
Applications on traceable range proofs from
fully regulatable privacy-preserving blockchains

Wulu Li1, Lei Chen1, Xin Lai1, Xiao Zhang1, and Jiajun Xin1

Shenzhen Onething Technologies Co., Ltd., Shenzhen, China
liwulu@onething.net

Abstract. Traceable range proofs enable regulators to trace the amounts
of transactions in privacy-preserving blockchains, but it lacks adequate
functionality in the application scenarios such as currency (assets) trans-
fer, international trades and taxation, etc. In this paper, we give multiple
modifications and applications on traceable Borromean range proof (T-
BoRP) and traceable Bulletproofs range proof (TBuRP), which realize
functionalities including multi-currency regulation, regulatable private
assets transfer, auxiliary privacy calculation and secure joint regulation
by usage of zero-knowledge proofs, homomorphic commitments and MPC
protocols. Our work can help regulators to choose the regulatory policy
as they wish and help users to transfer assets, compute private amounts
under the regulation efficiently and independently. Our solutions are well
suited for the future applications of regulatable privacy-preserving cryp-
tocurrencies.

Keywords: Regulatable blockchains · Privacy preserving · Traceable
range proofs · Applications.

1 Introduction

Blockchain technology has received extensive attention due to its functionalities
such as open, transparentness, non-tamperability and traceability, which make
it a potential candidate for cryptocurrency. Blockchain-based cryptocurrencies
have been widely studied and developed since the introduction of Bitcoin[9]
by Nakamoto in 2008. Ethereum [2], Monero[13], Zerocash[12] are the main
representatives of blockchain-based cryptocurrencies. In June 2019, Facebook
announced “Libra”[4], an international blockchain-based cryptocurrency, which
will undoubtedly change the global financial systems and people’s lives.

Traditional blockchain-based cryptocurrencies (such as Bitcoin and Ethereum)
are publicly accounted and provide no privacy protection where the amounts of
transactions are stored in plaintext and can be accessed by any user, making
them restricted in various scenarios such as salary, donation, bidding, taxation,
etc. To achieve privacy protection, there are various solutions including Confi-
dential Transaction[7], Mimblewimble[5], Dash[3], Monero[13] and Zerocash[12],
etc. Among them, Monero uses Cryptonote[13], Ring-CT[10] and Bulletproof-
s[1] as the key components and becomes one of the most promising solutions

for the future application of privacy-preserving blockchains. Nevertheless, the
privacy-preserving blockchains have no regulatory functions, that would cause
serious risks of illegal purposes such as illegal transactions, illegal assets transfer,
money laundering, fraud, etc. To fill this gap, Li et al.[6] proposed traceable and
linkable ring signatures (TLRS) and traceable range proofs (TBoRP and TBuR-
P) to achieve the traceability for identities, addresses and amounts in arbitrary
transactions. Their construction is the first fully regulatable privacy-preserving
blockchains against malicious regulators, where regulators can only trace sign-
er identities, user addresses and amounts, while cannot double spend, corrupt
users, slander users or escape from regulation, it is a proper solution to realize
the regulatory function of blockchain-based cryptocurrency to keep the balance
of decentralization, privacy protection and regulation.

In the application scenarios such as international trades, there are different
currencies (currency A, currency B), different types of private data (unit price
a, quantity of goods b and total price c = a × b) regulated by different regu-
lators (bank A, bank B and harbor), we may be face with requirements such
as transferring currency A to currency B privately or computing the total price
c = a×b by ourselves or other party privately, etc. As for blockchain-based cryp-
tocurrencies, all of these operations and computations must be publicly verified
and regulated by corresponding regulators. The original regulatable privacy-
preserving blockchain introduced in [6] cannot provide such functionalities. In
this paper, we introduce the modification of traceable range proofs and some
cryptographic components to enhance the functionalities of regulatable privacy-
preserving blockchains to achieve multi-currency regulation, regulatable private
assets transfer, auxiliary privacy calculation and secure joint regulation.

1.1 Related Works

In this section we give the introduction of classic range proofs and traceable
range proofs.

Range Proofs Range proof is a zero-knowledge proof to prove a committed hid-
den value lies within a certain range without revealing the value. The Pedersen-
commitment-based range proofs are used in Monero system. In 2015, Neother et
al.[10] gave the Borromean range proof, building from the Borromean ring sig-
nature[8], with linear proof size to the binary length of range. In 2018, Bünz et
al.[1] introduced Bulletproofs, an efficient non-interactive zero-knowledge proof
protocol with short proof size and without a trusted setup, the proof size is only
logarithmic to the witness size and it is used in projects such as Monero, DERO,
ZETHER.

Traceable Range Proofs Traceable range proof was first proposed by Li et
al.[6] in 2019, they gave the construction of traceable Borromean range proof
(TBoRP) and traceable Bulletproofs range proof (TBuRP) respectively. In their
work, TBoRP is secure against malicious regulator, which means regulators can

2

only trace the amount of transactions and cannot break the soundness and trace-
ability of TBoRP, meanwhile, TBuRP also has soundness against malicious reg-
ulators.

1.2 Our Contributions

In this paper, we modify the traceable range proofs and give several applications
on them, including multi-currency regulation, regulatable private assets transfer,
auxiliary privacy calculation and secure joint regulation.

Multi-currency Regulation and Regulatable Private Assets Transfer
By making use of traceable range proof and Pedersen commitment, we intro-
duce the multi-currency regulation that is suitable for different cryptocurrencies
under different regulators, each regulator (say RA) can only trace the amount
of specified currency (say CA). Users can transfer their money (from CA to CB)
freely and privately, the transfer is regulated by both RA and RB respectively.

We give a brief description of the scheme (with TBoRP) in the following:

− Setup. System sample a generator g of G, each regulator Ri generate the
trapdoor yi for currency Ci, and compute hi = gyi as the public parameter.

− Prove. For user Alice possesses money Ci for amount ai, she run the TBoRP
to give the range proof πTBo(ci) for ai from the commitment ci = gxhaii .

− Transfer. Assume Alice want to transfer her money Ci to money Cj , she
generates the switch proof πSwit(ci, cj , γ) and the new range proof πTBo(cj).

− Verify. Any verifier in the blockchain can verify the proofs given by Alice, all
the proofs are publicly verified.

Auxiliary Privacy Calculation Multi-currency regulation (or multiple reg-
ulation) scheme can be used in the scenario of auxiliary privacy calculation,
in which users can calculate their private data and output the result commit-
ment by themselves or the auxiliary party. For example, in a privacy-preserving
blockchain of international trade, the unit price, number of goods and total price
are private data which is only known by the owners and regulators, assume the
unit price commitment already exists in the blockchain, when the goods arrive
in port, the harbor manager (auxiliary party) can count the number of goods,
publish the number commitment and calculate the commitment of total price,
then the auxiliary party can directly publish the result on the blockchain without
waiting for trading parties to calculate.

