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Abstract. We suggest  new  applications of protocols of Non-commutative cryptog-
raphy defined in terms of subsemigroups of Affine Cremona Semigroups over finite  
commutative rings and their homomorphic images to the constructions of  possible 
instruments of Post Quantum Cryptography. This approach allows to define cryp-
tosystems which are not public keys. When extended protocol is finished correspond-
ents have the collision multivariate transformation  on affine space Kn or variety (K*)n 
where K is a finite commutative ring  and K* is nontrivial multiplicative subgroup of 
K . 

      The security of such protocol rests on the complexity of word problem to decom-
pose element of Affine Cremona Semigroup given in its standard form into composi-
tion of given generators. The collision map can serve for the safe delivery of several 
bijective multivariate maps Fi (generators) on Kn (or (K*)n) from one correspondent to 
another. So asymmetric cryptosystem with nonpublic multivariate generators where 
one side (Alice) knows inverses of Fi but other does not have such a knowledge is 
possible.  

       We consider the usage of single protocol or combinations of two protocols with 
platforms of different nature. The usage of two protocols with the collision spaces Kn 
and  (K*)n  allows safe delivery of  two  sets of generators of different nature. In terms 
of such sets we define an  asymmetric encryption scheme with the plainspace (K*)n,  
cipherspace Kn and multivariate non-bijective encryption map of unbounded degree 
O(n) and polynomial density on Kn with injective restriction on (K*)n. Algebraic 
cryptanalysis faces the problem to interpolate a natural decryption transformation 
which is not a map of polynomial density. 

Keywords. Multivariate Cryptography, Noncommutative Cryptography, stable trans-
formation groups and semigroups, semigroups of monomial transformations,  word 
problem for nonlinear multivariate maps, hidden tame homomorphisms, key exchange 
protocols, cryptosystems, linguistic graphs. 

1 Introduction. 

Investigations  of continuous nonlinear transformation of vector spaces Rn and Cn 



2 

 

