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Abstract. Functional encryption is a generalization of public-key en-
cryption in which possessing a secret functional key allows one to learn a
function of what the ciphertext is encrypting. This paper introduces the
first fully-fledged open source cryptographic libraries for functional en-
cryption. It also presents how functional encryption can be used to build
efficient privacy-enhanced machine learning models and it provides an
implementation of three prediction services that can be applied on the
encrypted data. Finally, the paper discusses the advantages and disad-
vantages of the alternative approach for building privacy-enhanced ma-
chine learning models by using homomorphic encryption.

Keywords: Functional Encryption · Cryptographic Library · Machine
Learning · Homomorphic Encryption · Privacy.

1 Introduction

Today, almost every part of our lives is digitalized: products, services, business
operations. With the constant increase in connectivity and digitalization, huge
amounts of personal data are often collected without any real justification or
need. On the other hand, there is a growing concern over who is in possession
of this data and how it is being used. With increasingly more privacy-aware
individuals and with ever stricter data protection requirements (GDPR, ePri-
vacy CCPA), organizations are seeking a compromise that will enable them to
collect and analyse their users’ data, to innovate, optimize, and grow their busi-
nesses, while at the same time comply with legal frameworks and keep trust and
confidence of their users.

When individuals themselves use technologies like end-to-end encryption to
protect their data, this can greatly improve their privacy online because the ser-
vice providers never see raw data. But when a service provider does not have
access to raw data, it cannot analyse the data and it thus cannot offer func-
tionalities like search or data classification. Indeed, almost all rich functionality
to which users are accustomed today is out of the question when encryption
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is used. However, there are encryption techniques which do not impose a dras-
tic reduction of data utility and consequently functionality. Probably the most
known such technique is Homomorphic Encryption (HE). HE enables additions
and multiplications over the encrypted data, which consequently enables higher-
level functionality such as machine learning on the encrypted data. However, HE
is computationally expensive and significantly reduces service performance. An-
other technique, perhaps lesser known, is Functional Encryption (FE). Similarly
as HE, it allows computation on encrypted data. More precisely, an owner of a
decryption key can learn a function of the encrypted data. This gives a possi-
bility to use the encrypted data for various analysis or machine learning models
by controlling the information one can get from it. In this paper we present first
two fully-fledged FE libraries, we outline how they can be used to build machine
learning services on encrypted data, and we discuss strengths and limitations of
FE compared to the HE approach.

While there exist schemes for general FE (see [14, 26, 27, 43]) they rely on
non-standard, ill-understood assumptions and are in many cases extremely time-
consuming. On the contrary, we focused on the implementation of efficient schemes
of restricted functionality but still of practical interest. Our aim was a flexible
and modular implementation that can be applied to various applications and
does not predetermine usage. We offer our work as an open source, all the code
with guidelines is available online on the FENTEC Github account [21].

Contributions. This paper addresses the lack of implementations of practi-
cal FE schemes that enable computation on the encrypted data through the
following contributions:

1. Implementation of FE libraries. We present two fully-fledged FE crypto-
graphic libraries, named GoFE and CiFEr. We overview the different under-
lying primitives (modular arithmetic, pairings, lattices) which can be chosen
by the user of the library when instantiating an FE scheme. This is presented
in Sections 2 and 3

2. Performance evaluation of FE libraries. In Section 4 we compare the effi-
ciency of various FE schemes and underlying primitives.

3. Design and implementation of privacy-enhanced machine learning services.
In Sections 5, 6, 7 we present the implementation and performance of three
privacy-enhanced analysis services based on FE.

4. Comparison of FE and HE approaches. Furthemore, in Sections 5, 6, 7 we
discuss the advantages and disadvantages of FE compared to the HE ap-
proach.

2 Functional Encryption Libraries

FE is a cryptographic procedure, which allows to delegate to third parties the
computation of certain functions of the encrypted data. This can be achieved
by generating specific secret keys for these functions. A FE scheme consists of a
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set of five algorithms. The setup algorithm takes as input a security parameter
and generates a mathematical group where operations take place. The master key
generation creates a public key together with a master secret key. The functional
key derivation algorithm takes as input the master secret key and a particular
function f to generate a key depending on f . To encrypt a message x, the
encryption algorithm has to be run on input x and using the public key (some
schemes are private-key and require also a secret key) to obtain a ciphertext.
Then, given the encryption of a message x, the holder of the key corresponding
to the function f is able to compute the value of f(x) using the decryption
algorithm but nothing else about the encrypted data is revealed.

