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ABSTRACT

A new light is shown by exploring a hybrid system designed to exhibit symmetric and asymmetric
properties. LFKI is code named, end-to-end cryptographic system for cloud, mobile, internet of things (IOT)
and devices (ECSMID). Until now, there had not been much done on lattice faces as a hybrid cryptographic
solution. Here in, we do not owe respect to only randomization reduction or deterministic reduction. We
embrace a collective approach to defining the old age question of what problem is hard enough in NP to
resist a quantum assailant. Especially, non-deterministic reduction is used to show that lattices are interesting
hard problems within the set of NP Complete problems. Though the shortest vector problem (SVP) seems
promising. It is nearly enough to facilitate and establish lattice basis; an exception from the priori art [1].
The many configurations of their vertices seem to dismiss the wonderful properties of the dynamic faces
abounding in various constructs. The elements of these faces in between regions bounded by the vertices
and edges are of great interest to cryptography. When represented as numerical values serve as mathematical
images of the basis distribution. It is demonstrated that each vector representation has the potential to
generate cryptographically secure number of keys. They follow, somewhat rigid rules; deterministic and yet
a chaotic arrangement of the lattice vectors represented within a matrix. A fitting rule is already available
with necessary mechanisms to produce 1: n relationship of a plaintext for many ciphertexts. -Open Knight
Tour (OKT) can easily modify to absorb larger matrices. We demonstrate, that a theoretical quantum circuit
has the controls to resist the quantum assailant using continuous noise; both in a quasi-patterned formation
and random formation of homogenous input yielding homomorphic outputs.

INDEX TERMS OTP, Qubit, SVP, CVP, Lattice-basis, 2048 Bits, AES, Cryptography, QR, QI, Blockchain

. INTRODUCTION

HIS article is an observation from over 20 years research

work. The work is not done by a mathematician but by a
security professional. The sole intent is to solve the common
problem of our time from a practitioner’ perspective. It is
agreed on all grounds, the havoc quantum computing will
bring to the modern cryptography. Consequently, it is suf-
ficiently relevant to be prepared pre and post quantum. The
understanding of Euler, Hamiltonian cycle and lattice basis
paved the way in drawing the relationship needed to harmo-
nize the open knight tours (OKT) in the genre of Hamilton’
path. The similarities under study shows the pervasiveness of
Hamilton’s path in grid (n x n) formation. In absence of any
back track; It does enumerate all points in Euclidean space if
and only if n=>5. Hamilton’ cycle, when applied to grid or
chessboard, it clearly proves that it is indeed a hard NP as the
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grid become richly connected. When this exercise extended
to the operation of AES (Rijndael) which commonly lies on
4 x 8 grid. It is possible to expand the scope of AES to
develop a 2048-Bit AES-hybrid using the bounded region
between the edges and vertices of a lattice face. The result is
a low-cost, high entropy, endpoint to endpoint cryptographic
system for cloud, mobile and IoT devices (ECSMID). The
reference specification is a category of hard NP problems
closely related to numbered faces of a lattice basis or matrix.
This cryptography shows the properties of both symmetric,
asymmetric cryptography or public key infrastructure (PKE,
KEM and DS).

A. OBJECTIVES

To show that there is a cryptographic formation following
a lattice basis that fits into an ideal set of hard NP complete
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problems known to be resistant to quantum computing. A ma-
trix could be observed as a numerical image of a lattice basis
to bring about a low cost, pervasive and high entropy cipher
which hybridizes and increases AES capacity to roughly 10
times. Thereby, resists post-quantum attacks and cancel the
effects of pre and post-quantum breaches.

Il. AN OVERVIEW OF CURRENT CRYPTOGRAPHY

The Frailty of PKI and AES: There are numerous talks
about PKI. Ponemon institute, Gartner, IBM and many other
reliable and prolific sources had mentioned their worries
about the future of PKI as we know it. More so, PKI and AES
are the dominant part of the mechanism securing the internet
transactions of today. The banks, health, retail, government
and all entities use these two pieces of technology.

They are supposed to secure and make private each com-
munication whenever you access any secure website. It is a
scientific knowledge that PKI is based on mathematics:

Where in, (N = px*¢q),®(N) = (p — 1)(¢ — 1) where
(e, N) is the public keys and (d, V) is the private key.

There is a conditioneinteger;1 < e < ®(N); co-primes
(sharing no factors) with N and ®(N). Choose d such that,

ed mod ®(N)=1 (D

In the wake of these problems are many proposals for the
direction of modern cryptography. There are:

1) Lattice basis cryptography

2) Code base cryptography

3) Multivariate cryptography.

Some of these are the second runners up of NIST’s call
for paper in cryptography 2019. This means that they are
still being considered in the second round of NIST standard-
ization for modern cryptography. It is a scientific fact that
any mathematical problem is there to be solved. One can
clearly the reason for NIST call. However, considerations
were only given to the use of these schemes to deliver AES
keys following the 50year old trend or tradition.

This means that our crown jewel cannot depend on any
mathematical function based on Fermat’s theorem or any
other. To achieve the desired goal. A favorable design will
be that which references a quantum cryptographic model
(QCM) as a relevant strategy for securing the internet in times
to come. Otherwise, quantum computing will wreak havoc
on modern day cryptography whenever it finally gets into
the hands of consumers. Let us take a serious look at what
a lattice really means in a mathematical sense of it.

A. THE PROBLEM

If anyone can obtain the factors of the large number N with
d (public key) any message will be decrypted. At the time
of writing it is known that RSA is cracked. You should also
note that Quantum computing has the potentials to solve the
math and/or crack these large primes (V) in a short period of
time according to Shor’ Algorithm [2]. The time to perform
the feat is usually said to be in polynomial time. In that
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FIGURE 1. Brute force analysis of AES 256.

case the RSA math show earlier, will no longer be a hard
problem of a non-deterministic polynomial (NP). Qubit Is the
stable standard signal state of a quantum computer: Again,
the development of any quantum resistant algorithm could
not afford to dismiss that notation typical to a qubit. In fact,
one cannot neglect this idea and it cannot be over empha-
sized. This new qubit factor will also render any form of
primitive cryptography useless. Another problem arises with
the periodicity of lattice constructs. That begs the question.
Is there a way to infuse the lattice with enough diffusion
that will trigger more than translational changes in bases
to bring about entropy and complexity so dynamic that it
will be impossible to decipher the permutation of the basis
transformation?

