(`) ← {0, 1}n and outputs (st`, x
∗
` ), where

stA = a(`), x∗` =
〈〈

x(`),a(`)
〉〉
.

• A0,1

(
pp, st0, {x∗`}`∈[L]

)
: The algorithm A0,1 chooses some ` ∈ [L] to compute the final key as

k∗ = C`
(
F` (k, x∗` ) , x

∗
1, . . . , x

∗
`−1, x

∗
`+1, . . . , x

∗
L

)
.

• A`,1
(
pp, st`, {x∗`}`∈L\{`} ,y

)
: For each ` ∈ [L], the algorithm A`,1 computes the final key as

k∗ = C`

(〈〈
y(`),a(`)

〉〉
, x∗1, . . . , x

∗
`−1, x

∗
`+1, . . . , x

∗
L

)
.

Correctness and Security. Correctness follows from the properties of an L-composable IHwPRF. When
the protocol is correctly executed, in all cases the final key computed is:

k∗ = FT

(
k,
(〈〈

(x(1),a(1)
〉〉
, . . . ,

〈〈
x(L),a(L)

〉〉))
.

Security follows from Lemma C.9.

On Separation from Algebraic Maps. We have seen in the previous sections that weak PRFs, when
endowed with the structure of group homomorphism over the input/output spaces, imply a wide range of
sophisticated cryptographic primitives. A further strengthening of IHwPRFs via adding a 2-composability
structure allowed us to obtain 3-party non-interactive key-exchange, which is not known from standard
IHwPRFs. We also obtained a simple black-box construction of IBE analogous to [BF01] from this primitive,
while standard IHwPRFs are known to imply IBE only in a non-black-box way. Historically, these two
primitives were the seeds to using bilinear pairing groups.

This leads us to ponder the following questions: can we get primitives and patterns of construction
that are traditionally instantiated by bilinear pairing groups from 2-composable IHwPRFs? What are the
structural similarities and differences between 2-composable IHwPRFs and bilinear maps? In this section, we
partially answer these questions.

We first observe that the following three properties are common between 2-composable IHwPRFs and
bilinear pairing groups, and are instrumental in giving rise to the 3-party KE and Boneh-Franklin-style IBEs:

1. Homomorphism in both coordinates:

F1

(
k,
〈〈

x(1), s1

〉〉)
=
〈〈
F1(k,x(1)), s1

〉〉
! (gkx1 )a = g

k(xa)
1

F2

(
k,
〈〈

x(2), s2

〉〉)
=
〈〈
F2(k,x(2)), s2

〉〉
! (gkx2 )b = g

k(xb)
2

2. Composition:

C(F1(k, x(1)), x(2)) = C(F2(k, x(2)), x(1)) ! e(gkx1 , gy2 ) = e(gx1 , g
ky
2 )

3. Pseudorandomness of composed result:
x(1),x(2),〈〈

x(1), s1

〉〉
, F1(k,x(1)),〈〈

x(2), s2

〉〉
, F2(k,x(2)),

FT (k, (
〈〈

x(1), s1

〉〉
,
〈〈

x(2), s2

〉〉
))

 !


g1, g2,
gx1 , g

k
1 ,

gy2 , g
k
2 ,

e(g1, g2)kxy


c
≈

c
≈

x(1),x(2),〈〈
x(1), s1

〉〉
, F1(k,x(1)),〈〈

x(2), s2

〉〉
, F2(k,x(2)),
$

 !


g1, g2,
gx1 , g

k
1 ,

gy2 , g
k
2 ,

$
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In the bilinear groups setting, the pseudorandomness property essentially follows from an asymmetric
version of the Bilinear DDH assumption [BF01].

We now consider the more sophisticated class of dual-system [Wat09] based constructions that can be
instantiated from bilinear pairing groups. One of the simplest such constructions is the Quasi Adaptive NIZK
(QA-NIZK [JR13]) construction given by [KW15]. We sketch the construction from bilinear pairings below,
with a potential counterpart construction from 2-Composable IHwPRFs presented alongside. Following
[EHK+13], the notation [a]i means gai and it is naturally extended to vectors and matrices.

