
Is Information-Theoretic
Topology-Hiding Computation Possible?∗

Marshall Ball† Elette Boyle‡ Ran Cohen§ Tal Malkin¶ Tal Moran‖

February 21, 2020

Abstract

Topology-hiding computation (THC) is a form of multi-party computation over an incom-
plete communication graph that maintains the privacy of the underlying graph topology. Ex-
isting THC protocols consider an adversary that may corrupt an arbitrary number of parties,
and rely on cryptographic assumptions such as DDH.

In this paper we address the question of whether information-theoretic THC can be achieved
by taking advantage of an honest majority. In contrast to the standard MPC setting, this
problem has remained open in the topology-hiding realm, even for simple “privacy-free” functions
like broadcast, and even when considering only semi-honest corruptions.

We uncover a rich landscape of both positive and negative answers to the above question,
showing that what types of graphs are used and how they are selected is an important factor
in determining the feasibility of hiding topology information-theoretically. In particular, our
results include the following.
• We show that topology-hiding broadcast (THB) on a line with four nodes, secure against

a single semi-honest corruption, implies key agreement. This result extends to broader
classes of graphs, e.g., THB on a cycle with two semi-honest corruptions.

• On the other hand, we provide the first feasibility result for information-theoretic THC:
for the class of cycle graphs, with a single semi-honest corruption.

Given the strong impossibilities, we put forth a weaker definition of distributional-THC,
where the graph is selected from some distribution (as opposed to worst-case).
• We present a formal separation between the definitions, by showing a distribution for which

information theoretic distributional-THC is possible, but even topology-hiding broadcast
is not possible information-theoretically with the standard definition.

• We demonstrate the power of our new definition via a new connection to adaptively secure
low-locality MPC, where distributional-THC enables parties to “reuse” a secret low-degree
communication graph even in the face of adaptive corruptions.

∗A preliminary version of this work appeared at TCC 2019.
†Columbia University. E-mail: marshall@cs.columbia.edu.
‡IDC Herzliya. E-mail: elette.boyle@idc.ac.il.
§Boston University and Northeastern University. E-mail: rancohen@ccs.neu.edu.
¶Columbia University. E-mail: tal@cs.columbia.edu.
‖IDC Herzliya. E-mail: talm@idc.ac.il.

Contents
1 Introduction 1

1.1 Our Results: Standard (Strong) Topology Hiding . 2
1.2 Our Results: Distributional-Topology Hiding . 5
1.3 Open Problems . 7

2 Preliminaries 8

3 TH-Broadcast on a Line Implies Key Agreement 9

4 Perfect THC on a Cycle 13

5 Distributional-Topology-Hiding Computation 18

6 Distributional-THC with Hidden Sublinear Cuts 20
6.1 Feasibility in the Distributional-THC Model . 21

6.1.1 Ideal Functionalities used in the Construction . 22
6.1.2 The protocol . 23

6.2 Impossibility in the Classical THC Model . 24

7 Sequential Composition of Low-Locality MPC 25

Bibliography 28

A Preliminaries (Cont’d) 31
A.1 UC Framework . 31

B Adaptively Secure Distributional THC with Hidden Sublinear Cuts (Cont’d) 32

1 Introduction
In the setting of secure multiparty computation (MPC) [44, 30, 9, 19], a set of mutually distrusting
parties wish to jointly perform a computation, such that no coalition of cheating parties can learn
more information than their outputs (privacy) or affect the outputs of the computation any more
than by choosing their own inputs (correctness). Seminal results initiated in the 1980s [44, 30, 9, 19],
showed feasibility of MPC for general functions in many settings. The original definitions—and
most works in the rich field of research they gave rise to—assume the participants are connected
via a complete graph: i.e., any pair of parties can communicate directly with each other. However,
in many settings the communication graph is in fact partial (either by design or by necessity).
Moreover, as we discuss below, the network topology itself may be sensitive information to be
hidden.

Several lines of work have studied secure computation over incomplete networks, in different
contexts, but without attempting to hide the communication graph. For example, beginning with
classical results in Byzantine agreement [26, 29], a line of work studied the feasibility of reliable
communication over (known) incomplete networks (cf. [28, 27, 6, 39, 11, 7, 5, 17]). More recent
lines of work study secure computation with restricted interaction patterns, motivated by improving
efficiency, latency, scalability, usability, or security, including [32, 31, 12, 18, 8, 33, 13]. Some of these
works utilize a secret communication subgraph of the complete graph that is available to the parties
as a tool to achieve their goal; e.g., [12, 18, 13] use this idea in order to achieve communication
locality.

Topology-Hiding Computation. Moran et al. [42] initiated the study of Topology-Hiding Com-
putation (THC), addressing the setting where the communication graph is incomplete and sensitive.
Here, the goal is to allow parties who see only their immediate neighborhood (and possibly know
that the graph belongs to some class), to securely compute arbitrary functions without reveal-
ing any other information about the graph topology. THC is of theoretical interest, but is also
motivated by real-world settings where it is desired to keep the underlying communication graph
private. These include social networks, ISP networks, vehicle-to-vehicle communications, wireless
and ad-hoc sensor networks, and other Internet of Things networks.

THC protocols have been studied within two adversarial settings. In the semi-honest setting,
the adversary follows the prescribed protocol but attempts to extrapolate disallowed information.
In the fail-stop setting, the adversary may additionally abort the computation of parties at any
point. Most existing THC protocols focus on the former, semi-honest setting, and this will also
be our focus in this paper. We mention that in the fail-stop setting, Moran et al. [42] showed
that THC is not possible except for extremely limited graphs/adversarial corruption patterns, and
Ball et al. [3] and LaVigne et al. [40] showed how to achieve it with small leakage, assuming a
secure hardware setup assumption, and assuming the hardness of decisional Diffie-Hellman (DDH),
quadratic residuosity (QR), or learning with errors (LWE).

For the rest of this paper we assume the semi-honest setting (although some of our results could
potentially be extended to fail-stop or malicious settings). In this regime, after several protocols
achieving THC for various subclasses of graphs (log-diameter, cycles, trees, etc.) [42, 35, 1] from
different cryptographic assumptions, Akavia et al. [2] showed how to achieve THC for all graphs
from the DDH or QR assumptions, and LaVigne et al. [40] from LWE.

1

Our question: information-theoretic THC. Existing topology-hiding computation protocols
provide a strong notion of hiding all information about the graph against an adversary who can
corrupt an arbitrary number of parties. On the other hand, these existing protocols use structured
cryptographic assumptions such as DDH, oblivious transfer (OT), or public-key encryption (PKE)
with special properties, or even stronger assumptions such as a secure hardware box [3] to achieve
more practical efficiency.

In this paper, we ask whether we can hide topology information theoretically, against a com-
putationally unbounded adversary (in the plain model, with no correlated randomness or other
trusted setup). A similar question, albeit only for (non-private) communication, was considered by
Hinkelmann and Jakoby [34]. They claim an impossibility result for the class of all graphs, as well
as a positive result showing an information-theoretic all-to-all communication protocol that leaks
specific information about the graph (routing tables) but no other information. In contrast, here
we are interested in (positive and negative) results for subclasses of graphs, as it is typically the
case in applications of THC that the graph belongs to a certain known class. Looking ahead, we
will see that what graphs are allowed and how they are chosen plays a crucial role for the feasibility
of information-theoretic THC.

Ball et al. [3] have also considered this question, and showed that in their setting—semi-honest,
arbitrary number of corruptions—the answer is negative. Specifically, they prove that even semi-
honest secure topology-hiding broadcast for four parties or more, implies OT. Note that standard
information-theoretic MPC for broadcast (where topology can be revealed) is trivial in the semi-
honest setting, since there is nothing to hide: simply “flooding”—i.e., forwarding received messages
to all neighbors—for sufficiently many rounds, works. Their proof crucially depends on the adver-
sary corrupting at least half of the parties, namely no honest majority. This brings up a natural
question, which we study in this paper:

Can we take advantage of a low corruption threshold to achieve information-theoretic
topology-hiding computation?

This question is particularly natural when we consider how fruitful this approach had been in the
realm of standard (topology-revealing) secure computation. Indeed, classical results [9, 19, 43]
show information-theoretic protocols for secure computation of general functions with an honest
majority. However, in the topology-hiding realm, this question remained open (and explicitly
mentioned in previous works such as [3]). In fact, the question was open even for the special case
of topology-hiding broadcast (THB), where no privacy of inputs is required.

In this paper, we prove several results answering the above question, both negatively and
positively, in different settings. All our positive results hold for general THC and all our negative
results hold even for THB. Below we first describe our results for the standard definition of THC.
We then discuss a new weaker definition of distributional-topology-hiding computation that we put
forward, together with our results for this definition (as well as motivation and applications of this
relaxation). Our results deepen our understanding of the nature of topology hiding, and point to
a rich terrain of possibilities and applications of THC.

1.1 Our Results: Standard (Strong) Topology Hiding

We start by presenting both feasibility and infeasibility results of information-theoretic THC ac-
cording to the standard definition from [41].

2

Broadcast on a line implies key agreement. We identify a large class of graphs for which
information-theoretic THC is not possible, even when the semi-honest adversary can corrupt just
a single party, and even without relying on input privacy.

Theorem (informal): Topology-hiding broadcast for a graph with four parties on a line,
resilient to one semi-honest corruption, implies key agreement.

Note that this theorem is for THB. Information-theoretic THC is trivially not possible here
because the graph is only 1-connected, hence no privacy is possible with one corruption [27] (recall
that we do not have any setup or correlated randomness).

At a high level, our key-agreement protocol considers two permutations of the four nodes:
G0 = (1−2−3−4) and G1 = (2−3−4−1) (see Figure 1), with party 1 acting as the broadcaster.
In this setting, a corrupted party 3 cannot distinguish which topology is being used: namely,
whether 1 is a neighbor of 2 or of 4. This gap can be used to achieve a two-party key-agreement
protocol. Consider an execution of the THB where Alice emulates parties 1, 2, and 3 while Bob
emulates party 4, and another execution where Alice emulates parties 2 and 3 while Bob emulates
parties 4 and 1. In both cases the messages that are exchanged by Alice and Bob—and so can be
heard by an eavesdropper—consist of a partial view of party 3 in the THB protocol.

The key-agreement protocol now comprises of repeated phases, where in each phase Alice and
Bob run two executions of the THB protocol. Each party tosses a private coin to decide whether to
emulate the broadcaster party 1 in the first execution or the second. If Alice and Bob toss different
coins, then either both emulate party 1 or nobody does. In this case they simply discard this phase
and continue to the next one. However, if they toss the same coin, an eavesdropper will not be
able to guess with more than negligible probability whether Alice emulated 1 in the first run and
Bob in the second, or vice versa; hence, Alice and Bob can agree on this bit.

THC protocol:

KA protocol:

1 2 3 4??

Eve

≈
12 3 4 ??

Eve ⇓

≈
1 2 3 4

Eve

Alice

output 1

Bob

output 1

12 3 4

Eve

Alice

output 0

Bob

output 0

Figure 1: Four-party THB implies two-party key agreement. At the top are two configurations of
the line, where party 3 is connected to party 2 on the left and to party 4 on the right. Party 3
does not know the location of party 1. At the bottom is the induced KA protocol, where Alice and
Bob simulate executions of the THB protocol. The transcript visible to Eve forms a partial view
of party 3’s view in the THB; hence, Eve cannot distinguish between both scenarios.

Extension to broader classes of graphs. Clearly, this theorem holds for any class of graphs
that includes all lines over n ≥ 4 parties (topology-hiding here means that the order of the parties
on the line, other than the two neighbors of the corrupted party, is not known, and in particular,
the location of the broadcaster is hidden).

3

Our theorem further extends by a standard player-partitioning argument to more general classes
of graphs, namely, any graph that can be partitioned into 4 “subsets” on a line. An example for
such a class, most relevant to our positive result (below), are cycles of seven parties or more and
with two corruptions (see Figure 2).

1

2 3

4 5

6 7

1

2 3

4 5

6 7𝒫4

𝒫3

𝒫2

𝒫1

𝒫1

𝒫4

𝒫3

𝒫2

Figure 2: Reducing a seven-node cycle to a four-node line. Consider the partition of the seven
nodes into P1 = {1}, P2 = {2, 3}, P3 = {4, 5}, and P4 = {6, 7}. The cycle on the left yields
(P1 − P2 − P3 − P4) and the cycle on the right yields (P2 − P3 − P4 − P1).

Information-theoretic THC on a cycle. Our negative result rules out information-theoretic
THB on cycles with two corruptions. Does a similar result hold even when we have a single
corruption? Our next result shows that the answer is no. We construct a perfectly secure THC
protocol on cycles, resilient to a single corruption.

Theorem (informal): THC on a cycle with one corruption can be achieved information
theoretically, with perfect correctness.

Note that this does not contradict the negative result claimed by Hinkelmann and Jakoby [34].
While that result precludes information-theoretic THC for the class of all graphs, here the parties
know they are on a cycle (but do not know in which order the parties are arranged on the cycle).

