
1

On the Complexity of non-recursive n-term
Karatsuba Multiplier for Trinomials

Yin Li, Yu Zhang, Xingpo Ma and Chuanda Qi

Abstract

In this paper, we continue the study of bit-parallel multiplier using a n-term Karatsuba algorithm (KA), recently introduced by
Li et al. (IEEE Access 2018). Such a n-term KA is a generalization of the classic KA, which can multiply two n-term polynomials
using O(n2/2) scalar multiplications. Based on this observation, Li et al. developed an efficient bit-parallel multiplier scheme for
a new special class of irreducible trinomial xm + xk + 1,m = nk. The lower bound of the space complexity of their proposal
is about O(m

2

2
+ m3/2). However, such a special type of trinomial does not always exist. In this contribution, we investigate

the space and time complexity of Karatsuba multiplier for general trinomials, i.e., xm + xk + 1 where m > 2k. We use a new
decomposition that m = n` + r, where r < n, r < `. Combined with shifted polynomial basis (SPB), a new approach other
than Mastrovito approach is proposed to exploit the spatial correlation between different subexpressions. Explicit space and time
complexity formulations are given to indicate the optimal choice of the decomposition. As a result, the optimal multiplier achieves
nearly the same space complexity as xm + xk + 1,m = nk, but it is suitable to more general trinomials. Meanwhile, its time
complexity matches or is at most 1TX higher than the similar KA multipliers, where TX is the delay of one 2-input XOR gate.

Index Terms

Bit-parallel multiplier, n-Karatsuba algorithm, shifted polynomial basis, optimal, trinomials.

I. INTRODUCTION

There has been an increasing attention about the fast arithmetic operations in finite field GF (2m), which have many appli-
cations such as coding theory and cryptography [1], [3]. Specifically, efficient arithmetic algorithms and their related hardware
architectures are crucial to high performance of these applications. Among the arithmetic operations defined by GF (2m),
field multiplication is one of the most frequently desired operations, as other complex operations such as exponentiation and
division can be implemented by iterative multiplication. Therefore, it is critical to design a suitable GF (2m) multiplier under
conditions of the different hardware resources.

Generally speaking, there are three type of bit-parallel multipliers of different architecture, i.e., quadratic [16], [17], [25],
[26], subquadratic [6], [5] or hybrid bit-parallel multipliers [14], [12], [24], [13], [18]. Quadratic multiplier normally utilize
schoolbook approach to implement the polynomial multiplication (polynomial basis in GF (2m)), while subquadratic or hybrid
methods usually apply certain divide-and-conquer algorithm, e.g., Karatsuba algorithm (KA) [2]. The main advantage of the
sub-quadratic multipliers is that their space complexities are usually smaller than other two types of multipliers. Nevertheless,
their time complexities are often larger than quadratic or hybrid counterparts. Conversely, the hybrid multipliers can provide
a trade-off between the time and space complexities [14]. Some of these approaches can save about 1/4 logic gates compared
with the quadratic multipliers, while the time complexity cost only one more TX compared with the fastest quadratic multipliers
[21], [33] In these schemes, the KA is frequently applied to compute the product of two degree polynomials.

The Karatsuba algorithm is a classic divide and conquer algorithm, which optimize polynomial multiplication by partitioning
each polynomial into two halves and utilizing three sub-multiplications instead of four ones. Besides the classic KA, there are
several variations, e.g. generalized n-term KA introduced by Weimerskirch and Paar [6] and 4, 5 and 6-term of KA introduced
by [4]. The former algorithm split each polynomial into n terms and apply KA strategy for every two sub-polynomial.
The latter one introduced new formulae to minimize the number of sub-multiplications. Based on Montgomery’s work, various
combinations of these formulae resulted in remarkable improvements for higher degree polynomial multiplications [7]. However,
these Karatsuba-like formulae usually contains complicated linear combinations of the split parts, which will lead more gates
delay for bit-parallel multiplier. Conversely, Weimerskirch and Paar’s approach is more fit for constructing hybrid multipliers
[34], [33]. We call this algorithm as n-term KA and use this notion thereafter.

Recently, Li et al. investigate the application of n-term KA (n ≥ 3) to a special class of trinomial xm+xk+1,m = nk [33].
However, this type of irreducible trinomials is not abundant, so that put a confinement to the application of these schemes.
Inspired by this point, in this regards, we focus on an extension of this proposal. We investigate the application of n-term KA
over general trinomials, i.e., xm + xk + 1,m > 2k. Note that m may not be divisible by n, we assume that m = n`+ r with
r < n, r < `. We also use shifted polynomial basis (SPB) to optimize the reduction. The main architecture is described in
details. In addition, explicit formulae for space and time complexity are given to indicate the optimal selection of n and `. As

Yin Li, Yu Zhang, Xingpo Ma and Chuanda Qi are with Department of Computer Science and Technology, Xinyang Normal University, Henan, P.R.China,
464000. email: yunfeiyangli@gmail.com (Yin Li).

2

a main contribution, we show that the lower bound of our proposal is O(m
2

2 + m3/2

4), which matches the optimal result of
[33].

The rest of our paper is organized as follows:In Section 2, we briefly review a n-term KA formula and some relevant
notions. Then, we investigate the application of n-term KA for polynomial multiplication of arbitrary degrees. A new bit-
parallel multiplier architecture is then proposed in Section 3. Section 4 presents an analysis of our proposal and study the
optimal parameters of KA. Finally, some conclusions are drawn.

II. PRELIMINARY

In this section, we briefly review some related notations and algorithms used throughout this paper.

A. Shifted Polynomial Basis

The shifted polynomial basis (SPB) was originally proposed by Fan and Dai [15] and it is a variation of the polynomial
basis. Consider a binary extension field GF (2m) generated by an irreducible trinomial f(x) = xm+xk +1. Let x be a root of
f(x), and the set M = {xm−1, · · · , x, 1} constitutes a polynomial basis (PB). Then, the SPB can be obtained by multiplying
the set M by a certain exponentiation of x:

Definition 1 [15] Let v be an integer and the ordered set M = {xm−1, · · · , x, 1} be a polynomial basis of GF (2m) over F2.
The ordered set x−vM := {xi−v|0 ≤ i ≤ m− 1} is called the shifted polynomial basis(SPB) with respect to M .

Under SPB representation, the field multiplication can be performed as:

C(x)x−v = A(x)x−v ·B(x)x−v mod f(x).

If the parameter v is properly selected, the polynomial modular reduction using SPB representation is simpler than that using
PB representation, especially for irreducible trinomial or some type of pentanomials [16]. Specially, for trinomial xm+xk +1,
it has been proved that the optimal value of v is k or k − 1 [15], [16]. In this paper, we choose that v = k and use this
denotation thereafter.

B. n-term Karatsuba Algorithm

The classic KA multiply two 2-term polynomials using three scalar multiplications at the cost of one extra addition. Then,
Weimerskirch and Paar [6] gave a generalized formulae that is applicable for the polynomial multiplication with higher degree.
We denote such an algorithm as n-term KA (n ≥ 2). Firstly, assume that there are two n-term polynomial with n− 1 degree
over F2:

A(x) =

n−1∑
i=0

aix
i, B(x) =

n−1∑
i=0

bix
i.

Then, we calculate intermediate values based on the coefficients. Compute for each i = 0, · · · , n− 1,

Di = aibi.

Compute for each i = 1, · · · , 2n− 3 and for all s, t with s+ t = i and n > t > s ≥ 0,

Ds,t = (as + at)(bs + bt).

Thus, the coefficients of A(x)B(x) =
∑2n−2
i=0 cix

i can be computed as

c0 = D0,
c2n−2 = Dn−1,

ci =



∑
s+t=i,
n>s>t≥0

Ds,t +
∑
s+t=i,
n>s>t≥0

(Ds +Dt) (odd i),

∑
s+t=i,
n>s>t≥0

Ds,t +
∑
s+t=i,
n>s>t≥0

(Ds +Dt) +Di/2 (even i),

where i = 1, 2, · · · , 2n− 3. Merge the similar items for Di, i = 0, 1, · · · , n− 1, AB is rewritten as:

AB =Dn−1(x2n−2 + · · · + xn−1) +Dn−2(x2n−3+

+ · · · + xn−2) + · · · +D0(xn−1 + · · · + 1)

+

2n−3∑
i=1

(
∑
s+t=i,
n>s>t≥0

Ds,t)x
i.

(1)

3

One can easily check that this formula costs about O(n2/2) coefficient multiplications and O(5n2/2) additions. Please note
that the addition and subtraction are the same in GF (2m). Compared with classic KA, the n-term KA saves more partial
multiplications but costs more partial additions. Besides this algorithm, Montgomery [4] and Fan [7] proposed more Karatsuba-
like formulae. These formulae aim to decrease as many coefficient multiplications as possible. While their formulae contain
more additions that require more gate delay for parallel implementation.

In the following section, we will investigate the application of n-term KA in developing efficient bit-parallel multiplier for
general irreducible trinomials.

III. BIT-PARALLEL MULTIPLIER USING n-TERM KARATSUBA ALGORITHM

We firstly investigate the multiplication of two polynomials of degree m− 1 using n-term KA. Then, the modular reduction
for related results are considered. Accordingly, we propose an efficient bit-parallel n-term Karatsuba multiplier architecture.
The space and time complexity of corresponding multiplier is also discussed.

Provide that f(x) = xm +xk + 1 be an irreducible trinomial that define the finite field GF (2m). Without loss of generality,
we only consider the case of m ≥ 2k, as the reciprocal polynomial xm + xm−k + 1 is also irreducible whenever xm + xk + 1
is irreducible. Let A,B ∈ GF (2m) are two arbitrary elements in PB representation, namely,

A =

m−1∑
i=0

aix
i, B =

m−1∑
i=0

bix
i.

