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Abstract. Algorithms for solving the Bounded Distance Decoding prob-
lem (BDD) are used for estimating the security of lattice-based cryp-
tographic primitives, since these algorithms can be employed to solve
variants of the Learning with Errors problem (LWE). In certain parameter
regimes where the target vector is small and/or sparse, batches of BDD
instances emerge from a combinatorial approach where several compo-
nents of the target vector are guessed before decoding. In this work we
explore trade-offs in solving “Batch-BDD”, and apply our techniques to
the small-secret Learning with Errors problem. We compare our tech-
niques to previous works which solve batches of BDD instances, such as
the hybrid lattice-reduction and meet-in-the-middle attack. Our results
are a mixed bag. We show that, in the “enumeration setting” and with
BKZ reduction, our techniques outperform a variant of the hybrid attack
which does not consider time-memory trade-offs in the guessing phase for
certain Round5 (17-bits out of 466), Round5-IoT (19-bits out of 240), and
NTRU LPrime (23-bits out of 385) parameter sets. On the other hand,
our techniques do not outperform the Hybrid Attack under standard,
albeit unrealistic, assumptions. Finally, as expected, our techniques do
not improve on previous works in the “sieving setting” (under standard
assumptions) where combinatorial attacks in general do not perform well.

Keywords: Bounded Distance Decoding, cryptanalysis, hybrid attack, lattice-
based cryptography, LWE, NTRU.

1 Introduction

The Bounded Distance Decoding problem with parameter 0 < α asks to find
the closest vector in some lattice Λ ⊂ Rd to some target vector t ∈ Rd under
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the guarantee that the distance between the lattice and t is at most α · λ1(Λ),
where λ1(Λ) is the length of a shortest vector in Λ. Establishing the concrete
cost of solving BDD has received renewed attention in recent years because
algorithms for solving this problem give rise to cryptanalytic attacks on schemes
based on the hardness of the Learning with Errors problem (LWE) [Reg05] as
well as the NTRU problem [HPS96]. These problems have been established as
popular building blocks for realising post-quantum secure primitives such as
public key encryption [HPS96, Reg05], key encapsulation [SAB+17, SHRS17], key
exchange [LP11, DXL12, ADPS16] and digital signatures [BAA+17, PFH+17] as
well as advanced primitives such as fully homomorphic encryption (FHE) [GSW13,
BGV14].

Informally, LWE challenges an adversary to determine the secret vector
s ∈ Znq given (A,b) ∈ (Zm×nq ×Znq ) from a noisy linear system b = As+e, where
A ∈ Zm×nq is uniformly random, and the error vector e ∈ Zmq is drawn from some
distribution χ producing small entries. In what follows, we will assume that the
vector s also has short entries. If s follows χ then this is known as normal form
LWE and is no easier than if s is uniformly random [ACPS09].

Similarly, NTRU challenges an adversary to recover (small multiples of) f, g
in some polynomial quotient ring R, given h = f−1 · g, where f is sampled to
have an inverse and f, g are sampled from some distributions χf , χg producing
small entries.

Both of these problems can be solved using an algorithm solving the unique
Shortest Vector Problem (uSVP) and this approach is often considered in the
literature. For LWE, we consider the lattice

{(x,y, c) ∈ Zn+m+1 | A · x + y − c · b ≡ 0 mod q},

for NTRU we consider the lattice

{(x,y) ∈ Z2n | H · x− y ≡ 0 mod q}

where H is the matrix produced by considering h · xi for 0 ≤ i < n with n
being the degree of the ring R. These lattices contain (s, e, 1) resp. (f ,g) – the
coefficient vectors of f and g – which are, for typical choices of parameters,
unusually short. To solve uSVP, we may employ a lattice reduction algorithm
such as BKZ [SE94, CN11] to find this unusually short vector using the success
condition √

β/d · λ1(Λ) ≤ δ2β−d · det(Λ)1/d

from [ADPS16], which was experimentally verified in [AGVW17].
The lattice considered in the case of LWE is an embedding lattice for solving

BDD via uSVP. We may also tackle BDD directly by first running lattice reduction
to find a basis of sufficiently good quality for the lattice

{(x, A · x mod q) | x ∈ Zn}

followed by either Babai’s Nearest Plane algorithm [Bab86] or pruned enumera-
tion [LP11, LN13]. This is known as the decoding attack in the cryptographic



literature. Note that we may think of Babai’s Nearest Plane algorithm as a form
of pruned enumeration where all pruning coefficients are small enough to enforce
the “Babai branch” of the search tree.

In the case of NTRU, BDD instances emerge from the Hybrid Attack [How07,
GvVW17, Wun19] which combines guessing some coefficients of f or g and
Babai’s Nearest Plane algorithm. Due to the low cost, this algorithmic choice
is natural as the adversary has to perform many calls to the BDD oracle: one
for each guess. Thus, the algorithm has two phases: (a) a lattice reduction phase
producing a sufficiently orthogonal basis used later and (b) a guess and verify
phase where guesses are verified by running a BDD solver against the previously
reduced basis and a target vector derived from the particular guess. The second
step can – and is typically considered to – be realised using a meet-in-the-middle
(mitm) or time-memory trade-off approach. The Hybrid Attack can be extended
to LWE [BGPW16].

Contribution. From the discussion above we may consider the Hybrid Attack
as a form of batched (candidate) BDD enumeration, where many points need
to be decoded against the same lattice. Furthermore, we may consider the
uSVP embedding approach and the Nearest Plane algorithm as endpoints of a
continuum of strategies for solving (batch) BDD: the final enumeration is either
(essentially) as expensive as the initial lattice reduction or optimised to be as
cheap as possible to decode a large number of points. In this work we explore this
continuum of strategies for solving LWE instances with small (and sparse) secrets
s such as [GHS12, GMZB+19, BCLvV19]. That is, we trade lattice-reduction
preprocessing cost with BDD enumeration cost to reduce the overall cost of
BDD. We note that in our parameterisation our algorithm solves many BDD-like
instances with α ≈ 1 where a unique solution is not guaranteed to exist. In other
words, we actually solve many instances of CVP.

In more detail, we present a guess-and-verify decoding approach which, like
the Hybrid Attack, makes use of a guessing approach to reduce the dimension
of the BDD problem. However, in our guess-and-verify decoding, we employ
a more expensive BDD solver than Babai’s Nearest Plane, i.e. we enumerate
candidate solutions rather than just following the Babai branch. To establish
the dimension in which we perform enumeration, we deploy (a slight variant
of) the success condition from [ADPS16], i.e. we pick parameters so that that
the distance between our target and the projected sub-lattice is slightly smaller
than the expected shortest vector in that sub-lattice. Therefore, as opposed to
applying a low probability BDD solver on a large number of (candidate) BDD
instances, our technique applies heavier enumeration, with a higher probability
of success, to a smaller number of (candidate) BDD instances.

Findings. Our results are presented in Tables 1 and 2 (see also Tables 3 and
4). We apply our techniques on parameter sets for NTRU LPrime [BCLvV19],
Round5 [GMZB+19] and HElib [Hal18].