The proof consists of two parts. Initially, we show how to realize anonymous and private
pairwise communication. That is, each party can send a message to any other party on the cycle,
but without knowing to whom he is sending, and from whom he is receiving messages. Instead, the
sender can send the messages to the relative location on the cycle, i.e., he can send one message
to a party that is 2 hops to his right, another message to a party that is 3 hops to his left, and
so on. To send a message to a party that is j hops to his right (i.e., n − j hops to his left), the
sender secret shares the message and sends one share to his right neighbor and the second to his
left neighbor. A party that receives a message from one of his neighbors forwards the message to
his other neighbor. As there are n− 1 hops in the cycle, sending a message takes n− 1 rounds, and
the sender (that is sending to the party that is j hops to his right) starts sending the right share
after n − j rounds and the left share after j rounds. This way, after n − 1 rounds, the receiver
obtains both shares and can reconstruct the message.

4

Once establishing private pairwise channels, the parties can compute any function using the
BGW protocol [9]. However, BGW cannot be executed immediately over an anonymous network,
since to process input wires the real identities should be known, rather than the alias IDs (e.g., for
computing (x1 + x2) · x3). To overcome this obstacle, we first observe that symmetric functions f
can be implemented immediately via BGW over an anonymous communication network. Then, we
generically reduce arbitrary f to the symmetric case, by having parties submit their real ID as part
of their input (i, xi), and computing the modified symmetric function f ′ which acts equivalently on
all input pairs via multiplexing.

1.2 Our Results: Distributional-Topology Hiding

Having shown that information-theoretic THC is impossible for a large class of graphs even in the
honest-majority setting, a natural question is whether we can construct weaker—but still useful—
variants of THC for such settings. In particular, suppose we do not aim to hide everything about
the graph, but rather just hide something about the graph, which will allow us to use the protocol
as a building block in other applications.

As a motivating example, consider the work of Boyle et al. [13], who showed a protocol achieving
adaptively secure MPC, where the actual communication graph has a sublinear cut between two
linear-size subsets (and thus is not an expander). Their protocol is in the so-called hidden-channel
model, introduced in [18], where the adversary is unaware of the communication between honest
parties (otherwise a trivial attack would separate the graph).1 Intuitively, the adaptive security
of their protocol hinges on the fact that the adversary cannot find which parties are on the small
cut; if it could corrupt those parties, the security would be compromised. Thus, although hiding
information about the topology was not their goal, it seems that the main tool used by [13] to prove
their result is that something about the topology (where the sublinear cut is) is hidden. Intuitively,
their protocol captures some notion of topology hiding.

Trying to formalize this claim and prove it within the existing framework of THC quickly fails.
Indeed, the standard definition of THC (considered in Section 1.1 and in all prior work) captures
security in “worst-case” graphs; hence, the communication graph is chosen by the environment.
Since the environment can choose which parties to corrupt in a correlated way, it can simply
corrupt the parties on the cut and break security of the protocol (even with static corruptions).
This motivates us to define a weaker notion:

We define distributional topology-hiding computation, where, informally, the environ-
ment only knows the distribution from which the graph is chosen, not the specific graph.

Defining distributional-topology hiding. Formalizing this definition poses some subtleties.
In its most intuitive form, this definition resembles the hidden-graph model from [18]. In this
model, the graph is sampled according to some predefined distribution, and each party learns its
local neighborhood. Chandran et al. [18] used this model to construct adaptively secure MPC with
sublinear communication locality; however, their protocol was not meant to hide topology, and
indeed each graph was only valid for a one-time use. In the distributional-topology-hiding case, we
wish to construct protocols that do hide the topology, and so can reuse the same graph.

1This is in fact the communication model that is considered in the topology-hiding setting, since if the commu-
nication is over standard private channels, the adversary would learn information about the graph just by observing
with whom honest parties communicate.

5

To support hidden topology during the computation along with strong composition capabilities,
we allow the environment to receive the communication graph from the ideal functionality (either
the communication-graph functionality in the real world, or the graph-information functionality
in the ideal world), before announcing its decision-bit: real or ideal. Once the environment has
learned the graph, we fall back to a similar state as in the classical THC setting, and we cannot
base the security of the protocol on the graph’s entropy. For this reason, after the environment
receives the graph, the ideal functionality will stop processing any further messages, and in a sense,
the communication network enters an “out of order” state.

However, the environment might still attempt to misuse this additional power, and after re-
ceiving the communication graph, corrupt a set of parties in a way that will break security (e.g.,
corrupt the entire sublinear cut in the example above). This attack is quite subtle, since essentially,
after learning the graph the environment has the capability to learn all of the inputs that were used
in the protocol just from the messages received by a small set of parties (recall that we consider
information-theoretic protocols in the plain model). Clearly, the simulator will not be able to sim-
ulate such an attack. One way to protect against this attack is to rely on secure data erasures and
instruct every party to erase all of the received and sent messages as soon as the network goes out
of order. However, since secure erasures form a strong assumption that cannot always be realized,
and thus limit the model, we resort to an alternative, more general, solution. To overcome this
subtlety, once the environment receives the graph the ideal functionality will provide the simulator
with all of the input messages it received from honest parties. This new information will allow the
simulator to simulate additional corruption requests that are issued as a function of the graph, and
will balance the additional advantage the environment gained.

In a sense, the new definition guarantees privacy of the communication network as long as it is
active; however, if the network enters an “out of order” state, it does not retain the privacy of the
protocols that used it, unless secure data erasures are employed.

We note that since the new definition hides the communication graph from the environment
while it is active, computation that depend on the communication graph itself (e.g., finding shortest
paths) cannot be supported - this is another weakening of the original definition.

Relation to classical THC. Having formalized distributional-THC, one may ask whether this
definition can be used to achieve meaningful computations, and whether it implies standard THC.
We show that this definition can capture the intuitive topology-hiding property of the protocol
in [13], discussed above. In fact, we modify their protocol to show a strong separation between the
definitions. We construct a distribution D which, on the one hand, can be used for computing any
function while hiding a sublinear cut between two linear-size cliques (tolerating a linear number of
adaptive corruptions), and on the other hand, even broadcast cannot be computed in a topology-
hiding manner (in the classical sense) using any graph in the support of D (tolerating merely a
sublinear number of static corruptions).

Theorem (informal): We show a distribution D over graphs with n nodes such that:

• Distributional-THC of every function can be achieved with respect to D, with
information-theoretic security, against an adaptive semi-honest adversary.
• For any class of graphs C with C∩supp(D) 6= ∅, even broadcast cannot be computed
information theoretically in the strong THC setting, even with static semi-honest
corruptions (as it implies key agreement).

6

Connection to adaptively secure low-locality MPC. Finally, we demonstrate the power of
our new definition via a new connection to adaptively secure low-locality MPC, where distributional-
THC enables parties to “reuse” a secret low-degree communication graph even in the face of adaptive
corruptions. Concretely, this will enable sequential composition of the adaptively secure MPC
protocol from [18] while maintaining sublinear locality. The starting point of [18] was any adaptively
secure MPC protocol over pairwise private channels. They used the hidden-graph model to sample
an Erdős-Rényi graph G (with sublinear degree and polylog diameter) and showed how to emulate
pairwise private communication over the graph G. In addition, an elegant distributed sampling
algorithm for an Erdős-Rényi graph was given in [18] (based on [38, 17]).

However, as discussed above, their protocol does not hide the topology of G, and so a fresh
graph is used for every communication round. For this reason, their protocol can be used for
executing MPC protocols with sublinear many communication rounds, and maintains sequential
composition of sublinear many computations (otherwise the locality will blow up).

We show that if the private pairwise communication can be instantiated in a distributional-
THC manner, the adaptively secure MPC protocol from [18] will be able to reuse the same secret
Erdős-Rényi communication graph for polynomially many rounds, and so will remain secure under
arbitrary sequential composition.

Theorem (informal): If there exists an adaptively secure distributional-THC protocol for
private pairwise communication with respect to the Erdős-Rényi distribution from [18]
(tolerating a linear number of semi-honest corruptions), then there exists an honest-
majority adaptively secure MPC protocol with sublinear locality (tolerating the same
corruptions) that remains secure under polynomially many sequential executions.

We note that this theorem does not present a new feasibility result, as we do not yet know how to
implement the required underlying adaptively secure distributional-THC protocol. We leave this
as an interesting open problem. Instead, the theorem demonstrates the power and usefulness of
our definition (despite its weakness compared to the original).

1.3 Open Problems

Our results from Section 1.1 characterize the feasibility of information-theoretic THC over lines and
cycles. Ultimately, the desire is to provide a similar characterization for all graphs. An interesting
starting point is to extend our understanding in broader classes of graph, e.g., wheel graphs or
3-regular graphs.

Another intriguing question is to come up with more distributions over graphs that can be
computed in a distributional-THC manner.

Finally, as mentioned above, it is not clear whether private pairwise communication can be
realized with distributional-THC security with respect to the Erdős-Rényi distribution. Answering
this question will have implications on low-locality adaptively secure MPC.

Additional related work. In an independent and concurrent work, Damgård et al. [25] inves-
tigate the feasibility of information-theoretic THC. Their setting is different from ours, as they
consider a trusted setup phase to generate correlated randomness for the parties.

7

Organization of the paper. The preliminaries can be found in Section 2. Initially, we consider
the standard THC definition and present our lower bound in Section 3, followed by the positive
results in Section 4. We proceed to define distributional-THC in Section 5, show a separation
between the definitions in Section 6, and conclude with the connection to low-locality MPC in
Section 7.

2 Preliminaries
Notations. For n ∈ N let [n] = {1, · · · , n}. We denote by κ the security parameter, by n the
number of parties, and by t an upper bound on the number of corrupted parties. The empty string
is denoted by ε.

UC framework. In Appendix A.1, we present an informal overview of the UC framework of
Canetti [14]. Unless stated otherwise, we will consider computationally unbounded and semi-honest
adversaries and environments. We will consider both static corruptions (where the corrupted parties
are chosen before the protocol begins) and adaptive corruptions (where parties can get corrupted
dynamically during the course of the computation), and explicitly mention which type of corruption
is considered in every section.

We will consider the standard secure function evaluation (SFE) functionality, denoted Ffsfe. In-
formally, the functionality is parametrized by an efficiently computable function f : ({0, 1}∗)n →
{0, 1}∗. Every honest party forwards its input received from the environment to the ideal func-
tionality, and the simulator sends the corrupted parties’ inputs. The functionality computes
y = f(x1, . . . , xn) and returns y to every party. Broadcast is a special case of SFE for the function
that receives an input from a single party, named the broadcaster, (formally, every other party gives
the empty string ε as input) and delivers this value to every party as the output. We denote the
broadcast functionality by Fbc.

Topology-hiding computation (THC). We recall the definition of topology-hiding computa-
tion from [42]. The real-world protocol is defined in a model where all communication is transmitted
via the FGgraph functionality (described in Figure 3). The functionality FGgraph is parametrized by a
family of graphs G. Initially, before the protocol begins, FGgraph receives the network communication
graph G from a special graph party Pgraph, makes sure that G ∈ G, and provides to each party his
local neighbor-set. Next, during the protocol’s execution, the functionality receives a message to
be delivered from a sender Pv to a receiver Pw and delivers the message if the edge (v, w) appears
in the graph.

An ideal-model computation of a functionality F is augmented to provide the corrupted parties
with the information that is leaked about the graph; namely, every ideal (dummy) party should
learn his neighbor-set. To capture this, we define the wrapper-functionalityWGgraph-info(F), that runs
internally a copy of the functionality F. The wrapper receives the graph G = (V,E) from Pgraph,
makes sure that G ∈ G, and upon receiving an initialization message from a party Pi responds with
its neighbor set NG[i] (just like FGgraph). All other input messages are forwarded to F and every
message from F is delivered to its recipient.

8

The functionality FGgraph

The n-party functionality FGgraph is parametrized by a family of graphs G and proceeds with parties
P1, . . . , Pn and a special graph party Pgraph as follows.

Initialization Phase:

Input: FGgraph waits to receive the graph G = (V,E) from Pgraph. If G /∈ G, abort.

Output: FGgraph outputs NG[v] to each Pv.

Communication Phase:

Input: FGgraph receives from a party Pv a destination/data pair (w,m) where w ∈ NG[v] and
m is the message Pv wants to send to Pw. (If w is not a neighbor of v, FGgraph ignores this
input.)

Output: FGgraph gives output (v,m) to Pw indicating that Pv sent the message m to Pw.

Figure 3: The communication graph functionality

Definition 2.1 (Topology-hiding computation). We say that a protocol π securely realizes a func-
tionality F in a topology-hiding manner with respect to G tolerating semi-honest t-adversaries if π
securely realizes WGgraph-info(F) in the FGgraph-hybrid model tolerating semi-honest t-adversaries.

We note a few technical changes in the definition above compared to [42]. First, we let the
graph functionality Fgraph and the wrapper Wgraph-info be parametrized by a family of graphs G.
This captures the fact that certain properties of the graphs might be inherently leaked e.g., the
diameter of the graph [42] or that the graph is a cycle or a tree [1]. This technical adjustment
has also been considered in [35]. A second difference is that we define the graph-information as
a wrapper functionality around F rather than a separate functionality that is composed with F.
Although this difference is only syntactic with respect to the definition above, it will enable a
cleaner definition of distributional THC in Section 5.

3 TH-Broadcast on a Line Implies Key Agreement
In this section, we show that a topology-hiding broadcast protocol of four parties (or more) con-
nected in a line that tolerates one semi-honest corruption, implies the existence of two-party key-
agreement protocols.