Another serious problem that we must consider lies in the
diffusion of AES.

1) Maximum distance separable (MDS) matrix intro-
duced by Shannon Claude. — This is an identity matrix
multiplication of A to produce a transformed matrix A;
Let the matrix A = % , by joining identity matrix I to
A. This introduces an invertible linear transformation.

2) Ciphertext produced after the transformation of AES
will have just a key to lead to a plaintext.

3) The constant nature of the produced ciphertext will
make it susceptible to byte-wise brute-force attacks.
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According the substitution box (S-box) AES. This matrix
is based on Rijndael finite field. An attack byte-wise will
be successful today. One will have about 256 options or
combinations for each byte in the 32byte arrangement of
256 bits block of AES. This means that in a 256 bits AES
block size. Each sub block contains at the most 4 bytes or
32 bits. There are about 256 elements that could fit in one
sub block at some point. This sub block will have about (256
s-box elements * 32 sub blocks) = 8192 combination of s-
box elements or 32bits in it. Here 32 bits is equivalent to
double words. Attacking bitwise could seem hopeless at first
but going about the attack from byte perspective is another
smart way achieving the same goal. A study of the diagram
in figure 1 will quickly show why attacking in byte-wise will
be successful. It is much better to integrate the bits in a way
to have more structure or visual patterns.

lll. SOLUTION TO THE PROBLEM

Observation of the weaknesses of AES is the motivation
behind this paper. A generous diffusion of semantically un-
sound messages was presented on behalf of AES. Going
by the facts known about AES, such entropy cannot be
accomplished in less than 14 rounds. In fig. 1 notice the
patterns in cipher key 1 and ciphertext 1. This is clear by
a visual comparison to state, 32byte of structured messages.
After the completion of the 14th round of AES, the resulting
output is ciphertext 1. Imagine using the S-Box directly with
256 elements where each matrix cell has the capability of
32bits or more. Lattices in their natural forms explain this
abstraction in a new light. What then is a lattice?

A lattice is a set of all integral linear combinations of
a given set of linearly independent points in Z". For a
basis B = by,...,bq we denote the lattice it generates by
L(B) = {Z?ZO; xibi|zi € Z}. Its rank is d, and the lattice is
said to be of full rank if d=n. We identify the basis b1, ..., by
with the n X d matrix containing b1,...,bd as columns, which
enables us to write the shorter L(B) = {B,|z € Z¢}. We
use both the terms lattice point and lattice vector to describe
the elements of a lattice basis.

A bit more time will be spent to introduce a new insight,
towards quaint understanding of the shortest vector problem
(SVP) of graph and path. While it is generally a consideration
for being an NP-Hard problem. Randomization reduction
without considering the face holding the basis is not enough
to establish this as a case of NP-Hard problem [3]. That
alone, could have been insufficient, or not good enough
for quantum resistant encryption. Quantum computers are
created to solve mathematical problems impossible to human
mental speed. If a lattice basis must be retained as the frontier
of modern cryptography; it must be an interesting one with
some elegant properties that could be reduced to randomized,
non-deterministic and deterministic biases. The intention is
not to be overly critical. There is a need to be proactive. One’s
intent will be to find the right solution out of many; not to
accept a solution that is not ripe. This is neither to wait for
a solution to present itself. A potent lattice or ideal lattice
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and its image must be dynamic, with certain rigid rules, yet
precise in decision making affirmative to the output. It must
possess a distribution of probabilistic basis transformation
with respect to the input and output (references are made to
homomorphic encryption). — The image of the lattice basis is
a bounded matrix of interest. Let us look, once more into the
relationship between encrypted and decrypted messages.

A. ASYMMETRIC

EncryptedData(c) = msg® mod N )

DecryptedData(msg) = ¢ mod N 3)

It is clear from the above that an assailant only requires
(d, N) to decrypt the message. Although, this does not apply
to AES in mathematically sense. It quietly applies in byte-
wise brute force of AES cipher key.

B. SYMMETRIC

Let Ct = cipher template length; where the length is the
same as the keys used to perform wholistic encryption of the
message. The message is added to extended key K of period
D which could be a 64 bits passphrase or more. Note that,
a modulo arithmetic (XOR) is used herein. It is a common
knowledge that AES is one form of the family of symmetric
key cryptography. The strength of AES is synonymous to the
irreducibility of polynomials of GF (2%) or 8" degree. Sym-
metric key cryptography (SKC) uses a secret key: They are
commonly known as passwords or passphrases and mostly
manual driven. It is interesting to note that the key used to
perform the actual encryption in AES sometimes are derived
from these passwords via key derivation mechanism capable
of a pseudo random number generator (PRNG). Password
based key derivation function (PBKDF-2) is a good example.

The block sizes of AES are defined (128bits, 192bits
and 256bits). These and many other reasons add to their
weaknesses before quantum computing brute force attacks.
PRNG will generate AES keys of 16, 24 and 32 bytes to
match the block sizes respectively. If the message doesn’t
fit the block. It is then padded with IV so that it will fit the
chosen block. Grover’s algorithm is a quantum algorithm that
finds with high probability the unique input to a black box
function that produces an output of a defined value, using
just (OV/N) evaluations of the function, where N is the size
of the function’s domain. Despite the effort vested in making
AES secure, Grover is saying that it is probable half the time,
to brute-force AES — 128 in 254 jterations. At least, one can
unravel useful information that will lead to breaking of such
scheme using quantum computer as a level playing field [4].
Here in, it is implied that the time is in quantum domain not
polynomial time.

ECSMID proposes the use of seeds in social security
numbers, driver license number and phone numbers. It is
recommended to use 10-20 digits number arranged in one
order. These numbers could be picked off vectors capable of
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FIGURE 2. LFKI default matrix is 16*AES.

becoming seeds for generating 680 digits number from each
position on the matrix of n * n. We will talk more about this
on another paper. These data are fed into the algorithm just
like traditional classics and/or primitives of today.

EncryptedData(c) = (msg, D) : (msg xzor D) mod Ct
“)

DecryptedData(msg) = (¢, D) : (cxor D) mod Ct
®)

AES cipher substitution is directly derived from the sub-
stitution box (S-Box).