The SPB representation can be recognized as the PB representations multiplying x−k. Analogous with PB multiplication, the
SPB field multiplication consists of performing polynomial multiplication with parameter x−k and then reducing the product
modulo f(x), i.e.,

Cx−k =Ax−k ·Bx−k mod f(x)

=x−2k ·

(
m−1∑
i=0

aix
i

)
·

(
m−1∑
i=0

bix
i

)
mod f(x)

=x−k
m−1∑
i=0

cix
i.

A. Polynomial multiplication using n-term Karatsuba algorithm

Now we partition A =
∑m−1
i=0 aix

i and B =
∑m−1
i=0 bix

i into n parts and apply n-term KA to the polynomial multiplication.
However, m is not always divisible by n. We assume that m = n`+ r, where 0 ≤ r < n and 0 ≤ r < `. Then, A,B can be
partitioned into n parts with the former n− r parts consisting of ` and the later ones consisting of `+ 1 bits. More explicitly,

A = An−1x
(n−1)`+r−1 + · · · +An−r+1x

(n−r+1)`+1 +An−rx
(n−r)`

+An−r−1x
(n−r−1)` + · · · +A1x

` +A0,

and
B = Bn−1x

(n−1)`+r−1 + · · · +Bn−r+1x
(n−r+1)`+1 +Bn−rx

(n−r)`

+Bn−r−1x
(n−r−1)` + · · · +B1x

` +B0,

where Ai =
∑ −̀1
j=0 aj+i`x

j , Bi =
∑ −̀1
j=0 bj+i`x

j , for i = 0, 1, · · · , n− r− 1, and Ai =
∑`
j=0 aj+(`+1)i−n+rx

j , Bi =∑`
j=0 bj+(`+1)i−n+rx

j , for i = n−r, · · · , n−1.
Applying n-term KA stated in previous section to A · B, we have the following proposition to illustrate the expansion of

this polynomial multiplication.

Proposition 1 Assume that A,B are defined as above, then the expansion of AB using n-term KA can be written as:

AB =
(
An−1Bn−1x

(n−1)`+r−1 +An−2Bn−2x
(n−2)`+r−2+

· · · +An−rBn−rx
(n−r)` + · · · +A1B1x

` +A0B0

)
· h(x)

+

2n−3∑
i=1

(∑
s+t=i,
n>s>t≥0

Ds,t
)
xi`+δs,t ,

(2)

where h(x) = x(n−1)`+r−1 + x(n−2)`+r−2 + · · ·+ x(n−r)` + · · ·+ x` + 1 and Ds,t = (As +At)(Bs +Bt) as well as

δs,t =

 s+ t− 2(n− r), if s > t > n− r,
s− (n− r), if s > n− r, t ≤ n− r,
0, if 0 < t < s ≤ n− r.

(3)

4

Proof For simplicity, we rewrite the formulae of A,B as follows:

A = An−1x
n−1 +An−2x

n−2 + · · ·+A1x
1 +A0x

0,

B = Bn−1x
n−1 +Bn−2x

n−2 + · · ·+B1x
1 +B0x

0,

where i = (`+1)i−n+r for i= n−r+1, · · · , n− 1 and i = `i for i = 0, 1, · · · , n− r. The expansion of AB is

AB =

n−1∑
i=0

AiBn−1x
i+n−1 + · · · +

n−1∑
i=0

AiB0x
i+0

=

n−1∑
i=0

AiBix
2i +

∑
0≤i<j<n

(AiBj +AjBi)x
i+j

(4)

Applying (1), we know that (AiBj + AjBi)x
i+j = ((Ai + Aj)(Bi + Bj) + AiBi + AjBj)x

i+j . Plug these formulae into
above expression, (4) can be rewritten as:

AB =An−1Bn−1x
n−1(xn−1 + xn−2 + · · · + x1 + 1)

+An−1Bn−1x
n−2(xn−1 + xn−2 + · · · + x1 + 1)

+ · · · +A1B1x
1(xn−1 + xn−2 + · · · + x1 + 1)

+A0B0x
0(xn−1 + xn−2 + · · · + x1 + 1)

+

2n−3∑
i=1

(∑
s+t=i,
n>t>s≥0

Ds,t
)
xs+t.

When we substitute the symbol i with original degree, it is clear that we get above expression. �

Analogous to the approach present in [21], we can divide (2) into two parts and compute them independently, i.e.,

S1 =

(
n−1∑

i=n−r+1

AiBix
(`+1)i−n+r +

n−r∑
i=0

AiBix
`i

)
h(x),

S2 =

2n−3∑
i=1

(∑
s+t=i,
n>t>s≥0

Ds,t
)
xi`+δs,t .

Therefore, the SPB field multiplication is given by

Cx−k = (S1x
−2k + S2x

−2k) mod xm + xk + 1.

In order to obtain the final result, we have to perform the modular reduction with respect to S1x
−2k and S2x

−2k. In the
following section, we study these modular reduction, respectively.

B. Computation of S1x
−2k mod f(x)

Note that S1 is written as a product of two expressions. Let

E(x) =

n−1∑
i=n−r+1

AiBix
(`+1)i−n+r +

n−r∑
i=0

AiBix
`i.

We first consider the computation of E(x) and then investigate the modular reduction of S1x
−2k modulo xm + xk + 1.

Based on the degrees of Ai, Bi, let

AiBi = (

`−1∑
j=0

aj+i`x
j) · (

`−1∑
j=0

bj+i`x
j) =

2`−2∑
j=0

c
(i)
j xj ,

for i = 0, 1, · · · , n− r − 1, and

AiBi =

(
∑̀
j=0

aj+(`+1)i−n+rx
j) · (

∑̀
j=0

bj+(`+1)i−n+rx
j) =

2∑̀
j=0

c
(i)
j xj ,

5

for i = n − r, · · · , n − 1. It is easy to check that E(x) is of the degree (n − 1)` + r − 1 + 2` = m + ` − 1. Its coefficients
are given by

ei =

c
(0)
i 0 ≤ i ≤ `− 1,

c
(0)
i + c

(1)
i−` ` ≤ i ≤ 2`− 2,

c
(1)
i−` i = 2`− 1,

c
(1)
i−` + c

(2)
i−2` 2` ≤ i ≤ 3`− 2,

...
c
(n−r−1)

i−(n−r−1)` + c
(n−r)
i−(n−r)` (n−r)` ≤ i ≤ (n−r+1)`−2,

c
(n−r)
i−(n−r)` i = (n−r+1)`−1, (n−r+1)`

...
c
(n−2)

i−(n−2) −̀r+2+c
(n−1)

i−(n−1) −̀r+1 (n− 1)`+ r − 1 ≤ i ≤ m− 2,

c
(n−1)

i−(n−1)`−r+1 m− 1 ≤ i ≤ m+ `− 1.

(5)

The modular reduction with respect to E(x) can be obtained by using the formula xi = xi−m + xi−m+k. Provide that
E(x) = p1x

m + p0, where p1(x) =
∑`−1
i=0 ei+mx

i and p0(x) =
∑m−1
i=0 eix

i. Then, we have

E(x) mod f(x) = p1x
k + (p1 + p0).

Let d(x) denote p1 + p0. The coefficients of d(x) can be obtained by adding the ` most significant bits of E(x) to its ` least
significant bits, i.e.,

di =

c
(0)
i + c

(n−1)
i+`+1 0 ≤ i ≤ `− 1,

c
(0)
i + c

(1)
i−` ` ≤ i ≤ 2`− 2,

c
(1)
i−` i = 2`− 1,

c
(1)
i−` + c

(2)
i−2` 2` ≤ i ≤ 3`− 2,

...
c
(n−r−1)

i−(n−r−1)` + c
(n−r)
i−(n−r)` (n−r)` ≤ i ≤ (n−r+1)`−2,

c
(n−r)
i−(n−r)` i = (n−r+1)`−1, (n−r+1)`

...
c
(n−2)

i−(n−2) −̀r+2+c
(n−1)

i−(n−1) −̀r+1 (n− 1)`+ r − 1 ≤ i ≤ m− 2,

c
(n−1)

i−(n−1)`−r+1 i = m− 1.

(6)

where dis represent the coefficients of d(x).
We then consider the modular reduction of S1x

−2k. Note that

S1x
−2k mod f(x) = E(x)h(x)x−2k mod f(x)

= [p1x
k + (p1 + p0)]h(x)x−2k mod f(x)

= d(x)h(x)x−2k + p1(x)h(x)x−k mod f(x).

One one hand, since p1 consist of ` terms and h(x) = x(n−1)`+r−1 +x(n−2)`+r−2 + · · ·+x` + 1, there is no overlapped term
between p1x

i`+εi and p1x
(i−1)`+εi−1 , for i = 1, 2, · · · , n−1. Specifically, the symbol εi represent the extra term degree in h(x),

where εi = i−n+r if εi > 0 and 0 otherwise. Also, one can check that deg(p1hx
−k) = (n−1)`+r−1+`−1−k = m−k−2,

and all the term degree of p1(x)h(x)x−k are in the range [−k,m−k−1]. Therefore, p1(x)h(x)x−k mod f(x) = p1(x)h(x)x−k

and no XOR gate is needed to compute this expression.
On the other hand, notice that d(x)h(x)x−2k =

∑n−1
i=0 d(x)x−k · xi`+εi−k. Because d(x) is of the degree m− 1, d(x)x−k

can be seen as an element of GF (2m) in SPB representation. The modular reduction of d(x)x−k · xi`+εi−k modulo f(x) is
shifting d(x)x−k by i`+ εi − k bits in such a finite field. These operations depend on the magnitude relations between k and
`. Recall that k ≤ m/2, and m = n`+ r, n > r, ` > r. Two cases are considered:

1) k ≥ (n− 1)`
2) k < (n− 1)`;

Particularly, if n ≥ 3, we have

n` ≥ 3` > 2`+ r ⇒ (n− 1)` > `+ r
⇒ 2(n− 1)` > n`+ r = m⇒ (n− 1)` > m/2 ≥ k.

6

......

p0, p1,......, pn-1, p0
', p1

',..., p't-1, p't, p't+1,···, p'n-1

-k
.
.
.