By usage of traceable range proof, Pedersen commitment and zero-knowledge
proof, our scheme supports multiple calculations (+,−,×,÷) of private data
from the commitments, and the results can be traced by regulators. In our con-
struction, we borrow the homomorphic property of Pedersen commitment to
realize the calculation of +,−, and construct new proof of product and proof of
division for different basis to realize the calculation of ×,÷. It should be noted

3

that the scenario of auxiliary privacy calculation is available only for regulat-
able privacy-preserving blockchains, if the system is non-regulatable, no one in
the blockchain can recover the final result before the auxiliary party exchange
the private data with trading parties, then the trading parties can calculate the
result commitment by themselves. The auxiliary privacy calculation can also be
used in calculation of interests, calculation of taxes, etc.

Secure Joint Regulation Both TBoRP and TBuRP introduced before are
in the form of one currency with one regulator, a potential risk is that when
the regulator is attacked or malicious, the attacker (or malicious regulator) can
trace all amounts of transactions for illegal purpose. To fill this gap, we modify
the TBuRP to realize the functionality of secure joint regulation (which named
JTBuRP), where there are multiple regulators for one currency. For any number
of regulators (less than the regulatory threshold), they cannot recover any bit
of the transaction amount, which can be traced only when sufficient regulators
publish their results via MPC or secure conference. When the number of collusion
parties not exceed the threshold, they get nothing about the transaction amount.
This scheme is approach for decentralized regulation.

In our construction, we modify the TBuRP in the following aspects:

− Every regulator generates his own trapdoor and computes the corresponding
public parameter, and uses the trapdoor in the regulation.

− All regulators reach a consensus about the bit partition of transaction amoun-
t, and output the partition result.

− When users generate the traceable range proof, they make merge operations
of TKis to ensure that any number (not exceed the threshold) of regula-
tors cannot obtain any information about the amount, according to the bits
partition result.

− All regulators (or exceed the number threshold) compute the tracing results
Ti, and work together to recover the actual amount of transaction by MPC or
secure conference, which depends on the regulatory policy or the organization
of regulators.

1.3 Paper Organization

In section 2 we give some preliminaries, including description of TBoRP and
TBuRP; in section 3 we introduce the application of multi-currency regulation
and regulatable private assets transfer; in section 4 we introduce the application
of auxiliary privacy calculation; The modification of TBuRP and application of
secure joint regulation are given in section 5; in section 6 we give the conclusion.

2 Preliminaries

2.1 Notations

In this paper, in order to be consistent with Bulletproofs, we use multiplicative
cyclic group G to represent elliptic group with prime order |G| = q, g is the

4

generator of G, group multiplication is g1 · g2 and exponentiation is ga. We use
H(·) to represent hash function and negl to represent negligible functions.

2.2 Zero-knowledge proofs

Zero-knowledge proof system is a proof system (P, V) in which a prover proves
to the verifier that he has a certain knowledge but does not reveal the knowledge
itself. The formal definition is that given language L and relation R, for ∀x ∈ L,
there exists a witness w such that (x,w) ∈ R, to prove x ∈ L without disclosing
w. The transcript between prover and verifier is 〈P (x,w), V (x)〉, the proof is
correct (or wrong) if 〈P (x,w), V (x)〉 = 1(or 0). The security notions of zero-
proof system contains completeness, soundness, zero-knowledge:

Definition 1 (Completeness) (P, V) has completeness for any non-uniform
polynomial time adversary A,

Pr[(x,w)← A(1λ) : (x,w) /∈ R or 〈P (x,w), V (x)〉 = 1] = 1− negl.

When the probability equals 1, then (P, V) has perfect completeness.

Definition 2 (Soundness) (P, V) has soundness for any non-uniform poly-
nomial time adversary A and x /∈ L,

Pr[(x, s)← A(1λ) : 〈P (x,w), V (x)〉 = 1] = negl.

In Σ protocols with Fiat-Shamir transformation in the random oracle model, we
use the notion of special soundness, that is, for a 3-round interactive proof pro-
tocol, if a non-uniform polynomial time adversary A can generate 2 valid proofs
(x, c, e1, s1), (x, c, e2, s2), then there exists a extraction algorithm Ext which can
extract a witness (x,w) ∈ R, where c represents the commitment, eis are chal-
lenges and sis are responses.

Definition 3 (Zero-knowledge) (P, V) has perfect (or computational) zero-
knowledge, for any non-uniform polynomial time (or PPT) adversary A,

Pr[(x,w)← A(1λ); tr ← 〈P (x,w), V (x, ρ)〉 : (x,w) ∈ R and A(tr) = 1] = (or ≈c)

Pr[(x,w)← A(1λ); tr ← S(x, ρ) : (x,w) ∈ R and A(tr) = 1].

In Fiat-Shamir-based protocol, the randomness of ρ is from the output of hash
function, it is said to be public coin and the protocol is honest-verifier zero-
knowledge.

Pedersen Commitment Pedersen commitment[11] was proposed in 1991, for
elliptic curve (G, q = |G|, g, h), where g is a generator of G, h is a random
element with discrete logarithm unknown to anyone. Pedersen commitment is
the key component to construct a series of zero-knowledge proofs, including proof
of equality (switch proof), proof of product.

5

Definition 4 (Pedersen commitment) The Pedersen commitment for a is
c = gxha, where x ∈ Z∗q is a blinding element. Under the hardness of discrete
logarithm, Pedersen commitment has the following properties:

− (Hiding) Any (computational unbounded) adversary A cannot distinguish
c = gxha from c′ = gx

′
ha
′
.

− (Binding) Any PPT adversary A cannot generate another secret a′ binding
with c = gxha = gx

′
ha
′
.

− (Homomorphic) Given c1 = gxha, c2 = gyhb, then c1 · c2 = gx+yha+b is a
new commitment for a+ b.

Switch Proof For two Pedersen commitments c1 = gxha1 and c2 = gyha2 , we
can prove the equality of hidden value (a = a) by switch proof (h1 switch to h2):

1. Prover generates r1, r2, r ∈ Z∗q uniformly at random, computes
e = H(gr1hr1, g

r2hr2).
2. Prover computes z1 = r1 + ex, z2 = r2 + ey, z3 = r + ea, output the proof
π(c1, c2) = (z1, z2, z3, e).

3. Verifier checks e
?
= H(gz1hz31 /c

e
1, g

z2hz32 /c
e
2).

The switch proof also has perfect completeness, special soundness and honest
verifier zero-knowledge.

Proof of Product For three Pedersen commitments c1 = gxha, c2 = gyhb and
c3 = gzhc, we can prove the product of hidden value (a × b = c), this protocol
has been introduced in [14]:

1. Prover generates r1, r2, r3, r4, r5 ∈ Z∗q uniformly at random, computes
e = H(gr1hr2 , gr3hr4 , gr5cr41).

2. Prover computes z1 = r1 + ex, z2 = r2 + ea, z3 = r3 + ey, z4 = r4 + eb, z5 =
r5 + e(z − xb), output the proof π(c1, c2, c3) = (z1, z2, z3, z4, z5, e).

3. Verifier checks e
?
= H(gz1hz2/ce1, g

z3hz4/ce2, g
z5cz41 /c

e
3).

The proof of product also has perfect completeness, special soundness and hon-
est verifier zero-knowledge. Specially, when the validity proof of commitments
c1 = gxha, c2 = gyhb already exists, then we can omit the generation of
r1, r2, z1, z2 to cut down the proof size. In section 4, we propose new proof
of product and division with different basis to realize privacy calculation under
different regulators.