in term of dynamic systems theory and other method of Chaos Studies have applica-
tion to Cryptography. The usual scheme use ‘’discretisation’’ of continuous. map, i.e. 
finding of its natural discrete analog (see [1], [2], [3], [4], [5]). Other approach is 
connected with studies of K-theory of affine Cremona semigroup of all polynomial 
maps of affine space K n into itself, where K is a commutative ring.This is the search 
for instruments for the constructions of nonlinear maps defined over arbitrary K with 
special properties. One of the examples is dynamical system of large girth (or large 
cycle indicator) considered in [6], [7]  which allows to  introduce large subgroups of 
cubical transformation on free module Kn. Notice that independently from choice of 
commutative ring  composition of two cubic maps in ‘’general position’’ will have 
degree 9. So these subgroups are very special sets of transformations. Noteworthy that 
in the case of commutative ring of characteristic 0 (like fields R and C) there are bi-
jective polynomial maps such that their  inverse are  not an elements of S(Kn).One of 
the simplest examples is the map x→x3 of one dimensional affine space R. So the 
family of large subgroups of cubical transformations of Kn, n>2  over arbitrary com-
mutative ring is an interesting mathematical object. We believe that studies of corre-
sponding infinite algebraic graphs of large girth defined over commutative rings of 
characteristic zero is an interesting topic for future investigation, the first results in 
this direction are presented in [8]. 
        Let symbol S(Kn) stands for the affine Cremona semigroup  (see [42]) of all pol-
ynomial transformation of Kn.  Studies of stable subsemigroups of S(Kn) which are 
totalities oftransformations of affine space Kn of degree bounded by small constant d  
are motivated by their cryptographic applications. The cases d=2, 3 are of special 
interest. Notice that d=1 corresponds to general affine semigroup ALn(K) of all trans-
formations of Kn of degree 1. Cryptographic algorithms based on cubical stable semi-
groups include stream ciphers (see [29] and further references), multivariate Diffie- 
Hellman key exchange protocols and corresponding El Gamal cryptosystems (see 
[34] and  further references), algorithms of noncommutative cryptography with multi-
variate platforms ([16], [32],[39],[40]). 
       Notice that direct usage of cubical transformations from stable semigroups as 
public encryption instruments does not make sense because the inverse map is also 
cubical one. One can use O(n3) pairs of kind plaintext/corresponding ciphertext and 
interpolate decryption map in time O(n10). Anyway for the construction of public keys 
one can use transformations of stable semigroup in a combination with special unsta-
ble transformations (see [9], [10], [30], [31]). For instance in [9] author together with 
the subgroup of stable cubical subgroup uses other distinguished object which is a 
totalitynES(K) of nonlinear monomial transformations moving each variable xi to a 
single monomial term t(x1, x2,…, xn) (algorithms work in the cases K=Fq and K=Zm.In 
fact subsemigroups of nES(K) together with stable subsemigroup can be used in se-
cure inverse key exchange  protocol in which each correspondents get one element 
from the pair of polynomial transformations (g, g’) from Km preserving (K*)m such 
that gg’ acts on (K*)m as identity. Such a protocol developed in a spirit of Noncom-
mutative  Cryptography (NC), see ([18]-[28]).  In difference with common  for NC 
use of generators and relation we use standard way of Multivariate Cryptography of 
presenting each element of S(Kn)  by its standard form given by lists  of monomial 
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terms. Correspondents can use (K*)m as plainspace and Km as cipherspace. So it is an 
interesting postquantum instrument alternative to public key cryptography  stimulated 
recently by the U.S. NIST step toward mitigating the risk of quantum attacks via the 
announcement the PQC standardisation process [11]. In March 2019, NIST published 
a list of candidates qualified to the second round of the PQC process. 
   We  notice that in the cited above studies of usage of stable subsemigroups of S(Kn) 
for security applications were overlooked. For instance not only inverse but directed 
tahoma protocols with stable and monomial  platforms in tandem can be used for 
establishment of multivariate asymmetric procedure. We fill this gap in the section 2. 
Public keys [9], [10] with the usage of semigroup nES(K) and stable subgroups can be 
used in the case of general commutative ring K(finite or infinite)with nontrivial mul-
tiplicative group. This algorithm can be enhanced via algorithms of generation pairs 
g,g-1 from nES(K) with the usage of linguistic graphs defined over commutative group 
K*. New version of this cryptosystem is given in section 4. It uses the following 
scheme. Let as assume that G is a large stable subgroup of S(Kn)  with the constant 
degree d.We generate the composition z=gf, where g is a member of  mentioned 
above pair, f’=TfT’ where fϵG , T and T’ are invertible affine transformation from 
ALn(K), as public key rules of kind zi=z(x1, x2,…, xn). zi ϵK[x1, x2,…, xn].  i=1, 2, …, n  
in the cases when ground commutative ring K has quite large multiplicative group 
K*..In particular  we can generate a polynomial transformation z on real vector space 
Rn, n>2 of linear degree and prescribed polynomial density cnd which preserves (R*)n 
and acts as bijectively on this set (see section 4 of this paper where GJG elements are 
introduced).Let us assume that  commutative ring K is finite and Alice is able to com-
pute f-1 and g-1 in polynomial time.  
 Public user Bob works with the map of linear degree in variable n which has density 
O(nd+1) (number of monomial terms in all public rules, which coincides with the den-
sity of map f’ of degree d). This facts guarantee the feasibility of  encryption  process 
which consist of computation c=z(p) for element p from the plainspace (K*)n. Alice in 
difference with Bob has the factorisation of z into composition of g am f’. She com-
putes (f’)-1(c)=c’ and restores the plaintext as g-1(c’). Notice that unknown for Bob 
inverse map (f’)-1g-1 has unbounded degree and exponential density. Thus  suggested 
schemes can be considered in future as candidates for Post Quantum Cryptography 
(PQC) usage.  Notice that this is an algorithm of Multivariate Cryptography  with 
general reference on the complexity to solve nonlinear system of equations. The cor-
responding system has unbounded degree and corresponding multivariate map is not a 
bijection. Cryptanalytics can try to factorize this map in a form fg where f is monomi-
al map from nES(K)  and g has bounded degree d but general algorithms even subex-
ponential complexity for the completion of this task are unknown.  

     For proper investigation of  these public key algorithms  they have to be  compared 
with other known candidates for postquantum usage (like algorithms of the second 
round of NIST competition). 