-1
0
.
.
.
.
.

m-k-1

...

...

Fig. 1. Bit positions for all the subexpressions.

Therefore, the case of k ≥ (n − 1)` happens only if n = 2. Related explicit modular reduction has already been studied in
[21], thus, we only analyze the case of k < (n− 1)` in this study. The reduction relies the following formula:

xi = xm+i + xi+k, for i = −2k, · · · ,−k − 1;

xi = xi−m + xi−m+k, for i = m−k,m−k+1,

· · · , 2m− 2k − 2.

(7)

On top of that, we give a useful lemma.

Lemma 1 Let A(x) =
∑m−1
i=0 aix

i−k be an element of GF (2m) in SPB representation. Then, for an integer −k ≤ ∆ ≤
m− k − 1,∆ 6= 0, A(x) · x∆ mod xm + xk + 1 can be expressed as

m−1∑
i=0

aix
−k+(i+∆) mod m +

m−1∑
i=m−∆

aix
i+∆−m, if 1 ≤ ∆ ≤ m−k−1,

m−1∑
i=0

aix
−k+(i+∆) mod m +

−∆−1∑
i=0

aix
i+∆, if − k ≤ ∆ < 0.

The proof of above lemma can be found in the appendix. Lemma 1 indicates that if we shift a GF (2m) element by ∆ bits, the
result equals a ∆-bit cyclic shift of its coefficients plus an extra expression of ∆ bits. Based on this lemma, we can perform
the modular reduction with respect to d(x)x−k · xi`+εi−k. Please notice that i`+ εi − k is equivalent to ∆ in Lemma 1.

Let an integer t satisfy that (t − 1)` + εt−1 ≤ k < t` + εt. Then, we have i` + εi − k ≤ 0, for i = 0, 1, · · · , t − 1 and
i`+ εi − k > 0 for i = t, · · · , n− 1. The results of d(x)xi`+εi−2k mod f(x) are given by:

d(x)xi`+εi−2k mod f(x) =

m−1∑
j=0

djx
−k+(j+θi) mod m

+

−θi−1∑
j=0

djx
j+θi ,

(8)

for i = 0, 1, · · · , t− 1, and

d(x)xi`+εi−2k mod f(x) =

m−1∑
j=0

djx
−k+(j+θi) mod m

+

m−1∑
j=m−θi

djx
j+θi−m,

(9)

for i = t, · · · , n− 1, where θi = i`+ εi − k.
One can easily check that each of these expressions in (8) and (9) consists of two subexpressions, in which the former

one contains m terms and the latter one contains θi terms. Moreover, we note that the subexpressions
∑−θi−1
j=0 djx

j+θi

(i = 0, 1, · · · , t− 1) have all their terms degrees smaller than 0, while
∑m−1
j=m−θi djx

j+θi−m (i = t, · · · , n− 1) have all their
terms degrees larger than 0. That is to say, there is no overlapped terms between these two kinds of subexpressions. We can
add them without any logic gates. The Figure 1 depicts bit positions for these subexpressions.

The vectors Pi,P
′
i in Figure 1 represent the coefficients vectors with respect to all the subexpressions presented in (8) and

(9). Recall that p1(x)h(x)x−k is also need to be added. In parallel implementation, it only need dlog2(n+1+max{t, n−t})eTX

7

to add all these subexpressions together using binary XOR tree. Moreover, as t ≥ 1, we have dlog2(n+ 1 + max{t, n− t})e ≤
dlog2 2ne. Therefore, no more than (1 + dlog2 ne)TX gates delays are needed for the modular reduction pertaining to S1, after
we finish computing p1 + p0 and p1.

C. Computation of S2x
−2k mod f(x)

The computation of S2x
−2k modulo f(x) is different from that of S1x

−2k, as such a expression consists of
(
n
2

)
different

subexpressions Ds,tx
δ, (0 ≤ t < s < n), each of which can be computed independently. One can know that Ai, Bi for

i = 0, 1, · · · , n−r−1 have the degrees `−1 and the rest of Ai, Bi have degrees `. Thus, let As+At =
∑`
i=0 u

(s,t)
i xi, Bs+Bt =∑`

i=0 v
(s,t)
i xi, for 0 ≤ t < s, s ≥ n− r, and As +At =

∑`−1
i=0 u

(s,t)
i xi, Bs +Bt =

∑`−1
i=0 v

(s,t)
i xi, for 0≤ t<s<n− r. Then,

we have

Ds,t = (

`−1∑
i=0

u
(s,t)
i) · (

`−1∑
i=0

v
(s,t)
i) =

2`−2∑
i=0

d
(s,t)
i xi, (10)

if 0≤ t<s<n− r, and

Ds,t = (
∑̀
i=0

u
(s,t)
i) · (

∑̀
i=0

v
(s,t)
i) =

2∑̀
i=0

d
(s,t)
i xi, (11)

if 0 ≤ t < s, s ≥ n − r. However, in order to perform modular reduction for S2x
−2k, we can apply a trick established in

[32] to categorize all the Ds,ts, where the Ds,ts from the same category can be recognized as a integral to perform modular
reduction. We have the following proposition.

Proposition 2 S2 can be expressed as the plus of g1x
(2λ−1)`, g2x

(2λ−3)`, · · · , gλx` for λ = n
2 (n is even) or λ = n−1

2 (n is
odd), where

g1 =Cn−1,n−2x
(n−2)`+Cn−1,n−3x

(n−3)`+· · ·+Cn−1,1x
`+Cn−1,0,

g2 =Cn−2,n−3x
(n−2)`+Cn−2,n−4x

(n−3)`+· · ·+Cn−2,0x
`+Cn

2
−1,n

2
−2,

g3 =Cn−3,n−4x
(n−2)`+Cn−3,n−5x

(n−3)`+· · ·+Cn
2
−1,n

2
−3x

`+Cn
2
−1,n

2
−4,

...

gn
2

=Cn
2
,n
2
−1x

(n−2)`+Cn
2
,n
2
−2x

(n−3)`+· · ·+C2,0x
`+C1,0,

or

g1 =Cn−1,n−2x
(n−1)`+Cn−1,n−3x

(n−2)`+· · ·+Cn−1,0x
`+Cn−1

2
,n−3

2
,

g2 =Cn−2,n−3x
(n−1)`+Cn−2,n−4x

(n−2)`+· · ·+Cn−1
2
,n−5

2
x`+Cn−1

2
,n−7

2
,

...

gn−1
2

=Cn+1
2
,n−1

2
x(n−1)`+Cn+1

2
,n−3

2
x(n−2)`+· · ·+C2,0x

`+C1,0.

Here, Cs,t = Ds,t · xδs,t , for n > s > t ≥ 0.

Proof The proof about this proposition can be built using mathematical induction. Please see Section 3.2 in [32]. �

Therefore, based on Proposition 2,

S2x
−2k = g1x

(2λ−1)`−2k + g2x
(2λ−3)`−2k + · · ·+ gλx

`−2k.

Accordingly, its modular reduction by f(x) can also be expressed as a plus of these λ subexpressions modulo f(x). We can
perform these modular reductions in parallel and then add the results together. The detailed computation for S2x

−2k mod f(x)
is presented as follows:

(i) Perform bitwise addition As +At, Bs +Bt, (n > s > t ≥ 0) in parallel.
(ii) Classify the subexpressions Ds,t into λ parts according to Proposition 2 and constitute these Ds,t to λ bigger ones, i.e.,

g1, g2, · · · , gλ.
(iii) Perform reductions of g1x

(2λ−1)`−2k, g2x
(2λ−3)`−2k, · · · , gλx`−2k modulo f(x).

(iv) Add all these results binary XOR tree to obtain the S2x
−2k mod f(x).

Remark. In Step (i), there are 2 ·
(
n
2

)
= n(n−1) polynomial additions in all that need to be computed. All these additions can

be performed in parallel which cost one TX delay. Meanwhile, one can easily check that the classification in Step (ii) does
not cost any logic gates, but this step also includes the polynomial multiplications related to g1, · · · , gλ. These computations
are analogous to that of E(x) in Section 3.2. The reduction of S2x

−2k is performed in Step (iii) and Step (iv). Note that these
steps can be computed jointly.

As the polynomials additions in Step (i) are easy to implement, in the following, we mainly consider the computation of
Step (ii)-(iv).

8

1) Step (ii): Step (ii) consists of the computation of g1, g2, · · · , gλ, which are composed of Ds,t. As mentioned in previous
paragraphs, Ds,ts have different degrees. More explicitly, there are

(
n−r

2

)
such Ds,ts of degrees 2` − 2 and

(
n
2

)
−
(
n−r

2

)
Ds,ts of degrees 2`. Therefore, according to Proposition 2, if n is even, λ = n

2 , the degrees of g1, g2, · · · , gn
2

are at most
(n−2)`+2`+2r−3 = m+r−3, if n is odd, λ = n−1

2 , the degrees of g1, g2, · · · , gn−1
2

are at most (n−1)`+2`+2r−3 =

m+ `+ r − 3. Provide that gi =
∑m+r−3
j=0 h

(i)
j xj if n is even, and gi =

∑m+`+r−3
j=0 h

(i)
j xj if n is odd.