2.3 Traceable Range proofs

We introduce Traceable Borromean Range Proof (TBoRP) and Traceable Bul-
letproofs Range Proof (TBuRP) in appendix A, these works come from [6]. The
classic range proofs used in Monero are omitted here for brevity, readers may
refer to [10, 1] for the detailed descriptions. It should be mentioned that both

6

TBoRP and TBuRP have completeness, soundness, zero-knowledge and trace-
ability. For TBoRP, it can be modified to achieve security against malicious
regulator by usage of mirror commitment (TBoRP’), which is also introduced in
appendix A.

3 Multi-currency Regulation and Regulatable Private
Assets Transfer

In this section, we give the applications of multi-currency regulation and regu-
latable private assets transfer, by usage of TBoRP and switch proof.

Assume there are m different regulatable cryptocurrencies C1, · · · , Cm (using
Pedersen commitment to hide amount) in the blockchain, as well as m different
regulators R1, · · · ,Rm to trace the amount of each cryptocurrency respectively.
We give the construction of multi-currency regulation in the following:

− Par ← Setup(λ): system chooses elliptic curve G and a generator g ∈ G.
For each cryptocurrency Ci, i = 1, · · · ,m, regulator Ri generates yi ∈ Z∗q as
the trapdoor, computes hi = gyi , system outputs (G, q, g, h1, · · · , hm) as the
public parameters.

− (ci, πTBo(ci)) ← Gen(Par, ai): for user Alice who possesses money Ci with
amount ai, she generates the blinding element xi and computes the corre-
sponding commitment ci = gxihaii , and runs TBoRP to get the traceable
range proof πTBo(ci) for ci.

− (cj , πTBo(cj), πSwit(c
γ
i , cj))← Transfer(ci, γ): Assume Alice wants to transfer

her money from Ci to Cj , with ratio 1 : γ, Alice finishes the transfer as follows:

1. Alice computes the new amount aj = ai · γ;
2. Alice generates the new blinding element xj and computes the new com-

mitment cj = gxjh
aj
j ;

3. Alice computes the switch proof πSwit(c
γ
i , cj) between cγi and cj ;

4. Alice runs TBoRP to get the traceable range proof πTBo(cj) for cj .

− 1/0← Verify(ci, cj , πTBo(cj), πSwit(c
γ
i , cj)):

1. Verifier computes cγi and checks the validity of switch proof πSwit(c
γ
i , cj);

2. Verifier checks the validity of traceable range proof πTBo(cj);
3. If all passed then outputs 1, removes the money (ci, πTBo(ci)) and adds

the new money (cj , πTBo(cj)) to the blockchain, otherwise outputs 0.

− a∗j ← Trace(cj , y, πTBo(cj)): the regulator Rj runs the Trace algorithm to
trace the amount of the new money cj .

Theorem 5 (Correctness) Alice can run the above scheme to transfer her
money from Ci to Cj, with ratio 1 : γ, and the regulator can recover her amount
correctly.

Proof. According to the original amount ai of Ci and transfer ratio γ, we know

cγi = (gxihaii)γ = gxiγhaiγi = gxiγh
aj
i .

7

Then Alice can run the switch proof to prove that cj = gxjh
aj
j and gxiγh

aj
i have

the same hidden value (aj = aj), then Alice can compute the traceable range
proof for cj and finishes the transfer.

According to the correctness of switch proof and TBoRP, and the traceability
of TBoRP, we know that the proofs can pass the verification, and the regulator
can trace the amount. �

Theorem 6 (Security) The scheme of multi-currency regulation and regulat-
able private assets transfer is secure (completeness, soundness and zero-knowledge)
for any PPT adversary (without possession of trapdoors).

Proof. The security of the scheme follows from the completeness, soundness and
zero-knowledge of switch proof and TBoRP, we omit it for brevity. �

It should be noted that our scheme is also secure against malicious regulator
when use TBoRP’ as component in construction, we give the detailed description
of the modified scheme in appendix B. Meanwhile, the above scheme is also
suitable for TBuRP, with different trapdoor generation algorithm, which will be
introduced in appendix C.

4 Auxiliary Privacy Calculation

In this section we introduce the application on calculation of privacy amounts
from Pedersen commitments. First, we give the construction to realize calculation
for (+,−,×,÷) of Pedersen commitments with different commitment basis, that
is to say, for c1 = gxha1 and c2 = gyhb2, we give the new commitments c3 = gxhc1
and proofs for a ± b, a × b and a ÷ b, where h1 6= h2. Moreover, we give the
construction of auxiliary privacy calculation in which the calculation is done by
auxiliary party who does not know the calculation results, the auxiliary privacy
calculation is suitable for scenarios such as international trades, taxation and
calculation of interests.

4.1 Privacy Calculation From Commitments

For Alice’s different commitments c1 = gxha1 and c2 = gyhb2 with hidden amounts
a and b regulated by R1 and R2 respectively, Alice wants to computes the new
commitments for a ± b, a × b and a ÷ b, we give the proof of +,−,×,÷ with
different basis, where the +,−,×,÷ is calculations in Zq.

Proof of Sum (Difference) For c1 = gxha1 and c2 = gyhb2, Alice needs to
generate a new commitment c3 = gzhc1, where c = a + b and give the zero-
knowledge proof πSum of the calculation, she does as follows:

1. Alice samples z ← Z∗q and computes c3 = gzhc1, where c = a+ b;
2. Alice generates the switch proof πSum(c1, c2, c3) = πSwit(c2, c3/c1) for c2

and c3/c1;

8

3. Verifier checks the validity of switch proof, if passed then outputs 1, otherwise
outputs 0.

It is easy to see that c3/c1 = gz−xhc−a1 = gz−xhb1, then we get the correctness
and security of the above scheme from the completeness, soundness and zero-
knowledge of switch proof. The construction of proof of difference is the same
as proof of sum, we omit it for brevity.

Theorem 7 The proof of sum (difference) has correctness, completeness, sound-
ness, zero-knowledge for any PPT adversary.

Proof of Product For c1 = gxha1 and c2 = gyhb2, Alice needs to generate a
new commitment c3 = gzhc1, where c = ab and give the zero-knowledge proof
of the calculation, we extend the proof of product in section 2.2 to realize the
multiplication between different basis:

1. Alice samples z ← Z∗q and computes c3 = gzhc1, where c = ab;
2. Alice generates r1, r2, r3, r4, r5 ∈ Z∗q uniformly at random, computes
e = H(gr1hr21 , g

r3hr42 , g
r5cr41);

3. Alice computes z1 = r1 + ex, z2 = r2 + ea, z3 = r3 + ey, z4 = r4 + eb, z5 =
r5 + e(z − xb), output the proof πProd(c1, c2, c3) = (z1, z2, z3, z4, z5, e);

4. Verifier checks e
?
= H(gz1hz21 /c

e
1, g

z3hz42 /c
e
2, g

z5cz41 /c
e
3), if passed then outputs

1, otherwise outputs 0.

Similar to section 2.2, when the validity proof of commitments c1 = gxha1 ,
c2 = gyhb2 already exists, then we can omit the generation of r1, r2, z1, z2 to cut
down the proof size. The correctness and security of πProd easily follows the
discussion of [14].