In Fig. 2 transformation of LFKI is completed via the
natural occurrence of the lattice basis which under observa-
tion was noted analogous to OKT. One can say there is a
similarity between the new protocol and AES. It is necessary
to perform an exercise; a proof by visualization. This will
help us to clearly establish without a doubt these claims.
We will attempt to prove this abstract connection, not only
to dispel doubts, but to deepen understanding of the trail
modern cryptography could blaze.

AES will suffer a similarly if not the same fate as RSA.
If we do not apply this new mechanism. The future of
quantum computer will certainly vilify it as well as any other
contraption that does not comply to the dynamic reality of
quantum computing model (QCM). We don’t really have
to wait into the future anyway. People are already saving
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FIGURE 3. Dynamic LFKI rounds.

petabytes of data in the cloud. In due time these could be
disclosed as soon as quantum computer becomes available.

AES will suffer a similarly if not the same fate as RSA.
If we do not apply this new mechanism. The future of
quantum computer will certainly vilify it as well as any other
contraption that does not comply to the dynamic reality of
quantum computing model (QCM). We don’t really have
to wait into the future anyway. People are already saving
petabytes of data in the cloud. In due time these could be
disclosed as soon as quantum computer becomes available.

The minimum OKT necessary is 5 modes. Which simply
translates to 5 different ciphers because the state is mapped
or substituted to the knight template (K'T},) to produce ci-
pher templates (C'T},). Structured messages are fed into the
CT{n<s5). This method will accommodate future changes in
code points and or code units. This will cover any future
changes in the value sizes for types e.g word (WORD),
double word (DWORD) and quantum word (QWORD).

One of the major advantages observed in this paper is the
fact that all other inputs in the circuit change except for the
original message. This is a superior mechanism to surpass the
challenges of quantum superposition.

C. TECHNICAL SPECIFICATION

To solve this problem from a technical perspective. It is
imperative to draw an analogy from 3D shapes and their
properties: Especially surface area (face) with breadth. A
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cuboid and other favorable dimensions of lattice basis will
suffice for this development. Their properties like face, edges
and vertices come in handy in unbounded and bounded space.
You can get a flux from these properties as a result of vectors
forming regular point in Euclidean space to enhance orienta-
tion as seen in lattice basis. In programmatical (code) terms,
the idea of a matrix transformation: Translation, transposi-
tion, and substitution serves us well by forming an algorithm
that covers lattice face key infrastructure and architecture.
The face on lattices are commonly known to have points
or vectors. Same goes to a matrix which is a quantitative
representation of the lattice following certain strict rules.
Therefore,

Total flux = //f.n.dS [where n = 1]. (6)

For our purpose the vector accent will not be needed. As
scalar and vector delineation blurs in the region of SVP.

It means that any normal face in a shape will have a
regular arrangement of point in Euclidean space (lattice). In
this sense, following the elements of Galois’ field; a matrix,
mathematically can hold a lattice’s contents: It is then noted
that a lattice is only a form which can be reflected or trans-
lated. It will have points upon which forces can interact with
it. This means that changes in choosing any of these points
could change the matrix or the indices they bear. Below is
the explanation of informational entropy.

Mathematically, this is expressed as H(C) = H(M|C),
where H (M) is the informational entropy of the plaintext
and H (M |C) is the conditional entropy of the plaintext given
the ciphertext C'. This implies that for every message M and
corresponding ciphertext C, there must be at least one key K
that binds them as a one-time pad. Mathematically speaking,
this means K > C' > M, where K, C, M denotes the distinct
quantity of keys, ciphers and messages. In other words, if you
need to be able to go from any plaintext in message space M
to any cipher in cipher-space C' (encryption) and from any
cipher in cipher-space C to a plain text in message space M
(decryption), you need at least | M| = |C| keys (all keys used
with equal probability of ﬁ) to ensure perfect secrecy [5].

It is also a standard practice to increase entropy by in-
troducing seed candidates capable of deriving cryptograph-
ically secure pseudo random numbers (CPRNS5), silent noise
(passphrases or codes) penetration and other manipulations
that permeates cipher text to remove structure in plaintext
(original message) increasing irrepressible entropy in the
ciphertext. This could be achieved through modulo arith-
metic by adding (OR-ing) numerical values of passphrases
(characters, special characters) of the UTF-8 to the original
messages. This will be fully explained later in this paper.
According to Shannon, the common knowledge of entropy
is in the information content H,, of a value x that occurs with
probability Pr|x] is

H, = —logs(Prlz]) @)
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The entropy of a random source is the expected informa-
tion content to the semantically sound output representation,
that is

H,=F[H,] = ZPr[x]Hw = Z —Pr[z]log(Pr(z])
’ ’ ®)

It is submitted in quality from observation: That it is
not a common knowledge to think of n = with respect
to the equation of Galois field GF(2P) which essentially
claims its validity from Euclidean space. In programmatical
(code) terms, the idea of a matrix translation, transposition,
transformation and substitution serves us well by forming
an algorithm that covers lattice face key infrastructure and
architecture. Imagine that, this is in opposition to present day
symmetric cryptography limiting scopes.

In cryptography this means that those points can represent
encryption and decryption components of data by satisfying
GF(P™) where n — oo .The flux analogy herein depends
on the surface area or orientation of the shape and forces
(analysis) on them. The changing flux will be likened to the
changing entropy at every turn of the algorithm (operation)
owing to noise. The total flux is the product of the basis
surface area, force and normal vectors. It is therefore possible
to create a system of quantum immunity or resistance for the
computation by replacing the vectors or points with charac-
ters of written words. Carefully chosen, are certain Unicode
characters (i.e numbers). These formulate the standard state
(ST): Subsequent generation of numbers from these face/s
or seeds, following position P(;,—g) — P(n—255) give rise to
other sets (680 digits long) which could be used as cipher
templates (CT). These points become numbers generated
from the chaotic regularity found in faces of sky, snowflakes
and silicon shapes (of course in 2D and 3D).