We define the following class of graphs Gline = {G0, G1}, where each graph has four nodes on
a line: G0 = (1 − 2 − 3 − 4) and G1 = (2 − 3 − 4 − 1) (see Figure 1). Consider party 1 to be the
broadcaster, then a corrupted party 3 will not know whether 1 is a neighbor of 2 or of 4. We next
show how to utilize this property to achieve a two-party key-agreement protocol. The high-level
idea is that either Alice will emulate parties 1, 2, and 3 and Bob will emulate party 4, or that Alice
will emulate parties 2 and 3, and Bob will emulate parties 4 and 1. An eavesdropper listening to
their communication will in fact hear all the messages exchanged between party 3 and party 4 in
the THB protocol, and therefore will not be able to guess with more than negligible probability
who emulates party 1.

9

Theorem 3.1. The existence of four-party topology-hiding broadcast with respect to class Gline
secure against semi-honest adversaries that may make a single corruption implies the existence of
key agreement.

High-level idea. Our key-agreement protocol proceeds in phases. In a given phase, Alice and
Bob will jointly simulate the topology-hiding broadcast protocol on a line graph of nodes 1,2,3,4.
Alice will always simulate nodes 2 and 3 and Bob will always simulate node 4. Alice and Bob will
flip private coins to determine if they simulate 1. Note that it may be that neither or both of them
simulate node 1. It will always be the case that node 2 has an edge to node 3 which is in turn has
an edge to node 4. If Alice’s coin is heads she will simulate node 1 with a unique edge to node 2.
Similarly, if Bob’s coin is heads, he will simulate node 1 with a unique edge to node 4. The node 1
will always be broadcaster, and will correspond to the bit agreed upon. The eavesdropper, Eve, will
of course see the messages between 3 and 4 as Alice and Bob communicate to simulate the protocol
execution. We will design our protocol so that Alice and Bob can identify when both or neither
are controlling node 1 so they can throw them out, as the protocol will have no guarantees in this
case. In the other cases, whether Alice or Bob controls 1 will indicate the bit agreed upon. This bit
will be obvious to both Alice and Bob; however, it will be obscured from Eve. In particular, any
advantage Eve has in guessing the bit can be used to break the topology hiding of the protocol.
To increase the probability of successfully agreeing on a bit the protocol can simply be repeated.
However, for simplicity we will specify and analyze the low-success version.

Proof. Let π be a topology-hiding broadcast protocol with respect to Gline, where node 1 is the
broadcaster. Via sequential composition, we may assume π is a κ-bit broadcast protocol. We use
π to construct the following key-agreement protocol.

Protocol 3.2 (Two-party key agreement).

1. Alice sends two random κ-bit strings, r1 and r2, to Bob. These will be the strings broadcasted
in the simulations of π.

2. Alice and Bob each flips a coin: cA, cB ← {0, 1}, respectively. They will jointly simulate the
protocol twice.

• If cA = 1, Alice will first simulate nodes 1 (broadcasting r1), 2, and 3 in π. The second
time, Alice will just simulate nodes 2 and 3. If cA = 0, Alice will just simulate nodes 2
and 3 the first time and additionally simulate node 1 (broadcasting r2), the second time.
• If cB = 1, Bob will first simulate nodes 1 (broadcasting r1) and 4 in π. The second time,
Bob will just simulate node 4. If cB = 0, Bob will just simulate node 4 the first time,
and additionally simulate node 1 (broadcasting r2), the second time.

3. Alice and Bob jointly simulate π twice according to the roles designated above, communicating
messages between 3 and 4 as needed.

• If node 2 did not output either r1 in the first simulation of π or r2 in the second simulation
of π, Alice outputs ⊥. Otherwise, Alice outputs cA.
• If node 4 did not output either r1 in the first simulation of π or r2 in the second simulation
of π, Bob outputs ⊥. Otherwise, Bob outputs 1− cB.

10

There are 4 cases for how (cA, cB) is chosen (each occurring with probability 1/4). We will
divide them into two sets (each occurring with probability 1/2): cA = cB and cA 6= cB. We claim
that in the first case both Alice and Bob output ⊥ with probability ≥ 1 − 21−κ. In the second
case, we claim that both Alice and Bob output cA with overwhelming probability and that Eve’s
output can be at most negligibly correlated with cA. Thus, conditioned on Alice and Bob not
outputting ⊥ (which happens with probability negligibly close to 1/2), Alice and Bob will agree on
a bit (with overwhelming probability) that is negligibly correlated with any bit outputted by an
efficient eavesdropper. Therefore, it suffices to prove the claim for each case.

The case of cA = cB. If both cA = 1 and cB = 1, then neither Alice nor Bob is simulating the
broadcasting node 1 in the second simulation. In which case, all outputs of π in this simulation is
independent of r2. Thus, the probability that either node 2 or node 4 outputs r2 in the simulation
is at most 2/2κ. Conversely, if both cA = 0 and cB = 0, then neither party is simulating node 1 in
the first simulation and all outputs are independent of r1. And similarly the probability that either
node 2 or node 4 outputs r1, in this case, is at most 2/2κ.

In either case there is a simulation where both node 2 and node 4 fail to output the chosen
string with probability at least 1− 21−κ. Thus, both Alice and Bob will output ⊥ with probability
at least 1− 21−κ.

The case of cA 6= cB. In this case, in each simulation exactly one of Alice and Bob is simulating
node 1, the broadcaster. By correctness, all nodes (including nodes 2 and 4) will output the string
r1 in the first simulation and r2 in the second simulation with overwhelming probability. Thus, both
Alice and Bob will output cA (note that cA = 1− cB, in this case) with overwhelming probability.

On the other hand, suppose Eve outputs a bit b such that Pr[b = cA] = 1/2 + α. Note that
Eve only sees the correspondence between nodes 3 and 4. We can use such an Eve to distinguish
between running π on G0 or G1 with advantage at least α/3. Moreover, it will distinguish with
respect to a specific distribution of broadcast messages and topology: the one where both message
and topology are chosen uniformly and independently.

A semi-honest adversary that has corrupted node 3 will wait until the protocol has completed
and the output r has been received before simulating Eve. The adversary will flip a bit b′: effectively
guessing the opposite topology of actual execution 1-2-3-4 (in the case that b′ = 0) or 2-3-4-1 (in
the case that b′ = 1). After the protocol has completed, the adversary will sample a random string
r′ and run Eve on a transcript comprised of r, r′, the actual communication between nodes 3 and 4,
and a communication between nodes 3 and 4 in a simulated execution where r′ is broadcasted over
the guessed topology. The simulated Eve will output a bit b. If b = 1, the adversary will output
the 1-2-3-4 topology, and the 2-3-4-1 topology otherwise.

In the case that the adversary guessed correctly (which happens with probability 1/2), the
transcript Eve is given is identically distributed to the that of the key-agreement protocol. In this
case, the simulated Eve’s bit will be α-correlated with the actual topology. In the other case, when
Eve is given two independent invocations of the protocol on the same graph, Eve’s output must be
negligibly close to 1/2 by Claim 3.3 (below) and the security of π. Therefore, the probability the
adversary outputs the correct topology is at least

1/4− negl(κ) + 1/4 + α/2 > 1/2 + α/3.

So, by the topology-hiding property, α must be negligible.

11

To complete the proof, we formally analyze Eve’s success probability. Let r be an arbitrary
κ-bit string and let G0, G1 defined as above. Let π3,4(G0) and π3,4(G1) denote the distribution of
the transcript of an interaction between parties 3 and 4 when protocol π is executed with broadcast
string r on G0 and G1, respectively.

Claim 3.3. If for all probabilistic polynomial-time A it holds that∣∣∣Prτ0∼π3,4(G0)[A(τ0) = 1]− Prτ1∼π3,4(G1)[A(τ1) = 1]
∣∣∣ < ε,

then for all probabilistic polynomial-time A′ it holds that∣∣∣Prτ1
0 ,τ

2
0∼π3,4(G0)[A′(τ1

0 , τ
2
0) = 1]− Prτ1

1 ,τ
2
1∼π3,4(G1)[A′(τ1

1 , τ
2
1) = 1]

∣∣∣ < 2ε.

Proof. Let A′ be a PPT adversary that∣∣∣Prτ1
0 ,τ

2
0∼π3,4(G0)[A′(τ1

0 , τ
2
0) = 1]− Prτ1

1 ,τ
2
1∼π3,4(G1)[A′(τ1

1 , τ
2
1) = 1]

∣∣∣ ≥ 2ε.

We will use A′ to construct A that can distinguish a single execution of π with probability at
least ε. On input τb, A does the following:

1. Flip a random coin, b′, and sample τb′ ∼ π3,4(Gb′).

2. Flip another random coin c:

(a) If c = 0, output A′(τb, τb′);
(b) Otherwise, if c = 1, output A′(τb′ , τb).

Now, we will analyze A. Note that for both b ∈ {0, 1} and τb ∼ π3,4(Gb), we have that A invokes A′
on inputs distributed according to π3,4(Gb)× π3,4(Gb) with probability 1/2, and inputs distributed
according to π3,4(G0)×π3,4(G1) and π3,4(G1)×π3,4(G0), each with probability 1/4. In other words,∣∣∣Prτ0∼π3,4(G0)[A(τ0) = 1]− Prτ1∼π3,4(G1)[A(τ1) = 1]

∣∣∣
=
∣∣∣∣(1

2 · Prτ1
0 ,τ

2
0∼π3,4(G0)[A′(τ1

0 , τ
2
0) = 1]

+ 1
4 · Prτ0∼π3,4(G0),τ1∼π3,4(G1)[A′(τ0, τ1) = 1]

+ 1
4 · Prτ0∼π3,4(G0),τ1∼π3,4(G1)[A′(τ1, τ0) = 1]

)
−
(

1
2 · Prτ1

1 ,τ
2
1∼π3,4(G1)[A(τ1

1 , τ
2
1) = 1]

+ 1
4 · Prτ0∼π3,4(G0),τ1∼π3,4(G1)[A′(τ0, τ1) = 1]

+ 1
4 · Prτ0∼π3,4(G0),τ1∼π3,4(G1)[A′(τ1, τ0) = 1]

)∣∣∣∣
= 1

2 ·
∣∣∣Prτ1

0 ,τ
2
0∼π3,4(G0)[A′(τ1

0 , τ
2
0) = 1]− Prτ1

1 ,τ
2
1∼π3,4(G1)[A′(τ1

1 , τ
2
1) = 1]

∣∣∣
≥ ε.

12

This concludes the proof of Theorem 3.1.

Next, we extend the lower bound to more classes of graphs using the player-partitioning tech-
nique.
Corollary 3.4. Let G be a class of (connected) graphs with n nodes such that there exists a partition
of the nodes into four subsets P1,P2,P3,P4, and there exists graphs G̃0, G̃1 ∈ G such that:
• In G̃0: there are no edges (i, j) ∈ P1 × P3, or (i, j) ∈ P2 × P4, or (i, j) ∈ P1 × P4,

• In G̃1: there are no edges (i, j) ∈ P1 × P3, or (i, j) ∈ P2 × P4, or (i, j) ∈ P1 × P2.
Let t = |P3|. Then, a THB protocol with respect to G tolerating semi-honest, static t-adversaries,
implies the existence of key agreement.
Proof. Let π be such a THB protocol, and without loss of generality assume that the broadcaster
is in P1. We will construct the following four-party broadcast protocol on a line with respect to
the class of two graphs Gline = (G0, G1), where
• G0 = (1− 2− 3− 4),

• G1 = (2− 3− 4− 1).
To define the protocol, every party i, for i ∈ [4], emulates in its head the parties in Pi executing
protocol π. Whenever a party Pj ∈ Pi wishes to send a message m to a party Pj′ , proceed as
follows: (1) If Pj′ ∈ Pi, party i simulates in its head party Pj′ receiving the message m from party
Pj . (2) If Pj′ ∈ Pi′ for some i′ 6= i, send the message (j, j′,m) to party i′; in this case, party i′
simulates party Pj′ receiving the message m from party Pj .

Note that for b ∈ {0, 1}, an execution of the four-party THB over Gb corresponds to an execution
of the protocol π over G̃b. Since |P3| = t and π is t-secure, it holds that the new protocol is secure
tolerating a single corruption of party P3. The proof now follows from Theorem 3.1.

An example for a family of graphs that satisfies the above requirements are cycles of seven
nodes tolerating two corruptions. Indeed, consider the partition

P1 = {1}, P2 = {2, 3}, P3 = {4, 5}, P4 = {6, 7}.

Then, the two cycle-graphs G̃0 = (2− 1− 3− 4− 6− 7− 5) and G̃1 = (2− 3− 4− 6− 1− 7− 5)
satisfy the properties of the corollary, as illustrated in Figure 2.

4 Perfect THC on a Cycle
In this section, we show a perfectly secure topology-hiding computation protocol tolerating a single
semi-honest corruption with respect to cycles. Note that in this setting we are only hiding a
permutation of the nodes.
Theorem 4.1. Let n > 2, and let f be an efficiently computable n-party function. Then, Ffsfe can
be securely realized in a topology-hiding manner with respect to the class of graphs that includes all
cycles on n nodes, tolerating a single, semi-honest corruption. Moreover, the protocol is perfectly
correct and perfectly secure.

To prove Theorem 4.1, we will first show how to realize anonymous secure channels without
revealing the topology of the cycle. Given anonymous secure channels, it is not difficult to realize
general THC on a cycle.