Table 1 considers the enumeration setting, where the SVP oracle is realised
using lattice-point enumeration [FP85, Kan83] and highlights that our non-mitm
variant outperforms the non-mitm variant of the Hybrid Attack for the Round5,
Round5-IoT and NTRU LPrime parameter sets by 17-bits, 19-bits and 23-bits
respectively. These results assume the basis shape after lattice reduction exhibits
an HKZ-shape in the last block, as observed in practice for BKZ reduction and
predicted by the BKZ simulator [CN11], instead of a “line” as predicted by
the Geometric Series Assumption (GSA). We also include estimates assuming
the GSA holds also in the last block. In this setting, the non-mitm variant of
the Hybrid Attack outperforms our techniques. We further note that for HElib
our approach closes the gap between the dual and the primal attack observed
in [Alb17]. Note that here, since β is relatively small, the output basis shape from
the BKZ Simulator is very close to the Geometric Series Assumption (GSA), and
thus the results are similar in each case.

Table 2 considers the sieving setting, where the SVP oracle is instantiated using
a lattice sieving algorithm [AKS01, BDGL16]. Here, combinatorial approaches
(i.e. guessing components of the secret) do not improve the running time of a
BDD approach for the Round5, Round5-IoT, and NTRU LPrime parameter sets.
Thus, our approach only marginally outperforms the uSVP attack by decoupling
β and η, i.e. our approach reduces to the usual “decoding” approach [LP11, LN13]
translated to the sieving setting (see also [ADH+19]). Such estimates are marked
by † in all tables.

We stress that a “g-v decoding” estimate that is lower than a “hybrid” estimate
does not necessarily imply an invalidation of any security claim made by the
designers of the schemes considered in our work, and to highlight this point we
consider the (pre-quantum) security claim of each scheme, denoted by λ, in all of
our tables. In particular, there are several points within our analysis in which we
have had to make assumptions, and, whilst the assumptions we have chosen are
reasonable based on currently known techniques, designers have made different
assumptions to ours, and this can change the ordering of attack complexities. We
consider a spectrum of such assumptions and their effect in Appendix B.

Limitations & Future Work. The Hybrid Attack is defined as a hybrid of
a meet-in-the-middle guess-and-verify step and lattice reduction. For a guess
vg we can decode using Babai’s Nearest Plane algorithm in the hope of finding
the remaining components of the secret vl. In a meet-in-the-middle step, the
guessed part of the secret vg is split into two sub-guesses vg = v′g + v′′g , and we
in turn have two applications of Babai’s Nearest Plane: one for each “half” of
the original guess. Then, each decoded vector is stored in a hash table using a
locality sensitive hash function [Wun19] which permits to find collisions in this
table which, with some probability, correspond to vg. Whilst this approach allows
the correct vector vg to be found more quickly by reducing the search space
for guessing, it also introduces an additional probability of failure. That is, we
have to hope that the output of our BDD solver is homomorphic: if the guess v′g
corresponds to v′l and v′′g corresponds to v′′l , then we hope that v′l+v′′l = vl. The



attack τ β η BDD cost |S| repeats d #pp log2(rop)

NTRU LPrime: n = 761, q = 4591, σ =
√

2/3, h = 250 λ = 222

uSVP (GSA) 92 458 458 n/a 1 257.2 1220 n/a 384.6
Dual (GSA) 69 495 n/a n/a n/a 2320.9 1281 11 374.0
g-v decoding (GSA) 285 430 102 2336.1 2252.8 234.1 1026 55 337.6
non mitm hybrid (GSA) 275 400 n/a 2324.1 2255.6 249.6 1036 57 325.7

g-v decoding 225 435 272 2360.9 2146.4 253.9 1086 28 362.1
non mitm hybrid 305 395 n/a 2384.3 2252.3 2113.1 1006 53 385.3

Round5: n = 756, q = 212, σ ≈ 4.61, h = 242 λ = 270

uSVP (GSA) 230 449 449 n/a 1 2160.1 936 n/a 478.9
Dual (GSA) 63 626 n/a n/a n/a 2413.5 1227 19 489.2
g-v decoding (GSA) 365 490 117 2415.2 2297.9 260.2 814 62 416.9
non mitm hybrid (GSA) 335 445 n/a 2391.0 2295.7 276.8 844 64 392.5

g-v decoding 290 490 320 2448.2 2157.2 292.6 889 28 449.6
non mitm hybrid 365 420 n/a 2465.5 2274.2 2172.9 814 55 466.6

Round5 (IoT): n = 372, q = 211, σ ≈ 4.61, h = 178 λ = 129

uSVP (GSA) 0 335 335 n/a n/a 1 682 n/a 220.0
Dual (GSA) 32 334 n/a n/a n/a 2174.7 661 14 221.7
g-v decoding (GSA) 65 315 224 2213.1 279.2 29.0 616 22 214.3
non mitm hybrid (GSA) 115 270 n/a 2203.6 2149.5 236.9 566 43 205.5

g-v decoding 50 320 266 2220.4 251.6 212.8 631 13 221.4
non mitm hybrid 120 270 n/a 2239.6 2150.8 271.5 561 42 240.6

HElib-1024: n = 1024, q = 247, σ ≈ 3.19, h = 64

uSVP (GSA) 140 105 105 n/a 1 214.0 1670 n/a 75.5
Dual (GSA) 189 107 n/a n/a n/a 222.3 1680 7 68.4
g-v decoding (GSA) 185 100 48 266.7 229.5 29.9 1624 4 69.1
non mitm hybrid (GSA) 210 100 n/a 267.5 236.6 210.7 1599 5 69.9

τ is the (fixed) guessing dimension, β is the blocksize used in lattice reduction, η
is the enumeration dimension considered, BDD cost is the cost of solving BDD (via
enumeration) in the dimension η projected sublattice, |S| is the size of the search space
considered, i.e the number of points on which we decode (chosen as a union ∪#pp

i=0 Si of
sets Si containing all length τ vectors with Hamming weight i), d is the dimension of
the lattice considered, #pp denotes the maximal hamming weight considered in the
search space, and rop is the cost of running the algorithm in CPU cycles; “g-v decoding”
is the technique described in this work. Best in class are highlighted in bold where
meaningful. “λ” values outline the security claims of each scheme, considering similar
(pre-quantum) cost models and (pre-quantum) attacks; we note that such values of λ
can be generated using vastly different assumptions.

Table 1: Estimates in enumeration setting.

probability that this occurs has been analysed in the case that the BDD solver is
Babai’s Nearest Plane in [Wun19]. However, this refined model is not employed
e.g. in submissions to the NIST PQC process [BCLvV17, SHRS17, ZCHW17].