Many recent papers [2, 3, 5, 15, 40] developed various FE encryption schemes
with an aim to make such schemes practical. Nevertheless, most of them remain
theoretical, since they do not provide implementation or practical evaluation of
the schemes. We fill this gap by presenting two FE libraries: GoFE [25] and
CiFEr [24]. GoFE is implemented in the programming language Go and is sim-
pler to use, while CiFEr is implemented in C and aims at a lower level, possibly
IoT related applications. Both provide the same FE schemes via a similar API,
differences are due only to the different paradigms of the programming languages.

2.1 Implemented Schemes

Due to the computational complexity and impracticality of general purpose FE
schemes, different schemes were designed for evaluation of various functions
of lesser complexity. We separated them into three categories: inner-product
schemes, quadratic schemes, and ABE schemes.

Schemes in GoFE and CiFEr use cryptographic primitives based on either
modular arithmetic, pairings, or lattices. Most schemes can be instantiated from
different primitives – the user can choose the primitive based on the performance
requirements. In the following sections, we list the schemes and the security
assumptions they are based on. The following assumptions are used: Decisional
Diffie-Hellman (DDH), Decisional Composite Residuosity (DCR) (both modular
arithmetic), Generic Group Model (GGM), Symmetric eXternal Diffie-Hellman
(SXDH), Decisional Bilinear Diffie-Hellman (BDH), Decisional Linear (DLIN)
(all pairings), Learning With Errors (LWE), and Ring Learning With Errors
(ring-LWE) (both lattices).

Inner-product schemes Inner-product FE schemes allow an encryption of a
vector x ∈ Zn and independently generation of a key sky depending on a vector
y ∈ Zn, such that given the encryption of x together with sky one can perform a
computation on the encrypted x to obtain the value x ·y (inner-product of x and
y). This simple function proves itself very useful: simple statistics of encrypted
data, linear or logistic regression and more functions can be seen as computing
certain inner-product of the data. We discuss two possible applications based on
the inner-product in Sections 5 and 6.

The libraries currently provide inner-product schemes based on the following
papers:
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– Simple Functional Encryption Schemes for Inner Products [2]. The
first efficient schemes for inner-products, based on the DDH or LWE assump-
tions.

– Fully Secure Functional Encryption for Inner Products, from Stan-
dard Assumptions [5]. Inner-product encryption schemes with a higher
level of (adaptive) security. In addition to DDH- and LWE-based schemes a
more efficient DCR-based scheme is introduced.

– Multi-Input Functional Encryption for Inner Products: Function-
Hiding Realizations and Constructions without Pairings [3]. Multi-
input FE scheme for inner-products is a scheme supporting encryption of
elements of vector distributed among different clients. The scheme can be
instantiated on DDH, LWE, and DCR assumptions.

– Decentralized Multi-Client Functional Encryption for Inner Prod-
uct [15]. This scheme allows various users to generate ciphertexts support-
ing inner-product evaluation without the presence of a central authority and
with functional decryption keys that can also be generated in a decentralized
way. Based on SXDH assumption.

Additionally we implemented a prototype ring-LWE based inner-product
scheme whose security will be dissuaded in a future work.

Quadratic schemes To provide an FE scheme able to evaluate an arbitrary
function on encrypted data one needs to build an FE system computing poly-
nomials of arbitrary order. Currently, no FE schemes for polynomials of order
higher than 2 exist. Nevertheless, many complex functions can be realized as
evaluations of quadratic polynomials. A quadratic FE scheme implemented in
CiFEr and GoFE allows an encryption of a vectors x1, x2 ∈ Zn and indepen-
dently generation of a key skH depending on a matrix H ∈ Zn×n, such that
given the encryption of x1, x2 together with skH one can obtain the value xT

1 Hx2

(quadratic-product of x1, x2 and H). In particular if x1 = x2 this is a quadratic
polynomial of values of x1. Such functions are sufficient for performing many ma-
chine learning task on encrypted data. We demonstrate the use of it in Section
7 on a task of classifying encrypted images with a 2-layer neural network.

GoFE and CiFEr provide the implementation of the currently most efficient
quadratic FE scheme:

– Reading in the Dark: Classifying Encrypted Digits with Functional
Encryption [40]. A scheme for quadratic multi-variate polynomials en-
abling efficient computation of quadratic polynomials on encrypted vectors.
It can be instantiated on GGM assumption.