Theorem 8 The proof of product has correctness, completeness, soundness,
zero-knowledge for any PPT adversary.

Proof of Quotient We construct proof of quotient scheme by usage of proof of
product for twice. For c1 = gxha1 and c2 = gyhb2, Alice needs to generate a new
commitment c3 = gzhc1, where c = a/b and give the zero-knowledge proof πQuot
of the calculation.

1. Alice samples z ← Z∗q and computes c3 = gzhc1, where c = a/b = ab−1;

2. Alice samples w, v ← Z∗q , computes c4 = gwhb
−1

2 and c5 = gvh12;
3. Alice computes the proof of product πProd(c2, c4, c5);
4. Alice generates r1 ← Z∗q and computes e = H(gr1);
5. Alice computes z1 = r1 + ev;
6. Alice computes the proof of product πProd(c1, c4, c3);
7. Alice outputs the proof of quotient
πQuot(c1, c2, c3) = (c4, c5, πProd(c2, c4, c5), πProd(c1, c4, c3), z1, e);

9

8. Verifier checks the validity of πProd(c2, c4, c5) and πProd(c1, c4, c3), then

checks e
?
= H(gz1/(c5h

−1
2)e), if all passed then outputs 1, otherwise out-

puts 0.

Since b·b−1 = 1, and a·b−1 = ab−1, it clear that πProd(c2, c4, c5), πProd(c1, c4, c3)
give the right proof of the commitments. The correctness and security of the
above scheme can be proved easily from the correctness and security of product
proof πProd.

Theorem 9 The proof of quotient has correctness, completeness, soundness,
zero-knowledge for any PPT adversary.

It should be noted that for proofs of +,−,×,÷, Alice should compute the
traceable range proof πTRP (c3) after she gets the calculation results to ensure the
traceability of the calculations. Alice may choose TBoRP (TBoRP’ or TBuRP)
as πTRP in the above schemes, and TBoRP’ can make the schemes secure against
malicious regulators.

Theorem 10 By adding traceable range proof, the πSum, πDiff , πProd, πQuot
realize traceability for any PPT adversary.

4.2 Auxiliary Privacy Calculation

In this subsection we introduce another type of privacy calculation, the auxiliary
privacy calculation. The main difference between ordinary privacy calculation
and auxiliary privacy calculation is that in stead of Alice, the calculation is
operated by an auxiliary party A, who possesses part of the private value in the
calculation, such as number of goods, exchange ratio and interest rate, A can
directly compute the result without waiting for communication with Alice.

In the construction, assume Alice possesses private value a and publishes
c1 = gxha1 in the blockchain, with c1’s traceable range proof πTRP (c1), while A
possesses another private value b (regulated by a different regulator) and pub-
lishes c2 = gyhb2 in the blockchain, with c2’s traceable range proof πTRP (c2). A
need to computes commitment for a± b, ab, a/b and gives the proof of calcula-
tion respectively. We introduce the construction of auxiliary privacy calculation
in the following.

Proof of Auxiliary Add (Subtraction) For c1 = gxha1 (a is possessed by
Alice) and c2 = gyhb2 (b is possessed by A), A needs to generate a new commit-
ment c3 for c = a+ b and give the zero-knowledge proof πAdd of the calculation,
he does as follows (proof of auxiliary subtraction is similar and is omitted):

1. A samples z ← Z∗q and computes c4 = gzhb1;
2. A computes the switch proof πSwit(c2, c4);
3. A computes c3 = c1c4;
4. A outputs the proof of auxiliary add πAdd(c1, c2, c3) = πSwit(c2, c3/c1);

10

5. Verifier checks the validity of switch proof, if passed then outputs 1, otherwise
outputs 0.

Since c3 = c1c4 = gx+zha+b1 , then we get the correctness and security of the
above scheme from the correctness and security of πSwit.

Theorem 11 The proof of auxiliary add has correctness, completeness, sound-
ness, zero-knowledge for any PPT adversary.

Proof of Auxiliary Multiplication For c1 = gxha1 (a is possessed by Alice)
and c2 = gyhb2 (b is possessed by A), A needs to generate a new commitment
c3 = gzhc1 for c = ab and give the zero-knowledge proof πMult of the calculation,
he does as follows:

1. A samples z ← Z∗q and computes c3 = gzcb1;
2. A computes the switch proof for c2 and c3 (with basis h2 and c1), that is, A

generates r1, r2, r3 ∈ Z∗q uniformly at random, computes e = H(gr1hr22 , g
r3cr21);

3. A computes z1 = r1 + ey, z2 = r2 + eb, z3 = r3 + ez, output the proof of
auxiliary multiplication πMult(c1, c2, c3) = πSwit(c2, c3) = (z1, z2, z3, e);

4. Verifier checks e
?
= H(gz1hz22 /c

e
2, g

z3cz21 /c
e
3), if passed then outputs 1, other-

wise outputs 0.

Since c3 = gzcb1 = gz+xbhab1 , then we get the correctness and security of πMult

from the correctness and security of πSwit.

Theorem 12 The proof of auxiliary multiplication has correctness, complete-
ness, soundness, zero-knowledge for any PPT adversary.

Proof of Auxiliary Division We construct proof of auxiliary division scheme
by usage of proof of product πProd and proof of auxiliary multiplication πMult.
For c1 = gxha1 (a is possessed by Alice) and c2 = gyhb2 (b is possessed by A),
A needs to generate a new commitment c3 = gzhc1 for c = a/b and give the
zero-knowledge proof πDiv of the calculation, he does as follows:

1. A samples w, v ← Z∗q , computes c4 = gwhb
−1

2 and c5 = gvh12;
2. A computes the proof of product πProd(c2, c4, c5);
3. A generates r1 ← Z∗q and computes e = H(gr1);
4. A computes z1 = r1 + ev;
5. A samples z ← Z∗q and computes c3 = gzcb

−1

1 ;
6. A computes the proof of auxiliary multiplication πMult(c1, c4, c3);
7. A outputs the proof of auxiliary division
πDiv(c1, c2, c3) = (c4, c5, πProd(c2, c4, c5), πMult(c1, c4, c3), z1, e);

8. Verifier checks the validity of πProd(c2, c4, c5), πMult(c1, c4, c3), then checks

e
?
= H(gz1/(c5h

−1
2)e), if all passed outputs 1, otherwise outputs 0.

Since b ·b−1 = 1 and c3 = gzcb
−1

1 = gz+xb
−1

hab
−1

1 , then we get the correctness
and security of πDiv from the correctness and security of πProd and πMult.

11

Theorem 13 The proof of auxiliary division has correctness, completeness, sound-
ness, zero-knowledge for any PPT adversary.

It should be noted that, for proofs of auxiliary calculations (add, subtraction,
multiplication, division), the auxiliary party A does not know the hidden value
a from c1, and he does not know the calculation result c. In the application of
regulatable blockchain, the hidden values a and b are known by the designated
regulators (a for RA and b for RB), then the calculation results can be traced
by MPC protocol or other secure channel between RA and RB , which realize
the functionality of regulation.