Our techniques share the same genealogy as the Hybrid Attack. However, in
the main body of this work we consider only a setting where the guess-and-verify



attack τ β η BDD cost |S| repeats d #pp log2(rop)

NTRU LPrime: n = 761, q = 4591, σ =
√

2/3, h = 250 λ = 155

uSVP (GSA) 0 532 532 n/a n/a 1 1352 n/a 185.1
Dual (GSA) 45 586 n/a n/a n/a 2148.0 1383 14 203.1

g-v decoding (GSA) 0 515 549 2179.7 1 1 1351 n/a 181.0†

non mitm hybrid (GSA) 170 580 n/a 2218.9 2178.1 221.4 1181 43 220.8

g-v decoding 0 530 562 2183.5 1 1 1351 n/a 185.3†

non mitm hybrid 230 615 n/a 2302.1 2189.6 293.3 1121 40 303.3

Round5: n = 756, q = 212, σ ≈ 4.61, h = 242 λ = 193

uSVP (GSA) 0 664 664 n/a n/a 1 1266 n/a 223.6
Dual (GSA) 46 748 n/a n/a n/a 2198.6 1325 13 251.0

g-v decoding (GSA) 0 645 679 2217.7 1 1 1265 n/a 218.9†

non mitm hybrid (GSA) 225 705 n/a 2273.7 2215.4 239.3 1040 49 275.2

g-v decoding 0 660 699 2223.5 1 1 1265 n/a 224.1†

non mitm hybrid 290 700 n/a 2393.9 2214.8 2160.3 975 43 394.9

Round5 (IoT): n = 372, q = 211, σ ≈ 4.61, h = 178 λ = 96

uSVP (GSA) 0 335 335 n/a n/a 1 682 n/a 126.6
Dual (GSA) 22 396 n/a n/a n/a 2104.2 710 1 145.0

g-v decoding (GSA) 0 315 349 2121.6 1 1 681 n/a 122.4†

non mitm hybrid (GSA) 85 375 n/a 2155.2 2119.5 218.3 596 38 156.9

g-v decoding 0 320 358 2123.9 1 1 681 n/a 124.3†

non mitm hybrid 95 380 n/a 2204.5 2122.1 265.1 586 35 205.6

HElib-1024: n = 1024, q = 247, σ ≈ 3.19, h = 64

uSVP (GSA) 0 137 137 n/a n/a 1 1939 n/a 70.3
Dual (GSA) 80 115 n/a n/a n/a 219.6 1741 7 67.1
g-v decoding (GSA) 85 125 50 266.6 230.0 22.6 1853 5 69.8
non mitm hybrid (GSA) 155 115 n/a 266.2 240.1 25.6 1783 6 69.8

Table 2: Estimates in the sieving setting, where BKZ and the BDD solver are
instantiated with sieving algorithms. Notation as in Table 1. Estimates marked
with † correspond to standard BDD decoding.

step is executed without the time-memory trade-off. In Appendix A, then, we
also consider a meet-in-the-middle approach or time-memory trade-off where we
(a) assume that collisions occur with probability one, (b) assume a square-root
speed-up in the search phase and (c) ignore the memory cost.

Although our work uses preprocessing to control the dimension of the CVP
problems we then have to solve in batch, we do not make specific use of techniques
for solving the Closest Vector Problem with Preprocessing (CVPP) [Mic01]. In
particular, the works [Laa16, DLdW16] discuss a time-memory trade-off in the
sieving setting. After lattice reduction a preprocessing step can be deployed,
generating a list of short vectors in some projected sublattice which can then
be used to carry out many, typically cheaper, query steps (one for each guess).
In the enumeration setting, pre-computing many reduced lattice bases allows
lattice-point enumeration to be run many times, each with a low probability of



success, and without incurring an additional cost for preprocessing. Thus, these
techniques offer the potential for improvements to our techniques when used
instead of our assumption that the cost of solving CVP is the same as the cost
of solving SVP.

We also note that this work naturally gives rise to a quantum variant where
quantum algorithms are used for enumeration and for the guess-and-verify phase.

In summary, we note that any analysis of variants of the Hybrid Attack
requires usage of several assumptions: (a) usage of a sieving-based, or enumeration-
based, SVP oracle in the lattice reduction phase (of which we consider both),
(b) an output lattice basis shape, namely GSA, Z-shaped, or usage the BKZ
Simulator (of which we consider the BKZ Simulator and the GSA), (c) the
guessing strategy, namely brute-force, meet-in-the-middle, or quantum (of which
we assume brute-force, and also consider a square-root-style meet-in-the-middle
search in Appendix A), (d) the choice of BDD/CVP solver i.e Babai’s algorithm,
pruned enumeration, or sieving (of which we consider all three possibilities) with
or without preprocessing (which we do not consider). Thus, while our work
explores trade-offs in batch BDD solving it still leaves many possible variants of
such trade-offs unexplored and a full investigation of the concrete cost of solving
this problem is still outstanding.

Related Work. The hardness of small-secret LWE was considered in [BLP+13],
which gives a reduction from LWE in dimension n with secrets sampled from
Znq to LWE in dimension n log q with a secret sampled uniformly over {0, 1}n.
This reduction has recently been revisited in [Mic18]. Several of the NTRU and
LWE-based schemes submitted to the NIST standardisation process make use of
small secrets [CPL+17, GMZB+19, SPL+17, BCLvV19].

As mentioned above, several works have explored the cost of solving CVP
with Preprocessing such as [Mic01, Laa16, DLdW16]

Algorithmically, our work clearly builds on the line of works exploring hy-
brids of combinatorial and lattice reduction algorithms such as [MS01, How07,
BGPW16, Alb17, GvVW17, Wun19]. We may also consider this work as a pa-
rameter space exploration for a specialisation of [LN13] to the case of batch BDD
where many (candidate) BDD instances need to be solved. We note that the
“decoding attack” is one of the three attacks considered by default in the LWE
Estimator [APS15]. Thus, this work may also be considered as an investigation
into the effectiveness of this attack compared to the other two considered there
(“uSVP” and “Dual”).

2 Preliminaries

Notation. We denote columns vectors by lower case bold letters, e.g. b. Matrices
are represented by upper case bold letters, e.g. B. We denote the ith component
of the vector b by bi, where i begins at one, and similarly the (i, j)th entry of
a matrix by Bi,j . We write Bi for the ith column of B. Abusing notation, we
denote by (v1,v2, c) the vector formed by concatenating the entries of v1, v2



and the scalar c. We denote the ith unit vector as ui. A lattice Λ = Λ(B) is
a discrete subgroup of Rn which can be characterised by a (column) basis B:
{b1,b2, . . . ,bd} which can itself be represented in matrix form B = [b1 | b2 |
· · · | bd]. When d = n, the lattice has full rank. We denote the corresponding
Gram-Schmidt orthogonalised (GSO) vectors by b∗i . We write B(τ) to represent
the d× (d− τ) submatrix of B constructed via dropping τ random columns of B,
i.e. B(τ) = [bi1 | bi2 | · · · | bid−τ ] for some indices 1 ≤ i1 < i2 < · · · < id−τ ≤ d.
We similarly write b(τ) to denote dropping the corresponding τ components of
the vector b. We write πi(x) to denote the orthogonal projection of x onto the
space spanned by the set of vectors {b1,b2, . . . ,bi−1}. We denote by λi(Λ) the
ith successive minima of the lattice Λ, i.e. the radius of the smallest ball, centred
at the origin, containing at least i linearly independent lattice vectors. Unless
stated otherwise, our logarithms are to base two.