ABE schemes Attribute-based encryption (ABE) is not strictly classified as
FE but it allows secure access control over data and constructions of certain
functionalities on encrypted data [44]. For the latter reason, we included two
such schemes in the libraries. The basic idea ob ABE is that users are given keys
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depending on their attributes and are able to decrypt given data only if their
attributes are sufficient.

– Attribute-Based Encryption for Fine-Grained Access Control of
Encrypted Data [30]. The first scheme which enables fine-grained sharing
of encrypted data, by a key distribution process that enables decryption only
for users in possession of specified attributes. Based on BDH assumption.

– FAME: Fast Attribute-based Message Encryption [4]. A scheme that
enables attribute based limitation of the access to encrypted data specified
through the encryption process. Based on DLIN assumption.

3 Implementation of Cryptographic Primitives

GoFE and CiFEr aim at providing a flexible implementation of FE schemes. We
do not use specially chosen groups and parameters which enable better perfor-
mance (this can still be done by the user). Instead, we provide flexibility in terms
of choosing the mathematical groups where operations take place and security
parameters which determine the key lengths.

Practical FE schemes are based either on modular arithmetic, pairings, or
lattices. Implementation of FE schemes based on modular arithmetic is relatively
straight-forward. Our implementation is based on the representation of arbitrary
big numbers using GMP library [42] in C and native package Big in Go. However,
on the other hand, the implementation of schemes based on pairings and lattices
requires lower-level math artillery.

Quite surprisingly we found only one pairings library which provides all re-
quired functionality. Furthermore, there is no fully-fledged library for lattice-
based cryptography that could be easily reused. In what follows we present
cryptographic primitives needed in FE schemes and address the issues of (lack
of) their implementation.

3.1 Pairing schemes

Numerous libraries for pairings are available but most lack at least some essen-
tial functionality or performance optimization. The latter is crucial, since the
pairing operation presents a bottleneck in many schemes. Considering existing
open source implementations such as PBC [34], RELIC [22], Apache Milagro
Cryptographic Library (AMCL) [9], the latter was chosen as an underlying pair-
ing library for CiFEr because it is portable, small, and optimized to fit into the
smallest possible embedded footprint. Choosing a Go pairing library to be used in
GoFE was more challenging. Barreto-Naehrig [10] bilinear pairings are frequently
used as they allow a high security and efficiency level. Two well-known Barreto-
Naehrig pairing libraries exist for the Go programming language: BN256 [32] is
a part of the official Go crypto library, Cloudflare BN256 [16] is an optimization
of the latter for the improved performance. Neither of them provides hashing
operations for pairing groups. We forked [32] and provided hashing operations
for both groups. For G1 we implemented the try-and-increment algorithm [11],
while for G2 we implemented the technique from [23].
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3.2 Lattice schemes

The resistance of cryptographic protocols to post-quantum attacks is becoming
ever more important as we get closer to the realization of quantum computers.
Lattice-based cryptography is believed to be secure against quantum computers.
Its cryptographic constructions are based on the presumed hardness of lattice
problems (e.g. for example, the shortest vector problem). Currently, the most
used constructions are based on the Learning With Errors (LWE) problem [39]
or its algebraic ring variation (ring-LWE) [35]. Currently, FE schemes are build
only on LWE assumption, however, there are two main bottlenecks in all such
schemes. These are sampling random values distributed according to the discrete
Gaussian distribution and matrix multiplications.

Discrete Gaussian sampling Discrete Gaussian sampling is a problem of
sampling values distributed according to Gaussian distribution but limited only
to discrete values. This issue has been tackled by many algorithms and soft-
ware implementations, see [18,19,29,31]. Practical implementation of (ring-)LWE
schemes available as open source libraries mostly solve this problem in two ways.
Ether they avoid Gaussian sampling by replacing it with a uniform or binomial
distribution or implement a fast sampler optimized by precomputations for cho-
sen parameters. Neither of the two solutions is applicable in FE schemes. On one
hand, proofs of the security of (ring-)LWE FE schemes depend on the distribu-
tion being Gaussian and can easily be broken for uniform distribution. Moreover,
precomputations are not just in conflict with the flexibility of GoFE and CiFEr,
but are not feasible due to greater variance needed in FE schemes.

For this reason, we implemented a discrete Gaussian sampler based on the
algorithm from [19]. It is based on sampling discrete Gaussian values with small
variance from precomputed tables together with uniform sampling. Such sam-
pling is efficient but still presents a bottleneck of the schemes.

