
A Hybrid of Dual and Meet-in-the-Middle Attack
on Sparse and Ternary Secret LWE

Jung Hee Cheon1, Minki Hhan1, Seungwan Hong1, and Yongha Son1

Seoul National University (SNU), Republic of Korea

Abstract. The dual attack is one of the most efficient attack algorithms
for the Learning with Errors (LWE) problem. Recently, an efficient vari-
ant of the dual attack for sparse and small secret LWE was reported by
Albrecht [Eurocrypt 2017], which forces some LWE-based cryptosystems,
especially fully homomorphic encryptions (FHE), to change parameters.
In this work, we propose a new hybrid of dual and meet-in-the-middle
(MITM) attack, which outperforms the improved variant on the same
LWE parameter regime. To this end, we adapt the MITM attack for
NTRU due to Odlyzko to LWE, and give a rigorous analysis for it. The
performance of our MITM attack depends on the relative size of error
and modulus, and hence for a large modulus LWE samples, our MITM
attack works well for quite large error. We then combine our MITM at-
tack with Albrecht’s observation that understands the dual attack as
dimension-error tradeoff, which finally yields our hybrid attack. We also
implement a sage module that estimates the attack complexity of our
algorithm upon LWE-estimator, and our attack shows significant perfor-
mance improvement for the LWE parameter for FHE. For example, for
the LWE problem with dimension n = 215, modulus q = 2628 and ternary
secret key with Hamming weight 64 which is one parameter set used for
HEAAN bootstrapping [Eurocrypt 2018], our attack takes 2112.5 opera-
tions and 270.6 bit memory while the previous best attack requires 2127.2

operations as reported by LWE-estimator.
Keywords: Cryptanalysis, Fully homomorphic encryption, Learning
with Errors, Meet-in-the-middle.

1 Introduction

The Learning with Errors (LWE) problem has brought many fruitful applica-
tions in the cryptographic world [Reg05,Pei09,ADPS16,CKLS18,HS14,BCD+16,
LP11]. The strongest advantage of the LWE problem for cryptosystems is that
the LWE problem is provably difficult to solve [Reg05,BLP+13,Pei09]. In other
words, the LWE problem is as intractable as known hard problems of lattices,
even in the average cases in the certain parameter regime. Thanks to this prop-
erty, the LWE problem plays the important role in the cryptography, especially
for homomorphic encryptions (HE) [BVG12,CKKS17,CGGI16,DM15,GSW13,
BV14, FV12]. HE is an encryption scheme that allows computations over en-
crypted data including additions and multiplications. Since HE enables the op-
eration without knowledge of the message information at all, the need of HE



has been boosted with the necessity of entrusting industrial object, such as out-
sourced computation and privacy-preserving neural networks, without disclosing
personal data.

In accordance with this growing attention on HE, some practical variants
of LWE problem has been studied to boost the efficiency of HE. First, since
the norm of secret vector deeply affects the performance of HE, most of the
HE implementations including HElib, SEAL and HEAAN use the ternary1 se-
cret vectors [HS13, LP16, Kim18]. However, those variants of LWE using such
small secret vectors currently lie outside of the currently known provable secure
parameter regime. That is, the security guarantee for HE implementations is
somewhat weaker than the original LWE problem. Moreover, to support infinite
numbers of operations, in other words, to have fully homomorphic encryptions,
one needs to perform a technique named bootstrapping. Since the performance
of bootstrapping depends on the Hamming weight of secret vector, aforemen-
tioned HE implementations further uses sparse2 ternary secret vectors in prac-
tice [HS15,CH18,CHK+18].

In this situation, Albrecht [Alb17] recently pointed out that the security of
LWE with (sparse) ternary secret key is far weaker than previous thoughts by
suggesting a new variant of the dual attack, which is one of primary solving al-
gorithms for LWE. This attack is covered by a program that gives the estimated
bit-security level of queried LWE parameters called LWE-estimator [APS15], and
indeed shows the best performance for LWE parameters used for HE; large mod-
ulus and the sparse ternary secret vector.

1.1 The Dual Attack

Informally, LWE asks one to determine, given a matrix A ∈ Zm×nq chosen
uniformly at random and a vector b ∈ Znq , whether b is also chosen uniformly
at random or of the form b = As + e for some vector s and small error vector
e. The dual attack strategy finds a short vector v that is orthogonal to matrix
A. Then, by computing 〈v, b〉, one can guess whether (A, b) is an LWE sample;
if b = As + e, one has 〈v, b〉 = 〈v, e〉 mod q, which would be still small if v is
sufficiently short.

If the secret vector s is sparse, then the columns of A that correspond to the
zero components of s have no influence on b = As+ e. Now one can apply the
dual attack by choosing some random portion of columns of A, and this strategy
also works if all the other columns correspond to zero component part of s. This
strategy naturally drops the attack success probability by the guessing success
probability, but since the dimension is reduced, it takes shorter time for finding
a short vector, which enables one to choose the optimal point where the total
attack complexity is minimized.

Albrecht [Alb17] further observed here, although some columns are wrongly
guessed, one can compensate it by a brute-force method: Let A′ be the matrix
1 all entries are in {−1, 0, 1}
2 the Hamming weight is small
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consisting of the ignored columns of A in the above strategy and s′ be the part
of secret key corresponding to A′. Then, one has

〈v, b〉 = vA′s′ + 〈v, e〉 mod q,

which can be understood as a new LWE sample (vA′,vA′s′+e′) with e′ = 〈v, e〉.
In this regard, the dual attack strategy can be considered as a dimension error
trade-off. Now, by exhaustively searching possible s′ to some extent, one can
succeed to have 〈v, e〉 even if some guess are incorrect, which increases the
attack success probability with proper amount of exhaustive search.