Tbdd(η) denotes the cost of solving BDD in a dimension η projected lattice
(typically πd−η+1(Λ)). This process has probability pbdd of returning the projection
πd−η+1(v) of a closest (in the projected sublattice) lattice vector v to our target t.
Typically, we will have pbdd ≈ 1. We denote the probability of correctly guessing
τ random zeros of the LWE secret (where τ is the fixed guessing dimension) by
p0. The probability pi for 1 ≤ i ≤ min(τ, h) represents the probability that the
guessed components of the LWE secret contain i non-zero components. Sj is the
set of all ternary vectors of length τ with Hamming weight j. Furthermore,

pbabai ≈
∏

1≤i≤d

(
1− 2

B(d−12 , 12 )

∫ 1

min(ri,1)

(1− t2)(d−3)/2 dt

)

is the (heuristic) probability of Babai’s algorithm lifting the projected short
vector (found via solving BDD) to the full lattice [Wun19]. Here d is the number
of dimensions we have to lift the projected solution through, and ri = ‖b∗i ‖/2‖v‖
where ‖v‖ is the (expected) norm of the target vector, and B(·, ·) denotes the
Beta function. We cost this lifting process as in [Wun19] to be Tlift = d2/21.06.

Our work is concerned with the following computational problem:

Definition 1 (α-Bounded Distance Decoding (BDDα)). Given a lattice
basis B, a vector t, and a parameter 0 < α such that the Euclidean distance
dist(t,B) < αλ1(B), find the lattice vector v ∈ Λ(B) which is closest to t.

As discussed above, we can use a BDDα solver for solving the NTRU and
LWE problems. In this case we have α < 1/2 which guarantees unique decoding
(up to signs and rotations in the case of NTRU). To solve these instances, we
may repeatedly call a BDD solver on smaller lattices where α ≈ 1. When solving
the instances with α ≈ 1 we do not have a guarantee of unique decoding, only
an expectation. In this case, we might more appropriately refer to the instances
as CVP instances.

Definition 2 (NTRU [HPS96]). Let n, q be positive integers, φ ∈ Z[x] be a
monic polynomial of degree n, and Rq = Zq[x]/(φ). Let f ∈ R×q , g ∈ Rq be small
polynomials (i.e. having small coefficients) and h = g · f−1 mod q.



Search-NTRU is the problem of recovering f or g given h.
Decision-NTRU is the problem of deciding if h is of the form h = g · f−1 or is
chosen uniformly at random.

Definition 3 (LWE [Reg05]). Let n, q be positive integers, χ be a probability
distribution on Z and s be a secret vector in Znq . We denote the LWE Distribution
Ls,χ,q as the distribution on Znq × Zq given by choosing a ∈ Znq uniformly at
random, choosing e ∈ Z according to χ and considering it as an element of Zq,
and outputting (a, 〈a, s〉+ e) ∈ Znq × Zq.
Search-LWE is the problem of recovering the vector s from a collection {(ai, bi)}mi=1

of samples drawn according to Ls,χ,q.
Decision-LWE is the problem of distinguishing whether samples {(ai, bi)}mi=1 are
drawn from the LWE distribution Ls,χ,q or uniformly from Znq × Zq.

LWE, as defined in [Reg05], makes use of a rounded Gaussian distribution for
the error distribution χ. However, LWE is typically considered with a discrete
Gaussian distribution [LP11]. In practice, many schemes choose bounded uniform
error distributions U[a,b] [LDK+17] or binomial distributions [PAA+17].

Many constructions in the literature make use of Ring-LWE [SSTX09, LPR10]
or Module-LWE [LS15] where the vectors ai are not uniformly random, but have
structure induced by a ring or module. We can treat these problems as LWE by
ignoring this additional structure. Since our work does not exploit this additional
structure, this is how we will proceed.

Secret Distributions. LWE, as defined, samples a secret s uniformly at random
from Znq . In practice, many schemes choose to restrict the space of potential
secrets by sampling secrets which are small and/or sparse by sampling from
some secret distribution χs. Below we outline typical choices for these secret
distributions, extending the notation from [Alb17].

Definition 4 (Small Secret Distributions). Let n, q be positive integers.
B− is the probability distribution on Znq where each component is independently
sampled uniformly at random from {−1, 0, 1}.
B−h is the probability distribution on Znq where components are sampled uniformly
at random from {−1, 0, 1} with the additional guarantee that exactly h components
are non-zero.
B−(h1,h2)

is the probability distribution on Znq where components are sampled uni-

formly at random from {−1, 0, 1} with the additional guarantee that exactly h1
components are equal to −1 and exactly h2 components are equal to 1.

We refer to a small-secret LWE instance as an LWE instance which samples
secrets from one of the distributions outlined in Definition 4. Examples of
such parameter choices are seen in homomorphic encryption libraries HElib
(B−64) [Hal18] and SEAL (B−) [SEA18]. In the NTRU domain, f is typically
drawn from the distribution B−h for some h. The NTRUPrime submission to



the NIST PQC standardisation process considers the distributions B−250 and
B−286 [BCLvV19]. Some other schemes in the NTRU domain make use of the
secret distribution B−

(h2 ,
h
2 )

, where h is the Hamming weight of the secret.

Lattice Reduction and BDD Solver Costs. We consider lattice reduction
when instantiated with either enumeration or sieving for solving the shortest
vector problem. In particular, we consider the BKZ algorithm [SE94] parametrised
by a block size β which determines the running time (at least exponential in
β) and output quality. For enumeration [FP85, Kan83], we consider the cost of
lattice reduction using blocksize β on a lattice of dimension d to be

TBKZ(β, d) = 8 d · 20.18728β log(β)−1.019β+16.1 enum. nodes

which is taken from [APS15] based on experiments from [CN11]. To translate from
the number of nodes visited during enumeration to CPU cycles, the literature typ-
ically assumes one node ≈ 100 CPU cycles [dt16]. For sieving [AKS01, BDGL16],
we consider the cost of lattice reduction using blocksize β on a lattice of dimension
d to be:

TBKZ(β, d) = 8 d · 20.292β+16.4 (1)

where the constant term is somewhat arbitrarily picked as in [APS15].
“Core”-style BKZ cost models used in e.g [ADPS16], where the cost of BKZ

is equated to the cost of a single SVP call and lower order terms are simply set
to zero, are not considered in our work. There are several reasons for this: first,
these estimates do not claim to capture the running time but constitute explicit
lower bounds. Second, as a consequence, these costs suggest, in contrast to the
state-of-the-art, that combinatorial techniques do not perform as well, especially
in the sieving setting [ACD+18]. Third, since we are using the BKZ simulator
from [CN11] to emulate the effect of lattice reduction more precisely, the number
of tours has an effect on the output basis shape.