5 Secure Joint Regulation

The original traceable range proofs (TBoRP and TBuRP[6]) only support single
regulator for each cryptocurrency, the transaction amounts will be leaked if
the regulator is attacked or malicious, a natural solution to fill the gap is to
use joint regulation by multiple regulators to trace the transaction amounts
jointly, any number of regulators (less than the threshold) cannot trace any bit
of the amount, that brings more solid security to the traceable range proof and
regulatable blockchains. In this section we introduce a modification for TBuRP
(which named JTBuRP) to realize the functionality of joint regulation.

5.1 Construction of JTBuRP

To describe the JTBuRP scheme more clearly, we use a example of parame-
ters in the construction, in fact, the number of amount bits, number of reg-
ulators, number of trapdoors, number of threshold are not restricted, anyone
can change the parameter selection due to different applications and regulato-
ry policies. In this paper, we set the amount bits to be n = 32, assume there
are 4 regulators RA,RB ,RC ,RD, each regulator generates 2 trapdoors, each
trapdoor is related with 4 bits, the regulation threshold is 4 (that is, for regu-
lators with number less than 4, they cannot trace any bit of the amount). Our
example is equally distributed for regulators and trapdoors with bit partition
P = ((4, 4), (4, 4), (4, 4), (4, 4)), it should be noted that unequal distribution also
applies to our scheme, we omit it due to its complicated expression.

− Par← Setup(λ):
1. System chooses elliptic curve G and generators g, h, g0, · · · , gn−1 ∈ G,

where n = 32;
2. RA generates y0, y1 ∈ Z∗q , RB generates y2, y3 ∈ Z∗q , RC generates
y4, y5 ∈ Z∗q , RD generates y6, y7 ∈ Z∗q as their trapdoors respectively;

3. All regulators compute hi = g
ybi/4c
i for i = 0, · · · , n− 1;

4. System outputs (G, q, g, h,g,h, P) as the public parameters, where g =
(g0, · · · , gn−1) ∈ Gn,h = (h0, · · · , hn−1) ∈ Gn and P = ((4, 4), (4, 4), (4, 4)
, (4, 4)) is the partition of bits.

12

− (A,S, c, {TKi}i=0,··· ,19, π(TK0, · · · , TK19, A))← Gen(Par, a):

1. According to the public parameters (G, q, g, h,g,h, P) and amount a ∈
[0, 2n − 1], prover Alice samples x ∈ Z∗q uniformly, computes c = hxga

as the commitment;
2. Alice computes the binary expansion a = a0 + · · ·+ 2n−1an−1, ai = 0, 1

for i = 0, · · · , n− 1, sets aL = (a0, · · · , an−1);
3. Alice computes aR = aL − 1n = (a0 − 1, · · · , an−1 − 1);
4. Alice samples α ∈ Zq uniformly at random, computes

A = hαgaLhaR = hαga00 · · · g
an−1

n−1 h
a0−1
0 · · ·han−1−1

n−1 ;

5. Alice samples sL, sR ∈ Znq , ρ ∈ Zq uniformly at random, computes S =
hρgsLhsR ;

6. For every j = 0, · · · , 15, Alice computes TKj = g
α−a2j
2j g

α−a2j+1

2j+1 , then

computes TK16+k =
∏3
i=0(h

−α−a8i+2k+1
8i+2k h

−α−a8i+2k+1+1
8i+2k+1) for k = 0, · · · , 3,

the number of TKis is 20;
7. Alice gives the validity proof π(TK0, · · · , TK19, A) for all TKis that
TKj is a production of g2j ’s power and g2j+1’s power for j = 0, · · · , 15,
TK16+k is a production of {h8i+2k}i=0,··· ,3’s power and {h8i+2k+1}i=0,··· ,3’s

power for k = 0, · · · , 3, and A ·
∏19
i=0 TKi = (h

∏
gi/

∏
hi)

α is a power
of h

∏
gi/

∏
hi;

8. Alice outputs (A,S, c, {TKi}i=0,··· ,19, π(TK0, · · · , TK19, A)).

− (T1, T2, τx, µ, t, l, r)← Prove(A,S, c, {TKi}i=0,··· ,19, π(TK0, · · · , TK19, A)):

1. Prover sends (A,S, c, {TKi}i=0,··· ,19, π(TK0, · · · , TK19, A)) to verifier;
2. Verifier samples y, z ∈ Zq uniformly at random, and sends them to

prover;
3. Prover computes T1, T2 and sends them to verifier;
4. Verifier samples x ∈ Zq uniformly at random, and sends it to prover;
5. Prover computes τx, µ, t, l, r and sends them to verifier.

− 1/0← Verify: we only introduce the verification of π(TK0, · · · , TK19, A):

1. For every i = 0, · · · , 19, verifier checks the validity of TKi;
2. Verifier computes A ·

∏19
i=0 TKi and checks the validity of A ·

∏19
i=0 TKi;

3. Verifier continues the rest verification of Bulletproofs;
4. If all passed then outputs 1, otherwise outputs 0.

− a∗ ← Trace({TKi}i=0,··· ,19, y0, · · · , y7):

1. For every j = 0, · · · , 15, all regulators compute Tj = TK
ybj/2c
j ;

2. All regulators compute and search for di ∈ {−1, 1} such that TK16 ·
T0T4T8T12 = hd00 h

d1
1 h

d8
8 h

d9
9 h

d16
16 h

d17
17 h

d24
24 h

d25
25 , output a∗i = 1

2 −
1
2di for

i = 0, 1, 8, 9, 16, 17, 24, 25;
3. All regulators compute and search for di ∈ {−1, 1} such that TK17 ·
T1T5T9T13 = hd22 h

d3
3 h

d10
10 h

d11
11 h

d18
18 h

d19
19 h

d26
26 h

d27
27 , output a∗i = 1

2 −
1
2di for

i = 2, 3, 10, 11, 18, 19, 26, 27;
4. All regulators compute and search for di ∈ {−1, 1} such that TK18 ·
T2T6T10T14 = hd44 h

d5
5 h

d12
12 h

d13
13 h

d20
20 h

d21
21 h

d28
28 h

d29
29 , output a∗i = 1

2 −
1
2di for

i = 4, 5, 12, 13, 20, 21, 28, 29;

13

5. All regulators compute and search for di ∈ {−1, 1} such that TK19 ·
T3T7T11T15 = hd66 h

d7
7 h

d14
14 h

d15
15 h

d22
22 h

d23
23 h

d30
30 h

d31
31 , output a∗i = 1

2 −
1
2di for

i = 6, 7, 14, 15, 22, 23, 30, 31;
6. All regulators output a∗ = a∗0 + · · ·+ 2n−1a∗n−1.

It should be noted that in the Trace algorithm, all regulators must participate
in the computation, they can use MPC protocol, secure conference or simply send
Tis to the regulatory center to fulfill this task.

Since Tj = TK
ybj/2c
j = g

(α−a2j)ybj/2c
2j g

(α−a2j+1)ybj/2c
2j+1 = h

α−a2j
2j h

α−a2j+1

2j+1 , we
know that for k = 0, 1, 2, 3,

TK16+k ·
3∏
i=0

T4i+k =

3∏
i=0

(h
−α−a8i+2k+1+α−a8i+2k

8i+2k h
−α−a8i+2k+1+1+α−a8i+2k+1

8i+2k+1)

=

3∏
i=0

(h
−2a8i+2k+1
8i+2k h

−2a8i+2k+1+1
8i+2k+1) =

3∏
i=0

(h
d8i+2k

8i+2k h
d8i+2k+1

8i+2k+1).