1.2 Our Contributions

In this paper, upon the current dual attack framework, we apply MITM
attacks for LWE instead of exhaustive search. For that, we first observe that
Odlyzko’s MITM attack on NTRU [HGHSW03] can be easily adapted to the
literature of LWE, and we give an explicit algorithm and rigorous analysis for
it. The cost of this attack is proportional to the square root of the number of
candidate secret vector, while it is less sensitive to the absolute size of error when
the ratio of error and modulus is sufficiently small. Thus, this MITM attack is
highly appropriate for the trade-offed LWE sample for the large modulus case
and from this observation,

From this observation, we propose a new hybrid attack of the dual attack and
MITM attack. Our hybrid attack shows significant performance improvement on
the sparse ternary secret LWE problems, which are used in two homomorphic
encryptions HElib [HS14] and HEAAN [CKKS17]3. We estimate our attack com-
plexity for several parameters that are in the currently used parameter range for
the HEs. This result shows that our attack can solve the sparse ternary secret
LWE problems in more than 1000 times faster compared to the previous attacks
on average.

1.3 Related Works and Discussions

Other Hybrid Attacks There is another hybrid of lattice reduction and MITM
attack proposed by Howgrave-Graham [HG07], which attacked another primary
lattice based problem named NTRU. After then, some series of works have
adapted this hybrid attack into LWE problems [BGPW16,Wun16]. These hy-
brid approaches use lattice reduction to solve closest vector problem (CVP) with
Babai’s nearest plane algorithm [Bab86], and this is quite different from our us-
age of lattice reduction. Since these attacks apply MITM strategy on error vector
(not secret vector), they only improve for extremely small and non-standard er-
ror distribution; such as binary or ternary error.

One may consider modifying the Howgrave-Graham’s hybrid attack so that
it can be applied for small secrets (not small error), and combining it with
3 SEAL also needs to use the sparse ternary key to support the bootstrapping.
See [CH18].
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the dimension error trade-off. However, since the success probability of Babai’s
nearest plane drops doubly exponentially along with dimension of LWE samples,
it would be highly inefficient for our interest parameter regime that has quite
large dimension (and modulus size). For this reason, we only adapt the original
MITM approach of Odlyzko for the following step of dimension-error trade-off.

Impact on NIST standardizations Our attack has no improvement on small
parameters used in the public key cryptosystem, especially on the recent post-
quantum cryptography; the dimension error trade-off phase may increase the
error bound B so that B/q & 2−10. In this case, the MITM takes too much
time, which makes our hybrid attack only quite ineffective.

1.4 Roadmap

In Section 2, we give some preliminaries of this paper and explain related
works in detail. In Section 3, we review the details of the several variants of
dual attack. In Section 4, we show LWE can be attacked in MITM approach,
by giving an efficient method to perform noisy search. After then in Section 5,
we see lattice reduction algorithms can be used to trade-off dimension and error
of LWE, which leads to a new hybrid attack for LWE. In Section 6, we discuss
some results and consequences of our attack.

2 Preliminaries

Notations. We write Zq by the set Z/qZ whose elements are represented in
(−q/2, q/2] ∩ Z. Every vector will be denoted by small bold letters, and matrix
will be denoted by capital letters. We denote the Euclidean norm of vectors by
‖ · ‖, and the maximum norm is distinguished by ‖ · ‖∞. For a set S, we denote
the uniform distribution over S by U(S).

A 0-centered distribution D over Z is said to be (B, ε)-bounded if the prob-
ability Pr[|D| ≥ B] is less than ε. We denote a 0-centered discrete Gaussian
distribution with width parameter s ∈ R by DZ,s. The following lemma says, for
any x ∈ Rn, the distribution 〈x,DZn,s〉 is (C · s‖x‖, 2 · exp(−π · C2))-bounded.

Lemma 2.1 (Lemma 2.4 of [Ban95]) For any real s > 0 and C > 0, and
any x ∈ Rn, we have

Pr[|〈x,DZn,s〉| ≥ C · s‖x‖] < 2 · exp(−π · C2).

2.1 The Learning With Errors Problem

Let n, q > 0 be integers, s ∈ Znq and χ be an error distribution over Z. We
define a distribution ALWE

n,q,χ,s over Zn+1
q obtained by sampling a ← U(Znq ) and

e← χ, and then computing

(a, b) = (a, 〈a, s〉+ e) ∈ Zn+1
q .
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Given many samples (ai, bi) from ALWE
n,q,χ,s, we can represent it by a matrix (A, b)

whose each row corresponds to one sample, and denoted it by LWE samples. Also
we define ALWE

n,q,α,s as the distribution ALWE
n,q,χ,s where χ is a Gaussian distribution

DZ,αq for α > 0.

Definition 1 (Learning with Errors). Let S be a distribution over Znq .

– LWEn,q,χ(S)(or LWEn,q,α(S)) is a problem that asks to find the secret key s,
given LWE samples from ALWE

n,q,χ,s(or ALWE
n,q,α,s) for a fixed s← S.

– DLWEn,q,χ(S)(or DLWEn,q,α(S)) is a problem that asks to determine that,
given arbitrarily many samples (ai, bi) ∈ Zn+1

q , they are LWE samples from
ALWE
n,q,χ,s(or ALWE

n,q,α,s) for a fixed s ← S or uniform random samples from
U(Zn+1

q ).

Note that there is a decision-to-search reduction of LWE problem [Reg05].

Special Distributions for Secret Vectors. Several LWE-based cryptosys-
tems takes the secret distribution S by small portion of Znq to enhance efficiency.
In particular, we will focus on the case where S is the set of sparse (signed)
binary vectors. For the sake of simplicity, we denote

Bn,h = {s ∈ {±1, 0}n : HW(s) = h},
Bn,≤h = {s ∈ {±1, 0}n : HW(s) ≤ h}.