On top of that, g1, g2, · · · , gλ have slightly different formulations as the Ds,ts in the same category may have different
degrees and δs,t may be also different. We rewrite Ds,t in a unified form: Ds,t =

∑2`
i=0 d

(s,t)
i xi, with d2` = d2`−1 = 0 if

0≤ t<s<n− r. According to the explicit formulation of gi presented in Proposition 2, gi consists of n (n is odd) or n− 1 (n
is even) subexpressions Ds,tx

δs,ts and three arbitrary contiguous subexpressions in a same gi have the following characteristic:

Ds1,t1x
δs1,t1

+s` +Ds2,t2x
δs2,t2

+(s−1)` +Ds3,t3x
δs3,t3

+(s−2)`,

where s1 ≥ s2 ≥ s3 and s1 + t1 = s2 + t2 + 1 = s2 + t2 + 2.
From (3), it is easy to obtain that δs1,t1 ≥ δs2,t2 ≥ δs3,t3 . One can easily check that only if δs1,t1 = δs2,t2 = δs3,t3 ,

corresponding coefficients of gi are overlapped by these three subexpressions. Part of its coefficients are given by:

h
(i)
j =

...
...

d
(s3,t3)

j−(s−3)`−δ + d
(s2,t2)

j−(s−2)`−δ, (s− 2)`+ δ ≤ j ≤
(s− 1)`+ δ − 1,

d
(s3,t3)
2` + d

(s2,t2)
` + d

(s1,t1)
0 , j = (s− 1)`+ δ,

d
(s2,t2)

j−(s−2)`−δ + d
(s1,t1)

j−(s−1)`−δ, (s− 1)`+ δ + 1 ≤ j

≤ s`+ δ − 1,
...

...

where δ = δs1,t1 = δs2,t2 = δs3,t3 . We note that in this case, h(i)
(s−1)`+δ is a plus of three terms. Except this case, there is no

coefficient of gi obtained by a plus of three terms. Plug (10) and (11) into above formula, it is easy to check that h(i)
(s−1)`+δ

contains `+ 3 terms of us,ti · v
s,t
i , which lead to at most dlog2(`+ 3)eTX delay using binary XOR tree. Also notice that one

TA is need to calculate the coefficient multiplication related to Ds,t. We immediately obtain that all gis can be implemented
in parallel using TA + dlog2(`+ 3)eTX gates delay.

2) Step (iii) and (iv): Then we consider the computation of Step (iii) and (iv). Firstly we have a following observation.
Observation 3.3.1 The modular reduction of g1x

(2λ−1)`−2k, g2x
(2λ−3)`−2k, · · · , gλx`−2k by f(x) only require one reduction

step.
The proof of this observation is given in the appendix. We then investigate the computation of Step (iii). For simplicity, let

∆i = (2λ− 2i+ 1)`− k, i = 1, 2, · · · , λ, then expressions g1x
(2λ−1)`−2k, g2x

(2λ−3)`−2k, · · · , gλx`−2k can be rewritten in a
unified form, i.e.,

gix
∆i−k, i = 1, 2, · · · , λ.

Please notice that the explicit reduction formulations of gix∆i−k modulo f(x) depend on the choice of n, ` and k. According
to previous statement, it is clear that n ≥ 2 and thus ` ≤ m/2. We also have 0 < k ≤ m/2. But, the magnitude relations of
these parameters are uncertain, which highly influence the application of the reduction rule. For example, if ` > k, we have
` − 2k > −k. Thus, all the terms of gix∆i−k have their degrees larger than −k. We only need to reduce the terms whose
degrees are greater than m− k − 1. Therefore, to investigate the modular reduction details, six cases are considered:

1) n is even, ` < k, (n− 1)` ≤ k;
2) n is even, ` < k, (n− 1)` > k;
3) n is even, ` ≥ k;
4) n is odd, ` < k, (n− 2)` ≤ k;
5) n is odd, ` < k, (n− 2)` > k;
6) n is odd, ` ≥ k.

As described in Section 3.2, Case 1 happens only if n = 2, which has already been studied in [21], thus, we only analyze the
rest of the cases, separately.

Since the degrees of gi are at most m + r − 3 (n is even) or m + ` + r − 3 (n is odd), we partition gi into two parts
accordingly, i.e.,

gi = p
(i)
1 xm + p

(i)
2 , (12)

for i = 1, 2, · · · , λ, where the first part consists of r − 2 (or `+ r − 2) terms and latter one consists of m terms. We directly
have

gi mod f(x) = p
(i)
1 (xk + 1) + p

(i)
2 .

9

Thus, the modular reductions with respect to gix∆i−k can be expressed as the reduction with respect to p(i)
1 , p

(i)
2 multiplying

certain exponent of x. More explicitly,

gix
∆i−k mod f(x) =

(
p

(i)
1 + p

(i)
1 x−k+

p
(i)
2 x−k

)
x∆i mod f(x),

(13)

i = 1, 2, · · · , λ. Consider the term degree range of SPB representation, the expressions p(i)
1 , p(i)

1 x−k and p(i)
2 x−k have all their

term degrees in the range [−k,m− k− 1]. Therefore, the modular reductions of gix∆i−k will also utilize Lemma 1. We then
have following proposition.

Proposition 3 Step (iii) and (iv) can be calculated jointly within at most dlog2(n+ 2)eTX delay.

Proof Obviously, Step (iii) and (iv) actually compute
∑λ
i=1 gix

(2λ−2i+1)`−2k mod f(x), which consists of polynomial modular
reductions and additions. Without loss of generality, we only analyze Case 2, the proof for the rest of cases are available in
the appendix.

In this case, recall that ∆i = (n− 2i+ 1)`− k, i = 1, 2, · · · , n2 . Since ` < k, (n− 1)` > k, one can check that some of ∆is
are greater than 0 and others are less than 0, which will lead to different reduction formulae according to Lemma 1.

Let an odd integer t ≥ 1 satisfy that t` ≤ k, (t + 2)` > k. Then, we have ∆i > 0, for i = 1, 2, · · · , n−t−1
2 and ∆i ≤ 0

for i = n−t+1
2 , · · · , n2 . Now we investigate the detailed modular reduction of (13). Note that p(i)

1 =
∑r−3
j=0 h

(i)
m+jx

j and
p

(i)
2 =

∑m−1
j=0 h

(i)
j xj here. Firstly, the modular reduction of p(i)

2 x∆i−k can be obtained as follows:

p
(i)
2 x∆i−k mod f(x) =

m−1∑
j=0

h
(i)
j x−k+(j+∆i) mod m

+

m−1∑
j=m−∆i

h
(i)
j xj+∆i−m,

(14)

for i = 1, 2, · · · , n−t−1
2 , and

p
(i)
2 x∆i−k mod f(x) =

m−1∑
j=0

h
(i)
j x−k+(j+∆i) mod m

+

−∆i−1∑
j=0

h
(i)
j xj+∆i ,

(15)

for i = n−t+1
2 , · · · , n2 .

Then, we consider the reduction of p(i)
1 x∆i + p

(i)
1 x∆i−k. We know that the max degree of p(i)

1 is r − 3 and max ∆i =

(n− 1)`− k < m− k − `. Thus, it is easy to check that the degrees of p(i)
1 x∆i are all in the range [−k,m− k − 1], which

need no reduction. That is to say,
n
2∑
i=1

p
(i)
1 x∆i mod f(x) =

n
2∑
i=1

p
(i)
1 x∆i . (16)

However, as t` < k, p(i)
1 x∆i−k, i = n−t+1

2 , · · · , n2 have the term degree less than −k and thus need reduction by f(x).

Specifically, we note that deg(p
(n−t+1

2)
1) ≤ r − 3. It is possible that t` < k and t`+ r − 3 ≥ k, which indicates that a part of

p
(n−t+1

2)
1 xt`−2kdoes not need further reduction. Therefore, the explicit reduction formulae are given by

p
(i)
1 x∆i−k mod f(x) = p

(i)
1 xm+∆i−k + p

(i)
1 x∆i , (17)

for i = n−t+3
2 , · · · , n2 . Meanwhile,

p
(n−t+1

2)
1 xt`−2k mod f(x)

=
(
p

(n−t+1
2)

1,1 xk−t` + p
(n−t+1

2)
1,2

)
xt`−2k mod f(x)

= p
(n−t+1

2)
1,1 x−k + p

(n−t+1
2)

1,2 (xm+t`−2k + xt`−k).

(18)

Here, p(n−t+1
2)

1,1 consists of at most r − 2− (k − t`) bits and p(n−t+1
2)

1,2 consists of at most k − t` bits. 1.

1If t`+ r − 3 < k, we have p
(n−t+1

2
)

1,1 = 0 and p
(n−t+1

2
)

1,2 = p
(n−t+1

2
)

1 , which does not influence the result.

10

Moreover, note that ∆i − ∆i+1 = 2` for i = 1, 2, · · · , n2 − 1 and each p
(i)
1 consists of at most r − 2 terms. There is no

overlapped terms among p(1)
1 x∆1 , p

(2)
1 x∆2 , · · · , p(n

2)
1 x

∆ n
2 , we can add them without any logic gates. Similar thing also happens

among p(i)
1 xm+∆i−k, (i = n−t+3

2 , · · · , n2), and p(i)
1 x∆i−k, (i = 1, 2, · · · , n−t−1

2). By combining the same subexpressions and
swapping some parts of (16), (17) and (18), the result of

∑n
2
i=1(p

(i)
1 + p

(i)
1 x−k)x∆i modulo f(x) can be written as two

independent expressions:
n
2∑
i=1

p
(i)
1 x∆i +

n
2∑

i= n−t+1
2

p
(i)
1 x∆i + p

(n−t+1
2

)

1,1 x−k + p
(n−t+1

2
)

1,2 xt`−k

=

n−t−1
2∑
i=1

p
(i)
1 x∆i + p

(n−t+1
2

)

1,1 (1 + x−k), (19)

n
2∑

i= n−t+3
2

p
(i)
1 xm+∆i−k+

n−t−1
2∑
i=1

p
(i)
1 x∆i−k+p

(n−t+1
2)

1,2 xm+t`−2k, (20)

each of which consists of subexpressions that has no overlapped terms.
Finally, we add all the modular reduction results included in (14), (15), (19) and (20) to obtain S2x

−2k mod f(x). Specifically,
we note that the subexpression

∑m−1
j=m−∆i

h
(i)
j xj+∆i−m in (14) does not overlap with

∑−∆i−1
j=0 h

(i)
j xj+∆i in (15), so that every

two of such expressions can be concatenated together. This case is similar with what happened in Figure 1. As a result, we
only need to add n

2 + 2 + max{n−t−1
2 , t+1

2 } combined expressions using binary XOR tree, which requires dlog2(n2 + 2 +
max{n−t−1

2 , t+1
2 })eTX ≤ dlog2(n+ 2)eTX delay in parallel. Then we conclude the proposition. �

D. A small example of n-term Karatsuba multiplier

To illustrate the n-term Karatsuba algorithm and the modular reduction strategy related to S1x
−2k and S2x

−2k, we give
a small example. Consider the field multiplication using SPB representation over GF (214) with the underlying irreducible
trinomial x14 + x5 + 1. Obviously, we have the optimal SPB parameter k = 5 and SPB is defined as {x−5, x−4, · · · , x7, x8}.
Provide that A · x−5 =

∑13
i=0 aix

i−5 and B · x−5 =
∑13
i=0 bix

i−5 are two elements in GF (214) in SPB representation.
Without loss of generality, we use 4-term Karatsuba algorithm to the polynomial multiplication. It is clear that 14 = 4×3+2.