Then we have aj = 1
2 −

1
2dj ∈ {0, 1} for j = 0, · · · , n − 1, and we get the

correctness of JTBuRP.

Theorem 14 (Correctness) The privacy amounts in JTBuRP scheme can be
correctly traced by regulators jointly.

The proof security for JTBuRP is similar to TBuRP in [6], and the proof of
zero-knowledge is in the next subsection.

Theorem 15 (Security) The JTBuRP scheme has completeness, soundness
for any PPT adversary and has traceability for any PPT adversary without pos-
session of trapdoors.

5.2 Threshold Analysis of JTBuRP

In this subsection we consider the regulatory threshold of JTBuRP, that is, any
number (less than the threshold) of regulators can not recover any bit of the
amount from JTBuRP, this strengthen the security of JTBuRP when regula-
tors are attacked, corrupted or collusive. Meanwhile, this feature also applies
to scenarios such as multi-regulator committee, international organization, joint
regulation between branches, etc. It is a new approach to realize the decentral-
ized regulation.

From the example of JTBuRP in section 5.1, we know that RA possesses
T0 → T3, RB possesses T4 → T7, RC possesses T8 → T11, RD possesses T12 →
T15, then in the tracing stage, without loss of generality, assume RA is absent,
RB , RC and RD want to recover at least 1 bit of the amount, they run the Trace
algorithm to compute dj for j = 0, · · · , n−1 from TK16+k·

∏3
i=0 T4i+k which they

cannot compute successfully without help of RA (RA possesses trapdoor y0, y1
and can compute T0 → T3), then we know that the example scheme has threshold

14

4 and has zero-knowledge property for any number (< 4) of regulators. Moreover,
as mentioned before, the parameters (number of bits, number of regulators,
number of trapdoors, amount bit partition and threshold) of JTBuRP can be
adjusted to adapt various applications.

Theorem 16 JTBuRP in section 5.1 has regulatory threshold 4, the transaction
amounts are leaked iff all regulators collude. In another word, JTBuRP is zero-
knowledge for any PPT adversary (not corrupt all regulators).

6 Conclusion

In this paper, we give several applications on traceable range proofs (TBoRP,
TBuRP) including multi-currency regulation, regulatable private assets transfer,
auxiliary privacy calculation and secure joint regulation. We summarize them in
the following:

− For the application of multi-currency regulation and regulatable private as-
sets transfer, different regulators generate different trapdoors and public
parameters for different cryptocurrencies in one blockchain, users can trans-
fer their money via switch proof and traceable range proof to ensure the
correctness, privacy and regulation of the transfer.

− For the application of auxiliary privacy calculation, any user can calculate
(+,−,×,÷) the private amounts from commitments not only by themselves,
but also by the auxiliary party who only possesses part of the amounts. We
give the zero-knowledge proof protocol to support these calculations, which
has potential in international trades, taxation and calculation of interests.

− For the application of secure joint regulation, by modification of TBuR-
P, we get JTBuRP which ensures any number of regulators (less than the
regulatory threshold) cannot recover any bit of transaction amount in the
blockchain. JTBuRP realizes the functionality of decentralized regulation,
which is suitable for applications such as multi-regulator committee, inter-
national organization, etc.

Future Works In the future, we need to study and research in the following
aspects:

1. Improve the efficiency of traceable range proof: reduce the proof size, reduce
the number of tracing keys, reduce the running time for proving, verifying
and tracing;

2. Study new approaches to realize traceability of transaction amount in privacy-
preserving blockchains;

3. Research for solutions to transfer assets or exchange money between different
cryptocurrencies more efficiently and privately, while under regulation;

4. Research for solutions to realize privacy calculation from commitments by
the third party, who acts as the calculation proxy and possesses no privacy
values.

15

References

1. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy (SP). pp. 315–334. IEEE (2018)

2. Buterin, V., et al.: A next-generation smart contract and decentralized application
platform. white paper 3, 37 (2014)

3. Duffield, E., Diaz, D.: Dash: A privacycentric cryptocurrency. No Publisher (2015)
4. Facebook: Libra white paper. URl: https://libra.org/en-US/white-paper/ (2019)
5. Jedusor, T.E.: Mimblewimble (2016)
6. Li, W., Chen, L., Lai, X., Zhang, X., Xin, J.: Traceable and linkable ring

signatures, traceable range proofs and applications on regulatable privacy-
preserving blockchains. Cryptology ePrint Archive, Report 2019/925 (2019), http-
s://eprint.iacr.org/2019/925

7. Maxwell, G.: Confidential transactions. URL: https://people. xiph. org/˜
greg/confidential values. txt (Accessed 09/05/2016) (2015)

8. Maxwell, G., Poelstra, A.: Borromean ring signatures (2015)
9. Nakamoto, S., et al.: Bitcoin: A peer-to-peer electronic cash system (2008)

10. Noether, S., Mackenzie, A., et al.: Ring confidential transactions. Ledger 1, 1–18
(2016)

11. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Annual International Cryptology Conference. pp. 129–140. Springer
(1991)

12. Sasson, E.B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy. pp. 459–474. IEEE (2014)

13. Van Saberhagen, N.: Cryptonote v 2.0 (2013)
14. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zk-

snarks without trusted setup. In: 2018 IEEE Symposium on Security and Privacy
(SP). pp. 926–943. IEEE (2018)

A Traceable Range Proofs

A.1 Traceable Borromean Range Proof

Traceable Borromean range proof provides the validity proof and traceability of
transaction amount (a ∈ [0, 2n− 1]) by making use of Borromean ring signature
and Pedersen commitment:

− Par ← Setup(λ): system chooses elliptic curve G and a generator g ∈ G,
the regulator generates y ∈ Z∗q as the trapdoor, computes h = gy, system
outputs (G, q, g, h) as the public parameters.

− (LPK , SK, c, {TKi}, π({ci}, {TKi}, {ei}))← Gen(Par, a):
1. According to the public parameters and amount a ∈ [0, 2n − 1], prover

Alice samples x ∈ Z∗q uniformly, computes c = gxha as the commitment;
2. Alice computes the binary expansion a = a0 + · · ·+ 2n−1an−1, ai = 0, 1

for i = 0, · · · , n−1, samples x0, · · · , xn−1 uniformly, satisfying x0+ · · ·+
xn−1 = x;

16

3. For every i = 0, · · · , n−1, Alice computes ci = gxih2
iai , c′i = gxih2

iai−2i ,
outputs LiPK = (ci, c

′
i);

4. For every i = 0, · · · , n − 1, Alice computes TKi = hxi−2iai and ei =
H(c0, · · · , cn−1, TK0, · · · , TKn−1, i), gives all TKi’s validity proof

π({ci}, {TKi}, {ei}) that
∏n−1
i=0 TK

ei
i is a power of h and

∏n−1
i=0 (TKi ·

ci)
ei is a power of gh;

5. Alice outputs (LPK = {L0
PK , · · · , L

n−1
PK }, c, {TKi}i=0,··· ,n−1, π) and re-

tains (a, SK = (x0, · · · , xn−1)).
− σ ← Prove(SK, c, LPK): Alice runs the Borromean ring signature for LPK =
{(c0, c′0), · · · , (cn−1, c′n−1)}, outputs σ ← Rsign(SK, c, LPK).