2.2 Lattice Reduction and BKZ Algorithm

Let Λ be an m-dimensional lattice. Lattice reduction algorithm is an algo-
rithm to find short basis of Λ using a given basis B of Λ. We say that a lattice
reduction algorithm with root-Hermite factor δ0 returns a short basis whose first
vector b1 has size ≤ δm0 · detΛ1/m. The BKZ algorithm [CN11] is a commonly
used lattice reduction. We assume the followings for BKZ algorithm for this
paper.

– BKZ with blocksize β yields root-Hermite factor δ0 ≈
(

β
2πe (πβ)

1
β

) 1
2(β−1)

[Che13].
– One SVP oracle call on β-dimensional lattice costs tβ = 20.292β+16.4, by a

sieving method in [BDGL16].
– BKZ with blocksize β costs cn · tβ clock cycles for dimension n lattice, and

we put c = 16 according to [Alb17].

We remark that the complexity estimations of our attack and other attacks
largely depend on the lattice reduction cost model. In this regard, although we
assume a cost model as above, our attack would be described independently from
the lattice reduction cost model and then one can estimate our attack cost with
their favorite cost model.
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3 Albrecht’s Improved Dual Attack

In this section, we give a detailed descrption of the dual attack and its recent
variant suggested by Albrecht [Alb17], which is known as the best attack on the
underlying LWE problems of fully homomorphic encryptions.

3.1 Simple Dual Lattice Attack

The dual lattice attack is an algorithm to solve DLWEn,q,α(S). The main idea
of the dual attack is to exploit a short vector in the following orthogonal lattice

Λ⊥q (A) = {v ∈ Zn : vtA ≡q 0}.

More precisely, for a short vector y in Λ⊥q and an LWE sample (A, b), one
has

〈y, b〉 = 〈y, As+ e〉 = 〈y, As〉+ 〈y, e〉 ≡q 〈y, e〉
and this yields [〈y, b〉]q = 〈y, e〉, which is significantly shorter than q. On the
other hand, if the given sample (A, b) is uniform random then [〈y, b〉]q is a
random value which is not small compared to the previous case. By applying
this procedure for different y’s, we obtain the distinguishing algorithm with
overwhelming success probability. Thus we can solve the DLWE problem using
the smallness of this inner product.

For the LWE cases with small secrets, a natural improvement of dual attack
can be obtained by considering the scaled or normal form of dual lattice. More
precisely, the scaled normal dual lattice is defined by

Λq,c(A) = {(v1,v2) ∈ Zm × ( 1cZ)
n : vt1A ≡q c · v2}.

As in the dual attack, we find a short vector (y1,y2) ∈ Λq,c(A) and then compute
the inner product as follows

〈y1, b〉 = 〈y1, As〉+ 〈y1, e〉 ≡q c · 〈y2, s〉+ 〈y1, e〉

for the LWE sample (A, b = As+e) that allows us to solve the DLWE problem.

Choice of c. We take the constant c to satisfy |c · 〈y2, s〉| ≈ E[|〈y1, e〉|],
in order that each summand equally contributes to error e. First we estimate
E[|〈y1, e〉|] ≈ αq√

2π
· ‖y1‖, and then c would be taken to satisfy

c ≈ αq√
2π
· ‖y1‖
|〈y2, s〉|

.

Although we assume that y is short, Since the exact size of y1 and 〈y2, s〉 are not
sure, we heuristically assume that ‖y1‖ ≈

√
m

m+n‖y‖ and |〈y2, s〉| ≈
√

h
m+n‖y‖.

Assumption 1 Let y ∈ Lc(A) be a short vector obtained from lattice reduction.
Then each entry of y has similar size ‖y‖/

√
m+ n.
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3.2 Improved Dual Attack

Now we review the improvement on the dual attack on the sparse secret LWE
problem [Alb17]. Most of the techniques described in this section are applicable
to our hybrid attack. Hereafter we assume that the secret key s is in Bn,h for
some h� n.

Assumption on s. To exploit the sparsity of secret key, Albrecht suggests to
solve the LWE problem by dual lattice attack with the assumption that some
coordinates of secret key are zero. More precisely, parse the matrix A into A1||A2

for two matrix A1 ∈ Zm×(n−k)q and A2 ∈ Zm×kq . If the part of secret key that
corresponds to A2 is the zero vector, Then it holds that b = As+ e = A1s1 + e,
for the parsed secret key s = (s1||s2) ∈ Zn−kq × Zkq such that s2 = 0. Thus the
dual attack on A1 using (y1,y2) ∈ Λq,c(A1) proceeds

〈y1, b〉 = 〈y1, A1s1 + e〉
= 〈y1, A1s1〉+ 〈y1, e〉
≡q c · 〈y2, s1〉+ 〈y1, e〉.

Since it is sufficient to run the lattice reduction algorithm in dimension n−k
instead of n, this assumption yields the faster time to solve the DLWE problem.
The drawback is the probability that the assumption holds; we minimize the
product of the inverse of the probability and the time complexity to solve DLWE
with this assumption by choosing appropriate k.

Relaxed Assumption. Albrecht introduces another method to relax the as-
sumption. When s2 6= 0, the dual attack on A1 yields

〈y1, b〉 = 〈y1, A1s1〉+ 〈y1, A2s2〉+ 〈y1, e〉
≡q yt1A2s2 + c · yt2s1 + yt1e

and c · yt2s1 + yt1e is relatively small when the sample is from LWE. We assume
that the coordinates of s2 are all but up to h′ zero, instead of zero vector. Then
the attack is done by searching possible secret s′2 ∈ Bn,≤h′ and check whether
〈y1, b〉 − yt1A2 · s′2 is far less than q or not. If there is such s′2 then we decide
that the given sample is from LWE.