The proposed algorithm comes with a powerful wrapping
(Mode; — Modes or M7 — Ms) mechanism. That’s what
makes it possible to be used as an exchange channel in the
order of PKI public and private key. However, the school of
thought defers from the popular opinion of Shortest Vector
Problem (SVP) associated with the current lattice basis so-
lution for cryptography. It is deduced from the research that
open knight tour on a lattice face is a harder NP problem
than the notion of SVP [6]. It cannot be solved by a quantum
computer as long as the matrix is equal and greater than 16
for the columns as well as the rows: Given a matrix in column
major (¢, ), where a full rank is n X d. let n = d. It follows
thatc > 16 <.

Note: The point closest to the chosen vector in SVP is
orthogonal to all other points of interest. Finding the short-
est path is the reason why this problem is of interest to
cryptographers. This can never be deducted with certainty
needed for integer mathematics. In lattice diagram ‘A’ fig.
1 the periodicity is very clear more so, all points sought to
determine the shortest vector path are orthogonal. Now, look
very closely at lattice diagram ‘B’ fig. 2 The periodicity is
also clear as the denoted impression in ‘A’. Although the

5



IEEE Access

(3,0 y
Y T 52 e
y£5 1 //
/ /
o o0 100 o o0
oe o0 ‘ (-]
- i
o o00vo00
o o0 o0 o 0
1| 2 20 |1 ‘ 15 | 22
19 4{ 6| 21 31
27 v PR fo /
- = ~ 7
3 7|2 ["30 |9 o/ [ o/ V4
e /5 77 ¢ Je FoN Jol [eof [
N7 B/ % 1w 7 [87 Jo7 Jfel =/
/1 1 /20, 2 /23 ° Lol Ao LA e /
oY 35 [ 29 /30 BV WAL o o/ -/
10 20 30 40 50 60 4

z

FIGURE 4. Lattice base and matrix mix.
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bases are replaced by numbers just like a matrix would have
within. When the numbers or the lattice bases are rearranged.
A measure of difficulty arises in a way the problem becomes
harder. The path to finding the shortest vector is no longer
a linear one. Or is it? By Pythagoras it still is orthogonal
respecting the base orientation.

A quantum Turing-machine with qubits orientation cannot
sniff with certainty the positions of any legal open knight
tour (OKT) on lattice face if the column (c¢) and the row
(r) of the matrix are respectively of ¢ > 16 and » > 16. If
the position (P,) that generates any set of cryptographically
secure keys is unknown. If any set of keys generated from the
matrix positions (Pn) follow n! where n > 256 is unknown. If
comparing any two positions (P;) to (P») on the lattice does
not sniff out similar 680-digit long keys. Giving any input, it
is said that the decision is impossible. Else, this is probably
the hardest NP problem and will not resolve in polynomial-
time.

P # NP and no one is sure of P = NP as it is not
polynomial resolvable as earlier explained. In corollary, one
can find a common NP-Hard problem which allows similar
inputs as the OKT. In that case lattice basis are best suited
for this reduction. Let X represent a lattice with regular
point(s) in Euclidean space. It is agreed on equal footing
that Hamiltonian path and open knight tour (OKT) are NP

6

[®/ Je f-Jer . &/ _/

FIGURE 6. 3DM reduction to OKT.

Complete [7].

It is also common knowledge that the Shortest Vector
Problem (SVP) of a lattice-based cryptography is an NP-
Hard problem. See Ajtai works for details. We will only try to
reduce the hard problem to NP to prove that OKT is equally
a hard problem.

To prove that OKT is a hard NP problem: We only need to
re-state the theorems. We will follow these steps:

1) We deduce that X € NP.
This could be done in (i) or (ii)
(i) Polynomial time algorithm
(ii) Certificate and verifiers
2) Reduce from known NP to the problem Y to X.
AO)IfY e Pthe X € P
@) IfY e NP,then X € NP

X not in P unless P = NP

X is NP Complete if X € NP and X is NP-Hard.

X is NP-Hard if every problem Y € N P reduced to X

In this case inputs for X and Y are the same e.g coordi-
nates, Vp or Pn. There will be no polynomial time algorithm
for this proof. There is still a known problem 3DM (S) that
is NP-Hard. If we can fit this problem into Y, then Y too is
NP-Hard.

Proof: Y is NP-Hard

Given: 3D matching (variable gadget). Disjoint set x, y, 2
each size n given triples T' C x x y * 2.

Is there a subset S C T such that every element, € xtUyUz
is in exactly one, s € S. Following a legal knight move OKT
could only be on black dot (Y) or white square (N) at once?

Method: Reduction of X to Y.

Three-dimensional matching (3DM) is NP Complete (The-
orem). It is going to be a graphical prove. To make this
easy, we set up an 8 by 8 matrix of black dots and white
squares. See Fig 6. Let X represent the lattice basis (SVP) and
Y represent OKT. Lattice basis (SVP) had been reduced to
NP-Hard problem earlier [8]. Other precedence, 3-SAT was
reduced to 3DM [7].

To Prove: S < pY (If we could solve S we could solve Y).

It is noted that in a deterministic Turing machine the
answer is in the affirmative for all inputs following the
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algorithm. You have the graph and the path to trace. This is
quite analogous to the knight on a standard chessboard. This
same analogy is akin to non-deterministic mechanism given
any input for decision of Y (black) or N (white). In this case.
it is more like a black dot or white square.

Following a certain strict rule which compels the knight or
the input to touch on one of two (2) nodes if at the vertex
(corner); four (4) nodes if on the edges and eight (8) nodes if
at the middle of the board. It will trace the path to the nearest
node where no backtrack is allowed. This solution could go
in a loop within a changing or expanding bases.

Open knight path traced from any corner of n x n graph
will have 2" nodes of connection for 3 moves at the most.
This is counted from n = 0 position (Initial point) where
n = 0 is not really a move.

1) The assumed position (F,,) on the corner is not counted
as the first move such that no move is considered for
initial position n = 0. This means that the number
of nodal connections at any chosen path will have 2"
nodes; where 0 < n < 3. Only one node will be
activated to move on to the next point of decision in
the path. This is how the numbers are generated.

2) It quite appropriate by deduction to assuage an incon-
clusive solution to the open knight tour. By doing so
we reduce it to an open knight problem (OKP).