− 1/0← Verify(σ, c, LPK , {TKi}, π({ci}, {TKi}, {ei})):
1. Verifier computes e0, · · · , en−1, checks the validity of π({ci}, {TKi}, {ei});
2. Verifier checks

∏
ci

?
= c;

3. For every i = 0, · · · , n− 1, verifier checks ci/c
′
i

?
= h2

i

;
4. Verifier checks the validity of Borromean ring signature σ, if all passed

then outputs 1, otherwise outputs 0.
− a∗ ← Trace(σ, LPK , y, {TKi}i=0,··· ,n−1):

1. For every i = 0, · · · , n− 1, regulator computes cyi ;
2. For every i = 0, · · · , n − 1, if cyi = TKi then outputs a∗i = 0, otherwise

outputs a∗i = 1;
3. Regulator outputs a∗ = a∗0 + · · ·+ 2n−1a∗n−1 as the tracing result.

The TKis validity proof π({ci}, {TKi}, {ei}) works as follows:

1. Let P1 =
∏n−1
i=0 TK

ei
i and P2 =

∏n−1
i=0 (TKi · ci)ei , prover generates r1, r2 ∈

Z∗q , computes f = H(hr1 , (gh)r2), then computes z1 = r1 + f
∑n−1
i=0 ei(xi −

2iai), z2 = r2 + f
∑n−1
i=0 eixi, outputs the proof is π = (z1, z2, f).

2. Verifier checks f
?
= H(hz1/(P1)f , (gh)z2/(P2)f).

A.2 Modification of TBoRP

We introduce TBoRP’, a modification of TBoRP to realize soundness, zero-
knowledge against malicious regulators, by adding the mirror commitment into
the proof.

− Par← Setup’(λ): system chooses elliptic curve G and generators g1, g2 ∈ G,
the regulator generates y ∈ Z∗q as the trapdoor, computes h = gy2 , system
outputs (G, q, g1, g2, h) as the public parameters.

− (LPK , SK, c, d, {di}, {TKi}, π1, π2)← Gen’(Par, a):
1. According to the public parameters (G, q, g1, g2, h) and amount a ∈

[0, 2n − 1], prover Alice samples x ∈ Z∗q uniformly, computes commit-
ment c = gx1h

a and the mirror commitment d = gx2h
a;

2. Alice computes the binary expansion a = a0 + · · ·+ 2n−1an−1, ai = 0, 1
for i = 0, · · · , n−1, samples x0, · · · , xn−1 uniformly, satisfying x0+ · · ·+
xn−1 = x;

17

3. For every i = 0, · · · , n−1, Alice computes (ci = gxi
1 h

2iai , c′i = gxi
1 h

2iai−2i)

and di = gxi
2 h

2iai , outputs (LiPK = (ci, c
′
i), di);

4. For every i = 0, · · · , n − 1, Alice computes TKi = hxi−2iai and ei =
H(c0, · · · , cn−1, d0, · · · , dn−1, TK0, · · · , TKn−1, i), gives validity proof of
all TKi and di: (π1, π2) = π({ci}, {di}, {TKi}, {ei}) that π1 proves the
validity of {di} and π2 proves the validity of {TKi};

5. Alice outputs (LPK = {L0
PK , · · · , L

n−1
PK }, c, d, {di}, {TKi}, π1, π2) and

retains (a, SK = (x0, · · · , xn−1)).
− σ ← Prove’(SK, c, LPK , d): Alice runs the Borromean ring signature for
LPK = {(c0, c′0), · · · , (cn−1, c′n−1)}, outputs σ ← Rsign(SK, c, LPK , d).

− 1/0← Verify’(σ, c, d, {di}, LPK , {TKi}, π1, π2):
1. Verifier computes e0, · · · , en−1 and checks the validity of π1({ci}, {di}, {ei});
2. Verifier checks the validity of π2({ci}, {TKi}, {ei});
3. Verifier checks

∏
ci

?
= c,

∏
di

?
= d;

4. For every i = 0, · · · , n− 1, verifier checks ci/c
′
i

?
= h2

i

;
5. Verifier checks the validity of Borromean ring signature σ, if all passed

then outputs 1, otherwise outputs 0.
− a∗ ← Trace’(σ, {di}, y, {TKi}i=0,··· ,n−1):

1. For every i = 0, · · · , n− 1, regulator computes dyi ;
2. For every i = 0, · · · , n − 1, if dyi = TKi then outputs a∗i = 0, otherwise

outputs a∗i = 1;
3. Regulator outputs a∗ = a∗0 + · · ·+ 2n−1a∗n−1.

Note that π1({ci}, {di}, {ei}) proves the validity of {di}:

1. Prover computes R =
∏
c
ei
i∏
d
ei
i

= (g1g2)
∑
eixi , generates r ∈ Z∗q and computes

f = H((g1g2)r);

2. Prover computes z = r + f
∑
eixi, outputs the proof π1 = (z, f);

3. Verifier checks f
?
= H((g1g2)z/Rf), if passed then output 1, otherwise outputs

0.

And π2({ci}, {TKi}, {ei}) proves the validity of {TKi}, same as the original
TBoRP in the appendix A.1.

A.3 Traceable Bulletproofs Range Proof

Traceable Bulletproofs range proof (TBuRP) provides the same functionality
as TBoRP, with different construction and more flexible application in joint
regulation:

− Par← Setup(λ): system chooses elliptic curve G and generators g, h, g0, · · · ,
gn−1 ∈ G, the regulator generates y0, · · · , yn/2−1 ∈ Z∗q as the trapdoors,
computes h2i = gyi2i , h2i+1 = gyi2i+1, i = 0, · · · , n/2 − 1, system output-
s (G, q, g, h,g,h) as the public parameters, where g = (g0, · · · , gn−1) ∈
Gn,h = (h0, · · · , hn−1) ∈ Gn.