In this strategy, the probability that assumption holds is highly increased
whereas the time complexity is not much increased; in practice the adversary
choose h′ / 10 so that the dominated part is the lattice reduction algorithm.
Thus this relaxation induces the smaller estimated security of LWE. We remark
that this approach can be viewed as a tradeoff between dimension and error, as
also noted by Albrecht.
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Amortized Costs for Lattice Reductions. To verify the guessed s′2 is correct
or not, we should obtain several short (y1,y2) ∈ Λq,c(A1). To obtain several short
vectors of similar length in a given lattice Λ, the easiest way would be repeating
a lattice reduction that yields root Hermite factor δ0, which gives vectors vi of
length less than δm0 · detΛ1/m.

Instead, Albrecht suggested a way that performs one expensive lattice reduc-
tion (e.g. BKZβ) on given basis to have a sufficiently short basis B, and apply
cheap lattice reductions (e.g. LLL) repeatedly while re-randomizing the short
basis B by multiplying some short and sparse unimodular matrix U. Using suf-
ficiently short and sparse U, the short vectors vi obtained by this cheap lattice
reduction which is estimated by

E(‖vi‖) = 2 · δm0 · detΛ1/m.

For more details we refer [Alb17, Section 3].
To obtain statistically independent (y1,y2) ∈ Λq,c(A1), we have to assume

that we can obtain arbitrarily many samples of DLWE. On the other hand, in
many actual uses of LWE problem, there are only bounded number of samples
(A, b) are given; typically the number of samples would be m = O(n). In this
case we instead sample several short vectors yi = (yi,1||yi,2) in a fixed lattice
Λq,c(A1). One can perform BKZ algorithm iteratively with re-randomizing basis,
or can perform LLL algorithm iteratively according to the amortizing technique.

– Iterating BKZ: For a basis B of Λq,c(A1), iteratively perform BKZ on B ·U
while randomly sample arbitrary unimodular U.

– Iterating LLL: Perform BKZ on B to have BBKZ . Randomly sample a small
and sparse unimodular U, and run LLL on BBKZ ·U to have a short vector.
Repeat this while changing unimodular U.

However, if we use the same lattice Λq,c(A1), new k-dimensional samples are
not independent to each other anymore, since yi comes from the same lattice
Λq,c(A1). Thus we heuristically assume that, the short vectors yi ∈ Λc(A1) are
independent to each other, that is, we still obtain LWEk,q,χ samples from yi.

Assumption 2 Each iterative call of BKZ (or LLL) algorithm for randomized
basis of Λq,c(A1) gives an independent short vector yi.

4 Meet-in-the-Middle Attack on LWE

In this section, we describe an attack algorithm to solve LWE by meet-in-
the-middle strategy. Let (A, b) ∈ Zm×(n+1)

q be DLWEn,q,α(Bn,≤h) samples with
secret vector s. For the MITM approach, it is natural to consider the noisy
relation

As1 ≈ b−As2
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for some s1 ∈ Bn,≤h/2 and s2 ∈ Bn,≤h/2 satisfying s = s1 + s2. We first prepare
a table

T = {Av1 ∈ Zmq : v1 ∈ Bn,≤h/2}4.
Then, we exhaustively investigate v2 ∈ Bn,≤h/2, while checking whether b −
Av2 ∈ Zmq is close to the set T where such closeness depends on the size of error
e. Now, if such case occurs for some v2, then we can expect that the vector v2

is the right half of secret s. Otherwise, we cannot see such case for all possible
v2, we conclude that the given sample is from the uniform distribution.

In this approach, finding an element in T that is close to b − Av2 ∈ Zmq
is the main task. A simple exhaustive method that checks every close vector
to b − Av2 ∈ Zmq surely works, but it costs too much time. We here resolve
it by a search algorithm in the presence of noise that uses a locality sensi-
tive hashing-like technique, which is adapted from Odlyzko’s MITM attack on
NTRU [HGHSW03].

Before explaining our algorithm, we would like to remark that this MITM at-
tack alone does not affect the practical parameter choice of the current schemes,
but this attack serves as a main subroutine of our hybrid attack algorithm that
will be introduced in Section 5.

Remark. To the best of our knowledge, there has been two papers that men-
tioned the MITM approach on LWE, but both of them are problematic; Bai
and Galbraith [BG14] mentioned that there is a MITM attack on LWE, but
they do not give the explicit algorithm, and Albrecht, Player and Scott [APS15]
presented a MITM attack on LWE based on lexicographic order sorting, which
has a flaw in the analysis. We describe this flaw in Appendix. We note that a
very similar algorithm is considered in a different context; for example the in-
homogeneous short integer solution problem under the name approximate merge
algorithm.

4.1 Noisy Collision Search

For a vector a ∈ Zmq , we call a vector t ∈ Zmq by B-noisy collision of a if
‖a− t‖∞ ≤ B for some B < q/2. Consider a set T ⊂ Zmq and a vector a ∈ Zmq .
Our purpose is to determine whether there is a B-noisy collision t of a in S, and
if so returns such vector t. We mainly exploits a simple locality sensitive hashing
sgn : Zq → {0, 1}, which defined as sgn(x) = 1 for x ∈ [0, q/2) and 0 otherwise.
For every B-noisy collision t = (ti) of a = (ai), the sign of i-th entries sgn(ai)
and sgn(bi) must coincide if ai ∈ VB := [−q/2 +B,−B) ∪ [B, q/2−B).