Matrix multiplications The second bottleneck of FE schemes based on the
LWE problem is due to matrix-vector and matrix-matrix multiplications. The
reason for this is that the matrices generated in the existing FE scheme have
much greater dimensions and inputs. This cannot be fixed implementation-wise,
thus the construction of efficient LWE based FE schemes remains an open prob-
lem. One way of avoiding costly operations and spacious public keys is by re-
placing LWE schemes with ring-LWE schemes [35]. We have implemented a pro-
totype scheme using ring-LWE primitives. This replacement needs to be proved
secure which we intend to do in the future work.

3.3 ABE schemes

ABE schemes provide functionality where a client can access or not access the
decryption of a ciphertext based on a set of attributes that he or she possesses.
Most ABE schemes use pairings as an underlying cryptographic primitive but
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there is another, ABE specific, primitive needed: Linear Secret Sharing Scheme
(LSSS) matrices.

A part of every ABE scheme is a policy that defines which entity can decrypt
the ciphertext based on the attributes. A Monotone Span Program (MSP) is
defined as a policy that accepts a subset of attributes as sufficient if a certain
subset of chosen vectors spans a vector of ones. Hence, to create an MSP policy,
one must carefully choose a set of vectors representing attributes in a way that
they describe the desired rules of decryption. This set of vectors is also known as
an LSSS matrix. On the other hand, expressing rules of decryption as a boolean
expression is preferred for practical usage and interpretability. Therefore, we
have implemented an algorithm that transforms a boolean expression into a
MSP structure. We have chosen the Lewko-Waters Algorithm [33] for this task,
due to its simplicity and efficiency. The algorithm can transform an arbitrary
boolean expression that does not include a ”NOT” operation (¬) into a set of
vectors (a matrix) whose dimensions only depend on the number of ”AND”
operators (∧) and the number of variables in the expression.

4 Benchmarks

In the following section, we focus on a practical evaluation of implemented
schemes, comparing the benefits and downsides, and discussing their practicality
for the possible uses. As noted in Section 3, the schemes are implemented with
the goal of flexibility and having an easy-to-use API. Thus, the schemes can be
initialized with an arbitrary level of security and other meta parameters. Since
there is no universal benchmark to compare all the schemes, we evaluate them on
various sets of parameters, exposing many properties of the schemes. Due to the
space limitation, we do not present here the benchmarks of all the implemented
schemes but rather focus on the demonstrative results. All of the benchmarks
were performed on an Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz.

4.1 Inner-product schemes

Recall that an inner-product FE scheme is such that it allows encrypting a vector
x ∈ Z` and independently generating a key sky depending on a vector y ∈ Z`, so
that one can perform computations on the encrypted x and use sky to decrypt
the inner-product x · y and nothing more.

As noted in Section 2, the schemes are based on different security assump-
tions. GoFE and CiFEr include implementation of five inner-product schemes
(excluding decentralized and multi-client ones), where two of them are based
on the DDH assumption, two of them are based on the LWE assumption, and
one on the DCR assumption. Since both of the DDH-based and both of the
LWE-based schemes have similar performance, we only compare the DDH-based
scheme from [5], the LWE-based scheme from [2], and the DCR-based scheme
from [5] which is also known as Paillier-based FE scheme.
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l Paillier[Go] Paillier[C] LWE[Go] LWE[C] DDH[Go] DDH[C]

1 0.0664 0.0243 12.9523 7.3909 0.0080 0.0041
5 0.1922 0.0975 62.1945 46.2466 0.0402 0.0204

10 0.3551 0.1878 122.7627 74.8795 0.0840 0.0411
20 0.6720 0.3682 266.5059 196.6151 0.1584 0.0849
50 1.6293 0.9120 878.3684 559.6070 0.3954 0.2055

100 3.2427 1.8345 N/A N/A 0.7829 0.4149
200 6.4278 3.6544 N/A N/A 1.5710 0.8190

Table 1. Performance of key generation (in seconds) in inner product schemes w.r.t.
vector length l

The DDH schemes assume the difficulty of computing a discrete logarithm
in a quadratic residues subgroup of Z∗

p, where the security of such assumption
depends on the bit size of the prime number p. To achieve resistance to all known
attacks with complexity less than O(2128) it is a common practice to pick p to
be a safe prime with 3072 bits. The DCR assumption depends on distinguishing
the so-called n-residues in Z∗

n2 group which further depends on the difficulty of
factoring a large number n. We choose n to be a 2048 bit number and a product
of two safe primes as it is considered safe for attacks with complexity in O(2128).