D. END OF PROOF

The open knight tours with the problems they posse satisfy
the condition of 3DM where in, a response of true (Y) or
false (N) is entered to satisfy that one element of the triplets
that could be held in T. If the path found for the legal knight
is correct. The clause must be black dot else white square.
Path traced by legal moves, is a certificate which the machine
must verify. Counts of all path are taken, and all repeats are
disallowed. One can also say that it mimics a polynomial
algorithm satisfied by the input and output of instruction
sets by counting black as a YES or white square as a NO.
This method does not trouble it with the luxury of garbage
collection in the circuit for fear of tautology [9].

Notice a clear demonstration that there is no need to
perform the garbage collection step in this implementation
reference. The said technique is performed as an extra layer
in the reduction to show that the set S will connect to every
other dot in Euclidean space. Relying on the above claims,
premises and theorems we submit this reference specification
of an algorithm that combines symmetric and asymmetric
cryptography using zero knowledge triangle flow and homo-
morphic encryption, standing strong enough to resist attacks
from quantum computing. - Lattice-Face Key Infrastructure
(LFKD)- It recognizes and applies:

1) Public key encryption - 2048 bits AES-hybrid is used

for encryption in wraps or modes

2) Key encapsulation - positions of key sets are encrypted

with msg and separated

3) Digital signature - attributes are formed and stored as

encrypts (HE properties are used)
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4) Hashes are not used in the classical sense for authenti-
cation: They only suffice for initial plain text integrity
(digest) check

5) CRC or checksum is not pushed here because of HE: If
the hashes match, the original plaintext is the same as
the current one.

The minimum modes for any encryption done is usually 5
or M5 for this system. However, you can encrypt anything
(a message etc.,) from M1 to Mnth. This security could
be applied in telecommunications, cyber physical systems
(CPS), IoT, information technology (IT), aeronautics, lithog-
raphy, medicine and health, retail, finance and education.
This infrastructure shows the promise of that could possibly
become the cryptographic hybrid of all times.

E. INFRASTRUCTURE OF LFK

It has an elegant, simple and easy to implement approach.
Our social mode of interaction on the media had made
possible for us to easily figure out what works. Many profiles
today are comprised of attributes. Therefore, we reduce data
into certain groups for seemingly public key implementation.

Digital Nucleus Aggregator (DnA): These are attributes
that can be converted to encrypted strings for various inter-
mediate representation in the digital space. e.g Name, SS#,
eFRI, DOB, PIN, Address, password Gender, Driver license#
etc. It could be anything of your choosing. Profiles rely on
DnA as their building blocks for intermediate representation
in this reference. DnA are derived from profiles attributes as
we will demonstrate later.

Digital Data Nucleus Authority (DDnA): These are inte-
gration of multi DnAs. This could be held locally or exter-
nally in a data base or function-running code platform such
as lambda in aws cloud. The architecture creates a data bank
as good as a phone book of today. This is where all the
intermediate representation could be found in encrypt forms
following a homomorphic encoding or encryption algorithm.

F. ARCHITECTURE OF DATA
Let’s revisit the phone number as a seed input: There are
many orderly ways to pick out 2 distinct numbers from an
arrangement of 10 digits—> 788 890 6754.

However, we will first calculate the arrangements with
repeats in 788 890 6754. We start with:

8’s

Letn=10and k =3

nPk = 10!/ 3! = 604,800

T’s

let k=2

172!

distinguished arrangement = 10! / 3! * 2! = 1,209,600

The above means that there are 1,209,600 ordered ways of
arranging

7888906754

8889067547
8890675478
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8906754788

9067547888

nth

Furthermore, one can arrange these numbers in twos.
What is the arrangement of choosing from 10 two
digits (0-99)in five different sets? If we must arrange
these numbers in five sets of twos. It will be another
(10%9%8*7*6*5%4*3/21)/SWays or distinguished arrange-
ment = 181,440.

If and only if all two digits are distinct.

78 88 90 67 54

88 89 0675 47
889067 54 78
8906 75 47 88

90 67 54 78 88

...nth

Each of these numbers could be used as seed for 680 digits
long encryption keys: They become offsets and are only made
ready when needed.

There is a whole algorithm to address non-repeat of the
said digits of numbers and that is not within the paper’s
purview. Rest assured no number is repeated in the algorithm.
Each of these 2 distinct numbers (seeds) from the 10 digits
number arrangements are found on the matrix as positions
(P,). They will further generate another 680 digits long
numbers following the certain algorithm. The 680 digits long
numbers will be used as the encryption keys. Normally 5 sets
of 680 digit long from P,,—1 -+ + Py—2--- + --- P,—5 are
needed. At least, for the proposed reference implementation.
Each position generates a one-time set of 680 digits numbers.
In fact, the idea is richly emphasized in this paper.

Full M5 mechanism This method could operate on any
DnA propped by any attribute. Note we will demonstrate
DnA using password as input. We will also demonstrate
volumetric data scheme using the message and any DnA as
input for this algorithm.

You can also use the message C in place of the password.

Password + silent password = C'Ty > My encrypt >
[ciphertext)" [P spkt,][P kt,] = M

CTy + silent password = CTy > My encrypt
[ciphertexts) [P spkt, [P kt,| = My

\%

CTy + silent password = CTs3 > Ms encrypt >
[ciphertexts) [P spkt,][P kt,| = M3

CTs + silent password = CT, > M, encrypt
[ciphertexty) [P spkt,][P kt,| = My

\%

CTy + silent password = C15 > Ms encrypt >
[ciphertexts) [P spkty][P kt,] = M;

When an offset is added to the length of the encrypted
message C or C'T (ciphertext). That no longer represents the
length of the message. Rather a periodic random key D is
used to match the length of the message. This does not void
the condition of the classical stream cipher requirements:
Superficially, each byte of the plaintext and ciphertext are
one to one function (bijecture) since both share similar length
as the key size. However, a detailed observation proves
a distribution that shows n numbers of ciphertext for any
plaintext. There is an introduction of randomization by using
some random string (silent password (SL) as used randomly
in this reference). This increases the entropy of key length
bearing a perfect secrecy [10]. Especially the one-time pad
scenario cannot outlive the philosophy:

"Perfect secrecy is a strong notion of cryptanalytic diffi-
culty”.