13

Private Anonymous Communication over a Cycle

We begin by defining the anonymous communication functionality. This randomized functionality
initially assigns aliases to all parties based on their location, so that the parties can address each
other by these aliases. Specifically, the functionality will choose a random party to be assigned
with the alias ’1’, and will choose a random orientation of “left” and “right” for its outgoing edges.
This will define an alias for each other party, in an increasing order going to the left. Each party
will receive its alias and orientation (hence allowing it to compute the alias of any party that is a
certain number of hops away in each direction). Then, each party can privately send messages to
any alias of their choice. The party associated with the alias will receive the message along with
the alias of the sender. A full description is provided in Figure 4.

The functionality Fanon

The n-party randomized reactive functionality Fanon proceeds with parties P1, . . . , Pn as follows.

Initialization Phase:

Input: Each party invokes the functionality by providing his neighbor-set (i.e., the pair of
neighbors).

Alias assignment: Upon invocation, the functionality reconstructs the cycle. The function-
ality proceeds by selecting u ∈ [n] at random, setting idu = 1, and randomly selecting
an orientation of the two neighbors of Pu as either “left” or “right.” This defines the
orientation of the rest of the cycle edges for each other party.

Output: Each Pv receives an alias idv ∈ [n] such that if Pv is k ∈ {0, . . . , n − 1} hops to the
left of Pu, then idv = k + 1. Further, each Pv receives a bit pointing out which of its two
neighbors is “left” (increasing alias order).

Communication Phase:

Input: Each party Pv (with alias idv) specifies a set of messages to all other parties
{(idv, j,m

idv
j)}j 6=idv

, where midv
j is a message from the party with alias idv intended for

the party with alias j.
Output: Each party Pv assigned the alias idv in the initialization phase receives a set of

messages from every other alias {(j, idv,m
j
idv

)}j 6=idv
indicating the party assigned with

alias j sent to the party with idv the message mj
idv

(for all j 6= idv).

Figure 4: The anonymous communication functionality

Let Gcycle(n) be the class of cycles over n nodes. Next, we show how to perfectly securely realize
WGcycle(n)

graph-info(Fanon) in the FGcycle(n)
graph -hybrid model.

High-level idea. At a high level, our protocol proceeds in two phases. In the first phase, a fixed
designated party P ∗, will randomly assign an alias in [n] for itself, as well as an orientation of left
and right. This defines aliases for the rest of the parties based on their distance from P ∗ and its
randomly chosen alias. A protocol is then performed to securely provide all parties with their alias
and orientation. In the communication phase, parties use their output from the initialization phase
and the 2-connectedness of the cycle to securely communicate with other parties (specified via their

14

aliases, indicating how many hops away they are). Before specifying the full protocol in Figure 5,
we give some intuition.

To begin, suppose that n = 2k is even, and that a party Pv wishes to send a message m to the
party directly opposite it on the cycle (denote that party as Pu, although Pv does not know Pu’s
identity, just location). This can be done easily by uniformly sampling r and forwarding m ⊕ r
to the right and r to the left (where right and left are from some arbitrary orientation). If other
parties forward received messages in the same direction, after exactly k rounds, Pu will receive
m ⊕ r and r simultaneously and can compute (m ⊕ r) ⊕ r = m. Because every other party sees
either m⊕ r or r, but not both, this will be uniformly distributed ensuring privacy of the message.
By delaying timing of messages to left and right appropriately, we can adjust the protocol to allow
any party to deliver a message to any other party that is a given number of hops away.

Once aliases have been agreed upon by all parties, the above will in fact suffice for the com-
munication phase, as there will be nothing more to hide. However, for the initialization phase, if
the designated party P ∗ simply uses the above to deliver aliases to other parties, this will leak the
distance from the sender P ∗. Hence, we will have all parties perform the above secure message
sending protocol to all other parties, in parallel. The designated party P ∗ will send the actual
aliases to each other party, while all other parties will perform the above as if sending 0 to all other
parties. Note that message privacy here is only being used to hide the location of the designated
party.

To perform the above in parallel, in each round parties will take the message received from the
left in the previous round, XOR it with what they should send to the right themselves according to
the secure message passing above, and then send the result to the right. They behave identically
with respect to messages travelling in the other direction. In the final round, all parties simply
XOR what they received from the left and right to receive their own alias. Moreover, because up
to that point the view of any single party is simply a sequence of random messages, the location of
P ∗ remains hidden. (The final messages of P ∗ will not be uniform, but XOR to 0.)

Lemma 4.2. Let n > 2. Protocol πanon-cycle perfectly securely realizes Fanon in a topology-hiding
manner with respect to the class of graphs that includes all cycles on n nodes, tolerating a single
semi-honest adversary.

Proof (sketch). Let π : [n] → [n] denote the map such that idi 7→ i for the id’s implicitly defined
by P ∗. Let α : [n] → [n] denote the cyclic permutation such that i 7→ i + 1 for i < n and n 7→ 1.
Additionally, let α(k) denote k sequential applications of α. We take left and right to denote the
orientation selected by P ∗ in the initialization phase.

For correctness, consider the sequence of messages: the message sent left by the party left of
Pu in the first round, the message sent left by the party two nodes left of Pu, and so on until the
message that is delivered to Pu from the right in final round. Each subsequent message is formed
by XORing with the previous message in the sequence. Because all parties other than P ∗ behave
identically with respect to each direction in this phase, we may assume they all chose an orientation
consistent with P ∗. Then, we can observe that Pu receives π−1(u) ⊕

⊕n−1
j=1 r

π(α(j)(π−1(u)))
j on the

right in the final round of the initialization phase. Via the same argument, we can see Pu receives
r
π(α(j)(π−1(u)))
j on the left of the initialization phase.

15

Protocol πanon-cycle

Hybrid Model: The n party protocol is defined in the Fgraph-hybrid model.

Common Input: A designated party P ∗ ∈ {P1, . . . , Pn} responsible for selecting the aliases.

The Protocol:

Initialization Phase: In the initialization phase the parties establish their aliases.

• Party P ∗ = Pj∗ picks a random orientation of its neighbors as “left” and “right.” It samples
a random alias σ ∈ [n] for itself. Then, for i = 0, . . . , n − σ, sets mj∗

i = σ + i, and for
i = n− σ+ 1, . . . , n− 1 sets mj∗

i = i− σ. (Thus, for all i, mj∗

i is the alias of whichever party
is i hops left of P ∗)

• Each other party Pk 6= P ∗ arbitrarily picks an orientation of its neighbors as “left” and
“right,” and sets mk

i = 0 for i = 0, . . . , n− 1.
• Every party P` (including P ∗) additionally samples n−1 independent uniform random values
r`

1, . . . , r
`
n−1.

• For rounds i = 1, . . . , n − 1, every party P` samples random ri
` and sends m`

i ⊕ r`
i ⊕ (p`

R) to
the left and r`

n−i ⊕ p`
L to the right, where p`

L and p`
R are the messages received by P` in the

previous round from the left and right, respectively.
• Party P ∗ outputs alias σ. Every other party Pk 6= P ∗ outputs pk

L ⊕ pk
R, where pk

L and pk
R are

the messages received by Pk from the left and right (respectively) in the last round.
Additionally, parties exchange aliases with their neighbors to get a consistent orientation. We
take right to denote direction of decreasing id’s. (Notice that, relative to alias j, alias i is
distance i− j (mod n) to the left. Therefore, we can simply assume all parties subsequently
share the same orientation as that chosen by P ∗.)

Communication Phase: Each “round” of the communication phase is performed in n sub-phases,
each corresponding to a different alias responsible for sending. Each subphase lasts exactly
n − 1 rounds. (The subphases can be performed in parallel, but the sequential presentation is
simpler.)

• Private input: Each party Pi has input of the form {(idi, `,m
idi

`)} 6̀=idi (where ` denotes an
alias and midi

` the message to be sent to the party with alias ` by the party with alias idi).
We take idi to denote the alias output by Pi in the initialization phase.

• Protocol: For sub-phases j = 1, . . . , n:
– Party Pi with idi = j samples n− 1 independent uniform random values r1, . . . , rn−1.
– For rounds k = 1, . . . , n− 1:
∗ Pi sends mj

j−k (mod n) ⊕ rk to the left and rn−k to the right.
∗ All other parties forward messages received from the left in the previous round to the

right, and messages received from the right in the previous round to the left.
– After receiving in the final round, each party P` with an alias id` 6= j (locally) sets m̂j

` as
the XOR of the last message received from the left and right.

• Output: Each party Pi outputs {(j, idi, m̂
j
idi

)}j 6=idi
.

Figure 5: Securely realizing Fanon in a topology-hiding manner, for cycles

16

For security, note that if we view the rij values each party sends to the right and left as traveling
around the cycle in either direction (having values XORed with them), the only other party that
sees both is the one that they arrive at simultaneously in the last round. Thus, to all other parties,
they are uniformly distributed.

Therefore, the view of the corrupted party Pc is simply uniformly distributed messages in each
round, until the last. In the last round, if Pc 6= P ∗, party Pc receives two random messages (one
from each side) that XOR to a random i ∈ [n]. If Pc = P ∗, party Pc receives two random messages
that XOR to zero. This can be simulated by simply sending random messages until the last round,
where the messages XOR to a uniformly drawn i ← [n] if Pc 6= P ∗ and 0 otherwise. Because of
this simulation, the view of any party is clearly independent of the ordering of parties outside that
party’s immediate neighborhood.

The correctness and security of the communication phase proceed similarly, except here we will
use the fact that the relative positions of idc and the idi to start simulating via uniformly random
values on a given side. The full simulator is described below.

Initialization Phase:

• Let Pu be the corrupted party. Get NG[u] from WGgraph-info(Fanon).

• Invoke WGgraph-info(Fanon) with NG[u] (as the input to Fanon) and receive back idu and
the orientation.
• If Pu 6= P ∗, deliver uniformly random messages from neighbors for first n− 2 rounds. In
final round, deliver uniformly random messages conditioned on them XORing to idu.
Otherwise, deliver uniformly random messages from neighbors to either side for the first
n− 2 rounds. In the final round, deliver uniformly random messages that XOR to 0.

Communication Phase: In each communication “round,” get from the environment the tuples
{(idu, i,mi

idu
)}i 6=u (as the input of Pu).

In the i’th sub-phase of each “round,”

• From round idu − i (mod n) of the sub-phase until the penultimate round, give Pu
uniformly random messages from the right.
• From round i − idu (mod n) of the sub-phase until the penultimate round, give Pu
uniformly random messages from the left.
• In the final round if idu 6= i, give Pu random messages conditioned on them XORing to
mi

idu
.

If idu = i, Pu doesn’t receive anything throughout the phase.

THC from Secure Anonymous Channels

Equipped with secure anonymous point-to-point channels, we can now use standard honest-majority
MPC techniques to achieve general THC.

Lemma 4.3. Let n ∈ N, let t ≤ n/2, and let f be an efficiently computable n-party function.
Then, Ffsfe can be UC-realized with perfect security in Fanon-hybrid model, tolerating t semi-honest
corruptions.

17

Proof (sketch). Without loss of generality, it suffices to consider functionalities that give the same
output to all parties. Let f ′ denote the symmetric functionality that takes in n tuples of the form
(i, xi) ∈ [n]×{0, 1}n and outputs f(x1, . . . , xn) if all i are distinct, and ⊥ otherwise. Note that for
any permutation π of [n] (describing i 7→ idi, the alias of Pi), it holds that

f ′
((
π−1(1), xπ−1(1)

)
, . . . ,

(
π−1(n), xπ−1(n)

))
≡ f(x1, . . . , xn).

So, to complete the proof, parties simply securely evaluate f ′ under their aliases, where the input
of Pi with alias idi is (i, xi), using the BGW protocol [9] over secure anonymous channels (between
aliased identities) provided by Fanon.

Putting together Lemma 4.2 and Lemma 4.3, and using UC-composition (see Theorem A.1 in
appendix), completes the proof of Theorem 4.1, our positive result for cycles with one corruption.

5 Distributional-Topology-Hiding Computation
In this section, we present a relaxed notion of topology-hiding computation. Namely, it is not
required that all of the topology of the graph will remain hidden, but only certain properties of the
graph. The crucial difference to THC is that the functionality does not receive the graph from a
graph party; rather, the communication-graph functionality is parametrized by a distribution over
graphs and locally samples a graph from this distribution. As a result of this modification, the
environment is ignorant of the actual graph that is used during the communication phase.

The functionality FDdist-graph

The n-party functionality FDdist-graph, parametrized by a distribution D over graphs of n nodes, proceeds
with parties P1, . . . , Pn and a special graph party Pgraph as follows.

Initialization Phase:

Input: FDdist-graph receives an initialization input from every party Pv. Upon receiving the first
input, FDdist-graph samples a graph G = (V,E)← D.

Output: FDdist-graph outputs NG[v] to each Pv.

Communication Phase:

Input: FDdist-graph receives from a party Pv a destination/data pair (w,m) where w ∈ NG[v] and
m is the message Pv wants to send to Pw. (If w is not a neighbor of v, FDdist-graph ignores
this input.)

Output: FDdist-graph gives output (v,m) to Pw indicating that Pv sent the message m to Pw.

Termination Phase:

Input: FDdist-graph receives a termination input from Pgraph.

Output: FDdist-graph outputs the graph G to Pgraph and stops processing further messages.

Figure 6: The distributional-graph-communication functionality

18

As discussed in Section 1.2, we require strong composition capabilities from this definition.
Therefore, the environment is allowed to ask for the graph. This is done via a special graph party
Pgraph. Unlike in classical THC, where Pgraph is used to give the graph to the functionality, here
Pgraph is used to ask the graph from the functionality. Once the environment asks for the graph,
the communication functionality enters an “out of order” state and stops processing other messages
(Figure 6).