   We discover and alternative option. No need in the announcement of standard form 
of z publicly because there is a secure way  (protocol) for delivery of this multivariate 
encryption tool for one correspondents to another.In fact instead of z any multivariate 
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map G with injective restriction on (K*)n fo linear degree and polynomial density 
O(nd), d=1,2, 3 can be transported safely from Alice to Bob. 

Other option  is  use a separate delivery of f and g as above which  makes the  compu-
tations faster. Description of the implementations of these delivery algorithms in 
terms of directed tahoma protocol is given in section 6. 

In fact the author of  ([14]) noticed that usage of large groups G and  nES(K) allows to 
create natural secure inverse protocol with usage of doubled platform for secure de-
livery of pairs f-1, g-1 (for Alice) and f,  g for Bob where f and g written above maps. It 
means that we can postpone public announcement of gf. 

The security of these two solutions with  directed and inverse protocols rests on the 
complexity of decomposition of element of  non-commutative subgroup G of affine 
Cremona semigroup (or semigroup nES(K) )into the product of several generators giv-
en by their standard forms. This  is known word  problem which is unsolvable in pol-
ynomial time with usage of Turing machine or Quantum Computer. The first usage of 
the complexity of word problem for abstract groups was considered in [15].  

The further step is presented in section 5 and 6, it brings  the option to deliver several 
bijective multivariate transformations of degree 1, 2 and 3 and conduct algorithm with 
a governing formal word and hidden multivariate generators. 

      Stable part of double inverse platforms of [14] constructed in terms of algebraic 
graphs of geometrical nature, monomial part is defined in terms of parabolic subsemi-
group of nES(K) in the cases K=Fq and K=Zq. 

In this paper we use double directed tahoma protocol which uses  cubical stable 
groups  (section 3) related to constructions of Extremal Group Theory  which already 
were used for the construction of stream ciphers (see [29] and further references)  and 
new subsemigroups of nES(K) (section 4) defined in terms of linguistic graphs over 
nontrivial multiplicative group K*  of general commutative ring defined in section 3. 

2. Some protocols of noncommitative cryptography with multivariate 

platforms. 

      Let S’<S(Kn) be a subsemigroup of affine Cremona semigroup and φ be a homo-
morphism from S’ onto  semigroup G<S(Kn), n>m. 

2.1. Additionally we consider a stable subsemigroupS, S’<S<S(Kn)  and assume 
thatH is stable semigroup H, G<H<C(Km). Alice selects elementss1, s2, … ,sr , r >1 
of subsemigroups S’and computes φ(si)=ui. She takes invertible elements hϵS(Kn) of 
kind  av, deg(a)=1, vϵ Sand fϵC(Kn),  f=bg,deg(b)=1, gϵH and forms pairs (ai=hsih

-1, 
bi=f uif

-1) and sends them to Bob.  

   He forms word w=(ai(1))
α(1)(ai(2))

α(2)… (ai(t))
α(t), t>r-1, 

i(j)ϵ{1,2,…,r},α(j)>0,j=1,2,…,t and sends it to Alice. Bob changes alphabet via the 
substitution of bi instead ofai and keeps the word u=(bi(1))

α(1)(bi(2))
α(2)… (bi(t))

α(t). 

 Alice computes  u as fφ(h-1wh)f -1. 
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    So Alice and Bob when the protocol ends have collision transformation of the af-
fine space Km. 

       Examples of the  implemetations of this algorithm can be found in [16].  

         2.2. Let us consider above algorithms in the case when semigroupS consists on 
toric elements and H<mEG(K) and S=S’. 
Alice forms h and h-1 from nEG(K) together with pair f,f -1 from mEG(K) and proceed 
with the  modification of previous algorithm. 

Alice selects elementss1, s2, … ,sr , r >1 of semigroups S and computes φ(si )
-1  = ui. 

She takes invertible elements h and f to form pairs (ai=hsih
-1, bi=f uif

-1) and sends 
them to Bob.  The rest of the algorithm is identical to case of procedure 2.1. 

After the completion of this protocol Alice and Bob have common maps  uacting on 
the variety(K*)m. 