The security level of the LWE assumption is harder to access due to its
novelty. The papers developing the LWE-based FE schemes argue its security
based on the original work of Regev [39] while it has become a common practice
in the recent proposals of (non FE) (ring-)LWE-based [7], [12], [6] schemes to
evaluate this security through evaluation of attacks on the assumption. For this
reason, we implemented a setup procedure that generates the parameters for
each instantiation of the scheme that are secure for the so-called primal and
dual attack on LWE. In fact, this was necessary since the originally proposed
parameters are estimated to possess significantly less security than claimed. For
the additional information on the attacks, we direct the reader to the above
references.

Each inner-product scheme comprises five parts: setup, generation of master
keys, encryption, derivation of a inner-product key, and decryption. In the fol-
lowing tables, we evaluate the performance for key generation, encryption, and
decryption. The complexity of functional key derivation process is negligible in
all the schemes compared to the other steps, while the setup procedure is quite
consuming but can be avoided for practical applications since generating a new
group for every deployment does not bring additional security.

We demonstrate the efficiency of the schemes depending on parameters `,
defining the dimensionality of the encrypted vectors, and b, being the upper
bound for the coordinates of the inner product vectors. All the results are aver-
ages of many runs on different random inputs.

In Table 1 we compare the key generation procedure across different schemes
with fixed b = 1000 and increasing `. The values show that for practical param-
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l Paillier[Go] Paillier[C] LWE[Go] LWE[C] DDH[Go] DDH[C]

1 0.0267 0.0149 4.4486 7.1557 0.0120 0.0062
5 0.0759 0.0447 8.0726 7.5744 0.0276 0.0145

10 0.1390 0.0807 5.1718 7.4500 0.0473 0.0246
20 0.2638 0.1546 5.8097 8.6669 0.0864 0.0464
50 0.6434 0.3709 12.0178 12.0974 0.2048 0.1078

100 1.2741 0.7483 N/A N/A 0.4027 0.2103
200 2.5452 1.4871 N/A N/A 0.7984 0.4141

Table 2. Performance of encryption (in seconds) in inner product schemes w.r.t. vector
length `

eters the generation of keys in inner-product schemes is linearly dependent on
conventionality `. This is in contrast with the dependency on b (not shown in the
table), increasing which only mildly increases the generation if at all, assuming
it is not extremely large. The table shows that LWE-based schemes are practi-
cal only for small parameters. Note a slightly slower performance of the Paillier
scheme compared to the DDH-based scheme which is attributed to the need of
Gaussian sampling, described in Section 3, and computations being computed
in a bigger group, i.e. modular operations are computationally more demanding.
In Table 2 similar observations can be done for the encryption process.

Fig. 1. Performance graph of decryption in inner product schemes w.r.t. bound b



10 T. Marc, M. Stopar et al.

The biggest difference of the schemes is demonstrated in Figure 2 measuring
the decryption times of the schemes depending on the bound b of the inputs.
While the Paillier scheme has only a slight linear increase in computation times
when b is increased, DDH-based schemes prove themselves practical only for
vectors with a small bound b. The latter is contributed to finding a discrete
logarithm in its decryption procedure, the performance of which is directly con-
nected with the size of the decrypted value. Interestingly, LWE-based schemes
have the fastest decryption. Figure 2 shows the dependency for bounded random
vectors.

4.2 Decentralized inner-product scheme

Decentralized schemes eliminate the need for the central trusted authority for
key generation and derivation. See Section 6 for an application of a decentralized
scheme.

params KeyGen[D] KeyGen[Q] Encrypt[D] Encrypt[Q] Decrypt[D] Decrypt[Q]

b=100, l=1 0.0082 0.0001 0.0016 0.0241 0.0373 0.0910
b=100, l=5 0.0087 0.0001 0.0016 0.1104 0.0990 0.7502

b=100, l=20 0.0108 0.0002 0.0016 0.4334 0.3273 9.8077
b=500, l=1 0.0092 0.0001 0.0016 0.0251 0.1090 0.4986

b=1000, l=1 0.0092 0.0001 0.0016 0.0251 0.1512 1.1859
b=1000, l=20 0.0108 0.0002 0.0016 0.4541 0.3273 92.3084

Table 3. Performance of the decentralized (D) and quadratic (Q) schemes in GoFE
(in seconds)

The implemented decentralized inner-product scheme [15] is based on pair-
ings (SXDH assumption). The results are presented in Table 3. Note that the
generation of keys and the encryption process have a better performance as basic
inner-product schemes since both are distributed among users and counted only
per user. The communication overhead is not included in the measurements. The
decryption process involves computing a discrete logarithm as well as performing
a pairing operation.