We have n = 4, ` = 3, r = 2 and r satisfies r < n, r < `. Partition A,B as A = A3x
10 + A2x

6 + A1x
3 + A0, B =

B3x
10 +B2x

6 +B1x
3 +B0, where

Ai =

2∑
j=0

aj+3ix
j , Bi =

2∑
j=0

aj+3ix
j , for i = 0, 1,

Ai =

3∑
j=0

aj+4i−2x
j , Bi =

3∑
j=0

aj+4i−2x
j , for i = 2, 3.

According to equation (2), then

A ·B = (A3B3x
10+A2B2x

6+A1B1x
3+A0B0)h(x)+D3,2x

16

+D3,1x
13+D3,0x

10+D2,1x
9+D2,0x

6+D1,0x
3

= S1 + S2,

where h(x) = x10 +x6 +x3 +1, Ds,t =
∑6
i=0 d

(s,t)
i xi for 3 ≥ s > 1, 2 ≥ t > 0, s 6= t and D1,0 =

∑4
i=0 d

(1,0)
i xi. Apparently,

there are
(

5
2

)
= 10 such Ds,ts.

According to the description in Section 3.1, we have S1 = (A3B3x
10 +A2B2x

6 +A1B1x
3 +A0B0)h(x), and categorize S2

into to two parts, i.e., S2 = g1x
9 + g2x

3, where g1 = D3,2x
6+1 +D3,1x

3+1 +D3,0x, g2 = D2,1x
6 +D2,0x

3 +D1,0. Clearly,
δ3,2 = δ3,1 = δ3,0 = 1 and the rest of δs,ts are all zero.

Now, we consider the modular reduction of S1x
−10 and S2x

−10. We first compute E(x) = p1x
m + p0 = A3B3x

10 +
A2B2x

6+A1B1x
3+A0B0. Obviously,

p0 = (a13b10+a12b11+a11b12+a10b13)x13 + (a12b10+a11b11

+a10b12+a9b9)x12 + (a11b10 + a10b11+a9b8+a8b9)x11+

(a10b10+a9b7+a8b8+a7b9)x10 + (a9b6+a8b7+a7b8+a6b9)x9

+ (a8b6+a7b7+a6b8)x8 + (a7b6+a6b7+a5b5)x7

+ (a6b6+a5b4+a4b5)x6 + (a5b3+a4b4+a3b5)x5

+ (a4b3+a3b4+a2b2)x4 + (a3b3+a2b1+a1b2)x3

+ (a2b0+a1b1+a0b2)x2 + (a1b0+a0b1)x+ a0b0,

11

and p1 = a13b13x
2 + (a13b12 + a12b13)x+ (a13b11 + a12b12 + a12b13).

Meanwhile,
g1 = d

(3,2)
6 x13 + d

(3,2)
5 x12 + d

(3,2)
4 x11 + (d

(3,2)
3 + d

(3,1)
6)x10

+ (d
(3,2)
2 + d

(3,1)
5)x9 + (d

(3,2)
1 + d

(3,1)
4)x8 +

(
d

(3,2)
0 + d

(3,1)
3

+d
(3,0)
6

)
x7 + (d

(3,1)
2 + d

(3,0)
5)x6 + (d

(3,1)
1 + d

(3,0)
4)x5

+ (d
(3,1)
0 + d

(3,0)
3)x4 + d

(3,0)
2 x3 + d

(3,0)
1 x2 + d

(3,0)
0 x,

g2 = d
(2,1)
6 x12 + d

(2,1)
5 x11 + d

(2,1)
4 x10 + (d

(2,1)
3 + d

(2,0)
6)x9

+ (d
(2,1)
2 + d

(2,0)
5)x8 + (d

(2,1)
1 + d

(2,0)
4)x7 + (d

(2,1)
0 + d

(2,0)
3)x6

+ (d
(2,0)
2)x5 + (d

(2,0)
1 + d

(1,0)
4)x4 + (d

(2,0)
0 + d

(1,0)
3)x3

+ d
(1,0)
2 x2 + d

(1,0)
1 x1 + d

(1,0)
0 ,

It is easy to check that p1(x10 + x6 + x3 + 1)x−5 has all its terms in the range [−5, 8] does not need any logic gates. We
also can easily obtain the reduction of d(x)h(x)x−10 and g1x

9−10, g2x
−10 modulo x14 + x5 + 1.

IV. COMPLEXITY ANALYSIS

Based on previous description, in this section, we analyze the space and time complexity pertaining to S1x
−2k and S2x

−2k

modulo f(x).

A. Space and time complexity of S1x
−2k mod f(x)

As presented in section 3.2, the computation of S1x
−2k modulo f(x) consists of computation of p1, p1 + p0 following a

modular multiplication by h(x)x−2k. We first investigate the complexity of p1 and d(x) = p1 + p0. From (5) and (6), we can
see that the coefficients of p1 and p1 + p0 are composed of c(i)j (i = 0, 1, · · · , n− 1), where

c
(i)
j =

{ ∑j
t=0 at+i`bt−j+i` 0 ≤ t ≤ `− 1,∑`−1
t=j−`+1 at+i`bt−j+i` ` ≤ t ≤ 2`− 2,

for i = 0, 1, 2, · · · , n− r − 1, and

c
(i)
j ={ ∑j

t=0 at+(`+1)i−n+rbt−j+(`+1)i−n+r 0 ≤ t ≤ `,∑`
t=j−` at+(`+1)i−n+rbt−j+(`+1)i−n+r `+ 1 ≤ t ≤ 2`,

for i = n− r, · · · , n− 1. Combine the above expressions with (5) and (6), it is easy to check that each coefficient ei and di
are composed of at most `+ 1 coefficient products of AiBi, i = 0, 1, · · · , n− 1. We immediately conclude that p1 + p0 and p1

can be computed in TA + dlog2(`+ 1)eTX delay. Table I presents the gate count and time delay for implementation of each
coefficient of p1 + p0.

Furthermore, notice that

p1(x) =
`−1∑
i=0

ei+mx
i =

`−1∑
i=0

c
(n−1)
i+`+1x

i.

p1 + p2 contains all the terms that included in p1. Therefore, no AND gates are needed to compute p1, and some XOR gates
can also be saved using a so-called binary tree sub-expression sharing [20], [21]. The authors found that if two binary XOR
trees share k common items, only k −W (k) XOR gates can be saved, where W (k) is the Hamming weight of the binary
representation of k. We can easily check that the coefficients of p1 shares 1, 2, · · · , ` items with p1 + p0, which requires∑`
i=1W (i)− ` XOR gates in all.
We then investigate the complexity of d(x)h(x)x−2k + p1h(x)x−k. As shown in Section 3.2, we only need to add 2n+ 1

expressions to obtain the result. Please notice that some of the expressions in (8) and (9) can be combined together. More
explicitly, vectors P0, · · · ,Pn−1 consist of m bits, while P′0, · · · ,P′n−1 consist of |θi| bits. Also, p1h(x)x−k contains at most
n` nonzero items. Thus, the number of required XOR gates is

n`+ (n− 1)m+

n−1∑
i=0

|i`+ εi − k|.

Table 2 summarizes the space and time complexity for every step of S1 mod f(x).

12

TABLE I
THE COMPUTATION COMPLEXITY OF di

di #AND #XOR Delay

d0 = c
(0)
0 + c

(n−1)
`+1 `+ 1 ` TA + (dlog2(`+ 1)e)TX

d1 = c
(0)
1 + c

(n−1)
`+2 `+ 1 ` TA + (dlog2(`+ 1)e)TX

...
...

...
...

d`−1 = c
(0)
`−1 + c

(n−1)
2` `+ 1 ` TA + (dlog2(`+ 1)e)TX

d` = c
(0)
` + c

(1)
0 ` `− 1 TA + (dlog2 `e)TX

...
...

...
...

d2`−1 = c
(1)
`−1 ` `− 1 TA + (dlog2 `e)TX

d2` = c
(1)
` + c

(2)
0 ` `− 1 TA + (dlog2 `e)TX

...
...

...
...

d(n−r+1)`−1 = c
(n−r)
`−1 ` `− 1 TA + (dlog2 `e)TX

d(n−r+1)` = c
(n−r)
` `+ 1 ` TA + (dlog2(`+ 1)e)TX

...
...