We also make use of both enumeration-based, and sieving-based, BDD1/CVP
solvers. When using enumeration to solve BDD1/CVP in dimension η, we assume
a cost of:

Tbdd(η) = 20.18728η log(η)−1.019η+16.1 enum. nodes

where again we assume that one node ≈ 100 CPU cycles [dt16]. Such an enumer-
ation is assumed to succeed with probability close to one, i.e. pbdd ≈ 1. When
using sieving to solve BDD1/CVP in dimension η, we assume a cost of:

Tbdd(η) = 20.292η+16.4

based on the results of [Laa16], which suggest that without preprocessing (see the
discussion in the introduction) sieving for short vectors has the same asymptotic
cost as sieving for close vectors. We assume that this sieving process suceeds
with probability close to one, i.e pbdd ≈ 1. We note that it is always clear from
context whether an enumeration-based, or a sieving-based, BDD1/CVP solver is
being deployed.



2.1 The Geometric Series Assumption and ‘Z-shaped’ bases.

To determine the performance of the algorithms considered in this work, we are
interested in the lengths of the GSO vectors after lattice reduction has taken
place. We briefly recall the notion of the root-Hermite factor δ, which describes
the quality of a basis after lattice reduction.

Definition 5 (root-Hermite factor). For a basis B of a lattice Λ of dimension
d, the root-Hermite factor is defined to be:

δ =

(
‖b1‖

det (Λ)
1/d

)1/d

.

For BKZ blocksizes considered in this work (β ≥ 40), this value is well approxi-

mated [Che13] by δ2(β−1) = β
2πe (βπ)

1/β
. This value decreases towards 1 as the

lattice reduction blocksize β increases.
In the context of the decoding attack, the lengths of the GSO vectors will

determine the success probability of our BDD solvers. These lengths may be
approximated the Geometric Series Assumption (GSA) [Sch03]:

Definition 6 (Geometric Series Assumption). Let {b1,b2, . . . ,bd} be a
basis of a lattice Λ, of quality δ, that is output by some lattice reduction algorithm.
Then the lengths ‖b∗i ‖ for (1 ≤ i ≤ d) of the Gram-Schmidt vectors of this basis
are approximated by ‖b∗i ‖ = αi−1‖b1‖ for some 0 < α < 1.3

We can combine this assumption with ‖b1‖ = δd · det(Λ)
1/d

and
∏
‖b∗i ‖ =

det(Λ) to determine α ≈ δ−2.
There are several models in the literature for the behaviour of the BKZ

algorithm on q-ary lattices. In most of the literature on solving LWE via BDD, we

use the public LWE matrix A ∈ Z(m×n)
q to construct a lattice basis Z(n+m)×(n+m)

for which it is commonly assumed that the Geometric Series Assumption is
relatively accurate after running BKZ-β with β � m + n. The literature on
analysing the Hybrid Attack considers lattice bases of the form(

qIm A
0 In

)
. (2)

This form of writing the basis immediately suggests that the GSA might not
hold. Specifically, when the GSA predicts that ‖b1‖ > q, this is longer than
the first vector already in the basis before lattice reduction and thus we will
obtain ‖b1‖ = q. As a consequence, lattice reduction is expected to produce a
“Z-shaped” basis [How07], comprised of leading qs, trailing ones and a middle
part approximated by the GSA.

3 Note that, following the literature, we are overloading notation here: this α is unrelated
to the BDD approximation factor α. It will always be clear from context which α we
are referring to.



In Figure 1 we give an illustrative example, chosen to highlight the effect, of
the output of lattice reduction as implemented in FPLLL [dt16] which clearly
illustrates the Z-shape. To model this Z-shape, we can insist on no vector after
lattice reduction having norm > q [Wun19]. Let k be the number of lattice vectors
which follow a GSA-style behaviour, and the other (d− k) vectors remain as q.
Explicitly, we have:

‖b∗i ‖ =

{
q if i ≤ d− k
δ−2(i−(d−k)−1)+kq

k−n
k otherwise.

Making the assumption that ‖b∗(d−k+1)‖ ≈ q [Wun19], it is possible to compute a

value for k, namely k = min

(⌊√
n

logq(δ)

⌋
, d

)
. Indeed, running the BKZ simulator

from [Che13] will output a predicted shape closely resembling this prediction
for β � m + n. On the other hand, [Wun19] makes no attempt to model the
number of trailing ones. Indeed, while some works pick the length of this part by
choosing a sublattice to reduce [HPS+15], no work in the literature offers a way
of predicting the number of trailing ones.
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We define γi = αi−1δd det(Λ)1/d and thus the GSA corresponds to the line at y = 0.

Fig. 1: Example of BKZ-60 reduction on a q-ary lattice of dimension d = 180 with
q = 17 and volume 1780 for bases constructed as in (2), along with the output of
BKZ simulation and the heuristic from [Wun19].

For this reason, in this work we assume that the q-ary structure of the
lattice does not impact the shape of the basis after lattice reduction, i.e. we do
not assume leading qs or trailing 1s. This assumption can be made to hold by
rerandomising the input basis for lattice reduction. Considering the techniques
in this work in a setting exploiting the q-ary structure is an interesting area for
future work.



2.2 Decoding Small-secret LWE

The decoding approach for solving small-secret LWE instances [BG14] b = A·s+e
constructs a lattice for which the vector (b,0) is separated by the short vector
(−e, s) to the lattice point (A · s mod q, s). The basis of the lattice is given by
the columns of the matrix B, where

B =

(
qIm A

0 In

)
.

In more detail, we have that(
qIm A
0 In

)(
∗
s

)
=

(
q∗+ A · s

s

)
=

(
b
0

)
+

(
−e

s

)
mod q.

After lattice reduction on the lattice spanned by B, we perform enumeration
around the target point (b,0), which is close to a unique lattice point. With
some probability, this enumeration will return this unique closest lattice point,
enabling recovery of the LWE secret. As noted in [MS01] we can combine this
attack with dimension reduction techniques, where τ components of the secret
are guessed (as zero) and the associated decoding problem is solved in dimension
(d− τ). We refer to this variant as drop-and-solve decoding.

2.3 The Hybrid Meet-in-the-middle and Lattice Reduction Attack

The Hybrid meet-in-the-middle and lattice reduction strategy was introduced by
Howgrave-Graham in [How07]. It leverages small and sparse target vectors by
combining a lattice reduction phase with a guess and verify phase. As opposed
to solving BDD in a dimension d lattice, the Hybrid Attack sets a guessing
dimension τ , carries out lattice reduction in dimension (d− τ) and solves BDD
on a dimension (d− τ) lattice by decoding on various points corresponding to
guesses in the τ -dimensional guessing space. When s←$B−, the coefficients si of
the secret vector are contained within the set {−1, 0, 1}. We then observe that

A · s =
∑

{i|si=1}

Ai −
∑

{j|sj=−1}

Aj . (3)

We begin by choosing a guessing dimension τ and generate the lattice basis
determined by the columns of the matrix

X =

(
qIm A(τ)

0 In−τ

)
where A(τ) denotes the matrix A with τ random columns dropped. We then

reduce this basis to X̃ = BKZβ(X), and use it to carry out decoding using Babai’s
Nearest Plane [Bab86] on vectors in the τ -dimensional guessing space. We have:(

qIm A(τ)

0 In−τ

)(
∗

s(τ)

)
=

(
q∗+ A(τ) · s(τ)

s(τ)

)
.