4.3 Quadratic scheme

Quadratic schemes are a powerful tool for evaluating more complex functions on
encrypted data. Table 3 evaluates the performance of a quadratic scheme [40].
The decryption process turns out to be time-consuming as it requires computing
a discrete logarithm and pairing operation. Note that the input value for a
discrete logarithm is bigger compared to the inner-product schemes due to the
quadratic operations applied on the input vector x. We demonstrate in Section
7 that performance is still sufficient for the real-world use cases.
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5 Privacy-Friendly Prediction of Cardiovascular Diseases

In this section, we demonstrate how FE can enable privacy-enhanced analyses.
We show how the risk of general cardiovascular disease (CVD) can be evaluated
using only encrypted data.

The demonstrator comprises the following components: Key Server is a cen-
tral authority component generating keys, Analyses Service is a component to
which the user sends encrypted data and obtains the risk evaluation of CVD, and
Client component which obtains the public key from the Key Server, encrypts
user’s data with the public key and sends it to the Service.

Fig. 2. Interactions between CVD demonstrator components

The Framingham heart study [20] followed patients from Framingham, Mas-
sachusettes, for many decades starting in 1948. Many multivariable risk algo-
rithms used to assess the risk of specific atherosclerotic cardiovascular disease
events have been developed based on the original Framingham study. Algorithms
most often estimate the 10-year or 30-year CVD risk of an individual.

The input parameters for algorithms are sex, age, total and high-density
lipoprotein cholesterol, systolic blood pressure, treatment for hypertension, smok-
ing, and diabetes status. The demonstrator shows how the risk score can be
computed using only the encrypted values of the input parameters. The user
specifies the parameters in the Client program; these are encrypted and sent to
the Analyses Service component. The service computes the 30-year risk [37] and
returns it to the user.

The source code for all three components is available on FENTEC Github
account [38]. We use the inner-product FE scheme based on Paillier cryptosys-
tem [5] due to its fast decryption operation. The Client component prepares a
vector x which contains the 8 input parameters, which in GoFE looks like:

x := data.NewVector([]*big.Int{sex, age, systolicBloodPressure,

totalCholest, hdlCholest, smoker, treatedBloodPressure, diabetic})
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Framingham risk score algorithms are based on Cox proportional hazards
model [17]. Part of it is multiplication of the input parameters by regression
factors which are real numbers. In the 30-year algorithm the vector x is multiplied
by two vectors (inner-product):

y_1 = (0.34362, 2.63588, 1.8803, 1.12673, -0.90941, 0.59397,

0.5232, 0.68602)

y_2 = (0.48123, 3.39222, 1.39862, -0.00439, 0.16081, 0.99858,

0.19035, 0.49756)

Regression factors need to be converted into integers because cryptographic
schemes operate with integers. This is straight-forward in FE schemes: we mul-
tiply factors by the power of 10 to obtain whole numbers. The Client encrypts
vector x using public key obtained from the Key Server:

ciphertext, err := paillier.Encrypt(x, masterPubKey)

The Client then sends ciphertext to the Service. Service beforehand obtained
two functional encryption keys from the Key Server: a key to compute the inner-
product of x and y1, and a key to compute the inner-product of x and y2. Now
it can compute the inner-products:

xy_1, err := paillier.Decrypt(ciphertext, key_1, y_1)

xy_2, err := paillier.Decrypt(ciphertext, key_2, y_2)

To obtain the risk score the algorithm computes exy1−21.29326612, exy2−20.12840698

followed by 1340 · 1340 power functions, 1340 · 3 multiplications, and 1340 ad-
ditions on the obtained values. For details please refer to [37] or the source
code [38]. These operations are executed by the Service and returned to the
Client component.

A user thus does not need to know anything about the algorithm to obtain
the personal CVD risk score and at the same time the Service does not know any-
thing about the user’s parameters (except the inner-products of x with vectors
y1 and y2).

However, it has to be noted that the Service does know the risk score. This
is one of the main differences with HE. HE computes the encryption of the risk
score which is then decrypted by the user (and thus known only by the user).