...
...

d(n−1)`+r−1 = c
(n−2)
`+1 +c

(n−1)
0 `+ 1 ` TA + (dlog2(`+ 1)e)TX

dm−1 = c
(n−1)
` `+ 1 ` TA + (dlog2(`+ 1)e)TX

Total (n− r)`2 + r(`+ 1)2 (n− r)`(`− 1) + r`(`+ 1) TA + (dlog2(`+ 1)e)TX

TABLE II
SPACE AND TIME COMPLEXITIES OF S1 mod f(x)

Operation # AND #XOR Delay

p1 + p0 n`2+2`r+r n`2 + 2`r − n` TA+

p1 -
∑`
i=1W (i)− ` dlog2(`+ 1)eTX

S1 modf(x) -
n`+ (n− 1)m+

≤ dlog2 2neTX∑n−1
i=0 |θi|

where θi = i`+ εi − k, εi = i− n+ r for i = n− r, · · · , n− 1,

εi = 0 for i = 0, 1, · · ·n− r − 1

B. Space and time complexity of S2

Now we analyze the computation complexity of S2x
−2k mod f(x) step by step. Firstly, based on the description in Section

3.3, it is easy to check that As + At for 0 < t < n− r requires ` XOR gates, while As + At for s > t ≥ n− r costs `+ 1
XOR gates. Since there are

(
n
2

)
different As +At and Bs +Bt each, it totally requires

2 ·
(
r(r−1)

2
(`+ 1)+

(
n(n−1)

2
− r(r−1)

2

)
`

)
= n2`+r2−m

XOR gates for the pre-computation of all the As +At, Bs +Bt.
Secondly, the computation of g1, g2, · · · , gλ contains the computation of Ds,ts and the additions among Ds,ts in the same

category. Recall that Ds,ts have different degrees. Thus, the computation of one Ds,t cost `2 AND gates plus (`− 1)2 XOR
gates if its degree is 2`− 2, otherwise it cost (`+ 1)2 AND and `2 XOR gates. One also can check that when adding Ds,ts to
obtain gi, only the ` least significant bits and ` most significant bits of gi do not need additions, which requires m+ r−3−2`
XOR gates (even n) or m+ r − 3− ` XOR gates (odd n).

In the end, as mentioned in Section 3.3, we need to add the modular results presented in (14), (15), (19) and (20) to obtain
the final result. The explicit space and time complexities for each steps are summarized in Table 3.

C. Theoretic Complexity

As mentioned in previous section, S1x
−2k mod f(x) and S2x

−2k mod f(x) are computed in parallel and the overall
circuit delay is equal to the longer delay of either S1x

−2k mod f(x) or S2x
−2k mod f(x). From Table 2 and 3, it is clear

13

TABLE III
SPACE AND TIME COMPLEXITIES OF S2 mod f(x)

Operation #AND #XOR Delay

(i)
As +At - (n2`+ r2 −m)/2

TX
Bs +Bt - (n2`+ r2 −m)/2

(ii)

Ds,t of ` bits
(n−r

2

)
`2

(n−r
2

)
(`− 1)2

≤ TA + dlog2(`+ 3)eTX
Ds,t of `+ 1 bits (

(n
2

)
−
(n−r

2

)
)(`+1)2 (

(n
2

)
−
(n−r

2

)
)`2

Additions of Ds,t -
n
2

(m+ r − 3− 2`) (even n)

n−1
2

(m+ r − 3− `) (odd n)

(iii), (iv)

Case 2 - mn
2

+ (n− t−1
2

)(r − 3) +
∑n/2
i=1 |∆i| dlog2(n+4

2
+max{n−t−1

2
, t+1

2
})eTX

Case 3 - mn
2

+ n(r − 3) +
∑n/2
i=1 |∆i| dlog2(n+ 2)eTX

Case 4 (n = 3) - m+ 2`+ 2r − 6 dlog2 5eTX

Case 5 - (n−1)m
2

+ (n− t+1
2

)(r + `− 3) +
∑(n−1)/2
i=1 |∆i| dlog2(n+5

2
+max{n−t−2

2
, t+1

2
})eTX

Case 6 - (n−1)m
2

+ (n− 1)(r + `− 3) +
∑(n−1)/2
i=1 |∆i| dlog2(n+ 1)eTX

where ∆i = (n− 2i+ 1)`− k, if n is even or (n− 2i)`− k if n is odd, t ≥ 1 is an odd integer that satisfy t` ≤ k, (t+ 2)` > k

that the circuit delay of S2x
−2k mod f(x) is slightly higher. Thus the overall circuit delay for parallel implementation of

S1x
−2k, S2x

−2k modulo f(x) is TA + (1 + dlog2(` + 3)e + dlog2(n + 2)e)TX . Afterwards, m more XOR gates are needed
to add these two results, which lead to one more TX delay. To sum up, the total delay of our proposed architecture is

Time Delay: ≤ TA + (2 + dlog2(`+ 3)e+ dlog2(n+ 2)e)TX .

The space complexity is 2

AND: m2

2 + m`
2 + (m+ n+ `+1

2)r − (`+ 2)r2,

XOR: m2

2 + (2n+ `
2 + r−1)m+ n2+rn+r+`r

2 +
∑`
i=1W (i)

+
∑n−1
i=0 |θi|+

∑n/2
i=1 |∆i|− `r2 − `− 5n, (n even),

or

m2

2 + (2n+ r + `−1
2)m+ n2+rn+`r+9

2 +
∑`
i=1W (i)

+
∑n−1
i=0 |θi|+

∑(n−1)/2
i=1 |∆i|− `r2 − 5n− 5r+3`

2 , (n odd),

where the explicit values of ∆i and θi are presented in Table 2 and 3. It is noteworthy that in Table 3, there are several cases
for the number of required XOR gates. For simplicity, we only present the upper bound of required XOR gates.

According to these formulations, we directly know that no matter which parameters (i.e., n, `, r) we choose, the corresponding
multiplier requires at least m2/2 AND gates as well as m2/2 XOR gates. Thus, it is the lower bound of the space complexity
that our proposal can achieve. In fact, since the parameters n, `, r and k all influence the space and time complexity, we can
only obtain certain optimal result under some preconditions. For example, if we consider minimizing the number of required
AND gates only, ` should be equal to one. But in this case, we have n = m. The number of required XOR gates will be larger
than 5m2

2 .
Specifically, as r is a small integer, the functions related to r can roughly be recognized as a linear function of m. Thus, the

space complexity of our proposal depends on the parameter n, `,m. Note that
∑`
i=0W (i) can be roughly written as `

2 log2 `
[20]. Therefore, if we ignore these linear or small parts, the space complexity of our proposal is determined by some quadratic
subexpressions.

1) Influence of parameter k: Although the irreducible trinomial xm + xk + 1 is usually given in advance, its term order k
does influence the space and time complexity of our proposal a lot. As we presented in Figure 1, the time delay of adding
these vectors Pi,P

′
i in parallel is dlog2(n+ 1 + max{t, n− t})e, where t satisfies

(t− 1)`+ εt−1 ≤ k < t`+ εt.

2For simplicity, we omit certain small number presented in Table 2-3.

14

It is obvious that when t approaches n/2, we obtain the minimal time delay. We then directly obtain that k is close to
(n/2) · ` ≈ m/2. Meanwhile, from the proof of Proposition 3, the computation of step (iii) and (iv) in this case also have
lower gates delay.

Also notice that, in the space complexity formulae related to #XOR, the values of
∑n−1
i=0 |θi| and

∑λ
i=1 |∆i| (λ = n/2 for

even n and λ = (n− 1)/2 of odd n) are determined by k. In fact,
n−1∑
i=0

|θi| = tk +

n−1∑
i=t

(i`+ εi)−
t−1∑
i=0

(i`+ εi)− (n− t)k,

and
λ∑
i=1

|∆i| =
(t′ + 1)k

2
+

λ∑
i=(t′+3)/2

(2i− 1)`−
(t′+1)/2∑
i=1

(2i− 1)`

− (λ− t′ + 1

2
)k

where t satisfies (t− 1)`+ εt−1 ≤ k < t`+ εt and t′ is an odd integer satisfying t′` ≤ k, (t′ + 2)` > k. Please note that t is
not always equal to t′.

In order to inspect the variation tendency of above expressions, we omit the small parameter εi and construct to functions
with respect to t and t′.

f1(t) = (2t− n)k + (−t2 + t+
n2 − n

2
)`,

f2(t′) = (t′ + 1− λ)k +
(−t′2 − 2t′ + 2λ2 − 1)`

2
.

We can roughly know that the bigger of the parameters t and t′, the smaller of two functions. That is to say, bigger k can lead
to a lower space complexity. To sum up, trinomial xm + xk + 1,m ≥ 2k with bigger k is more suitable to develop hybrid
Karatsuba multiplier. In fact, [24] already show that xm + xm/2 + 1 combined with 2-term KA can develop a high efficient
hybrid multiplier, which conform to this assertion.

2) Optimal selection of n, `: If k is fixed, the choice of n, ` can determine the space complexity of our proposal. From
previous description, we know that k highly influence the values of

∑n−1
i=0 |θi| and

∑(n−1)/2
i=1 |∆i|. If k = 1, then t = 1, t′ = 0.

These subexpressions reaches their maximum value, i.e., max
∑n−1
i=0 |θi| =

n(n−1)`
2 + r(r−1)

2 ,max
∑(n−1)/2
i=1 |∆i| = (2λ2−1)`

2 +
1 − λ (λ = n

2 or n−1
2). All these subexpression now have the values of O(n2`). Without loss of generality, we consider the

optimal n, ` under such a condition.
In order to minimize both number of AND and XOR gates, we combine the two formulations with respect to #AND and

#XOR, omit the small subexpressions, and define a function:

M(n, `) = m2 + (
11n

4
+ `)m,

where ` ≈ m
n . Obviously, if 11n = 4`, M(n, `) achieves its lower bound, which indicate the best asymptotic space complexity

of our proposal. At this time, the space complexity is

AND =
m2

2
+O

(√
11m3/2

4

)
,

XOR =
m2

2
+O

(√
11m3/2

2

)
.

The optimal n, ` are varies according to k.

V. MORE DISCUSSION

As shown in previous sections, the time delay of our proposal is less than TA + (2 + dlog2(` + 3)e + dlog2(n + 2)e)TX .
For some special type of trinomials, this delay can be improved further. In [], we have shown that for xm + xk + 1,m = nk,
a speedup strategy can apply to decreased the time complexity to TA + (dlog2 ke+ dlog2 3ne)TX . However, the precondition
to apply such a speedup strategy is that delay of S1 mod f(x) is lower than that of S2 mod f(x) by a least one TX . If these
delays are equal, no speedup can achieve. To find more types of trinomials that can apply this speedup strategy is our future
work.