Security  base: The adversary has to solve the word problem for the subsemigroupS’, 
i. e., find the decomposition of w from S’into generators ai, i= 1, 2,...,t. The general 
algorithm to solve this problem  in polynomial time for the variable nis unknown, as 
well as a procedure to get its solution in terms of quantum computations. The problem 
depends heavily on the choice of group. 

Remark. Of course in each case alternative ways of  computation of the value ϭ(w)  
of isomorphism ϭ between semigroup  <a1, a2, …,,ar> and group <b1, b2, …,,br> given 
by the ruleϭ(ai)= bi have to be investigated. 

2.3. On platforms acting in tandem. 

2.3.1. Alice and Bob use algorithm 2.1 with the output u on Km as  leading procedure. 
Supporting procedure is algorithm of kind 2.2 with the same commutative ring K and 
parameter m. Alice uses platform of algorithm 2.1 and generates elements v and v-

1.She keepsv-1  fo herself and send v+u to Bob. So Bob gets v. Alice selects  the input 
of 2.2  for her correspondent as ai,bi , i=1,2,…, r’. She sends pairs (ai, , v

-1(bi)). Notice 
that the elements v-1(bi)) are well defined  maps of Km  into Km, they have polynomial 
density. 

     Bob computes pairs (ai,bi) because of his/her possession of v. After the completion 
of supporting procedure Alice and Bob get  common elements zof mEG(K). 

Additionally Alice generates elements y and y-1 of  mEG(K). She keeps  y-1  for herself. 
She takes z of kind xi→zi(x1, x2,…, xm), i=1,2,…,m  and forms the tuple (z1y1, 
z2y2,…,zmym) to send it to Bob. Coordinates of the tuple are computed via multiplica-
tion of monomial expressions in K[x1, x2,…, xm]. Thus Bob computes map y easily.   

     They use (K*)m as plainspace and Km as cipherspace. 

   To encrypt Alice maps her message p in the alphabet K* to y-1(p)=m  and then she 
computes the ciphertext c= v-1 (m). 

   Bob decrypts via application of v to c and computation of y(v(c)). 

Similarly Bob encrypts p via consecutive computation of y and v(y(p)). 

      Alice applies v-1 to ciphertext c and computes the plaintext asy-1 (v-1 (c)).  
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Remark. Encryption and decryption functions of the above algorithm can be treated 
as polynomial maps  of Km to Km because elements of  mEG(K) act naturally on Km. 
Between encryption and decryption functions there is a density gap because decryp-
tion map is not a transformation of polynomial density. Such pairs can be used as 
non-bijective stream ciphers in a spirit of [29]. In the  tandem procedure interception 
of plaintexts with corresponding ciphertext attacks  are unfeasible without the com-
putation of ϭ(w). 

2.3.2 Alice and Bob can use algorithm 2.2 with collision map u on (K*)m as  leading 
procedure. Supporting procedure is algorithm of kind2.1 with the same commutative 
ring K and parameter  m. Alice creates elements z and  z-1 of mEG(K). She takes z of 
kind xi →zi (x1, x2,…, xm), i=1,2,…,m  and forms the tuple (z1u1, z2u2,…,zmum) to send 
it to Bob. He uses his knowledge on u to compute z. 

 Alice sets pairs (ai, bi) to start supporting protocol 2.1. She sends bi(z
-1) which has 

polynomial density to Bob. He uses his knowledge on z and computes  bi. Corre-
spondents execute protocol 2.1 and get collision stable map u.  

Alice uses platform of 2.1 to generate mutually invertible transformations y and y-

1acting on Km.  She keeps y-1 for herself and sends y+u to Bob. He subtracts u and 
gets y. 

    As in previous algorithm Alice and Bob use plainspace (K*)m and ciphertext Km. 

To encrypt Alice maps her message p in the alphabet K* to z-1(p)=m  and then she 
computes the ciphertext c= y-1 (m). 

   Bob decrypts via application of y to c and computation z-1(y(c)). 

Similarly Bob encrypts p via consecutive computation of z to p and y(z(p)). 

Alice applies y-1 to ciphertext c and computes the plaintext as z-1 (y-1 (c)).  