As before, the ideal-model computation of a functionality F needs to be augmented to provide
the simulator with the appropriate leakage on the graph, i.e., the neighbor-set of each corrupted
party. Toward this purpose, we define a graph-information wrapper functionality around F, denoted
WDdist-graph-info(F). Initially, the wrapper samples a graph from the distribution and provides every
corrupted party with the neighbor-set. All subsequent input messages are forwarded to F and all
messages from F are delivered to their recipients.

To keep the graph hidden from the environment during the computation phase,WDdist-graph-info(F)
does not send the neighbor-set to honest parties. The environment can adaptively issue corruption
requests, and upon any such adaptive corruption WDdist-graph-info(F) outputs the neighbor-set of the
newly corrupted party.

As before, the environment can request the communication graph via a special graph party
Pgraph. After receiving this request from Pgraph, the wrapper functionality stops processing further
messages, other than corruption requests. As explained in Section 1.2, to balance the advantage
given to the environment, that now can corrupt parties as a function of the graph, after giving the
graph to Pgraph, the wrapper gives the simulator all of the input messages it received (see Figure 7).

The wrapper functionality WDdist-graph-info(F)
The n-party wrapper functionality WDdist-graph-info, parametrized by a distribution D over graphs of n
nodes, internally runs a copy of F and proceeds with parties P1, . . . , Pn and a special graph party
Pgraph as follows.

Initialization Phase:

Input: WDdist-graph-info(F) receives an initialization input from every party Pv. Upon receiving
the first input, WDdist-graph-info(F) samples a graph G = (V,E)← D.

Output: WDdist-graph-info(F) outputs NG[v] to each corrupted Pv.

Computation Phase:

Input: WDdist-graph-info(F) forwards every message it receives to F.

Output: Whenever F sends a message,WDdist-graph-info(F) forwards the message to the recipient.

Termination Phase:

Input: WDdist-graph-info(F) receives a termination input from Pgraph.

Output: WDdist-graph-info(F) sends a termination message to the simulator, including all input
messages sent to F, outputs the graph G to Pgraph and stops processing further messages,
except for corruption requests.

Corruption request: Once a party Pv gets corrupted, WDdist-graph-info(F) sends NG[v] to Pv.

Figure 7: The distributional-graph-information wrapper functionality

19

Definition 5.1 (Distributional topology hiding). Let D be a distribution over graphs with n nodes.
A protocol π securely realizes a functionality F in a distributional-topology-hiding manner with respect
to D tolerating semi-honest t-adversaries, if π securely realizes WDdist-graph-info(F) in the FDdist-graph-
hybrid model tolerating semi-honest t-adversaries.

The relation between the definitions. We show that Definition 5.1 is indeed a relaxation
of Definition 2.1. We start by showing that every protocol that satisfies Definition 2.1 will also
satisfy Definition 5.1, at least as long as the functionality does not depend on the graph. Next, in
Section 6, we will show a separation between the definitions.

Consider an environment Z of the form Z = (Z1,Z2), where Z1 invokes Pgraph with a graph G ∈
G and receives back its output, and Z2 interacts with the parties and the adversary (without knowing
the output received by Z1) and outputs the decision bit. We say that an n-party functionality F
does not depend on the communication graph if for every family G of graphs with n nodes and every
environment Z = (Z1,Z2) as described above, the output of Z (i.e., the output of Z2) in an ideal
computation of WGgraph-info(F) is identically distributed as the output of Z in an ideal computation
of W̃Ggraph-info(F), where W̃Ggraph-info acts like WGgraph-info with the exception that it ignores the graph
G it receives and chooses an arbitrary graph from G instead. In the modified functionality, the input
provided by the environment is independent of the communication graph; hence, if the output of the
functionality is identically distributed in both cases, it can’t be dependent on the graph structure.

Theorem 5.2. Let F be functionality that does not depend on the communication graph and let D
be an efficiently sampleable distribution over graphs with n nodes. If F can be securely realized in a
topology-hiding manner with respect to supp(D), then F can be securely realized in a distributional-
topology-hiding manner with respect to D.

Proof. Assume that F cannot be securely realized in a distributional-topology-hiding manner with
respect to D, i.e., for every protocol and every simulator for the dummy adversary, there exists
an environment Z that can create a non-negligible distinguishing advantage. Note that initially,
Z knows only the distribution D but not the actual graph, but at any point can invoke Pgraph to
obtain the graph. We will show that F cannot be securely realized in a topology-hiding manner
with respect to supp(D).

We use Z to construct an environment Z ′ as follows. Initially, Z ′ samples a graph G ← D
and sends it to Pgraph to initialize the communication graph functionality (or the graph-information
functionality). Next, Z ′ invokes Z and forwards any message from Z to the parties or the adversary,
and vice versa. Once an honest party receives its neighbor-set from the functionality, Z ′ does not
forward the message to Z, but upon a corruption of a party Z ′ provides its neighbor-set to Z.
If Z asks Pgraph to get the graph, Z ′ responds with the graph G and proceeds to process only
corruption requests from Z. Finally, Z ′ outputs the output of Z and halts. Clearly, Z ′ has the
same distinguishing probability as Z, and the proof follows.

6 Distributional-THC with Hidden Sublinear Cuts
In this section, we show a distributional-THC protocol that hides sublinear cuts between two
linear-size cliques in the communication graph, and tolerates a linear number of adaptive semi-
honest corruptions. The protocol is based on a recent work by Boyle et al. [13], that constructed

20

an adaptively secure MPC protocol in the dynamic-graph setting (where every party can talk to
every other party, but dynamically decides on its neighbor-set).

In Section 6.1, we present the protocol in the distributional-THC setting that can hide sublinear
cuts against adaptive corruptions, and in Section 6.2 we show that a similar result cannot be
achieved in the classical THC setting.

6.1 Feasibility in the Distributional-THC Model

We start by defining the distribution of potential communication graphs in the n-party protocol.
The distribution is illustrated in Figure 8.

Definition 6.1. Let n = 4m+ 1 for m ∈ N, and let n′ = logc n for a constant c > 1. Denote

P1 = {1, . . . ,m}, P2 = {m+ 1, . . . , 2m}, P3 = {2m+ 1, . . . , 3m}, P4 = {3m+ 1, . . . , 4m}.

Given a bit b ∈ {0, 1} and two vectors i = (i1, . . . , in′) and j = (j1, . . . , jn′) in [m]n′ with distinct
coordinates, i.e., ik 6= ik′ and jk 6= jk′ for k 6= k′, define the graph Gn(b; i; j) as follows:

• Two cliques of size 2m, P1 ∪ P2 and P3 ∪ P4.

• The edges (m+ ik, 2m+ jk) for every k ∈ [n′] (i.e., a sublinear cut between P2 to P3).

• The edges (4m+ 1, i), for every i ∈ P1 if b = 0, or for every i ∈ P4 if b = 1 (i.e., connecting
4m+ 1 to either P1 or P4).

We define the distribution Dcut(n, c) over graphs of n nodes by uniformly sampling a bit b ∈ {0, 1}
and i, j ← [m]n′ with distinct coordinates, and returning Gn(b; i; j).

𝒫1 =
1,… ,𝑚

𝒫2 =
𝑚 + 1,… , 2𝑚

𝑚 + 𝑖1

𝑚+ 𝑖𝑛′

2𝑚 + 𝑗1

2𝑚 + 𝑗𝑛′
⋮ ⋮

𝒫3 =
2𝑚 + 1,… , 3𝑚

𝒫4 =
3𝑚 + 1,… , 4𝑚

4𝑚 + 1

If 𝑏 = 0 If 𝑏 = 1

Figure 8: A graph Gn(b; i; j) with n = 4m+ 1 nodes in support of the distribution Dcut(n, c).

21

Theorem 6.2. Let n ∈ N, let β < 1/4 and c > 1 be constants, and let f be an efficiently computable
n-party function. Then, Ffsfe can be securely realized in a distributional-topology-hiding manner with
respect to Dcut(n, c) with statistical security tolerating an adaptive, semi-honest, computationally
unbounded βn-adversary.

To prove Theorem 6.2, we construct a protocol πhide-cuts in the FDcut(n,c)
dist-graph-hybrid model that

securely realizes WDcut(n,c)
dist-graph-info(Ffsfe) (see Figure 12). More specifically, the protocol is defined in a

hybrid model with the additional ideal functionalities Fshare-to-committee, Frecon-compute, and Fout-dist
(all functionalities are explained and formally defined in Section 6.1.1). These functionalities need
not be defined and realized in a topology-hiding manner, since each such functionality will be called
by a pre-defined subsets of parties that forms a clique in the communication graph, and so they
can be instantiated using a “standard” MPC protocol such as BGW.

In Lemma 6.3 (below) we prove that the protocol πhide-cuts securely realizes Ffsfe in a
distributional-topology-hiding manner with respect to Dcut(n, c). We start by defining the ideal
functionalities that are used to define the protocol.

6.1.1 Ideal Functionalities used in the Construction

The share-to-committee functionality. In the share-to-committee m-party functionality,
Fshare-to-committee, every party Pi ∈ {P1, . . . , P2m} sends his input xi ∈ {0, 1}∗, a share si (that can be
the empty string), and a bit bi ∈ {0, 1} indicating whether Pi has a neighbor in {P2m+1, . . . , P3m}.
The functionality first tries to reconstruct the value x4m+1 from the shares s1, . . . , sm. Next, the
functionality secret shares the input value xi of each party and sends the shares to the parties with
bi = 1. The formal description of the functionality can be found in Figure 9.

The functionality Fshare-to-committee

The 2m-party functionality Fshare-to-committee is parametrized by an integer n′ and proceeds with parties
{P1, . . . , P2m} as follows.

1. Every party Pi sends a triplet of values (xi, si, bi) as its input, where xi is the actual input
value, si is potentially a share, and bi is a bit. Let C = {i | bi = 1}. If |C| 6= n′ abort.

2. If the shares s1, . . . , sm are not the empty string, compute x4m+1 =
⊕

i∈[m] si; otherwise set
x4m+1 = ε to be the empty string.

3. For every i ∈ [2m] ∪ {4m + 1}, sample uniformly distributed s1
i , . . . , s

n′

i conditioned on xi =⊕
j∈[n′] s

j
i .

4. Denote C = {i1, . . . , in′}. For every ij ∈ C, set sij = (sj
1, . . . , s

j
2m, s

j
4m+1).

5. For every ij ∈ C, set the output of Pij to be sij (other parties don’t get an output).

Figure 9: The share-to-committee functionality

The reconstruct-and-compute functionality. The reconstruct-and-compute functionality,
Frecon-compute, is a 2m-party functionality. Denote the party-set by {P2m+1, . . . , P4m}. Every
party P2m+i has an input value x2m+i ∈ {0, 1}∗, and additional values consisting of shares
of (x1, . . . , x2m, x4m+1). The functionality starts by using the additional inputs to reconstruct

22

(x1, . . . , x2m, x4m+1). Next, the functionality computes y = f(x1, . . . , x4m+1) and hands y as the
output for every party. The formal description of the functionality can be found in Figure 10.

The functionality Frecon-compute

The 2m-party functionality Frecon-compute is parametrized by an integer n′ and proceeds with parties
{P2m+1, . . . , P4m} as follows.

1. Every party P2m+i (for i ∈ [2m]) sends a pair of values (x2m+i, z2m+i) as its input, where x2m+i

is the actual input value, z2m+i = s2m+i for some i ∈ [m], and potentially z2m+i = si for
i ∈ [2m] \ [m] (all other values are the empty string ε).

2. Let C2 = {i ∈ [m] | z2m+i 6= ε}. If |C2| 6= n′ then abort. Otherwise, denote C2 = {i1 . . . , in′}.
For every ij ∈ C2, let s2m+ij

= (sj
1, . . . , s

j
2m, s

j
4m+1) be the input provided by P2m+ij

.

3. If the inputs z3m+i = si are not empty for i ∈ [m], then compute x4m+1 =
⊕

i∈[m] si. Otherwise
compute x4m+1 =

⊕
j∈[n′] s

j
4m+1.

4. For every i ∈ [2m], reconstruct xi =
⊕

j∈[n′] s
j
i .

5. Compute y = f(x1, . . . , x4m+1).

6. Output y to every P2m+i for i ∈ [2m].

Figure 10: The reconstruct-and-compute functionality

The output-distribution functionality. The 2m-party output-distribution functionality re-
ceives input values from (some) of the parties and sends one of them as output to all the parties
(looking ahead, in the protocol there will be a single input value). The formal description of the
functionality can be found in Figure 11.

The functionality Fout-dist

The 2m-party functionality Fout-dist proceeds with parties {P1, . . . , P2m} as follows.

1. Every party Pi, gives (a potentially empty) input value yi.

2. Let i be the minimal value such that yi 6= ε. Denote y = yi.

3. Output y to every Pi.

Figure 11: The output-distribution functionality

6.1.2 The protocol

We now describe the protocol πhide-cuts and prove its security.

Lemma 6.3. Protocol πhide-cuts UC-realizes the wrapped functionality WDcut(n,c)
dist-graph-info(Ffsfe) in

the (FDcut(n,c)
dist-graph,Fshare-to-committee,Frecon-compute,Fout-dist)-hybrid model tolerating an adaptive, semi-

honest, computationally unbounded βn-adversary, for any constant β < 1/4.