For a vector a = (ai) ∈ Zmq , define an index set Ia := {i : ai ∈ VB},
and define a function sgn′ : Zq → {0, 1, x} that returns sgn(a) if a ∈ VB , and
3 Another way to use MITM method is to parse A and s into [Al|Ar] and s = (sl||sr)
for n/2 dimension vectors. In the regards of the overall attack complexity that prod-
uct of the time and the inverse of probability, the method discussed in the main
body is better; The MITM with parsing takes less time and memory but the success
probability is far less compared to the MITM in the paper.
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otherwise x. Then from the above observation, we have the following fact that
becomes a foundation of our algorithm

If T has a B-noisy collision of a, then there is a binary string
(b1, · · · , bm) ∈ sgn(T ) such that bi = sgn′(ai) for every index i in Ia.

Detailed Algorithms. We give two algorithms Preprocess and Search, where
the former literally preprocess the set T , and the latter investigate whether T
has a B-noisy collision of input a ∈ Zmq .

- Preprocess: On input T ⊂ Zmq ,

1. Initialize an empty hash table H with 2m (empty) linked lists with indexes
in {0, 1}m.

2. For each t ∈ T ,
(a) append t into the linked list indexed sgn(t).

3. Return nonempty linked lists H.

- Search: On input a hash table H, a query a ∈ Zmq and distance bound B,

1. For each bin ∈ {0, 1}m obtained from sgn′(a) by replacing x by 0 or 1,
(a) If H has a linked list indexed bin, for each t in the list,

i. Check whether ‖a− t‖∞ ≤ B. If so, return t.

2. Return ⊥.

Algorithm Analysis. First, the following proposition asserts that our algo-
rithm can find the B-noisy collision, if exists.

Proposition 4.1 (Correctness) Let T be a nonempty subset of Zmq and H
be the output of Preprocess algorithm on input T . Then Search algorithm with
input (L,a, B) returns a vector if and only if there is a B-noisy collision of a
in H. In particular, every returned vector is a B-noisy collision of a.

Proof. The second claim is immediate. For the first claim, one direction is clear
since the output vector itself is a noisy collision in T . Conversely, suppose that
T has a noisy collision t. Since sgn(t) would be one of strings obtained from
sgn′(a), it outputs t unless it terminates before then with some vector t′.

To investigate the (time) cost of Algorithms, we presents some lemmas.

Lemma 4.2 If a $← Zmq , |Ia| follows a binomial distribution B(m, 1− 4B/q).

Proof. Since a is sampled from U(Zmq ), the probability that each component ai
is not in VB is 4B/q. Each component of ai is independent, and then we know
the number of x in sgn′(a) follows a binomial distribution B(m, 4B/q).
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Lemma 4.3 Suppose the elements of the table T come from uniform distribution
over Zmq . For any bin ∈ {0, 1}m,

Pr [Lbin 6= ∅] ≤
|T |
2m

.

Proof. Note that Lbin 6= ∅ if and only if bin ∈ sgn(T ). Since T is uniformly
distributed, the probability of bin /∈ sgn(T ) is

(
1− 1

2m

)|T | ≥ 1 − |T |2m , which
proves the claim.

Now assuming that the linked list insertion costs O(1), the cost of
Preprocess is clearly O(|T |). The costs of Search consists of 2m−|Ia| times
of hash table lookups, and some computations of ‖ · ‖∞ norm. We first claim
that |Ia| would be m(1 − 4B/q) (stated in Lemma 4.2), which implies Search
look ups the hash table about 24mB/q times.

Next we claim that by Heuristic 4.4, if m is sufficiently large5, the computa-
tion of ‖ · ‖∞ almost never occur for a randomly chosen query a ∈ Zmq .

Heuristic 4.4 Let m, q > 0 be positive integers and B ∈ (0, q/4), and consider
T ⊂ Zmq whose element is sampled from uniform distribution. Let H be output
of Preprocess on input T . If

m ≥ 2 log(|T |)/(1− 4B/q), (1)

then for a random vector a ← Zmq , the probability that Search never computes
‖ · ‖∞ norm is ≥ 1− 1/|T |.

We justify the heuristic as follows: Since |Ia| = m(1− 4B/q) for random a ∈
Zmq on average by Lemma 4.2, we heuristically assume that Search visits 24mB/q

indexes. Since Pr [Lbin 6= ∅] ≤ |T |2m by Lemma 4.3, we bound the probability that

Search never visits nonempty linked lists by
(
1− |T |2m

)4mB/q
. One can easily

check that if such choice of m yields the claim.

Considering all above, we assess the total time cost in Table 1.

Preprocess Search6

|T | ·m O(24mB/q)
(operations on Zq) (table look-ups)

Table 1: Time cost for noisy search

5 Note that, when we use noisy collision search to solve LWE, the parameter m is the
number of samples of given LWE instances so it can be freely chosen by adversary.

6 Per one query in average.
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4.2 Noisy Meet-in-the-middle Attack on LWE

We now present a (noisy) MITM attack for LWE, using noisy collision search.
Formal description is given by Algorithm 1. We would like to remark that, since
we mainly exploit this algorithm as a subroutine of the main hybrid attack for
DLWE, Algorithm 1 is also described for DLWE although it can actually solve
the search version of LWE. Here, we define Bn,h by a set of vectors in {0,±1}nq
with h number of nonzero entries. Also, Bn,≤h denotes ∪hi=0Bn,i.