If we correctly guess zero components then we have A(τ) · s(τ) = A · s, allowing
us to decode on the point (b,0). Otherwise, assuming without loss of generality
that the last τ components of s were the guessed components, we can make a
new guess vg =

∑d
k=d−τ+1 ck · uk for some values ck ∈ {−1, 0, 1}. For this new

guess, we can decode on the point (b −
∑n
k=n−τ+1 ck ·Ak, 0). For the correct

guess v =
∑n
k=n−τ+1 sk · uk we have

b−
n∑

k=n−τ+1

sk ·Ak = A(τ) · s(τ) + e mod q.

Therefore, we have that (b−
∑d
k=d−τ+1 sk ·Ak, 0) is separated from the lattice

point (A(τ) · s(τ) mod q, s(τ)) by the vector (−e, s(τ)), as is required. Typically,
this guessing is realised via the usage of a time-memory trade-off approach. As
previously mentioned, throughout this work we do not consider any meet-in-the-
middle techniques, except for compatibility with previous works in Appendix A.

3 A Spectrum of Decoding Approaches

In this section we outline the expected costs of: (i) the classical “decoding” ap-
proach in the LWE literature, (i) the “drop-and-solve decoding” approach, which
is a combination of zero-guessing and solving a single BDD instance in a reduced
dimension, and (ii) our guess-and-verify decoding approach, where multiple BDD
instances are solved per lattice reduction step. Our attack parameters are chosen
such that pbdd ≈ 1 and pbabai ≈ 1, although for clarity we include these probabili-
ties in the running times presented in this section. Recall that pbdd corresponds
to the probability of solving BDD in the dimension η projected sublattice, where
η is chosen in our work such that the probability of lifting the solution to the full
lattice is pbabai ≈ 1. Exploring trade-offs which arise by varying these probabilities
is interesting future work.

Running example. Throughout this section we make use of a running example
to illustrate the behaviour of the approaches under consideration. We consider the
small-secret LWE parameter set n = 653, q = 4621, σ ≈

√
2/3, χs = B−100 and use

this parameter set as a reference throughout. We note that for this parameter set, a
combinatorial dual attack costs 2214.9 CPU cycles (β = 210), and a combinatorial
uSVP attack, assuming use of the GSA, costs 2209.6 CPU cycles (β = 223),
according to the LWE Estimator [APS15]4, under the enumeration-based BKZ
cost model mentioned in Section 2.

Decoding. We start by outlining the expected running time of the decoding
approach described in Section 2.2. Typically, the cost of lattice reduction and

4 All estimates use the LWE Estimator as of commit 3019847.



decoding are balanced, and the output BDD probability determines the number
of times the algorithm is repeated. The total expected running time is

TDec =
TBKZ(βDec, d) + Tbdd(ηDec)

pbabai · pbdd
.

Lattice reduction is carried out on the full lattice with block size βDec, and
a BDD1 solver is used on a projected sub-lattice of dimension ηDec, which is
determined by (a variant of) the success condition in [ADPS16]. Here pbabai is
the probability of lifting the candidate solution from πd−ηDec+1(Λ) to the full
lattice. Since ηDec is determined using the condition from [ADPS16] we have
pbabai ≈ 1 [AGVW17]. For our running example parameter set, assuming the
GSA, this approach has a cost of 2293.0 CPU cycles with an optimal blocksize
βDec = 419, where ηDec = 429. Note that when ηDec = βDec then this is equivalent
to the uSVP approach in [ADPS16].

Drop-and-solve decoding. In this approach, we guess τ zero components of s
and then run the decoding attack in dimension (d− τ) [MS01, Alb17, ACD+18].
If we are unsuccessful, we restart with a fresh guess for the positions of zeroes.
The core idea is that the lower running time of the dimension-reduced problem
will trade-off positively against the probability of guessing zero components. If
we correctly guess, for example, the first τ zeros, then (sτ+1, . . . , sn, e) can be
found via solving BDD1 in the dimension-reduced problem. The total expected
running time of this strategy is

TdsDec =
TBKZ(βdsDec, d− τ) + Tbdd(ηdsDec)

pbabai · pbdd · p0
.

Here p0 denotes the probability of correctly guessing τ random zeros of the LWE
secret. Lattice reduction is carried out on a lattice of dimension (d − τ) with
block size βdsDec, and enumeration is carried out in the projected sub-lattice
whose dimension corresponds again to (a variant of) the [ADPS16] success
condition. The meaning of pbabai is as above. For our running example parameter
set, assuming the GSA, this attack returns a complexity of 2208.2 CPU cycles
with optimal values of βdsDec = 170 and τ = 315.

Guess-and-verify decoding. There is no a priori reason to restrict the decoding
algorithm in any guess-and-verify decoding attack to Babai’s Nearest Plane
algorithm (as in the hybrid attack). Instead, we may employ stronger BDD1

solvers which in turn permits a reduction in the cost of preprocessing, or the usage
of a lower guessing dimension. In this g-v decoding attack, we consider a BDD1

dimension as defined by (a variant of) the success condition from [ADPS16]. The
overall expected cost of this approach then becomes

TgvDec =
TBKZ(βgvDec, d− τ) + ‖StgvDec

‖ · Tbdd(ηgvDec)

pbabai · pbdd · (
∑tgvDec

i=0 pi)
.



Where the probabilities pi for 1 ≤ i ≤ tgvDec represents the probability that
the guessed components of the LWE secret contain i non-zero components. For
our running example parameter set, assuming the GSA, this attack returns a
complexity of 2186.1 CPU cycles with βgvDec = 225 and τ = 335, with optimal

choices of ηgvDec = 49 tgvDec = 16 so that ‖StgvDec
‖ =

∑16
i=0

(
335
i

)
· 2i ≈ 2105.5.

We note that “guess-and-verify” decoding encompasses the usual decoding
strategy (τ = 0, ‖StgvDec

‖ = 1,
∑
pi = 1) and the “drop-and-solve” strategy

(τ > 0, ‖StgvDec
‖ = 1, tgvDec = 0). On the other hand, as specified here, it does not

encompass the hybrid attack (even without time-memory trade-offs) since we
insist on picking β, η such that pbabai ≈ 1 which is not the case for the Hybrid
Attack in general.

4 Estimates

In this section we apply our techniques to parameter sets from the NTRU-
LPrime [BCLvV19] and Round5 [BGL+18] submissions to the NIST PQC stan-
dardisation process, as well as a parameter set used in the homomorphic encryp-
tion library HElib [Hal18]. We compare our results against the LWE estimator
under the same assumptions, i.e. considering the cost models in Section 2 and the
Geometric Series Assumption. We also present our results considering usage of
the BKZ simulator, which estimates the shape of the basis after BKZ reduction.
Our results are given in Tables 1 and 2.

NTRU LPrime. We consider one of the three NTRU LPrime parameter sets
from [BCLvV19]. The construction is based on LWE with a ternary, fixed
Hamming weight, secret and a random ternary error. Specifically, the parameter
set considered is:

n = 761, q = 4591, σ ≈
√

2/3, χs = B−250.