23

The proof of Lemma 6.3 can be found in Appendix B.

Protocol πhide-cuts

• Hybrid Model: The protocol is defined in the (FDcut(n,c)
dist-graph , Fshare-to-committee, Frecon-compute,

Fout-dist)-hybrid model.

• Common Input: A partition of the party-set P1 = {1, . . . ,m}, P2 = {m + 1, . . . , 2m}, P3 =
{2m+ 1, . . . , 3m}, P4 = {3m+ 1, . . . , 4m}, and P5 = {4m+ 1}.

• Private Input: Every party Pi, for i ∈ [n], has private input xi ∈ {0, 1}∗.

• The Protocol:

1. Every party Pi sends an initialization input to FDcut(n,c)
dist-graph and receives the neighbor-set NG[i].

2. Party P4m+1 samples random s1, . . . , sm conditioned on x4m+1 =
⊕

i∈[m] si and sends one share
to each of its neighbors (either in P1 or in P4).

3. Every party Pi ∈ P1∪P2 sets the bit bi = 1 if he has a neighbor in P3, and bi = 0 otherwise. In
addition, if Pi did not receive a value si from P4n+1 in Step 2 he sets si = ε. The parties in P1∪P2
invoke Fshare-to-committee, where every Pi ∈ P1 ∪ P2 sends input (xi, si, bi). Every Pi = Pij (for
some j ∈ [n′]) with bij

= 1 receives back output consisting of a vector sij
= (sj

1, . . . , s
j
2m, s

j
4m+1).

4. Every party Pi with bi = 1 sends the value received si to his neighbor in P3 (via FDcut(n,c)
dist-graph).

5. If a party P2m+i ∈ P3∪P4 has a neighbor in P2 he sets z2m+i to be the value received in Step 4,
If the party received a value si from P4n+1 in Step 2 he sets z2m+i = si; otherwise set z2m+i = ε.
The parties in P3 ∪P4 invoke Frecon-compute, where P2m+i ∈ P3 ∪P4 sends input (x2m+i, z2m+i).
Every party in P3 ∪ P4 receives back output y.

6. If a party P2m+i ∈ P3 has a neighbor in P2, he sends y to his neighbor (via FDcut(n,c)
dist-graph).

7. The parties in P1∪P2 invoke Fout-dist, where party Pi, with bi = 1, sends the value y he received
in Step 6 as his input. Every party in P1 ∪ P2 receives output y.

8. Every party that received a value from party P4m+1 in Step 2 sends y to P4m+1.

9. Every party outputs y and halts.

Figure 12: Hiding low-weight cuts in the (Fshare-to-committee,Frecon-compute,Fout-dist)-hybrid model

6.2 Impossibility in the Classical THC Model

The protocol πhide-cuts was defined in the weaker distributional-THC model. To justify the weaker
model, we show that a similar result cannot be achieved in the stronger (classical) THC model.
The reason is that according to this model (Definition 2.1) the environment, who chooses the
communication graph, knows exactly which parties are on the cut and can corrupt them. This
means that without relying on cryptographic assumptions or some correlated-randomness setup
phase, two honest parties from opposite sides of the cut cannot communicate privately [27].

We prove this intuition using our lower bound from Section 3.
Theorem 6.4. Let c > 1 be a constant and let t = logc(n). Then, Fbc cannot be securely computed
in a topology-hiding manner with respect to supp(Dcut(n, c)) tolerating computationally unbounded,
semi-honest, static t-adversaries.

24

Proof. Let n = 4m+ 1 and let π be an n-party t-resilient broadcast protocol where party P4m+1 is
the broadcaster. Let i = (i1, . . . , in′) and j = (j1, . . . , jn′) in [m]n′ with distinct coordinates, and
consider the following partition of the nodes:

P1 = {4m+ 1} P2 = {1, . . . , 2m} \ {i1, . . . , in′},
P3 = {i1, . . . , in′}, P4 = {2m+ 1, . . . , 4m}.

For b ∈ {0, 1}, consider the graph G̃b = G(b; i; j) ∈ supp(Dcut(n, c)). By definition, it holds that

• In G̃0: there are no edges (i, j) ∈ P1 × P3, or (i, j) ∈ P2 × P4, or (i, j) ∈ P1 × P4,

• In G̃1: there are no edges (i, j) ∈ P1 × P3, or (i, j) ∈ P2 × P4, or (i, j) ∈ P1 × P2.

Since t = |P3|, by Corollary 3.4 there is no THB protocol with respect to G tolerating semi-honest,
static t-adversaries with information-theoretic security.

7 Sequential Composition of Low-Locality MPC
To motivate the definition of distributional THC, we show its effectiveness with respect to adaptively
secure MPC with low locality. Specifically, we consider the protocol of Chandran et al. [18] that
maintains sublinear locality per party, however, offers limited capabilities with respect to sequential
composition. In this section, we show that the ability to adjust the communication in the hidden-
graph model from [18] to distributional topology-hiding communication, would allow to maintain
sublinear locality for polynomially many executions. We emphasize that we do not present a new
feasibility result, as we do not know how to implement the topology-hiding communication with
adaptive security for the required graph distribution. Instead, the results in this section should be
treated as a motivation for the definition.

Low locality with adaptive security. We start with a brief overview of the protocol from [18].
The starting point is any adaptively secure MPC protocol in the honest-majority setting, e.g.,
[9, 23, 24, 16, 10, 22]. The first step is to replace any broadcast call in the MPC protocol with
a broadcast protocol, so that the MPC protocol will run purely over secure pairwise point-to-
point channels. This can be done in the PKI model with a polylog blowup using a simultaneous-
termination broadcast protocol [36] or while maintaining the same expected running time using a
probabilistic-termination protocol [21, 20]. The second step is to use adaptively secure encryption
(possibly with erasures [4]) to replace secure channels with authenticated channels.

The third step is to replace every round of the pairwise point-to-point protocol by a reliable
message transmission (RMT) protocol that supports sublinear locality and adaptive corruptions.
The idea in [18] is to use a fresh communication graph for each RMT protocol. Every graph is a
randomly generated Erdős-Rényi graph G(n, p), where every edge appears with some fixed proba-
bility p that guarantees sublinear degree and polylog diameter with overwhelming probability (in
n). Chandran et al. [18] introduced the hidden-graph model, where a trusted party samples the
graph and gives each party its local neighbor-set, and showed two elegant techniques for instan-
tiating the trusted party in a distributed manner. The first technique, for sampling G(n, p) with
p = (logc(n))/n (for some constant c > 1), assumes a secret-key infrastructure and ensures polylog
degree. The second technique, for sampling G(n, p) with p = (logc(n))/

√
n, works in the plain

model and ensures Õ(
√
n) degree.

25

Clearly, to support a sublinear degree with adaptive corruptions, authenticated and private
channels do not suffice, as it is crucial to keep the mere fact that two honest parties communicate
hidden from the eyes of the adversary. Otherwise, the adversary would be able to see which parties
receive messages from some honest party and immediately corrupt them, thus isolating that party.
To resolve this issue, Chandran et al. [18] defined their RMT protocol in the hidden-channels model,
where the adversary is unaware of honest-to-honest communication (see further discussion in [13]).

The RMT protocol over the Erdős-Rényi graph is a simple flooding protocol, and as such is
not topology hiding (e.g., two corrupt parties can learn their distance by a straightforward timing
attack).2 Due to this limitation, each graph can be used only for a single communication round of
the original MPC protocol. As a result, the protocol of Chandran et al. [18] only supports bounded
sequential composition (in particular, the first construction will not maintain polylog locality for
logω(1)(n) sequential executions, and the second will not maintain Õ(

√
n) locality for

√
n · logω(1)(n)

executions).
For the remaining of this section, we will consider information-theoretic security in the plain

model (without any setup assumptions). In this setting, [18] achieves Õ(
√
n) locality for circuits

of Õ(
√
n) depth by compiling the semi-honest version of BGW [9]. Note that in this setting, if

the adversary manages to isolate an honest party, i.e., corrupt all of its neighbors, then privacy is
violated.

Sequential composition via THC. Intuitively, one might hope that if the RMT protocol would
be topology hiding, the same Erdős-Rényi graph could be used multiple times even facing adaptive
corruptions. This intuition makes sense since if the topology is kept hidden, the adversary will not
be able to identify the local neighbor-sets of honest parties and isolate them. However, when using
the classical definition of topology-hiding computation from [42] (which is the basis for all prior
work on THC [35, 1, 2, 3, 40]) the underlying communication graph is chosen by the environment,
that can use this knowledge and instruct the adversary to corrupt parties in a way that will isolate
honest parties. Although the simulator will be able to corrupt the entire neighbor-set also in the
ideal world, this will not give him sufficient advantage to simulate isolation of parties in the real
world. We note that this phenomena is not related to adaptive security, since even in the static-
corruption setting, the environment that chooses the graph and the corrupted-set in a correlated
way will gain distinguishing advantage.

This situation can highlight the benefit of distributional topology-hiding computation. Recall
that the first step of [18] is defined over secure pairwise point-to-point channels. This can be
captured by the parallel secure message transmission functionality Fpsmt, as defined in [21, 20],
where every party Pi sends an input (mi→1, . . . ,mi→n) and receives as output (m1→i, . . . ,mn→i);
since the adversary is rushing, he learns as leakage all messages sent to corrupted parties (i.e., mj→i
with a corrupted i) before choosing the corrupted parties’ inputs.

Let DER(n, p) be the Erdős-Rényi distribution over graphs with n nodes where every edge ap-
pears with probability p. When executing any adaptively secure protocol defined over secure point-
to-point channels in theWDER(n,p)

dist-graph-info(Fpsmt)-hybrid model, every party learns his own neighbor-set
(just like in classical THC); however, the environment only knows the distribution of the graphs
during the course of the computation. In particular, the environment can only corrupt parties
as a function of this distribution, the neighbor-sets of all corrupted parties up to that point, and

2In fact, since the topology of the graph is revealed during the protocol execution, [18] required atomic data
erasures as part of the send operation to avoid subtle adaptive attacks.

26

whatever is leaked from the MPC protocol. Therefore, the same graph can be reused and with
overwhelming probability the environment will not be able to isolate honest parties.

For an integer q, denote by Fqpsmt the reactive functionality that invokes Fpsmt sequentially q
times. Using the distributed sampling of Erdős-Rényi graphs from [18], we obtain the following
lemma.

Lemma 7.1. Assume thatWDER(n,p)
dist-graph-info(Fpsmt) can be t-securely realized with adaptive semi-honest

security in the FDER(n,p)
dist-graph-hybrid model, for p = (logc(n))/

√
n with some constant c > 1 and t < n/2,

by an R-round protocol. Let q = poly(n). Then, there exists a protocol that t-securely realizes
WDER(n,p)

dist-graph-info(Fqpsmt) with adaptive semi-honest security in the plain model with hidden communi-
cation channels using Õ(

√
n) locality and O(R · q) rounds.

Proof (sketch). Let πpsmt be a protocol that securely realizesWDER(n,p)
dist-graph-info(Fpsmt) in the FDER(n,p)

dist-graph-
hybrid model. We denote by π∗psmt the protocol realizing WDER(n,p)

dist-graph-info(Fqpsmt), consisting of the
following two stages:

• Initially, the parties execute the graph-sampling phase from [18] (that is based on [17]).
Every party Pi defines the set Sout

i ⊆ [n] by choosing every element in [n] with probability
p = (logc(n))/

√
n, and sends to every j ∈ Sout

i a message. Let S in
i be the set of parties that

have sent a message to Pi. The neighbor-set of Pi for the rest of the protocol is Si = Sout
i ∩S in

i .

• Next, for each of the sequential calls, execute an instance of πpsmt, where every party uses the
neighbor-set established above, and ignores any message arriving from other parties.

We reduce the security of π∗psmt to that of πpsmt in two steps. First, consider a protocol π′psmt
that runs the graph-sampling phase and proceeds to execute a single instance of πpsmt. Clearly, by
the security of the sampling protocol from [18], π′psmt securely realizes WDER(n,p)

dist-graph-info(Fpsmt) under
the same assumptions as πpsmt.

Second, we reduce the security of π∗psmt to that of π′psmt using a standard hybrid argument.
Assume that there exists an environment Z∗ that can distinguish between an execution of π∗psmt
with the dummy adversary to q sequential calls to Fpsmt with noticeable probability. We will
construct an environment Z that can distinguish between an execution of π′psmt with the dummy
adversary and a call to Fpsmt.

Consider q + 1 hybrids, where in the i’th hybrid, the environment Z∗ is invoked and the calls
0 to i are to an execution of π∗psmt with the dummy adversary and the calls i + 1 to q are to
WDER(n,p)

dist-graph-info(Fq−ipsmt), with the restriction that for i > 0, the neighbor-set of any party who is
corrupted during the i’th call remains the same in the graph sampled by WDER(n,p)

dist-graph-info(Fq−ipsmt).
Clearly, the 0’th hybrid corresponds to the ideal model forWDER(n,p)

dist-graph-info(Fqpsmt) and the q’th hybrid
to an execution of π∗psmt with the dummy adversary. By the assumption that Z∗ has noticeable
distinguishing advantage there exists a hybrid that is noticeably far from its adjacent hybrid.