Algorithm 1 Meet-in-the-middle attack for binary sparse LWE problems

Input: A matrix (A, b) ∈ Zm×(n+1)
q

Hamming weight parameters h1, h2 > 0
Output: 1 if (A, b) is from LWE distribution, and 0 otherwise
1: Compute T = {Av1 : v1 ∈ Bn,≤h1}
2: Run Preprocess on input T to have a hash table H.
3: for v = b−Av2 ∈ Zmq for each v2 ∈ Bn,h2 do
4: if Search on input (H,v, B) returns a vector, then return 1
5: end for
6: return 0

One can easily check that correctness of Algorithm 1 comes immediately from
the correctness of noisy search.

Proposition 4.5 Let h1, h2 > 0 be positive integers, χ be a (B, ε)-bounded
distribution over Z, and let (A, b) ∈ Zm×(n+1)

q be ALWE
n,q,χ,s samples where

s ∈ Bn,≤h1+h2
. Then Algorithm 1 returns 1 for input (A, b) and h1, h2 with

probability ≥ (1− ε)m.

Proof. If input (A, b) is LWE sample with sparse ternary secret s ∈ Bn,≤h1+h2
,

we exhaustively run the noise search on v1 ∈ Bn,t1 for t1 ≤ h1 and v2 ∈ Bn,t2
for t2 ≤ h1. These search should find (s1, s2) such that s = s1 + s2 and in this
case the following equations holds:

‖As1 − (b−As2)‖∞ = ‖As− b‖∞ = ‖e‖∞

Since Algorithm 1 returns 1 if ‖e‖∞ ≤ B and each coordinate of error e follows
χ, we conclude the algorithm succeeds with probability ≥ (1− ε)m.

To apply the analyses of noisy collision search, we need the following assump-
tion that says that the vectors in table and queries are randomly distributed over
Zmq .

Assumption 3 For a fixed matrix A ∈ Zm×nq , a distribution of vectors of the
form As where s ← Bn,≤h is sufficiently close to the uniform distribution over
Zmq .
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Proposition 4.6 Suppose that Assumption 3 holds. Then for a uniformly ran-
dom matrix (A, b) ∈ Zm×(n+1)

q , Algorithm 1 returns 0 for input (A, b) and pa-
rameters h1, h2 with probability ≥ 1 − NTNq ·

(
2B
q

)m
, where NT (n, h1) and

Nq(n, h2) denotes the number of vectors in table and the number of query.

Proof. By Assumption 3, we consider every query v = b − Av2 as a random
sample from Zmq . Then again from the assumption, the set T is randomly dis-
tributed on Zmq , and we conclude that the probability that a B-noisy collision
of v is in T is less than NT (2B/q)m. Since we try at most Nq queries, the claim
holds.

Clearly, the time complexity of Algorithm 1 is the sum of table construction
and Preprocess time Tpre, and total noisy search time Tsearch. Clearly, the size
of table NT and the number of query Nq is given by

NT =

h1∑
i=1

(
n

i

)
· 2i, Nq =

h2∑
i=1

(
n

i

)
· 2i (2)

for given h1, h2. Finally, by supposing Assumption 3 holds and the condition for
m (1), we have the following cost estimation.

– Tpre consists of NT · n2 operations over Zq on constructing table T , and
Preprocess also requires NT ·m operations.

– Since each Search call for each query costs 24mB/q in average, we have
Tsearch = O(Nq · 24mB/q).

Memory Time
Tpre Tsearch

NT ·m NT · (n2 +m) O(Nq · 24mB/q)
(bits) (operations) (table look-ups)

Table 2: Cost for Algorithm 1 with inputs a matrix in Zm×(n+1)
q and h1, h2.

5 A New Hybrid Attack for the LWE Problem

In this section, we propose a hybrid attack that combines lattice reduction
and the MITM attack. More precisely, we use dual attack as a trade-off method
for LWE sample, which increases the error size and reduces dimension and Ham-
ming weight of secret vector. Since MITM attack of the previous section cost
heavily depends on the dimension of secret vector but less sensitive to error size,
this trade-off largely decreases the MITM attack cost.
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5.1 Dimension-error Trade-off of LWE

In this section we interpret Albrecht’s dual attack as dimension-error trade-off
with detailed analysis. For given LWE samples (A, b) ∈ Zm×(n+1)

q from ALWE
n,q,α,s

for k < n, divide A into A1 and A2 consisting of the first n− k columns and the
remaining k columns. For any vectors (y1,y2) ∈ Λq,c(A1), it holds that

〈y1, b〉 = 〈y1, A1s1〉+ 〈y1, A2s2〉+ 〈y1, e〉
≡q yt1A2s2 + c · yt2s1 + yt1e

where s2 is the last k entries of s. Now, if (y1,y2) is sufficiently short to satisfy
〈y1, e〉, 〈y2, s1〉 � q, we have a new LWE-like sample

(y1
tA2, 〈y1, b〉) = (a′, 〈a′, s2〉+ e′) ∈ Zk+1

q ,

with new secret vector s2 and error e′ = c · 〈y2, s1〉+ 〈y1, e〉.

Algorithm 2 A Dimension-error Trade-off

Input: A matrix (A, b) ∈ Zm×(n+1)
q

Root Hermite factor δ0
Dimension trade-off parameter 0 < k < n

Output: A vector (a′, b′) ∈ Zk+1
q .

1: Parse A into [A1||A2] with A1 ∈ Zm×(n−k)
q and A2 ∈ Zm×kq

2: y = (y1||y2)← BKZδ0(Λ
⊥
q,c(A1))

3: return (a′, b′)← (yt1A2, 〈y, b〉) ∈ Zk+1
q .

We now have Algorithm 2 for the dimension-error trade-off, while assuming
Assumption 1 to justify the choice for c in Section 3.1. In other words, we choose
c = αq√

2π
· ‖y1‖
|〈y2,s1〉| and assume that each entry of y has similar size ‖y‖/

√
m+ n.

We formally state that Algorithm 2 can serve a trade-off algorithm on the LWE
problem as follows.