18

− (A,S, c, {TKi}i=0,··· ,n−1, π(TK0, · · · , TKn−1, A))← Gen(Par, a):
1. According to the public parameters (G, q, g, h,g,h) and amount a ∈

[0, 2n − 1], prover Alice samples x ∈ Z∗q uniformly, computes c = hxga

as the commitment (consistent with Bulletproofs);
2. Alice computes the binary expansion a = a0 + · · ·+ 2n−1an−1, ai = 0, 1

for i = 0, · · · , n− 1, sets aL = (a0, · · · , an−1);
3. Alice computes aR = aL − 1n = (a0 − 1, · · · , an−1 − 1);
4. Alice samples α ∈ Zq uniformly at random, computes

A = hαgaLhaR = hαga00 · · · g
an−1

n−1 h
a0−1
0 · · ·han−1−1

n−1 ;

5. Alice samples sL, sR ∈ Znq , ρ ∈ Zq uniformly at random, computes S =
hρgsLhsR ;

6. For every j = 0, · · · , n/2 − 1, Alice computes TK2j = g
α−a2j
2j g

α−a2j+1

2j+1 ,

TK2j+1 = h
−α−a2j+1
2j h

−α−a2j+1+1
2j+1 , the number of TKis is n;

7. Alice gives the validity proof π(TK0, · · · , TKn−1, A) of all TKis that
TK2j is a production of g2j ’s power and g2j+1’s power, TK2j+1 is a

production of h2j ’s power and h2j+1’s power, and A ·
∏n−1
i=0 TKi =

(h
∏
gi/

∏
hi)

α is a power of h
∏
gi/

∏
hi;

8. Alice outputs (A,S, c, {TKi}i=0,··· ,n−1, π(TK0, · · · , TKn−1, A)).
− (T1, T2, τx, µ, t, l, r)← Prove(A,S, c, {TKi}i=0,··· ,n−1, π(TK0, · · · , TKn−1, A)):

1. Alice sends (A,S, c, {TKi}i=0,··· ,n−1, π(TK0, · · · , TKn−1, A)) to verifier;
2. Verifier samples y, z ∈ Zq uniformly at random, sends them to Alice;
3. Alice computes T1, T2 and sends them to verifier;
4. Verifier samples x ∈ Zq uniformly at random, and sends it to Alice;
5. Alice computes τx, µ, t, l, r and sends them to verifier.

− 1/0← Verify: we only introduce the verification of π(TK0, · · · , TKn−1, A):

1. For every i = 0, · · · , n − 1, verifier computes A ·
∏n−1
i=0 TKi and checks

the validity of A ·
∏n−1
i=0 TKi and TKi;

2. Verifier continues the rest verification of Bulletproofs;
3. If all passed then outputs 1, otherwise outputs 0.

− a∗ ← Trace({TKi}i=0,··· ,n−1, y0, · · · , yn/2−1):
1. For every j = 0, · · · , n/2− 1, regulator computes TK2j+1 · TK

yj
2j ;

2. If TK2j+1 · TK
yj
2j = h2jh2j+1, then outputs (a∗2j , a

∗
2j+1) = (0, 0);

3. If TK2j+1 · TK
yj
2j = h−12j h2j+1, then outputs (a∗2j , a

∗
2j+1) = (1, 0);

4. If TK2j+1 · TK
yj
2j = h2jh

−1
2j+1, then outputs (a∗2j , a

∗
2j+1) = (0, 1);

5. If TK2j+1 · TK
yj
2j = h−12j h

−1
2j+1, then outputs (a∗2j , a

∗
2j+1) = (1, 1);

6. Regulator outputs a∗ = a∗0 + · · ·+ 2n−1a∗n−1.

The computation of T1, T2, τx, µ, t, l, r as well as the verification algorithm is
same as Bulletproofs, and is omitted for brevity, please refer to [1] for detailed
description. The number of trapdoors and tracing keys can be selected flexibly
in different scenarios. The description of TBuRP and JTBuRP in this paper are
interactive protocols, the non-interactive version of TBURP and JTBuRP can
be easily derived by Fiat-Shamir transformation, similar to Bulletproofs.

19

B Multi-currency Regulation From TBoRP’

We give the introduction of multi-currency regulation scheme from TBoRP’,
which makes the scheme secure against malicious regulator.

− Par ← Setup(λ): system chooses elliptic curve G and generators g1, g2 ∈ G,
for each cryptocurrency Ci, i = 1, · · · ,m, regulator Ri generates yi ∈ Z∗q as
the trapdoor, computes hi = gyi2 , system outputs (G, q, g1, g2, h1, · · · , hm) as
the public parameters.

− (ci, di, πTBo′(ci, di)) ← Gen(Par, ai): for user Alice who possesses money Ci
with amount ai, she generates the blinding element xi and compute the
corresponding commitment ci = gxi

1 h
ai
i and di = gxi

2 h
ai
i , then runs TBoRP’

to get the traceable range proof πTBo′(ci, di) for ci and di.
− (cj , dj , πTBo′(cj , dj), πSwit(c

γ
i , cj))← Transfer(ci, di, γ): Assume Alice wants

to transfer her money from Ci to Cj , with ratio 1 : γ, Alice finishes the
transfer as follows:
1. Alice computes the new amount aj = ai · γ;
2. Alice generates the new blinding element xj and computes the new com-

mitment cj = g
xj

1 h
aj
j and dj = g

xj

2 h
aj
j ;

3. Alice computes the switch proof πSwit(c
γ
i , cj) between cγi and cj ;

4. Alice runs TBoRP’ to get the traceable range proof πTBo′(cj , dj).
− 1/0← Verify(ci, di, cj , dj , πTBo′(cj , dj), πSwit(c

γ
i , cj)):

1. Verifier computes cγi and checks the validity of switch proof πSwit(c
γ
i , cj);

2. Verifier checks the validity of traceable range proof πTBo′(cj , dj);
3. If all passed then outputs 1, removes the money ci and adds the new

money (cj , dj , πTBo′(cj , dj)) to the blockchain, otherwise outputs 0.
− a∗j ← Trace(dj , yj , πTBo′(cj , dj)): the regulator Rj runs the Trace algorithm

to trace the amount of the new money cj .

C Multi-currency Regulation From TBuRP

We can also use TBuRP to construct multi-currency regulation scheme, with
more flexible regulatory policy choices, including the joint regulation.

− Par← Setup(λ): system chooses elliptic curve G and generators g, g0, · · · , gn−1,
h ∈ G, for each cryptocurrency Ci, i = 1, · · · ,m, regulator Ri generates

Tri = (y
(0)
i , · · · , y(n−1)i) ∈ (Z∗q)n as the trapdoors, computes hi = (h

(0)
i , · · · ,

h
(n−1)
i) = (g

y
(0)
i

0 , · · · , gy
(n−1)
i
n−1), system outputs (G, q, g, g0, · · · , gn−1, h,h1, · · · ,

hm) as the public parameters.
− (ci, πTBu(ci))← Gen(Par, ai,hi): for user Alice who possesses money Ci with

amount ai, she generates the blinding element xi and compute the corre-
sponding commitment ci = hxigai , and runs TBuRP to get the traceable
range proof πTBu(ci) with basis hi.

− (cj , πTBu(cj)) ← Transfer(ci, γ): Assume Alice wants to transfer her money
from Ci to Cj , with ratio 1 : γ, Alice finishes the transfer as follows:

20

1. Alice computes the new amount aj = ai · γ;
2. Alice computes the new blinding element xj = xi · γ and computes the

new commitment cj = cγi = hxjgaj ;
3. Alice runs TBuRP to get the traceable range proof πTBu(cj) for cj with

basis hj .
− 1/0← Verify(ci, cj , πTBu(cj), γ):

1. Verifier checks cγi
?
= cj ;

2. Verifier checks the validity of traceable range proof πTBu(cj);
3. If all passed then outputs 1, removes the money (ci, πTBu(ci)) and adds

the new money (cj , πTBu(cj)) to the blockchain, otherwise outputs 0.
− a∗j ← Trace(cj ,Trj , πTBu(cj)): the regulator Rj runs the Trace algorithm to

trace the amount of the new money cj .

21