Initially, Z receives as an advice the integer r ∈ [q] representing the iteration in which Z∗
gains noticeable advantage (alternatively, a uniform environment can simply guess r with 1/ poly
probability). Next, Z invokes Z∗ and simulates the parties running π∗psmt with the dummy adversary
during the first r − 1 calls. In the r’th call, Z forwards the inputs from Z∗ to the parties running
either the real πpsmt or the ideal call to Fpsmt. For the remaining calls Z simulates the ideal call to
Fpsmt. Clearly, if Z∗ has noticeable distinguishing probability, then so does Z.

27

The protocol described above realizes multiple calls to secure pairwise channels and so can be
used as the communication infrastructure for BGW. In fact, we showed that the same communi-
cation network can be used for multiple executions of the BGW protocol. For an integer q, denote
by Fqsfe the reactive functionality the invokes Fsfe sequentially q times.

Corollary 7.2. Assume that WDER(n,p)
dist-graph-info(Fpsmt) can be t-securely realized with adaptive semi-

honest security in the FDER(n,p)
dist-graph-hybrid model, for p = (logc(n))/

√
n with some constant c > 1

and t < n/2. Let q = poly(n). Then, WDER(n,p)
dist-graph-info(Fqsfe) can be t-securely realized with adaptive

semi-honest security in the plain model with hidden communication channels and maintain Õ(
√
n)

locality.

Acknowledgements. We thank Mike Rosulek for his graphical support, and the anonymous
reviewers of TCC’19 for useful comments.

M. Ball’s research is supported by an IBM Research PhD Fellowship. Part of this work was
completed while M. Ball was visiting IDC Herzliya’s FACT center. M. Ball and T. Malkin’s research
is based upon work supported in part by the Office of the Director of National Intelligence (ODNI),
Intelligence Advanced Research Projects Activity (IARPA) via Contract No. 2019-1902070006.
E. Boyle’s research is supported by ISF grant 1861/16 and AFOSR Award FA9550-17-1-0069. R.
Cohen’s research is supported by the Northeastern University Cybersecurity and Privacy Institute
Post-doctoral fellowship, NSF grant TWC-1664445, NSF grant 1422965, and by the NSF MACS
project. This work was supported in part by the Intelligence Advanced Research Project Activity
(IARPA) under contract number 2019-19-020700009. T. Moran’s research is supported by the
Bar-Ilan Cyber Center. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of ODNI, IARPA, DoI/NBC, or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright annotation thereon.

Bibliography
[1] A. Akavia and T. Moran. Topology-hiding computation beyond logarithmic diameter. In Advances in

Cryptology – EUROCRYPT 2017, part III, pages 609–637, 2017.

[2] A. Akavia, R. LaVigne, and T. Moran. Topology-hiding computation on all graphs. In Advances in
Cryptology – CRYPTO 2017, part I, pages 447–467, 2017.

[3] M. Ball, E. Boyle, T. Malkin, and T. Moran. Exploring the boundaries of topology-hiding computation.
In Advances in Cryptology – EUROCRYPT 2018, part III, pages 294–325, 2018.

[4] D. Beaver and S. Haber. Cryptographic protocols provably secure against dynamic adversaries. In
Advances in Cryptology – EUROCRYPT ’92, pages 307–323, 1992.

[5] A. Beimel. On private computation in incomplete networks. Distributed Computing, 19(3):237–252,
2007.

[6] A. Beimel and M. K. Franklin. Reliable communication over partially authenticated networks. Theo-
retical Computer Science, 220(1):185–210, 1999.

28

[7] A. Beimel and L. Malka. Efficient reliable communication over partially authenticated networks. Dis-
tributed Computing, 18(1):1–19, 2005.

[8] A. Beimel, A. Gabizon, Y. Ishai, E. Kushilevitz, S. Meldgaard, and A. Paskin-Cherniavsky. Non-
interactive secure multiparty computation. In Advances in Cryptology – CRYPTO 2014, part II, pages
387–404, 2014.

[9] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-
tolerant distributed computation (extended abstract). In Proceedings of the 20th Annual ACM Sympo-
sium on Theory of Computing (STOC), pages 1–10, 1988.

[10] F. Benhamouda, H. Lin, A. Polychroniadou, and M. Venkitasubramaniam. Two-round adaptively secure
multiparty computation from standard assumptions. In Proceedings of the 16th Theory of Cryptography
Conference, TCC 2018, part I, pages 175–205, 2018.

[11] M. Bläser, A. Jakoby, M. Liśkiewicz, and B. Manthey. Private computation: k-connected versus 1-
connected networks. Journal of Cryptology, 19(3):341–357, 2006.

[12] E. Boyle, S. Goldwasser, and S. Tessaro. Communication locality in secure multi-party computation -
how to run sublinear algorithms in a distributed setting. In Proceedings of the 10th Theory of Cryptog-
raphy Conference, TCC 2013, pages 356–376, 2013.

[13] E. Boyle, R. Cohen, D. Data, and P. Hubáček. Must the communication graph of MPC protocols be
an expander? In Advances in Cryptology – CRYPTO 2018, part III, pages 243–272, 2018.

[14] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology, 13
(1):143–202, 2000.

[15] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In
Proceedings of the 42nd Annual Symposium on Foundations of Computer Science (FOCS), pages 136–
145, 2001.

[16] R. Canetti, O. Poburinnaya, and M. Venkitasubramaniam. Equivocating Yao: constant-round adap-
tively secure multiparty computation in the plain model. In Proceedings of the 49th Annual ACM
Symposium on Theory of Computing (STOC), pages 497–509, 2017.

[17] N. Chandran, J. A. Garay, and R. Ostrovsky. Edge fault tolerance on sparse networks. In Proceedings
of the 39th International Colloquium on Automata, Languages, and Programming (ICALP), part II,
pages 452–463, 2012.

[18] N. Chandran, W. Chongchitmate, J. A. Garay, S. Goldwasser, R. Ostrovsky, and V. Zikas. The hidden
graph model: Communication locality and optimal resiliency with adaptive faults. In Proceedings of
the 6th Annual Innovations in Theoretical Computer Science (ITCS) conference, pages 153–162, 2015.

[19] D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure protocols (extended ab-
stract). In Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC), pages
11–19, 1988.

[20] R. Cohen, S. Coretti, J. Garay, and V. Zikas. Round-preserving parallel composition of probabilistic-
termination cryptographic protocols. In Proceedings of the 44th International Colloquium on Automata,
Languages, and Programming (ICALP), pages 37:1–37:15, 2017.

[21] R. Cohen, S. Coretti, J. A. Garay, and V. Zikas. Probabilistic termination and composability of
cryptographic protocols. Journal of Cryptology, 32(3):690–741, 2019.

29

[22] R. Cohen, A. Shelat, and D. Wichs. Adaptively secure MPC with sublinear communication complexity.
In Advances in Cryptology – CRYPTO 2019, part II, pages 30–60, 2019.

[23] R. Cramer, I. Damgård, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multiparty computations
secure against an adaptive adversary. In Advances in Cryptology – EUROCRYPT ’99, pages 311–326,
1999.

[24] I. Damgård and Y. Ishai. Constant-round multiparty computation using a black-box pseudorandom
generator. In Advances in Cryptology – CRYPTO 2005, pages 378–394, 2005.

[25] I. Damgård, P. Meyer, and D. Tschudi. Information-theoretic topology-hiding computation with setup.
2019. URL http://perso.ens-lyon.fr/pierre.meyer/docs/m2.pierre.meyer.pdf.

[26] D. Dolev. The Byzantine generals strike again. J. Algorithms, 3(1):14–30, 1982.

[27] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmission. Journal of the
ACM, 40(1):17–47, 1993.

[28] C. Dwork, D. Peleg, N. Pippenger, and E. Upfal. Fault tolerance in networks of bounded degree. SIAM
Journal on Computing, 17(5):975–988, 1988.

[29] M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility proofs for distributed consensus prob-
lems. In Proceedings of the 23th Annual ACM Symposium on Principles of Distributed Computing
(PODC), pages 59–70, 1985.

[30] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem
for protocols with honest majority. In Proceedings of the 19th Annual ACM Symposium on Theory of
Computing (STOC), pages 218–229, 1987.

[31] S. D. Gordon, T. Malkin, M. Rosulek, and H. Wee. Multi-party computation of polynomials and
branching programs without simultaneous interaction. In Advances in Cryptology – EUROCRYPT
2013, pages 575–591, 2013.

[32] S. Halevi, Y. Lindell, and B. Pinkas. Secure computation on the web: Computing without simultaneous
interaction. In Advances in Cryptology – CRYPTO 2011, pages 132–150, 2011.

[33] S. Halevi, Y. Ishai, A. Jain, E. Kushilevitz, and T. Rabin. Secure multiparty computation with general
interaction patterns. In Proceedings of the 7th Annual Innovations in Theoretical Computer Science
(ITCS) conference, pages 157–168, 2016.

[34] M. Hinkelmann and A. Jakoby. Communications in unknown networks: Preserving the secret of topol-
ogy. Theoretical Computer Science, 384(2-3):184–200, 2007.

[35] M. Hirt, U. Maurer, D. Tschudi, and V. Zikas. Network-hiding communication and applications to
multi-party protocols. In Advances in Cryptology – CRYPTO 2016, part II, pages 335–365, 2016.

[36] J. Katz and C. Koo. On expected constant-round protocols for Byzantine agreement. In Advances in
Cryptology – CRYPTO 2006, pages 445–462, 2006.

[37] J. Katz, U. Maurer, B. Tackmann, and V. Zikas. Universally composable synchronous computation. In
Proceedings of the 10th Theory of Cryptography Conference, TCC 2013, pages 477–498, 2013.

[38] V. King, S. Lonargan, J. Saia, and A. Trehan. Load balanced scalable Byzantine agreement through quo-
rum building, with full information. In Proceedings of the 12th International Conference on Distributed
Computing and Networking (ICDCN), pages 203–214, 2011.

30

http://perso.ens-lyon.fr/pierre.meyer/docs/m2.pierre.meyer.pdf

[39] M. V. N. A. Kumar, P. R. Goundan, K. Srinathan, and C. P. Rangan. On perfectly secure cmmunication
over arbitrary networks. In Proceedings of the 21th Annual ACM Symposium on Principles of Distributed
Computing (PODC), pages 193–202, 2002.

[40] R. LaVigne, C. L. Zhang, U. Maurer, T. Moran, M. Mularczyk, and D. Tschudi. Topology-hiding com-
putation beyond semi-honest adversaries. In Proceedings of the 16th Theory of Cryptography Conference,
TCC 2018, part II, pages 3–35, 2018.

[41] S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures: extended abstract. In
Proceedings of the 8th ACM Conference on Computer and Communications Security (CCS), pages 245–
254, 2001.

[42] T. Moran, I. Orlov, and S. Richelson. Topology-hiding computation. In Proceedings of the 12th Theory
of Cryptography Conference, TCC 2015, part I, pages 159–181, 2015.

[43] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority
(extended abstract). In Proceedings of the 30th Annual Symposium on Foundations of Computer Science
(FOCS), pages 73–85, 1989.

[44] A. C. Yao. Protocols for secure computations (extended abstract). In Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 160–164, 1982.

A Preliminaries (Cont’d)

A.1 UC Framework

We present a highly informal overview of the UC framework and refer the reader to [15] for further
details. The framework is based on the real/ideal paradigm for arguing about the security of a
protocol.

The real model. An execution of a protocol π in the real model consists of n ppt interactive
Turing machines (ITMs) P1, . . . , Pn representing the parties, along with two additional ITMs: an
adversary A, describing the behavior of the corrupted parties and an environment Z, representing
the external network environment in which the protocol operates. The environment gives inputs
to the honest parties, receives their outputs, and can communicate with the adversary at any
point during the execution. It is known that security against the dummy adversary (that forwards
every message it sees to the environment and acts according to the environment’s instructions) is
sufficient to achieve security against arbitrary adversaries. Throughout, we consider synchronous
protocols that proceeds in rounds (this can be formally modeled using the Fsync functionality [15],
or using the synchronous framework of [37]) and semi-honest (passive) security (where corrupted
parties continue following the protocol, but reveal their internal state to the adversary). We will
consider both static corruptions (where A chooses the corrupted parties at the onset of the protocol)
and adaptive corruptions (where A can dynamically corrupt parties based on information gathered
during the computation), and will explicitly mention at any section which type of corruptions are
considered. An t-adversary can corrupt up to t parties during the protocol.

31

The ideal model. A computation in the ideal model consists of n dummy parties P̃1, . . . , P̃n, an
ideal-model adversary (simulator) S, an environment Z, and an ideal functionality F. As in the
real model, the environment gives inputs to the honest (dummy) parties, receives their outputs,
and can communicate with the ideal-model adversary at any point during the execution. The
dummy parties act as channels between the environment and the ideal functionality, meaning that
they send the inputs received from Z to F and vice-versa. The ideal functionality F defines the
desired behaviour of the computation. F receives the inputs from the dummy parties, executes the
desired computation and sends the output to the parties. The ideal-model adversary does not see
the communication between the parties and the ideal functionality, however, S can corrupt dummy
parties (statically or dynamically) and may communicate with F according to its specification.

Security definition. We present the definition for adaptive and semi-honest adversaries. Ad-
justing the definition to other types of adversaries (e.g., static corruptions) is straightforward.

We say that a protocol π UC-realizes (with computational security) an ideal functionality F in
the presence of adaptive semi-honest t-adversaries, if for any ppt adaptive semi-honest t-adversary
A and any ppt environment Z, there exists a ppt ideal-model t-adversary S such that the output
distribution of Z in the ideal-model computation of F with S is computationally indistinguishable
from its output distribution in the real-model execution of π with A.