Also note that in as much as the keys are seeded and
generated. The dynamic distribution scheme of these keys
makes certain; no expended key will be generated from the
faces of the lattice position (F,,) or the matrix. And neither
will the generated keys be used be used again. Every 680 long
key is used just once. Let’s explore volumetric data scheme
in this algorithm. We are XOR-ing the message with the
modular PIN (MPIN). A PIN is naturally 4-6 digits numbers.
In this reference two characters represent each of the PIN
numbers making the overall characters 2 * PIN.

Data + MPIN encrypt = CTy, — My encrypt >
[ciphertexty)[Pkty=1]"[Pspktn=1]"[P(M PIN)M,_5] =
My

M; + MPIN encrypt = CTy, — Ms encrypt >
[ciphertexts)[Pkty—o]"[Pspktn=2][P(MPIN)M,_s5,| =
My

Ms + MPIN encrypt = CT; — M;s encrypt >
[ciphertexts)[Pkt,—3)"[Pspktn—3]| [P(MPIN)M,_s5] =
M;

Ms + MPIN encrypt = CTy — My encrypt >
[ciphertexts)[Pkt,—4)"[Pspktn—4)| [P(MPIN)M,—s,| =
My

My + MPIN encrypt = CTs5 — My encrypt >
[ciphertexts)[Pkty—5]"[Pspktn—5)"[P(MPIN)M,_s.
NRM3MPIN es] = M;

Following the above process, the mpin (/ R) encrypt shown
is that of the recipients. If one is sending a message requiring
ZKP. For example, Msmpin of position (M PINkt,—3) is
stripped and sent with the message:

VOLUME 4, 2016
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FIGURE 7. LFKI kanban.

My + MPIN encrypt = C1s — M;5 encrypt >
[ciphertexts] " [Pkty—s]"[Pspktn—5|"[P(MPIN)M,_s,]|
NRM3sMPIN es] = M;

Note the removal of Mszmpin key positions. My +
MPIN encrypt = Cls5 — My encrypt >
[ciphertexts] " [Pkty—s]"[Pspktn—5|"[P(MPIN)M,_s,]
NRM3MPIN es] = Ms

On the receiver’ device there is MsM PINencrypt :
[Mampinencrypt] [P Mpinkt,—2]. Note the replacement
of the unstripped Mompin with Msmpin keys’ position
[Mampin encrypt])” [P Mpinkt,—3).

In this order a polynomial attacker may never be able to
go back to M1 if at all they gain access to the network.
Msmpin could be used as a digital signature of each user
in the network. This can easily incorporate in any API.

G. SIMPLY PUT

1) The M3PIN or any other mode chosen except for M1
and M5 will serve as the Public key and intermediate
representation (IR) for (ZKP)*###*

2) The seeding positions (Pn) serve the purpose of key
encapsulation (KEM)*###*

3) Signatures (reflecting biometrics this time) are infused
in the IR of ZKP#**#*#*

4) Public key encryption or any encoding is borne within
the scheme as a whole*****

H. C++ PACKAGE DEMONSTRATION
1) KnightSolver.cpp (this solves the open knights tour
with numbers » OKT)
2) st.cpp (This is the unicode component order of written
or spoken words » ST)

«96 chars for Latin-1 Supplement

«4 chars for ASCII punctuation and symbols
«26 chars for Lowercase Latin alphabet

«6 chars for ASCII punctuation and symbols
«26 chars for Uppercase Latin alphabet

«7 chars for ASCII punctuation and symbols
«10 chars for ASCII Digits

«16 chars for ASCII punctuation and symbols
«63 chars from Latin Extended A
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All are totaled at 256 bytes (2048 bits)

1) revnum.cpp (Reverse the cipher template derived after
mapping)

2) filecrypt.cpp (This does the mapping of ST to KT is
done with this)

3) KnightCell.cpp (The instruction codes for the knight
move is here)

4) main.cpp (this takes care of the implementation we
desire as driver code)

I. QUANTUM ATTACK DIFFUSION

Solution for unmasking some secret string: Password,
passphrase and keys favors a relative oracle fashioned in
quantum computing model with particle superposition setup,
following Hardaman’s transform to simulate a equal super-
position of two qubits ( x ). This will guarantee that the same
output (f(x)) is obtained from the quantum circuit. Simon’
algorithm [11] shows that it is possible to solve for the secret
string (s) in polynomial time following his set of instructions
for some Quantum Turing machine (QTM). The probability
of not finding a linearly independent vector could increase
from negligible

it 1
[Ta- k) =0: 288788 >
k—1

1
1 ©))

to substantial. In contrast, this notion further begs for
a countermeasure that supports quantum resistance against
any attack. This will be possible if certain conditions are
built into cryptographic algorithms. The mechanism will do
well if opposing dynamic strings are built into the algorithm
regardless of the model in question. Find these conditions
below.

Condition 1: Dynamic or changing secret keys should be
used for diffusion.

Condition 2:Dynamic passphrases should be used as this
follows 1.

Condition 3: Dynamic ciphertext if and only if 1 and 2 are
true.

Condition 4: The unsoundness of the input (message) is
satisfied and untampered for the given round.

These conditions trigger a corollary, that,

f:{0,1}" = {0,1}" (10)

such that there is a secret string

s€{0,1}",and f(z) = f(x®s) (11)

Superposition is not always the case in quantum com-
puter’s supremacy just like a chain reaction is not always
the case for a favorable outcome with nuclear radiation in
non-sinister production. The critical points in both scenarios
cannot be decoded with our crude instruments in our time-
space reference. We know that at some point a quantum
bits (qubits) could entangle. More so, atoms could engage
in chain reactions of a highly radioactive system. — In this

9



IEEE Access

case the critical point is as destructive as one’s inability to
quantify the time of occurrence.

To reenact the simulation presented in the excel sheet we
created a hypothetical quantum circuit that can probe for
balance and constant functions. After which it will account
for Simon’s (input s) or the inbuilt controlled quantity ( s) in
any n bit strings. Using 1 or 2 qubit/s. Preferably, 2 qubits.
Furthermore, we introduced an uncontrolled noise (input t)
after each Hardaman transformations within Hardarman gate
confines. The noise starts after the second pair of gates. It
will continue to the end of the equation rows. It will then be
measured for a balance or constant function. To find the (s ) in
Simon’s algorithm there has to be a constancy in the matrix of
the qubits used. Assuming the unitary gate is a black box. We
are yet to prove that one can no longer find the Simon’s (s )
after the introduction of the noise (t). A many to one function
will be required in order to find (s ). It cannot be a one to one
function: In that case you can never find s. This is why the (t
) introduction proves useful it removes the constancy.