In Table 4, we give a comparison of several different bit-parallel multipliers for irreducible trinomials. All these multipliers
are using PB representations except particular description. It is clear that our scheme costs fewer logic gates than other hybrid
multiplier. The best of our result only costs about O(m

2

2 + m3/2

4) circuit gates compared with the previous architectures
(quadratic or hybrid). On the other hand, the time complexity of the proposed multiplier is very closed to the fastest result
utilizing classic Karatsuba algorithm.

15

TABLE IV
COMPARISON OF SOME BIT-PARALLEL MULTIPLIERS FOR IRREDUCIBLE TRINOMIALS xm + xk + 1,m ≥ 2k

Multiplier # AND # XOR Time delay

Montgomery[30], school-book[29] m2 m2 − 1 TA + (2 + dlog2me)TX
Mastrovito [25][26][27] m2 m2 − 1 TA + (2 + dlog2me)TX

Mastrovito [28] m2 m2 − 1 TA + (dlog2(2m+ 2k − 3)e)TX
SPB Mastrovito [16] m2 m2 − 1 TA + dlog2(2m− k − 1)eTX

Montgomery [17] m2 m2 − 1 TA + dlog2(2m− k − 1)eTX

KA [14]
3m2+2m−1

4
3m2

4
+ 4m+ k − 23

4
(m odd)

TA + (3 + dlog2(m− 1)e)TX
3m2

4
3m2

4
+ 5m

2
+ k − 4 (m even)

Modified KA[18] m2

2
+ (m− k)2 m2

2
+ (m− k)2 + 2k TA + (2 + dlog2(m− 1)e)TX

Modified KA[13] m2 − k2

m2 + k − k2 − 1(1 < k < m
3

)

≤ TA + (2 + dlog2 me)TXm2 + 4k − k2 −m− 1(m
3
≤ k < m−1

2
)

m2 + 2k − k2(k = m−1
2

)

Montgomery squaring[20]
3m2+2m−1

4
3m2

4
+O(m log2 m) (m odd) ≤ TA + (3 + dlog2 me)TX

3m2

4
3m2

4
+O(m log2 m) (m even) TA + (2 + dlog2me)TX

Chinese Remainder Theorem[31]
∆ ∆ + 3k −m (Type-A) TA + dlog2(Θ)eTX
∆ ∆ + 2k −m+ kW (k) (Type-B) TA + dlog2(3m− 3k − 1)eTX

SPB Mastrovito-KA [21]
3m2+2m−1

4
3m2

4
+m

2
+O(m log2m) (m odd)

TA + (1 + dlog2(2m− k − 1)e)TX
3m2

4
3m2

4
−m

2
+O(m log2 m) (m even)

SPB Mastrovito n-term KA [33]
m2

2
+ mk

2
m2

2
+ mk

2
+ 5mn

4
+O(m log2 k) TA + (dlog2 ke+ dlog2 3ne)TX

m = nk

This paper (optimal) m2

2
+O

(√
11m3/2

4

)
m2

2
+O

(√
11m3/2

2

) ≤ TA + (2 + dlog2(`+ 3)e
+dlog2(n+ 2)e)TX

where ∆ = m2 +
(m−k)(m−1−3k)

2
(m−1

3
≤ k < m

2
, 2v−1 < k ≤ 2v), Θ = max(3m−3k−1, 2m−2k+2v)

VI. CONCLUSION

In this paper, we extend the application of a n-term Karatsuba algorithm for general trinomials and proposed a new type
of GF (2m) multiplier architecture. By investigating the choice of the KA parameters, we give the explicit space and time
complexity formulations. As a main contribution, the space complexity of our proposal can achieve to O(m

2

2 + m3/2

4), which is
lower than current hybrid multipliers. Meanwhile, its time complexity is less than TA+(2+dlog2(`+3)e+dlog2(n+2)e)TX .
To find more special type of trinomial that can lead to a better space and time complexity trade-off is the future work.

APPENDIX A
PROOFS

A. Proof of Lemma 1
Proof The proof of this lemma mainly utilizes the reduction formulation (11). If the parameter 1 ≤ ∆ ≤ m− k− 1, we have

A(x) · x∆ =

m−1∑
i=0

aix
i+∆−k

=

m−∆−1∑
i=0

aix
i+∆−k +

m−1∑
m−∆

aix
i+∆−k

=

m−∆−1∑
i=0

aix
i+∆−k +

m−1∑
m−∆

(aix
i+∆−m + aix

i+∆−m−k)

=

m−1∑
i=0

aix
−k+(i+∆) mod m +

m−1∑
i=m−∆

aix
i+∆−m.

16

Similarly, if −k ≤ ∆ < 0, then 0 < −∆ < k, we have

A(x) · x∆ =

m−1∑
i=0

aix
i+∆−k

=

m−1∑
i=−∆

aix
i+∆−k +

−∆−1∑
i=0

aix
i+∆−k

=

m−1∑
i=−∆

aix
i+∆−k +

−∆−1∑
i=0

(aix
i+∆+m−k + aix

i+∆)

=

m−1∑
i=0

aix
−k+(i+∆) mod m +

−∆−1∑
i=0

aix
i+∆.

We then directly conclude this lemma. �

B. Proof of Observation 3.3.1

Proof Apparently, the modular reductions of g1x
(2λ−1)`−2k, g2x

(2λ−3)`−2k, · · · , gλx`−2k rely on the their maximum and
minimum term degrees.

Firstly, according to the explicit form of g1, g2, · · · , gλ, one can check that the degrees of the subexpressions Es,t · xδs,t
are in the range [2` − 2, 2` + 2r − 3], as degEs,t = 2` − 2 (for 0 ≤ t < s < n − r) or 2` (for 0 < t < s, s ≥ n − r) and
max δs,t = (n−1) + (n−2)−2(n− r) = 2r−3. Then, it is easy to see that the term degrees of g1x

(2λ−1)`−2k, · · · , gλx`−2k

are all in the range [`− 2k, 2m− `− 2k − 3]. Apply reducing formulae of (7) to these expressions, we have

x`−2k = xm+`−2k + x`−k,
...

x−k−1 = xm−2k−1 + x−1,
xm−k = x0 + x−k,

xm−k+1 = x1 + x−k+1,
...

x2m−`−2k−3 = xm−`−k−3 + xm−`−2k−3.

The exponents of x in the right side now are all in the range [−k,m− k − 1], no further reduction is needed. �

C. Proof of Proposition 3

Proof For simplicity, we combine the proof of case 3 and 6 together. Case 3 and 6: In these cases, as ` ≥ k and ∆i =
(n − 2i + 1)` − k (n even), ∆i = (n − 2i)` − k (n odd), we have all the ∆is are greater than 0. Therefore, the modular
reduction of p(i)

2 x∆i−k is given by:

p
(i)
2 x∆i−k mod f(x) =

m−1∑
j=0

h
(i)
j x−k+(j+∆i) mod m

+

m−1∑
j=m−∆i

h
(i)
j xj+∆i−m,

(21)

for i = 1, 2, · · · , λ, λ = n
2 if n is even, and λ = n−1

2 if m odd.
Meanwhile, it is easy to check that p(i)

1 x∆i , p
(i)
1 x∆i−k needs no reduction any more. We also note that ∆i − ∆i+1 = 2`

for i = 1, 2, · · · , λ− 1 and p(i)
1 s consist of at most `+ r − 2 terms. Thus, there are no overlapped terms among p(i)

1 x∆i and
p

(j)
1 x∆j if i 6= j. Two independent expressions

∑λ
i=1 p

(i)
1 x∆i and

∑λ
i=1 p

(i)
1 x∆i−k can be implemented in parallel. Plus n

expressions in (21), we immediately conclude the proposition.
Case 4: In this case, we note that ` < k, (n− 2)` ≤ k. In fact, one can check that

(n+ 1)` > m = n`+ r ≥ 2k

⇒ (n+1)`
2 > k.

But if n ≥ 5, we have (n− 2)` ≥ (n+1)`
2 > k. Therefore, Case 4 only happens if n = 3. Now, we have

S2x
−2k mod f(x) = g1x

`−2k mod f(x)

= (p
(1)
1 + p

(1)
1 x−k + p

(1)
2 x−k)x`−k.

17

Obviously, the modular reduction of above subexpressions are given by:

p
(1)
2 x`−2k mod f(x) =

m−1∑
j=0

h
(i)
j x−k+(j+`−k) mod m

+

k−`−1∑
j=0

h
(i)
j xj+`−k,

(22)

and
p

(1)
1 x`−2k mod f(x)

=
(
p

(1)
1,1x

k−` + p
(1)
1,2

)
x`−2k mod f(x)

= p
(1)
1,1x

−k + p
(1)
1,2(xm+`−2k + x`−k).

(23)

Specifically, no reduction is needed for p(1)
1 x`−k, as all its term degrees are in the range [−k,m− k − 1]. Adding with (23),

we have

p
(1)
1 x`−k + p

(1)
1,1x

−k + p
(1)
1,2(xm+`−2k + x`−k)

= p
(1)
1,2x

m+`−2k + p
(1)
1,1(1 + x−k). (24)

We directly know that (24) and (22) contains five subexpressions, which cost at most dlog 3 + 2e = dlog 5eTX in parallel.
Case 5: The proof of this case is analogous with that of Case 2. Recall that in this case ∆i = (n−2i)`−k, i = 1, 2, · · · , n−1

2 .
Let an odd integer t ≥ 1 satisfy that t` ≤ k, (t + 2)` > k. Then, we have ∆i > 0, for i = 1, 2, · · · , n−t2 − 1 and ∆i ≤ 0

for i = n−t
2 , · · · , n−1

2 . Thus, if i = 1, 2, · · · , n−t2 − 1, the modular reduction of p(i)
2 x∆i−k is the same as (14), while if

i = n−t
2 , · · · , n−1

2 , its modular reduction is the same as (15).
Note that p(i)

1 =
∑`+r−3
j=0 h

(i)
m+jx

j . It is clear that the degrees of p(i)
1 x∆i are all in the range [−k,m− k − 1], which need

no reduction. On top of that, the explicit reduction of p(i)
1 x∆i−k are given by

p
(i)
1 x∆i−k mod f(x) = p

(i)
1 xm+∆i−k + p

(i)
1 x∆i ,

for i = n−t
2 + 1, · · · , n−1

2 . Meanwhile,

p
(n−t

2)
1 xt`−2k mod f(x)

=
(
p

(n−t
2)

1,1 xk−t` + p
(n−t

2)
1,2

)
xt`−2k mod f(x)

= p
(n−t

2)
1,1 x−k + p

(n−t
2)

1,2 (xm+t`−2k + xt`−k).