We say that a protocol π UC-realizes (with information-theoretic security) an ideal functionality F
if the above holds even for computationally unbounded A, Z, and S. In that case the requirement is
for the output distribution of Z in the ideal-model computation to be statistically close to its output
distribution in the real-model execution. If the environment’s outputs are identically distributed,
we say that π UC-realizes F with perfect security.

The hybrid model. The F-hybrid model is a combination of the real and ideal models, it extends
the real model with an ideal functionality F. The parties communicate with each other in exactly
the same way as in the real model; however, they can also interact with F as in the ideal model.
An important property of the UC framework is that the ideal functionality F in an F-hybrid model
can be replaced with a protocol that UC-realizes F. The composition theorem of Canetti [15] states
the following.

Theorem A.1 ([15], informal). Let ρ be a protocol that UC-realizes F in the presence of adaptive
semi-honest t-adversaries, and let π be a protocol that UC-realizes G in the F-hybrid model in
the presence of adaptive semi-honest t-adversaries. Then, for any ppt adaptive semi-honest t-
adversary A and any ppt environment Z, there exists a ppt adaptive semi-honest t-adversary S
in the F-hybrid model such that the output distribution of Z when interacting with the protocol π
and S is computationally indistinguishable from its output distribution when interacting with the
protocol πρ (where every call to F is replaced by an execution of ρ) and A in the real model.

B Adaptively Secure Distributional THC with Hidden Sublinear
Cuts (Cont’d)

We now present the proof of Lemma 6.3.

Proof. Let A be an adaptive, semi-honest adversary attacking πhide-cuts in the aforementioned hy-
brid model. We will construct an ideal-process adversary S, interacting with the ideal function-

32

ality WDcut(n,c)
dist-graph-info(Ffsfe) and with ideal (dummy) parties P̃1, . . . , P̃n, such that no environment

can distinguish between S and A. To simplify notations, we denote the wrapped functionality
WDcut(n,c)

dist-graph-info(Ffsfe) simply as W(Fsfe) for the rest of the proof.
To define S, we first explain how to simulate the protocol towards the adversary, and later how

to respond to dynamic corruption requests. Denote by I the set of corrupted parties, initially set to
∅. This is a dynamic set that gets updated during the simulation whenever a party gets corrupted.
If at any point during the simulation, S receives a termination message from W(Fsfe) (indicating
the environment asked to stop the computation and learn the graph) S stops the simulation of the
protocol and only responds to corruption requests.

Simulating the protocol.

• To simulate Step 1, S receives the initialization input from A for every corrupted party Pi,
forwards the messages to W(Fsfe), gets neighbors set NG[i] for each corrupted party, and
returns it to A.

• To simulate Step 2, if 4m + 1 ∈ I, simulate receiving messages si by his honest neighbors.
Otherwise, for every corrupted party Pi with 4m+ 1 ∈ NG[i], send a random s̃i from P4m+1.

• To simulate Step 3, S receives from A on behalf of every corrupted Pi ∈ P1 ∩ I the in-
put/share/indicator triplet (xi, si, bi). For every corrupted Pi with bi = 1 (i.e., NG[i]∩P3 6= ∅),
the simulator returns a vector of 2m+ 1 random shares s̃i = (s̃i,1, . . . , s̃i,2m, s̃i,4m+1).

• To simulate Step 4, S receives from A on behalf of every corrupted Pi ∈ P2 ∩ I with
NG[i] ∩ (P3 \ I) 6= ∅ the vector s̃i (i.e., a corrupted Pi ∈ P2 with an honest neighbor
in P3). For every corrupted P2m+i with NG[2m+ i] ∩ (P2 \ I) 6= ∅ (i.e., a corrupted
P2m+i ∈ P3 with an honest neighbor Pi′ ∈ P2), S sends to A a vector of 2m + 1 random
shares s̃i′ = (s̃i′,1, . . . , s̃i′,2m, s̃i′,4m+1).

• To simulate Step 5, S receives from A on behalf of every corrupted P2m+i ∈ (P3 ∪ P4) ∩ I
the pair (x2m+i, z2m+i). The simulator forwards the values {xi}i∈I to W(Fsfe) and receives
back the output y. Next, S returns y for every corrupted P2m+i.

• To simulate Step 6, S receives from A on behalf of every corrupted P2m+i with NG[2m+ i]∩
(P2 \ I) 6= ∅ the value y. For every corrupted Pi with NG[i] ∩ (P3 \ I) 6= ∅ (i.e., a corrupted
Pi ∈ P2 ∩ I with an honest neighbor in P3), S sends to A the value y.

• To simulate Step 7, S receives from A on behalf of every corrupted Pi with NG[i] ∩ P3 6= ∅
the value y, and sends y to every corrupted party Pi ∈ (P1 ∪ P2) ∩ I.

• To simulate Step 8, if 4m + 1 ∈ I, simulate sending y to P4m+1 from every honest party Pi
for i ∈ NG[4m+ 1] \ I.

Simulating corruption requests. Upon a corruption request of a party Pi, the simulator S
corrupts the (dummy) party P̃i, learns its input xi, and proceeds based on the timing of the
corruption request as follows:

• Before Step 1: there is nothing to simulate.

33

• During Step 1 (before Step 2): S gets from W(Fsfe) the neighbor-set NG[i] for Pi.

• During Step 2 (before Step 3): if 4m+ 1 /∈ I and NG[i] ∩ {4m+ 1} 6= ∅, sample a random s̃i
as the message Pi received from P4m+1. If i = 4m + 1, sample a random s̃j as the message
from P4m+1 to Pj , for every j ∈ NG[4m+ 1] \ I, conditioned on x4m+1 =

⊕
j∈[m] s̃j . (If the

value s̃j has already been set in the simulation of Step 5, keep it.)

• During Step 3 (before Step 4): S proceeds as in the previous case. In addition, if i ∈ P1∪P2,
S writes (xi, s̃i, bi) as Pi’s message to Fshare-to-committee, where bi = 1 if NG[i] ∩ P3 6= ∅.
If bi = 1, set the output from Fshare-to-committee to be a vector of 2m + 1 random shares
s̃i = (s̃i,1, . . . , s̃i,2m, s̃i,4m+1). (If Pi’s neighbor in P3 is corrupted and his message from Step 4
has already been simulated, set s̃i according to this value.)

• During Step 4 (before Step 5): S proceeds as in the previous case. In addition, if Pi ∈ P2
and bi = 1, set s̃i as the message to its neighbor in P3. If Pi ∈ P3 and NG[i]∩P2 6= ∅, set s̃i′

as the message received from its neighbor Pi′ in P2, where if Pi′ is corrupted s̃i′ has been set
before (during the simulation) and if Pi′ is honest, set s̃i′ to be a vector of 2m + 1 random
shares s̃i′ = (s̃i′,1, . . . , s̃i′,2m, s̃i′,4m+1).

• During Step 5 (before Step 6): S proceeds as in the previous case. In addition, if Pi ∈ P3∪P4
set (xi, zi) as the input to Frecon-compute, where if NG[i]∩P2 6= ∅, set zi = s̃i′ to be the message
simulated in Step 4. If i ∈ P4 and 4m + 1 ∈ NG[i], set zi = s̃i as simulated in Step 2, or to
a random value if it hasn’t been set. Set the output from Frecon-compute to be y (note that by
the time S simulates Step 5, it has learned the output value).

• During Step 6 (before Step 7): S proceeds as in the previous case. In addition, if Pi ∈ P2 and
bi = 1, set y as the message received from its neighbor in P3. If Pi ∈ P3 and NG[i] ∩ P2 6= ∅,
set y as the message sent to its neighbor in P2.

• During Step 7: (before Step 8): S proceeds as in the previous case. In addition, if Pi ∈ P1∪P2
set y as the output from Fout-dist, and if bi = 1, set y as the input to Fout-dist.

• During (and after) Step 8: S proceeds as in the previous case. In addition, if Pi ∈ P1 ∪ P2
set y as the output from Fout-dist, and if bi = 1, set y as the input to Fout-dist.

• At any point during the simulation, if S has received a termination message with the parties’
input values, and by corrupting party Pi the cut is revealed (i.e., for n′ − 1 parties in P2
either they are corrupted and have a neighbor in P3, or they are honest and have a corrupted
neighbor in P3), then set the vector of 2m + 1 shares s̃i in a way that completes all of the
previous shares to the input values.

Proving real/ideal indistinguishability. We now turn to prove that the joint output of the
honest parties and of the adversary in the ideal and real executions are statistically close. This
is done by defining a sequence of hybrid games. The output of each game is the output of the
environment.

34

The game HYB1
πhide-cuts,A,Z . In this game, the simulator has access to the internal state ofW(Fsfe):

it can see all input values and neighbor-sets, and choose all output values. The simulator emulates
the honest parties in the protocol πhide-cuts towards the adversary A based on their input values
and neighbor-sets and chooses the output for each honest party according to its output in the
simulation. Clearly, HYB1 and the execution of πhide-cuts with A are identically distributed.

The game HYB2
πhide-cuts,A,Z . In this game, we modify HYB1 as follows. Instead of setting the output

of every honest party according to his output from the protocol, S sends the input values of the
corrupted parties (i.e., parties that have been corrupted up until Step 5) to W(Fsfe), and lets the
honest parties receive the output from W(Fsfe).

Claim B.1. HYB1
πhide-cuts,A,Z and HYB2

πhide-cuts,A,Z are identically distributed.

Proof. The proof follows from the perfect correctness of additive sharing and since both W(Fsfe)
and Frecon-compute compute the same function.

The game HYB3
πhide-cuts,A,Z . In this game, we modify HYB2 as follows. Instead of running the

functionality Frecon-compute, the simulator simulates the functionality receiving the input values,
and returns the value y as received from W(Fsfe).

Claim B.2. HYB2
πhide-cuts,A,Z and HYB3

πhide-cuts,A,Z are identically distributed.

Proof. The proof follows from the same argument as Claim B.1.

The game HYB4
πhide-cuts,A,Z . In this game, we modify HYB3 as follows. When simulating the pro-

tocol, S does not simulates the honest-to-honest communication in Step 4 and Step 6. Instead,

• If a party P2 ∈ P1 with a neighbor in P3 gets corrupted, S writes the vector of shares si
(as computed by Fshare-to-committee) as its message in Step 4 and the message y as received in
Step 6.

• If a party Pi ∈ P3 with a neighbor Pi′ ∈ P2 gets corrupted, S writes the vector of shares si′

(as computed by Fshare-to-committee) as its received message in Step 4 and the message y as
sent in Step 6.

Claim B.3. HYB3
πhide-cuts,A,Z and HYB4

πhide-cuts,A,Z are identically distributed.

Proof. The claim follows since the adversary A doesn’t see honest-to-honest communication and
since Frecon-compute does not leak any information beyond y.

The game HYB5
πhide-cuts,A,Z . In this game, we modify HYB4 as follows. Instead of running the

functionality Fshare-to-committee, the simulator simulates the functionality by sending a vector of
random shares to every corrupted party Pi ∈ P2 with a neighbor in P3. Upon adaptive corruptions,
S sets the vector of newly corrupted parties and the messages sent across the cut as random shares.
If S received a termination signal and the set of input values from W(Fsfe), it sets the last share
according to the input values.

Claim B.4. HYB4
πhide-cuts,A,Z and HYB5

πhide-cuts,A,Z are statistically close.

35

Proof. Note that in HYB4 the output of Frecon-compute is independent of the shares. Therefore,
changing the shares does not affect correctness. Since the joint view of the shares of any strict subset
of parties on the cut is uniformly distributed both in HYB4 and in HYB5, the only distinguishing
advantage of Z is to corrupt the entire cut before sending the termination message. However,
since the cut has super-logarithmic weight, it follows from Chernoff bound that this distinguishing
advantage is negligible.

The game HYB6
πhide-cuts,A,Z . In this game, we modify HYB5 as follows. In Step 2, the shares sent

by an honest P4m+1 ro corrupt parties are set as random values, and the communication between
an honest P4m+1 and honest neighbors is not simulated. Upon later corruptions of neighbors of an
honest P4m+1, set their received values to be random shares. Upon a corruption of P4m+1, complete
the shares according to its input value.

Claim B.5. HYB5
πhide-cuts,A,Z and HYB6

πhide-cuts,A,Z are identically distributed.

Proof. This follows by the perfect correctness of additive sharing and because P4m+1 has m neigh-
bors, whereas the corruption threshold is βn < m.

This concludes the proof of Lemma 6.3 since in HYB6 the simulator does not need to have access
to the internals of W(Fsfe), and it behaves exactly as the simulator S for the adversary A; hence,
HYB6 and the ideal-model computation are identically distributed.

36

	Introduction
	Our Results: Standard (Strong) Topology Hiding
	Our Results: Distributional-Topology Hiding
	Open Problems

	Preliminaries
	TH-Broadcast on a Line Implies Key Agreement
	Perfect THC on a Cycle
	Distributional-Topology-Hiding Computation
	Distributional-THC with Hidden Sublinear Cuts
	Feasibility in the Distributional-THC Model
	Ideal Functionalities used in the Construction
	The protocol

	Impossibility in the Classical THC Model

	Sequential Composition of Low-Locality MPC
	Bibliography
	Preliminaries (Cont'd)
	UC Framework

	Adaptively Secure Distributional THC with Hidden Sublinear Cuts (Cont'd)