The point stressed here, is to reduce the generation of
similar outputs by two bit-wise disparate inputs qubits. This
is the insight gathered from the research. It is important
for us to note that a continuous output stream of linearly
dependent strings off a quantum circuit or any other circuit is
needed for the unmasking of the semantically sound strings.
Thus, consideration is given to a diffusion mechanism as the
foremost approach running parallel to Simon’s algorithm.

Where f : {0,1}"™ — {0, 1}"; is bit-string output or input,

for s € {0, 1}" there exist another secret string ¢ € {0, 1}"

such that f(z) # f(z &) s).

— faQs) # fz Q) s) @t
#9((f(z @) ) Q1) Q) #

o a1 (Tt ®Sn—1) ®tn_1 .
i(ih(g(f(2) Q1 Q) Q1) Q1) K1)

J. RESULT

Practical and effective run of the simulation in excel sheet
shows in one hand a patterned (t, on the other hand a
randomized (t) in all sampled modes. As the inputs (t) are
introduced into the theoretical circuit. The overall output of
the ciphertext observed: 1. The (t) patterned shows alternat-
ing periodicity between odds and even modes. 2. The (t)
randomized lacks periodicity at all modes sampled. Both lack
traceable patterns on a granular level for example for a sting
given any given length.

In the simulation 2 qubits (2*4bit-strings) of equal su-
perposition are used to demonstrate the basic modes. Any
inconsistency or weaknesses there in, are quickly spotted in
this configuration. This insight designates with certainty a
larger understanding of complex configuration demonstrated
in (16 * 16) bytes matrix where a basis colonizes (8-32 bits in
one address of 256 elements). One can improve the validity of
this corollary with certainty by following the exact steps used

12)

10

in solving Simons’ problem. The difference is the continuous
introduction of diffusion with the secret (t) fed to the oracle at
every turn in the circuit or quantum circuit. It is clear that (t)
will mask the output fast enough with enough certainty most
of the time. Microsoft excel sheet was used to bring the idea
to a larger crowd of non-mathematics population. Of course,
there are many quantum simulation software like ‘mathlab’,
QuEst, Qrack, Scaffold and many more.

IV. ADVANTAGES (NEW APPROACH OR AXIOMS)

1) GF 2P where p < 8; solutions are no longer bounded
by irreducible polynomial of 8" degree. GF 27 is
submitted under new conditions, where p! < 8 & p >
8 | oo (or goes to infinity).

2) Non-Deterministic reduction insinuates that hard prob-
lem arises from 16 * 16 matrix e.g We embodied OKT
as a hard (NP-Complete) problem with other complex-
ities and biases to derive ciphertext from cryptographic
engine. It is also noted that this very system does not
originate lattice base cryptography but shades light on
the form.

3) Knight’s tour (KT) could NOT be solved in polynomial
time within unbounded field. A matrix of scope is of
bounded field that could hold solutions of KT just like
the elements of lattice basis. The changing nature of
the nodes owing to the decision needed to advance to
another element happened as a deterministic reduction.
There is also a randomized reduction of seeding the key
generators. The bigger the scope the more time it will
take to negotiate and decide a fitting node just like in
neural networks. With this in view balancing symmet-
ric stream of block (key) significant size, encryption
time and implementation could yield cryptography of
the future.

4) Similarly, AES exhibits the characteristics observed by
the movement of the values held in the indices of GF
of scope 16 * 16 matrix or lattice basis. Each knight’
tour opens at O position by tracing a clean sweep the
elements of the matrix and closes at another position
255. Therefore, the new approach:

a. Sub bytes

b. Add round keys
c. shift row

d. mix columns

Using a mapping scheme of ST to KT and multi-mode-
wrapping to achieve the said states.

Irreducible polynomial is no longer a question of sym-
metric key cryptography for the fact that quantum
computers will probably solve them. The new protocol
is a non-suspect because it has no key schedule or in-
vertible linear. To understand this context, it is possible
to draw an analogy of 3-D space e.g a cube. A cube has
faces (6), edges (12) and vertices (8). We are using the
faces here: These are external to the popular context

VOLUME 4, 2016
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FIGURE 8. (t) parallel in Simon’ algorithm
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FIGURE 9. Input (t) in pattern .

TABLE 1. Pre-quantum computing (Currently).

Encryption (bits) | Size of Dword (bits)) | Stable standard signal state (unitless) | Block size (bytes) State of the Art
256 8 2 32 bytes 256 bits AES
2048 8 2 256+ bytes 2048 bits ECSMID
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FIGURE 10. Input (t) without pattern.
TABLE 2. Post-quantum computing.

Encryption (bits) | Size of Dword (bits)) | Stable standard signal state (unitless) | Block size (bytes) State of the Art
256 8 4 32 bytes 128 bits AES
2048 8 4 256+ bytes 1024+ bits ECSMID

in cryptography. They have the largest set of vectors
(numbers) vis-a-vis largest flux.

Cipher keys are no longer saved as they are generated
from any position on the matrix (lattice face) upon
request. Each position has a different set of numbers
to be generated. 5 sets of (680 long digits) from 5
different positions are chosen from the matrix of 16*16
(256 bytes or 2048 bits). Attributes are chosen prior to
be arranged into n5 different modes of encrypt for each
attribute or payload fed into mode one, all the way to
mode five (M1-M5).

The keys always change for any single message be-
cause the position on the lattice face changes as well.
You can get started from any indexed point or vector.
The origin 0 to any other part produces a different
entropy flux. The order of these positions is seemingly
regular (deterministic), they generate chaotic set of
numbers. A new set of 680digit long numbers. This
knowledge reveals the changing nature of the message’
ciphertext as well. When similar contents are encrypted
the ciphertext are decisively different in the new order.
Thus, hashing could only be necessary for cyclic re-
dundant check (CRC) or message integrity check. P! =
NP Il P not a subset NP.