Language:

Parameter M ∈ Zn×tq ! Parameter m ∈ X 2n
1

LM = {[Mw]1 : w ∈ Ztq} ! Lm = {〈〈m,w〉〉 : w ∈ {0, 1}n}

CRS:

Sample: K← Zt×(k+1)
q ,A← Dk ! k ← K, a← X2

Prover CRS: [M>K]1 ! F1(k,m)
Verifier CRS: [A]2, [KA]2 ! a, F2(k, a)

Prover:

Input: x = [Mw]1 ! x = 〈〈m,w〉〉
Proof: π = w>[M>K]1 ! π = 〈〈F1(k,m),w〉〉

Verifier:

Word and proof: x ∈ Gn1 , π ∈ Gk+1
1 ! x ∈ X1, π ∈ Y1

Check: e(x>, [KA]2) = e(π, [A]2) ! C2(F2(k, a), x) = C1(π, a)

Zero-Knowledge:

Trapdoor: K ! k
Simulator input: x ∈ Gn1 ! x ∈ X1

Simulated proof: π = x>K ! π = F1(k, x)

As we see, the above construction satisfies correctness and zero-knowledge. However, there are several
issues and limitations:

1. The language Lm = {〈〈m,w〉〉 : w ∈ {0, 1}n} may actually be trivial for large enough (but still poly)
n. That is, it may be equal to almost all of X1. In applications we usually require the language to
be proved to be a hard subset. To make the language non-trivial, we choose n appropriately so that
|Lm|/|X1| = negl(λ).

2. Soundness condition is that for x /∈ Lm, it is hard to find π such that C2(F2(k, a), x) = C1(π, a),
or equivalently, C1(F1(k, x), a) = C1(π, a). This at least requires that it is hard to find x /∈ Lm

and π, such that F1(k, x) = π. However, this is not true as 2m1 /∈ Lm with high probability and
F1(k, 2m1) = 2F1(k,m1), which is easy to compute. Essentially, not being a subset-sum doesn’t still
rule out other scalar products with non-0,1 coefficients, and many of these quantities will still have easy
to compute proofs.

3. We observe that since k is the only quantity that acts on both coordinates, the most natural construction
is the one we took - that is, having k play the role of the K in the bilinear setting. Deviating from this
choice would require substantial departure from the flavor of the construction.
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To work around the soundness aspect, let’s allow w to be an integer vector and subset-summing operation
to be replaced by inner product. The requirement then becomes the following: given (m, a, F1(k,m), F2(k, a)),
it is hard to find x /∈ GeneratedSubset(m) and π, such that C1(F1(k, x), a) = C1(π, a). This is implied by
the Dk Matrix-DDH assumption in the bilinear group setting along with the fact that the wPRF instantiation
in this setting is key homomorphic.

Unfortunately, this hardness is not captured by the wPRF security alone of C1 and F1. The reason is
similar to why it’s difficult to construct worst case SPHFs from IHwPRFs. Since x is adversarially chosen, it
could potentially belong to a small subgroup of X1, where F1(k, x) is easy to compute - either regardless of k
or after seeing (m, F1(k,m)).

Given this more concrete background, we argue that the general abstraction of Dual Systems Groups
(DSG [CGW15]) is hard to capture in the 2-Composable IHwPRF setting:

1. The set that parallels the notion of keys in the 2-Composable IHwPRF setting is denoted by W in
[CGW15]. Essentially objects from W are the ones that interact with both the coordinates. The paper
defines something called “predicate encodings” for several different types of Attribute-based Encryptions
(ABE). All the interesting ABEs beyond IBE essentially require algebra in the W space. This translates
to the requirement of key homomorphism in the IHwPRF setting.

2. The property of “parameter hiding” required in proving security in the DSG setting requires algebraic
interaction of both the coordinates. To realize this in the IHwPRF setting forces both the coordinate
domains X1 and X2 to be ring homomorphic to a single ring, where all the algebra can take place.

The currently known constructions of rich ABEs like fuzzy IBEs [SW05], spatial encryption [BH08] and
monotone span program ABEs [GPSW06] from bilinear groups all require at least one of the properties just
described. Since the only instantiation of 2-composable IHwPRFs we know of are bilinear groups, it seems
difficult to achieve these rich ABEs without restricting 2-composable IHwPRFs to almost traditional bilinear
groups.

Thus we see a seeming separation in the amount of structure that we need for 3-party key exchange and
simple IBE (in RO) from that seemingly necessary for NIZKs (without RO) and rich ABEs. This poses a
tantalizing question:

Can we construct a 3-party non-interactive key exchange protocol from a weaker primitive than
bilinear pairing groups?

In other words, can we achieve the structure of 2-composability from concrete assumptions, e.g., lattice-
based assumptions, that do not naturally imply bilinear pairings?

L-Composable IHwPRFs vs. L-multilinear maps. Similar separations come to the fore as we raise
the composability/multilinearity levels. On the positive side, we get (L + 1)-party key exchange from an
L-Composable IHwPRF, which is not known from (< L)-Composable IHwPRFs. We also do not know how
to construct such a protocol from hard (< L)-multilinear groups.

On the other hand, we have constructions of ABE for general circuits [GGH+13c] and indistinguishability
obfuscation (iO) for NC1 from hard multilinear groups [GGH+13b]. These constructions require algebraic
interaction of the different coordinates, and hence, just like the DSG setting for bilinear groups, require the
input domains to all be ring-homomorphic to a single ring. In fact, some computations like “Killian”-izing
Barrington matrices for iO requires the input domains to be field-homomorphic to a single field, so that
matrix inversions can be performed.