Paper [13] reports on the implementation of the 10-year CVD risk score us-
ing HE. While this approach has a clear advantage of prediction service not
knowing the risk score, it is also far less efficient than the approach with FE. In
a setup which enables the evaluation of higher degree polynomials (such as 7),
one multiplication of ciphertexts requires around 5 seconds on a modern laptop
(Intel Core i7-3520M at 2893.484 MHz). Note that higher degree polynomials
are needed to approximate the exponential function by a Taylor series. While
in the 10-year CVD risk algorithm there is only one evaluation of the exponen-
tial function, the 30-year algorithm uses two evaluations. An evaluation of the
exponential function in [13] requires more than 30 seconds since computing the
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Taylor series of the degree 7 takes more than 30 seconds (the powers of x already
require 6 multiplications at 5 seconds each). On the contrary, our FE approach
returns result in a matter of milliseconds.

Furthermore, there is a significant communication overhead in HE approach
as the ciphertext can grow to roughly one megabyte (16384 coefficients of 512-
bit). Communication messages in FE are much smaller – a few kilobytes.

HE approach could be sped up with computing the encryption of only the
inner-products (as it is in FE). However, as the prediction service would know
only the encryption of the inner-product, the rest of the risk score algorithm
would need to be computed at the user’s side and would require to move signif-
icant parts of the prediction logic to the Client component. In many scenarios,
this might not be desirable, especially if the prediction logic is computationally
expensive. As a matter of fact, for all services where prediction logic is computa-
tionally expensive, the FE approach is far more performant, but at the expense
that prediction service knowns the predicted value.

6 Londond Underground Anonymous Heatmap

In this section, we demonstrate how traffic heatmap can be generated based on
encrypted data. Given the encrypted information about users of the London Un-
derground, our service can measure the traffic density at each particular station.
Thus, congestions and potential increases of traffic can be detected while the
user data is encrypted and remains private.

DMFCE scheme [15] is used for the demonstration [8]. The scheme allows
each user to encrypt the location data in a way that neither the central service
nor the other users can know it. The only information that the central service
can obtain is the information about all the users, preserving the privacy of each
individual. Furthermore, the functional keys needed by the central service are
derived in a decentralized manner, without a centralized authority for generating
keys. Indeed, functional key parts are provided by the users and then combined
together by the central service.

Each user encrypts locally the vector specifying the path that was traveled.
The length of the vector is the same as the number of the stations. It consists
of 0s and 1s: 1 for stations were the user traveled (see Figure 3a for a visual
representation). In GoFE the code looks like:

// pathVec[i] is the value of i-th station, label its name,

// c[i] is its encryption

label = station[i]

c[i], _ := client.Encrypt(pathVec[i], label)

While we use randomly generated user data for this demonstration, one can
easily imagine a smartphone app which tracks the user’s path, generates a vector,
encrypts it (all operations performed locally), and finally sends it to the central
service.
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(a) Path of one user (b) Heatmap

Fig. 3. Information of one user vs. information the central service obtains.

In the decentralized scheme [15], the FE keys are generated by the users (no
trusted authority is needed). The users thus provide a functional key to a central
service component. In our case, a functional key for an inner-product vector y
of 1s is provided (the vector length is the number of users). This is because the
central authority decrypts the sum of all the users that traveled through that
station, i.e. a value that can be represented as an inner-product of y and a vector
x of 0s and 1s indicating which users traveled through that station. Each user
provides a key share:

// create a vector of 1s:

vecOfOnes := data.NewConstantVector(numClients, big.NewInt(1))

// keyShares is a vector of all the key shares

keyShares[k], _ := clients[k].GenerateKeyShare(vecOfOnes)

}

The central service component collects all the key shares and can now com-
pute (decrypt) the density for each station. The code for this looks like:

for i := 0; i < numStations; i++ {

label := stations[i]

dec = fullysec.NewDMCFEDecryptor(vecOfOnes, label, ciphers[i],

keyShares, numClients)

heatmap[i], _ = dec.Decrypt()

}

Using a described approach, a variety of other analysis services can be built
on the encrypted data, for example, power consumption of a group of houses in a
neighborhood, measurements from IoT devices, etc. In the former case, the power
consumption could be encrypted for each hour and sent to the central component.
The central component could then compute (decrypt) the overall consumption
(across all houses) for each particular hour. Based on such privacy-enhanced
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computations various prediction services can be built using only encrypted data.
Note that all such applications cannot be build with HE, since the derivation
of a functional decryption key is needed for the central service to decrypt the
results.