Proposition 5.1 Assume that Assumption 1 holds for outputs of BKZ algo-
rithm with root-Hermite factor δ0. Then for given ALWE

n,q,α,s samples (A, b) ∈
Zm×nq , Algorithm 2 returns one ALWE

k,q,χ,s′ sample (a′, b′) ∈ Zk+1
q , where s′ =

(sn−k+1, · · · , sn). In particular, the error distribution χ is (B, 2e−4π)-bounded
with

B =

(
2 +

1√
2π

)
·
√

m

m+ n
· αq · ‖y‖ (3)

Proof. It only remains to show the error bound part. From Lemma 2.1, we know
‖〈y1, e〉‖ < 2αq · ‖y1‖ with probability ≥ 1− 2e−4π. Therefore, with probability
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≥ 1− 2e−4π, we have

|e′| ≤ |〈y1, e〉|+ |c · 〈y2, s〉|

≤ 2αq · ‖y1‖+
αq√
2π
· ‖y1‖

≤ (2 +
1√
2π

) · αq · ‖y1‖.

Since Assumption 1 guarantees ‖y1‖ ≈
√

m
m+n‖y‖, we show (3).

Amortizing and Heuristic for Algorithm 2. We remark that Albrecht’s
amortizing technique and heuristic assumption described in Section 3 works well
for this trade-off. More precisely, the amortizing technique reduces the time cost
for multiple run of tradeoff algorithm into, essentially, the time cost of one run
of Algorithm 2. On the other hand, we can obtain arbitrary many independent
trade-offed LWE samples from the bounded number, e.g. m = O(n), of given
LWE samples under the heuristic assumption. We employ these techniques in
the hybrid attack and estimation as well.

5.2 Our Hybrid Attack

Now we are able to describe our hybrid attack, which is formally written in
Algorithm 3. We first explain how to choose parameters m and τ optimally from
inputs. The concrete formula for each parameters can be found in Appendix 6.

– The number of n-dim DLWE samples m is set to minimize the short vectors
obtained from BKZδ0 .

– The error bound B is subsequently obtained from m by Proposition 5.1.
– The number of k-dim DLWE samples τ is chosen according to Heuristic 4.47,

in order to ensure that Algorithm 1 runs in time proportional to 24τB/q.

The following theorem shows the results of Algorithm 3 for LWE samples.

Theorem 5.2 Let s ∈ Bn,h. Given sufficiently many ALWE
n,q,α,s samples, Algo-

rithm 3 returns 1 with probability

p = (1− 2e−4π)m ·
∑

0≤i≤h1+h2

(
n− h
k − i

)(
h

i

)
/

(
n

k

)
.

Proof. Let the secret vector s be s = (s1‖s2) which is seperated as y = (y1‖y2).
This means that we run Algorithm 1 by input (A′, b′), which has s2 as its LWE

7 We note that the parameter τ does not critically affect to the performance when we
use the amortization technique. Hence we choose τ as in heuristical computation.
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Algorithm 3 A new hybrid attack for sparse binary secret LWE Problems

Input: (Sufficiently many) DLWEn,q,α(Bn,h) samples (ai, bi) ∈ Zn+1
q

Root Hermite factor δ0
Dimension trade-off parameter 0 < k < n
MITM parameter 0 ≤ h1, h2 ≤ h

Output: 1 if (ai, bi)’s are sampled from LWE distribution, and 0 otherwise.
1: Set m,B and τ as optimal values.

// Dimension-error trade-off
2: for i from 1 to τ do
3: Let (A, b) ∈ Zm×(n+1)

q be DLWEn,q,α(Bn,h) samples.
4: Run Algorithm 2 on input (A, b), δ0, and k to obtain (a′i, b

′
i) ∈ Zk+1

q .
5: end for
6: (A′, b′) ∈ Zτ×(k+1)

q be a matrix having i-th row (a′i, b
′
i).

// No need to perform MITM if s2 = 0
7: if ‖b′i‖∞ ≤ B then
8: return 1
9: end if

// Perform MITM
10: if Algorithm 1 on input (A′, b′), B, h1, and h2 outputs 1 then
11: return 1
12: end if
13: return 0

secret. Thus Algorithm 1 returns 1 if and only if HW(s2) ≤ h1 + h2. This
probability is

p′ =
∑

0≤i≤h1+h2

(
n− h
k − i

)(
h

i

)
/

(
n

k

)
.

From the choice of B and Proposition 5.1, we get ap = (1− 2e−4π)m · p′.

Under the amortizing technique and heuristic assumption, the time cost of
the trade-off phase is approximately one lattice reduction, and the condition
sufficiently many is removed. Overall, the total time complexity of Algorithm
3 is dominated by the sum of lattice reduction time Tlat and Algorithm 1 time
Tpre+Tsearch. Since we take τ according to Heuristic 4.4, the table 2 is also appli-
cable to this case, which yields the following time cost table with the amortizing
technique.

Memory Time
Tlat Tpre Tsearch

NT · τ ≈ TBKZ,δ0
NT · (k2 + τ) O(Nq · 24τB/q)

(bits) (operations) (table look-ups)

Table 3: Cost for Algorithm 3 with a matrix (A, b) ∈ Zτ×(n+1)
q and inputs h1, h2.
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6 Attack Complexity Estimation

In the previous sections, we analyze the running time T and success prob-
ability p of our attack for given parameters k, h1, h2. In this section, we show
estimations of the bit-security8 of the LWE problem with respect to our attack
by

log T − log p (4)

for optimized selections of k, h1, h2 to minimize the above bit-security of the
LWE problem.