The output or ciphertext from the message input in M 1
is used as input in M2. The ciphertext from mode two
is used as the input in mode three (M.). The ciphertext
from mode three is used as input for mode four (M4).
The ciphertext from mode four is used as input for
mode five M5. This protocol shows the characteristics
of homomorphic encryption mechanism (HE) [12].
The homomorphic encryption (HE) properties makes

5)

6)

7

possible the flexibility of the algorithm (M1-M5) as
public key encryption management. These encrypts
from this wrapping technique are used for ZKP.

The complexity is O (N = message.length )

Key encapsulation mechanism (KEM), digital signa-
ture and seeming public key encryption is built within
the algorithm from the scratch. The change mode mix
of attributes e.g MPIN, eFRI, Address and Password
can give IAM operations facilitating god mode per-
missions in all kinds of environments with respect to
business logic.

Plaintext to ciphertext relationship is (1: n>1) number
of ciphertexts: This is necessary to establish HE.

8)
9)

10)

V. ASSUMPTIONS

1) Modern primitives of cryptography only recognize 2S
or 2 stable standard signal state. e.g 0/1
Post-quantum cryptography must recognize 4S or 4
stable standard signal state e.g various atomic state or
photon’ superposition.
We assume an ideal environment without anomalies in
the logic circuit.
We assume a high level of diffusion for the enhanced
(replacement of block size limitations with limitless
streams ) AES black box.

2)

3)

4)

VI. ANALYSIS OF QC LFKI
We summed up axioms based on the current information and
the implementation of modern cryptography.

The table is a potent and simple. An approach to presenting
a quantum-immunity or resistance cryptography. This sim-
plifies the complexity to understanding the work of cryp-
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tography done with primitives of lattice basis. It is clear by
now that quantum computing will be the death of AES and
many other crypto systems. The nature of quaternary number
manipulation makes this possible. Do check out the C++
operation of this algorithm as well as the android application:
https://youtu.be/sx0YBK4RYcw
https://www.youtube.com/watch?v=feWVdhwkYJk

SETiamNJADNm»DE"¢Y »#ECDNdAAIjd
Nij#Yam#N'6NA; A»D¢:AINA; A:N'Ced
ANACeENE:AA»d'#:ANa'<Né:N'CadNEé
d'INéNijNYéa: YN'¢NARE#a:NEETiamNj
ADNmM»DE'6Y»#ECD<NSETIamNLADN
Q»DE"eY »#ECDNadNT#JAANGE:N#dDij
ijA"»amNm»DE'¢Y»#ECDINdENAEand'
NIA'NEdN'#[N#TEE'NdBijijA"»amNm»
DE"'6Y »#ECD<g1aJpl

FIGURE 11. Sample 1 CIPHERTEXT.

)AAnla@{aeDaRe §Oera Eediaayidya
élaan@g0daiare0>aDJaia>DgEOIaD
SEOBA>baRiga>bBig@IE>BIENTD O
T9DOEQYDEQI>e@g0ai nal>@~ AAnI

ad{ae@aRe gOéna Ee@P)AAnIa@Ca

eD«Re gOena EeoiigAalap@O>aale

yyagRia@anre gOéRa EeDBIOTAIRIGD
nag@AI@gan{@aAOAgDIeyyagRia@are
TgOéRra Ee@é|lgal

FIGURE 12. Sample 2 CIPHERTEXT.

MESSAGE TEXT: " Advanced Encryption Standard
(AES) is a symmetric encryption algorithm... Following is an
online tool to generate AES encrypted password and decrypt
AES encrypted password. It provides two mode of encryption
and decryption ECB and CBC mode."

We mentioned ASCII wide character for C++. However,
Unicode representation were explored with java for those
unfamiliar with C++. You can run the ciphertext output on
‘cryptool’ to see how it defies today’s analysis of cryptog-
raphy. At this point, I am able, to show that each instance
of message encryption produces distinct ciphertexts. There
could be a contextual similarity yet the ciphertext of the
smallest character in the message will be different at every
iteration. This is against the prediction of cryptographic
primitives. However, it is a strength we need to tap into.
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VIl. CONCLUSIONS

One might not fully understand all the possibilities in the
proposition of the algorithm. It is imperative that interests
remain piqued to the possibilities pristine in an area requiring
courage and anomalous thought process. It is clearer that
a removal of the garbage collection phase in reduction of
SAT to 3DM is relevant as well as the removal of certain
traditions of computer science tantamount to the growth of
cryptography. These loops back to the new face of a lattice
structure. Where the basis collation follows a certain set
of strict rules. Practice had shown the decadence of the
paradigm of one plain text and one cipher text: Where in,
a key leads a plain text to a cipher text. The information
provided shows clearly a fitting premise indicating: The need
for intermediate representation (IR).

More so, that falsification of any responses, whether it
be verification or response fostering secrecy of the hidden
message could be impossible in a bounded abstraction.—
IR. Key encapsulation and exchange management owe their
relevance to the need for distribution of keys. The supply
of digital signatures could be viewed as a big part of the
countermeasures to support many unconventional devices
seen constantly online. The number of devices; need for
distribution of data and the mechanism involved makes these
methods infeasible. There is great need for a new direction
in cryptography. An absolute reliance on over 50year old
public key infrastructure, public key distribution and the
encompassing embodiment or technology undermines the
growth of cloud-computing, processing power and emerging
innovations as such will fail us when we need them the
most. This work underlines areas where the old ways must
be improved and other notations that address open problems.

Mathematical functions that satisfies one reduction bias
for NP complete problems, can no longer lead cryptography
in the age of quantum computing. These problems are no
longer considered hard problems. Moving forward, there is
a need for harder problems within the set of NP problems.
We surmise that giving the infinite samples of lattice or
matrix vectors: They are indeed more than capable when
dealing with the challenges posed by quantum computing.
The regularity of the points in Euclidean space are endowed
with chaotic arrangements within the lattice basis. Especially,
when the individual basis of the construct are reduced to
cryptographically secure numbers. This advantage is owed to
the elements of the Galois field’s and their expansive nature.

The LFKI generation of seeds and keys for encryption are
much more efficient in entropy, fast, backward compatible on
hardware/software. They are transparent, visible and fittingly
complex. We have built several applications with this to note
the interesting flow of this security architecture. Many other
implementations of this skeleton abound. This has a great
potential for possible commercial uses. Let us know what you
think and what you will do with this as well as what you will
like us to modify together. We plan to continue the research
work to promote and share this new direction with you all.
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