7 Neural Networks on Encrypted MNIST Dataset

In the previous two sections, we saw how to implement privacy-friendly predictive
services by using efficient FE for inner-products. Using linear functions (inner-
products) many efficient machine learning models can be built based on linear
regression or linear logistic.

However, linear models in many cases do not suffice. One of such tasks is
image classification where linear classifiers mostly achieve significantly lower ac-
curacy compared to the higher-degree classifiers. For example, classifiers for the
well-known MNIST dataset where handwritten digits need to be recognized. A
linear classifier on MNIST dataset is reported to have 92% accuracy (Tensor-
Flows tutorial [41]), while more complex classifiers achieve over 99% accuracy.

GoFE and CiFEr include a scheme [40] for quadratic multi-variate polynomi-
als which enables computation of quadratic polynomials on encrypted vectors.
This enables richer machine learning models and even basic versions of neural
networks. We provided a machine learning project [36] to demonstrate how an
accurate neural network classifier can be built on the MNIST dataset and how
FE can be used to apply a classifier on the encrypted dataset. This means that
an entity holding an FE key for a classifier can classify encrypted images, i.e.,
can classify each image depending on the digit in the encrypted image, but can-
not see anything else within the image (for example, some characteristics of the
handwriting).

The demonstrator uses the GoFE library and the widely-used machine learn-
ing library Tensor-Flow [1]. MNIST dataset consists of 60 000 images of hand-
written digits. Each image is a 28×28 pixel array, where each pixel is represented
by its gray level. The model we used is a 2-layer neural network with quadratic
function as non-linear activation function. Training of the model needs to be
done on unencrypted data, while prediction is done on encrypted images. The
images have been presented as 785-coordinate vectors (28 · 28 + 1 for bias). We
achieved the accuracy of 97%, a result that is reported also in [40]. The decryp-
tion of one image (applying the trained model on the encrypted image) takes
under 20 seconds.

Similarly, CryptoNets [28], an HE approach for applying neural networks to
encrypted data, needs an already trained model. The model they use is signifi-
cantly more complex than ours (the trained network has 9 layers) and provides
an accuracy of 99%. Note that as currently no efficient FE schemes exist for poly-
nomials of degree greater than 2, no such complex models are possible with FE.
On the other hand, the execution when using HE approach is significantly slower.
Applying the network on encrypted data using CryptoNets takes 570 seconds on
a PC with a single Intel Xeon E5-1620 CPU running at 3.5GHz. But note that
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applying the network allows executing many predictions simultaneously, if this
is needed.

Thus, compared to the FE approach, HE can provide more complex machine
learning models and consequently ones with a higher accuracy. Nevertheless, HE
has a limitation which is particularly important in the present application. HE
can only serve as privacy-friendly outsourcing of computation, while the result
of this computation can be decrypted only by the owner of the secret key. FE
allows the third party to decrypt the result, in our case the digit in the image,
without exposing the image itself. One can easily imagine a more complex FE
alert system on encrypted video, where the system detects the danger without
violating the privacy of the subjects in the video when there is none. Currently,
only primitive versions of such a system are possible as more efficient schemes
(in terms of performance and polynomial degree) are needed.

8 Conclusions and Future Work

In this paper, we presented the first two fully-fledged functional encryption li-
braries. The two libraries are implemented in Go and C programming languages
and offer an easy-to-use API to various FE schemes. We focused on creating
a flexible and efficient implementation to support various use cases. We have
demonstrated the practicality by presenting three possible applications of the
libraries: an online privacy-friendly predictor of cardiovascular diseases, anony-
mous traffic heatmap service, and image classification on encrypted data. We
compared the solutions that FE has to offer with HE on the latter examples,
showing how FE can offer new applications or improve performance by revealing
some information. The libraries are filling the gap between academic research
of FE schemes and their applications to real-life scenarios. As such they offer a
platform for the developers to prototype their products as well as a test place
for academic research on FE.

In our future work, we plan to implement further FE schemes, in partic-
ular recent multi-client and multi-input schemes which enable a wide range
of applications like running queries on encrypted databases, computation over
encrypted data streams, and multi-client delegation of computation. Further-
more, we plan to implement and evaluate function-hiding schemes which enable
privacy-preserving queries to the prediction services. Also, further optimizations
will be applied.
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