We implement an estimator that computes the optimized bit-security of the
LWE problem against our hybrid attack9 by appropriately choosing δ0, k, h1, h2.
We assume the followings for our complexity estimation.

– The costs of table look-up and linked list insertion are equal to one ring
operation in Zq in the estimator.

– The cost of Search algorithm is estimated by 24mB/q.
– The amortizing technique and heuristic assumption discussed in Section 3

and 5 are also applied.

As an example, we give table 4 that estimates our attack complexity by running
estimator code for sparse ternary LWE problems for various n and q while α
and h is fixed by 8/q and 64. We remark that those large scale parameters are
actually being used for many applications [CHK+18, JKLS18,CCS19], but not
all of them use sparse secret. The ‘best’ row comes from LWE-estimator version
2019-2-14 with BKZ.sieve model [APS15].

Our attack shows better performance than the current best attack (Albrecht’s
dual attack) for modulus q ≥ 240, however it is reversed for smaller modulus.
In this regard, we note that Albrecht’s dual attack that can be regarded as a
special case of our attack with h1 = 0, and hence, if we investigate all possible
parameter range in our code, our algorithm must outperform Albrecht’s dual
attack. However it takes too much time to check all possible parameter ranges,
and we instead investigate plausible range of parameters; our code only explores
the parameter regime that h1, h2 & h/2, and this may not capture the real
optimal point. Meanwhile, the estimations for small modulus q size implies the
exhaustive search is better than the MITM approach for that parameter, which
seems weird at first glance. However this enough make sense because our MITM
algorithm runtime exponentially grows with B/q, where B is the error size.
Then, to have small B/q after the dimension-error trade-off, we may have to
find shorter vectors in the lattice reduction stage than Albrecht’s dual attack.
Particularly for small modulus q, the additional cost for finding such shorter
8 Although there is no formal definition for bit-security, (4) is one of generally accepted
methods. Indeed, the widely used LWE attack complexity estimator LWE-estimator
[APS15] also compute the bit-security according to (4).

9 Code can be found at github.com/swanhong/HybridLWEAttack. Besides bit-security
estimation, we also confirm that our attack actually works by implementing it, whose
code can also be found in the same page.
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vector offsets the benefit of MITM approach, and finally the results in table 4
occurs.

n 1024 2048 4096 8192 16384 32768

log q 25 38 45 67 82 125 158 250 350 505 628

Best Attack [Alb17] 116.7 135.6 127.7 164.2 129.5 175.5 128.6 152.0 128.3 145.4 127.2

Ours 130.7 135.2 118.8 131.7 113.7 128.4 113.9 125.7 104.6 128.5 112.5

Our Mem 74 76.3 74.6 74.4 73.3 71.8 78.8 77.5 75.6 71.2 70.5

Table 4: Cost table with memory capacity bound 280

Our attack claims that fully homomorphic encryption implementations that
uses the sparse ternary LWE problem with large modulus q should change the
parameter selection. In particular, HElib [HS13] and HEAAN [Kim18] use the
sparse ternary secret basically. SEAL [LP16] uses the (non-sparse) ternary secret
key but the paper [CH18] that supports bootstrapping for SEAL also uses the
sparse ternary secret vector. On the other hand, for the Post-Quantum Cryp-
tography Standardization held by NIST, our attack cannot make any impact on
those schemes since they use too small parameter size, although there are some
LWE-based schemes using sparse secret.
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A Flaw of Meet-in-the-middle Attack in [APS15] on LWE

Albrecht, Player and Scott [APS15] consider a meet-in-the-middle (MITM)
attack on LWE based on lexicographic order sorting, but it has a significant flaw
in the analysis. We discuss the flaw in this section.

The purpose of the MITM attack in [APS15] is to find (s1|s2) = s for
s1, s2 ∈ Zn/2q . The attack proceeds as follows:

– for given DLWE sample (A, b) ∈ Zm×(n+1)
q with secret vector s, parse A

into (A1, A2) for A1 ∈ Zm×n/2q and A2 ∈ Zm×n/2q , and store A1t1 for every
possible left candidate t1 ∈ Zn/2q in lexicographic order.

– for each right candidate t2 ∈ Zn/2q , insert b−A2t2 in the list by binary search
and then check that two adjacent vectors A1t1 satisfy whether (t1|t2) = s.
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Unfortunately, this approach may fail to output appropriate (s1|s2) since we
cannot guarantee that b − A2s2 and A1s1 are the nearest pair in the lexico-
graphic order; there might exist many different elements in the list such that
the (lexicographical) distance from b − A2s2 is less than the distance between
b−A2s2 and A1s1. This flaw comes from the fact that lexicographic order only
ensures that two adjacent vectors have very near entries for some first few coor-
dinates, and for the other coordinates it does not ensure anything. In particular,
these elements make the success probability of algorithm be negligibly small in
practice.

More precisely, suppose that A1t’s are uniformly, independently distributed
and the first coordinates of b − A2s2 and A1s1 have a difference B > 0. Then
the probability that each A1t are nearer to b − A2s2 than A1s1 is at least
(2B−1)/q. Since those probabilities are independent, the probability that there
is such A1t in the (lexicographic order) list is 1 − ((2B − 1)/q)T for the size of
list T , which is very close to 1 even for polynomially large T . (The size of T is
usually exponentially large.) Hence the probability that the algorithm success is
also negligible.

Optimal Parameter choices in Algorithm 3

– m =
√

n log q/c
log δ0

,

– B = (2 + 1√
2π

) · αq
√

m
m+n · 2

2
√
n log δ0 log q/c

– τ = 1
1−4B/q log(NT ·Nq), where

NT = |T | =
h1∑
i=1

(
k

i

)
· 2i, Nq =

h2∑
i=1

(
k

i

)
· 2i.
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