Thus we have an analogous seeming separation in the amount of structure that we need for L-party
key exchange from that seemingly necessary for circuit ABEs and iOs. The corresponding open question is
whether we can build the former from weaker primitives that may lack the structure needed for the latter.
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D Ring IHwPRF and FHE

In this part, we show that Ring IHwPRF and fully homomorphic encryption (FHE) are equivalent provided
that the order of the output ring is polynomial in the security parameter. First we provide a formal definition
of Ring IHwPRF.

Definition D.1. (Ring Input-Homomorphic Weak PRF.) We call a family of functions {F (k, ·) : R →
R}k∈K a Ring IHwPRF (RIHwPRF) family if the following conditions hold:

1. {F (k, ·) : X → Y}k∈K is a weak PRF family.

2.
(

R ,�,�
)

and (R,+,×) are both efficiently samplable rings.

3. The ring operations (�,�) and (+,×), and the inverse operation of the additive group in each ring are
efficiently computable.

4. For every k ∈ K, the mapping F (k, ·) : R → R is a ring homomorphism from R to R.

Remark D.2. A γ-bounded RIHwPRF is defined similar to Definition 3.4 where we have γ = (γ+, γ×), and
γ+ (respectively γ×) is an apriori bound on the number of possible homomorphic operations for the operation
+ (respectively ×).

It is easy to see that a slight modification of Lemma 3.21 shows that a ring-homomorphic public-key
encryption scheme (which is implied by an FHE) yields an RIHwPRF family. Below, we show that an
RIHwPRF family implies a symmetric-key FHE if the order of output ring is polynomial in the security
parameter. Notice that one can construct a public-key FHE scheme from a private-key one using the
transformation given in [Rot11].

Lemma D.3. Let F : K × R → R be a (γ-bounded) RIHwPRF family where γ = (γ+, γ×), and let R be a
ring such that |R| ≤ poly(λ) where λ is the security parameter. Given F , there is a black-box construction of a
(leveled) symmetric-key FHE such that the maximum number of allowed NAND operations is min{γ+, γ×}/2.
In particular, an RIHwPRF with unbounded homomorphism implies an FHE scheme with unbounded number
of allowed NAND operations.

Proof. We sketch the construction and omit the details of the security proof. The security follows from a
standard reduction that constructs a distinguisher against the weak pseduradomness of F given any attacker
with non-negliginle advantage against the security of the symmetric-key encryption scheme.

• Gen(1λ) : Sample a key k ← K from the key space of the Ring IHwPRF. Publish a description FRIHwPRF

of the Ring IHwPRF as the public parameter, along with the key k.

• Enc(k ∈ K,m ∈ {0, 1}) : Let 0R (and 1R) be the identity element of the ring R with respect to addition

(and multiplication). To encrypt a bit m under the secret key k, sample a preimage of mR in R . Such
a preimage can be efficiently sampled since the order of the ring is polynomial in λ, and by the weak
pseudorandomness of F we have∣∣∣∣∣∣ Pr

k←K, r ← R
[F (k, r ) = 0R]− 1/|R|

∣∣∣∣∣∣ ≤ negl(λ).

The algorithm outputs ct = rm as the ciphertext where rm is a (randomly) sampled preimage of mR.
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• Dec(k ∈ K, r ): The decryption algorithm outputs m′ ∈ {0, 1} ∩ {⊥} where

m′ =


0 if F (k, r ) = 0R

1 if F (k, r ) = 1R

⊥ otherwise.

• NAND(ct, ct′) : Given ct ∈ R and ct′ ∈ R , output

1 � ct� ct′,

where 1 is the identity element of R with respect to addition, and � is the subtraction in the ring

R . By ring-homomorphism of F , it is easy to see that if ct and ct′ are well-formed ciphertexts such
that ct← Enc(k,m ∈ {0, 1}) and ct′ ← Enc(k,m′ ∈ {0, 1}) we have

Dec(k,NAND(ct, ct′)) = Dec(k, 1 � ct� ct′) = NAND(m,m′).

Observe that to do a NAND operation, we need one subtraction and one multiplication in the ring R ,
hence the maximum number of allowed NAND operations is min{γ+, γ×}/2.

Remark D.4. It is easy to see that the construction also works for an RIHwPRF F : K × R → R with an
arbitrarily large output ring if (1) the output ring R has an ideal I of polynomial index and (2) the secret key
for RIHwPRF determines the coset that corresponds to output of the RIHwPRF. In this case, one can define

another RIHwPRF F ′ with polynomial order output ring where F ′ : K× R → R/I, and use the elements I
and 1R + I of the quotient ring to simulate NAND operation.
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