Round5. For Round5, we consider the NIST level 3 parameter set from [GMZB+19].
Round 5 is based on the Learning with Rounding problem (LWR) [BPR12] with a
ternary, fixed hamming weight, secret. In the case of LWR, we have an additional
parameter p which is an additional modulus considered in the deterministic

rounding process. In this case, we have σ ≈
√

(q/p)2−1
12 as in [ACD+18]. We can

therefore model this parameter set as LWE with

n = 756, σ ≈ 4.61, q = 212, p = 28, χs = B−242.

We also consider the IoT specific use-case parameter set from [GMZB+19]. We
can model this parameter set as LWE with

n = 372, σ ≈ 4.61, q = 211, p = 27, χs = B−178.



HElib. We also consider our approach in the context of the homomorphic
encryption library HElib. To compare with previous works, we consider the
sparse-secret parameter set outlined in [Alb17]. Specifically, the parameter set
we consider is:

n = 1024, q = 247, σ ≈ 3.19, χs = B−64.
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attack τ β η BDD cost |S| repeats d #pp log2(rop)

NTRU LPrime: n = 761, q = 4591, σ =
√

2/3, h = 250 λ = 222

sqrt g-v decoding (GSA) 370 350 43 2243.5 2412.2 211.5 941 102 245.0
sqrt hybrid (GSA) 360 335 n/a 2240.1 2402.8 220.0 951 100 241.3

sqrt g-v decoding 370 380 119 2273.6 2400.0 215.5 941 97 274.7
sqrt hybrid 395 350 n/a 2274.9 2428.3 242.1 916 104 275.9

Round5: n = 756, q = 212, σ ≈ 4.61, h = 242 λ = 270

sqrt g-v decoding (GSA) 445 395 37 2283.9 2490.0 214.1 734 120 285.5
sqrt hybrid (GSA) 425 365 n/a 2277.0 2453.9 232.0 754 109 278.0

sqrt g-v decoding 450 430 131 2324.8 2474.6 222.7 729 113 325.9
sqrt hybrid 460 390 n/a 2320.5 2496.6 254.3 719 120 321.6

Round5 (IoT): n = 372, q = 211, σ ≈ 4.61, h = 178 λ = 129

sqrt g-v decoding (GSA) 175 250 48 2156.7 2250.8 24.0 506 80 157.8
sqrt hybrid (GSA) 165 225 n/a 2151.6 2234.5 217.4 516 74 152.9

g-v decoding 170 270 101 2174.3 2237.2 26.5 511 73 175.4
non mitm hybrid 180 240 n/a 2172.2 2256.4 227.1 501 81 173.4

HElib-1024: n = 1024, q = 247, σ ≈ 3.19, h = 64

sqrt g-v decoding (GSA) 210 95 36 259.9 259.7 25.2 1599 9 62.0
sqrt hybrid (GSA) 270 85 n/a 260.8 263.1 29.1 1539 9 61.8

Table 3: Estimates in enumeration setting considering a “meet-in-the-middle”
approach which does not consider probabilities of failure in the meet-in-the-middle
phase. Such an approach considers a square-root speed-up in the guessing phase.
Notation as in Table 1.



attack τ β η BDD cost |S| repeats d #pp log2(rop)

NTRU LPrime: n = 761, q = 4591, σ =
√

2/3, h = 250 λ = 155

sqrt g-v decoding (GSA) 0 515 549 2179.7 1 1 1351 0 181.0†

sqrt hybrid (GSA) 260 475 n/a 2181.3 2296.5 213.9 1091 75 182.7

sqrt g-v decoding 0 530 562 2183.5 1 1 1351 0 185.3†

sqrt hybrid 315 550 n/a 2230.4 2341.1 240.9 1036 83 231.7

Round5: n = 756, q = 212, σ ≈ 4.61, h = 242 λ = 193

sqrt g-v decoding (GSA) 0 645 679 2217.7 1 1 1265 0 218.9†

sqrt hybrid (GSA) 320 565 n/a 2216.4 2350.7 222.3 945 86 217.5

sqrt g-v decoding 0 660 699 2223.5 1 1 1265 0 224.1†

sqrt hybrid 390 660 n/a 2288.4 2405.8 267.0 875 96 289.6

Round5 (IoT): n = 372, q = 211, σ ≈ 4.61, h = 178 λ = 96

sqrt g-v decoding (GSA) 0 315 349 2121.6 1 1 681 0 122.4†

sqrt hybrid (GSA) 135 300 n/a 2126.9 2196.9 211.4 546 65 128.2

sqrt g-v decoding 0 320 358 2123.9 1 1 681 0 124.3†

sqrt hybrid 155 335 n/a 2155.2 2218.1 229.2 526 68 156.3

HElib-1024: n = 1024, q = 247, σ ≈ 3.19, h = 64

sqrt g-v decoding (GSA) 195 100 31 263.1 253.4 25.3 1743 8 65.1
sqrt hybrid (GSA) 235 95 n/a 261.7 272.1 25.2 1703 11 63.6

Table 4: Estimates in sieving setting for a “meet-in-the-middle” approach as in
Table 3. Notation as in Table 1. Estimates marked with † correspond to standard
BDD decoding.



B Case Study: NTRU LPrime

We consider NTRU LPrime [BCLvV19] as a case study of assumptions within
the Hybrid Attack. This issue has recently been discussed on the “pqc-forum”
associated to the NIST standardisation process [Duc19]. In the NTRUPrime
Round 2 submission document [BCLvV19] an updated security evaluation is
provided based on the analysis of [Wun19]. The security evaluation considers
uSVP and Hybrid approaches, and does not consider dual attacks. The Hybrid
Attack analysis is made using the following assumptions:

– The modified GSA for q-ary lattices [Wun19] is considered as the output basis
shape of BKZ, based on the technique of reducing a sublattice of dimension
d− k, where k is the number of “untouched” q-vectors.

– The use of the formula from [Wun19] for the success of Babai’s Nearest Plane
algorithm, i.e

pnp ≈
∏

1≤i≤d

(
1− 2

B(d−12 , 12 )

∫ 1

min(ri,1)

(1− t2)(d−3)/2 dt

)

where ri =
‖b∗
i ‖

2‖v‖ , ‖v‖ is the expected length of the target vector, i.e ‖v‖ =√
σ2 ·m+ n−τ

n · h, and B(·, ·) is the Beta function.

– The cost of Babai’s Nearest Plane algorithm is considered to be one operation.
– In the meet-in-the-middle variant of the Hybrid Attack, the probability of

collisions is one.
– In the quantum variant of the Hybrid Attack, the techniques from [GvVW17]

are considered, which improves the search compared to Grover’s algorithm.
– Lattice scaling is considered for the uSVP attack, but not for the hybrid

attack.
– Drop-and-solve style techniques are considered in the uSVP attack.
– Memory consumption for the meet-in-the-middle step is considered.
– Core-style BKZ cost models are considered, i.e 20.292β (no lower order terms)

in the sieving setting, and 20.18728β log(β)−1.019β+16.1 in the enumeration set-
ting.