Here, p(n−t
2)

1,1 consists of at most `+ r − 2− (k − t`) bits and p(n−t+1
2)

1,2 consists of at most k − t` bits.

As a result, the modular reduction related to
∑n−1

2
i=1 (p

(i)
1 + p

(i)
1 x−k)x∆i can be rewritten as two parts:

n−1
2∑
i=1

p
(i)
1 x∆i +

n−1
2∑

i= n−t
2

p
(i)
1 x∆i + p

(n−t
2)

1,1 x−k + p
(n−t

2)
1,2 xt`−k

=

n−t
2 −1∑
i=1

p
(i)
1 x∆i + p

(n−t
2)

1,1 (1 + x−k),

n−1
2∑

i= n−t
2 +1

p
(i)
1 xm+∆i−k+

n−t
2 −1∑
i=1

p
(i)
1 x∆i−k+p

(n−t
2)

1,2 xm+t`−2k, (25)

Similar with Case 2, one can easily check that the subexpressions of (25) have no overlapped terms with each other. However,
it is possible here p(n−t

2)
1,1 is overlapped with p(n−t

2)
1,1 x−k, which can not be concatenated together. But

∑n−1
2

i=1 p
(2)
1 x∆i−k mod

f(x) consist of at most 2 · n−1
2 = n− 1 subexpressions. Meanwhile, some of these subexpressions have no overlapped term

with each other. Thus, it totally requires dlog2(n−1
2 + 3 + max{n−t2 − 1, t+1

2 })eTX ≤ dlog(n+ 2)e delay in parallel. �

ACKNOWLEDGMENT

This work is supported by the National Natural Science Foundation of China (Grant no. 61402393, 61601396).

18

REFERENCES

[1] Rudolf Lidl and Harald Niederreiter. Finite Fields. Cambridge University Press, New York, NY, USA, 1996.
[2] A. Karatsuba and Yu. Ofman. “Multiplication of Multidigit Numbers on Automata,” Soviet Physics-Doklady (English translation), vol. 7, no. 7, pp. 595–

596, 1963.
[3] J. Von Zur Gathen and J. Gerhard. 2003. Modern Computer Algebra (2 ed.). Cambridge University Press, New York, NY, USA.
[4] P.L. Montgomery, “Five, six, and seven-term Karatsuba-like formulae,” IEEE Transactions on Computers, vol. 54, no. 3, pp. 362-369, March 2005. doi:

10.1109/TC.2005.4
[5] H. Fan, J. Sun, M. Gu, and K.-Y. Lam. “Overlap-free Karatsuba-Ofman polynomial multiplication algorithms,” Information Security, IET, vol. 4, no. 1,

pp. 8–14, March 2010.
[6] A. Weimerskirch, and C. Paar, “Generalizations of the Karatsuba Algorithm for Efficient Implementations,” Cryptology ePrint Archive, Report 2006/224,

http://eprint.iacr.org/
[7] H. Fan, M. Gu, J. Sun and K.Y. Lam, “Obtaining more Karatsuba-like formulae over the binary field,” in IET Information Security, vol. 6, no. 1,

pp. 14-19, March 2012.
[8] Y. Chen. “On Space-Time Trade-Off for Montgomery Multipliers over Finite Fields,” MD thesis, Department of Computer Science and operational Re-

search, Montreal University, Montreal, Canada. 2015. https://papyrus.bib.umontreal.ca/xmlui/bitstream/handle/1866/12571/Chen Yiyang 2015 memoire.
pdf

[9] K.K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation. John Wiley & Sons, 1999.
[10] F. Rodrı́guez-Henrı́quez and Ç.K. Koç, “On fully parallel Karatsuba multipler for GF (2m),” in Proc. Int. Conf. Computer Science and Technology

(CST 2003), ATA Press, 2003, pp. 405–410.
[11] J. Von Zur Gathen and J. Shokrollahi, “Efficient FPGA-based Karatsuba multipliers for polynomial over F2,” in Proc 12th Workshop on Selected Areas

in Cryptography (SAC 2005), Springer 2006, pp. 359–359.
[12] Ku-Young Chang, Dowon Hong and Hyun-Sook Cho. “Low complexity bit-parallel multiplier for GF (2m) defined by all-one polynomials using

redundant representation,” IEEE Trans. Comput., vol. 54, no. 12, pp. 1628–1630, 2005.
[13] Young In Cho, Nam Su Chang, Chang Han Kim, Young-Ho Park and Seokhie Hong. “New bit parallel multiplier with low space complexity for all

irreducible trinomials over GF (2n),” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 20, no. 10, pp. 1903–1908, Oct 2012.
[14] M. Elia, M. Leone and C. Visentin. “Low complexity bit-parallel multipliers for GF (2m) with generator polynomial xm +xk + 1,” Electronic Letters,

vol. 35, no. 7, pp. 551–552, 1999.
[15] H. Fan and Y. Dai. “Fast bit-parallel GF (2n) multiplier for all trinomials,” IEEE Trans. Comput., vol. 54, no. 4, pp. 485–490, 2005.
[16] H. Fan and M.A. Hasan. “Fast bit parallel-shifted polynomial basis multipliers in GF (2n),” Circuits and Systems I: Regular Papers, IEEE Transactions

on, vol. 53, no. 12, pp. 2606–2615, Dec 2006.
[17] A. Hariri and A. Reyhani-Masoleh, “Bit-serial and bit-parallel montgomery multiplication and squaring over GF (2m),” IEEE Transactions on Computers,

vol. 58, no. 10, pp. 1332–1345, 2009.
[18] Y. Li, G. Chen, and J. Li. “Speedup of bit-parallel karatsuba multiplier in GF (2m) generated by trinomials,” Information Processing Letters, vol. 111,

no. 8, pp. 390–394, 2011.
[19] H. Fan and M.A. Hasan, “A survey of some recent bit-parallel multipliers,” Finite Fields and Their Applications, vol. 32, pp. 5–43, 2015.
[20] Yin Li, Yiyang Chen. “New bit-parallel Montgomery multiplier for trinomials using squaring operation,” Integration, the VLSI Journal, vol. 52, pp.142–

155, January 2016.
[21] Y. Li, X. Ma, Y. Zhang and C. Qi, “Mastrovito Form of Non-recursive Karatsuba Multiplier for All Trinomials,” IEEE Trans. Comput., vol. 66, no.9,

pp.1573–1584, Sept. 2017.
[22] Christophe Negre. “Efficient parallel multiplier in shifted polynomial basis,” J. Syst. Archit., vol. 53, no. 2-3, pp. 109–116, 2007.
[23] Francisco Rodrı́guez-Henrı́quez and Çetin Kaya Koç. “Parallel multipliers based on special irreducible pentanomials,” IEEE Trans. Comput., vol. 52,

no. 12, pp. 1535–1542, 2003.
[24] H. Shen and Y. Jin. “Low complexity bit parallel multiplier for GF (2m) generated by equally-spaced trinomials,” Inf. Process. Lett., vol. 107, no. 6,

pp. 211–215, 2008.
[25] B. Sunar and Ç.K. Koç, “Mastrovito multiplier for all trinomials,” IEEE Trans. Comput., vol. 48,no. 5, pp. 522–527, 1999.
[26] A. Halbutogullari and Ç.K. Koç, “Mastrovito multiplier for general irreducible polynomials,” IEEE Trans. Comput., vol. 49, no. 5, pp. 503–518, May

2000.
[27] T. Zhang and K.K. Parhi, “Systematic design of original and modified mastrovito multipliers for general irreducible polynomials,” IEEE Trans. Comput.,

vol. 50, no. 7, pp. 734–749, July 2001.
[28] N. Petra, D. De Caro, and A.G.M. Strollo, “A novel architecture for galois fields GF (2m) multipliers based on mastrovito scheme,” IEEE Trans.

Computers, vol. 56, no. 11, pp. 1470–1483, November 2007.
[29] H. Wu. “Bit-parallel finite field multiplier and squarer using polynomial basis,” IEEE Trans. Comput., vol. 51, no. 7, pp. 750–758, 2002.
[30] H. Wu. “Montgomery multiplier and squarer for a class of finite fields,” IEEE Trans. Comput., vol. 51, no. 5, pp. 521–529, 2002.
[31] H. Fan, “A Chinese Remainder Theorem Approach to Bit-Parallel GF (2n) Polynomial Basis Multipliers for Irreducible Trinomials”, IEEE Trans.

Comput., vol. 65, no. 2, pp. 343–352, February 2016.
[32] X. Xie, G. Chen, Y. Li, “Novel bit-parallel multiplierfor GF (2m) defined by all-one polynomial using generalized Karatsuba algorithm”, Information

Processing Letters, Volume 114, Issue 3, pp.140–146, 2014.
[33] Y. Li, Y. Zhang, X. Guo and C. Qi, “N-Term Karatsuba Algorithm and Its Application to Multiplier Designs for Special Trinomials,” IEEE Access,

vol. 6, pp.43056–43069, Jul. 2018.
[34] Y. Li, Y. Zhang, and X. Guo, “Efficient Nonrecursive Bit-Parallel Karatsuba Multiplier for a Special Class of Trinomials,” VLSI Design, vol. 2018,

Article ID 9269157, 7 pages, 2018. https://doi.org/10.1155/2018/9269157.