We modified the script for estimating security accompanying [BCLvV19]
to provide individual estimates for a Hybrid Attack with “classical” guessing,
and a Hybrid Attack with a meet-in-the-middle approach (as opposed to only
outputting the estimate for the fastest attack) to retrieve the estimates in Table 5.



pre-quantum post-quantum
BKZ model enum sieving enum sieving
Memory cost free “real” free “real” free “real” free “real”

uSVP 364 364 155 210 187 187 140 210
Hybrid (classical) 307 307 194 235 219 219 183 235
Hybrid (mitm) 222 275 159 216 170 213 149 216

Pre-quantum enumeration corresponds to TBKZ(β, d) = 20.18728β log(β)−1.019β+16.1, post-

quantum enumeration corresponds to TBKZ(β, d) = 2
1
2
(0.18728β log(β)−1.019β+16.1). Pre-

quantum sieving corresponds to TBKZ(β, d) = 20.292β , post-quantum sieving corresponds
to TBKZ(β, d) = 20.265β . In both sieving cases, real memory reverts the cost of lattice
reduction to TBKZ(β, d) = 20.396β . In the real memory cases, memory requirements of
the meet-in-the-middle phase (if applicable) are considered.

Table 5: Estimates from the NTRU LPrime Round 2 security script, best in class
is highlighted in bold. Based on [BCLvV19, Table 2].

Bridging Assumptions

As discussed above, there are several points during a Hybrid Attack-based security
analysis where assumptions are required. In order to cross-check our hybrid attack
estimates, we align our code with the assumptions made in the NTRU LPrime
security script. That is, we consider the set of assumptions A0 outlined in Table 6.
Explicitly, we assume core-style BKZ models (“pre-quantum sieving” (i.e 20.292β)
and “pre-quantum enumeration” (i.e 20.18728β log(β)−1.019β+16.1), both with “free
memory”, in the language of [BCLvV19]), we assume the formula for the success
probability of Babai’s Nearest Plane algorithm from [Wun19] with a cost of one
operation, we assume the q-ary GSA, a meet-in-the-middle guessing phase, with
associated collision probability of one, we assume the target norm of the vector

recovered via the BDD algorithm has Euclidean length
√
σ2 ·m+ h · n−τn and

we do not consider memory requirements5, or lattice scaling.

After considering the assumption set A0, we move through assumptions until
we reach those used in our work. In particular, assumption set A1 corresponds
to A0 with the q-ary GSA swapped for the BKZ simulator, since this is a more
accurate measure of the output of BKZ, assumption set A2 corresponds to A1

with the cost of Babai’s Nearest Plane algorithm altered from one operation to

be polynomial in the dimension of the lattice, i.e d2

21.06 operations as in [Wun19],
assumption set A3 corresponds to A2 with the core- style cost models changed
to cost models which consider eight tours, and assumption set A4 corresponds to
A3 with the guessing strategy changed from a meet-in-the-middle to a classical
guessing strategy, thus dropping the innacurate assumption that collisions occur

5 Note that [BCLvV19] does contain estimates which consider memory, however we do
not compare against them in our work, since we do not consider memory costs.



with probability one. Finally, the only difference between assumptions set A4

and the assumptions considered in our work is that we consider lattice scaling.

Technique Assumption A0 A1 A2 A3 A4 Our work

BKZ SVP calls
1 X X X
8d X X X

pbabai
∏

1≤i≤d

(
1− 2

B( d−1
2
, 1
2
)

∫ 1

min(ri,1)
(1− t2)(d−3)/2

)
X X X X X X

Tbabai
1 X X
d2

21.06
X X X X

BKZ output shape
q-ary GSA X

BKZ Simulator X X X X X

Guessing strategy
MiTM X X X X
Classic X X

Target norm
√
σ2 ·m+ h · n−τ

n
X X X X X X

Lattice scaling s 7→ ηs : ‖s‖ ≈ ‖e‖ X

MiTM probability 1 X X X X X X

Memory considered? yes

Table 6: Sets of Assumptions Considered in this Appendix. There are many other
alternative assumptions considered throughout the literature which we do not
consider in this work.

We present results for each assumption set in Tables 7 and 8. To continue
matching the assumptions in the NTRUPrime script, we searched for optimal
values of β and τ over the sets τ ∈ {0, 40, 80, . . . }, β ∈ {40, 80, 120, . . . }, we note
that, in both our script and the NTRUPrime script, lower estimates can be found
by performing a more granular search.



ass alg τ β η BDD cost |S| repeats d #pp log2(rop)

NTRU LPrime: n = 761, q = 4591, σ =
√

2/3, h = 250

A0

NTRUPrime script 360 320 n/a 2220.9 – 232.5 881 – 222.1
our script (hybrid) 360 320 n/a 2221.3 2375.4 233.6 951 89 222.9
our script (g-v decoding) 360 360 83 2239.0 2380.5 218.1 951 91 240.5

A1
our script (hybrid) 400 360 n/a 2257.6 2442.8 236.2 911 109 258.7
our script (g-v decoding) 360 400 139 2270.1 2390.6 214.4 951 95 271.2

A2
our script (hybrid) 400 360 n/a 2273.0 2404.5 252.2 911 94 274.5
our script (g-v decoding) 360 400 139 2270.1 2390.6 214.4 951 95 271.2

A3
our script (hybrid) 400 360 n/a 2276.2 2442.8 236.2 911 109 277.9
our script (g-v decoding) 360 400 139 2283.6 2409.8 28.7 951 103 284.9

A4
our script (hybrid) 320 400 n/a 2386.9 2256.3 2111.8 991 53 388.1
our script (g-v decoding) 240 440 280 2376.0 2141.3 268.1 1071 26 380.0

Table 7: Enumeration-based estimates, each section corresponds to a set of
assumptions outlined in Table 6, “– ” denotes a value which is not compatible
with our notation (for example, our script considers a simple sqrt speed-up in
the search space, the NTRUPrime script considers splitting the search space as
in a meet-in-the-middle approach).

ass alg τ β η BDD cost |S| repeats d #pp log2(rop)

NTRU LPrime: n = 761, q = 4591, σ =
√

2/3, h = 250

A0

NTRUPrime script 240 480 n/a 2156.0 – 218.8 1081 – 159.4
our script (hybrid) 240 480 n/a 2158.1 2279.7 218.3 1111 72 159.4

our script (g-v decoding) 0 560 562 2164.1 1 1 1351 0 165.0†

A1
our script (hybrid) 320 600 n/a 2209.9 2348.2 235.8 1031 85 211.5

our script (g-v decoding) 0 560 593 2173.2 1 1 1351 0 173.2†

A2
our script (hybrid) 360 320 n/a 2221.3 2375.4 233.6 951 89 222.9

our script (g-v decoding) 0 560 593 2173.2 1 1 1351 0 173.2†

A3
our script (hybrid) 320 600 0 2227.2 2338.2 239.1 1031 81 228.3

our script (g-v decoding) 0 560 593 2176.2 1 1 1351 0 177.8†

A4
our script (hybrid) 200 640 0 2297.6 2180.7 297.6 1151 40 298.6

our script (g-v decoding) 0 560 593 2176.2 1 1 1351 0 177.8†

Table 8: Sieving Estimates. Estimates marked with † correspond to standard
BDD decoding.
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