Remark. In the case 2.2 Alice (or Bob) instead of mutually invertible y,  y-1 can use  
elements w, w’ϵ S((K)m of polynomial density such that theiry-1restrictions on (K*)m 
are injective maps to Km and composition ww’ acts on (K*)m as identical map. Algo-
rithm of generation such pairs is introduced in [14], [29], [30] and [31].  

Algorithms of generation of pairs (z, z-1) from mEG(K) are described in [32]. 

 

3. On linguistic and extremal graphs and stable nonlinear subgroups of 

affine Cremona group. 
 

3.1. Some definitions of Extremal graph theory. 
   The missing definitions of graph-theoretical concepts in the case of simple graphs 
which appears in this paper can be found in [33]. All graphs we consider are simple 
ones,  i. e. undirected without loops and multiple edges.  
     When it is convenient, we shall identify Γ with the corresponding antireflexive 
binary relation on V (Γ), i.e. E(Γ) is a subset of V (Γ) × V (Γ). The girth of a graph  Γ,  
denoted by g = g(Γ), is the length of the shortest cycle in Γ. The diameter d= d(Γ)  of 
the graph Γ is the maximal length of the shortest pass between its two  vertices. Let 
gx= gx(Γ) be the length  of the minimal  cycle  through the vertex x from  the set V(Γ) 
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of  vertices in graph Γ.We refer to Cind( Γ)=max( gx| x from V (Γ)) as cycle indicator 
of the graph. 
  The family Γi of connected k-regular graphs of constant degree is a family of small 
world graphs if d(Γi)≤ clogk(vi), for some constant c, c>0. 
      Recall that family of regular graphs Γiof degreek and increasing order viis a family 
of graphs of large girth if g(Γi) ≥ clogk(vi), for some independent constant c, c >0.  
    We refer to the family of regular simple graphs Γiof degree kand order vias family 
of graphs of large cycle indicator, if Cind(Γi) ≥ clogk(vi) for some independent con-
stant c, c >0.  
      Notice that for vertex-transitive graph its girth and cycle indicator coincide. De-
fined  above families plays an important role in Extremal Graph Theory, Theory of 
LDPC codes and Cryptography.(see [34] and further references). 
3.2. The algebraic graphs A(n, K) and  D(n,K), some results and open questions. 

      Below we consider the family of graphs A(n,K)  and  D(n,K), respectively where n 
>5 is a positive integer and K is a commutative ring. In the case of K =Fq  we  
use symbols A(n, q)  and D(n,q) for these graphs.efine these graphs as homomorphic 
images of infinite bipartite graphs A(K) and D(K) for which partition sets P  
and L formed by two copies of Cartesian power KN, where K is the commutative ring 
and N is the set of positive integer numbers. Elements of P ill be called points and 
those of L lines. To distinguish points from lines we use parentheses and brackets.  
 The description  is based on the connections of these graphs with Kac-Moody Lie 
algebra with extended diagram A1. The vertices of D(K) are infinite dimensional tu-
ples over K. We write them in the following way (p) = (p0,1, p1,1, p1,2,  p21, p22, p’22,  
p23,  … , pi,i, p’i,i, pi,i+1, pi+1,i, …), [l] = [l1,0, l1,1 ,l1,2,,  l21, l22, l’22, l23,  … ,li,i, l’i,i,li,i+1, 
li+1,i…]. We assume that almost all components of points and lines are zeros. The 
condition of incidence of point (p) and line [l] ( (p)I[l])  can be written via the list of 
equations below. 
li,i - pi,i =l1,0 pi-1,i; l’i,i – p’i,i = li,i-1 p0,1; li,i+1 – pi,i+1 =li,i p0,1;li+1,i - pi+1,i =l1,0 p’i,i .This 
four relations are defined for i≥1, (p’1,1 = p1,1,  l’1,1 = l1,1) . 
      Similarly we define graphs A(K) on the vertex set consisting of points and lines 
(p) = (p0,1, p1,1, p1,2,  p21, p22,,  p23,  …, pi,i, pi,i+1,… ), 
[l] = [l1,0, l1,1 ,l1,2,,  l21, l22, l23,  … ,li,i, li,i+1, …] such that point (p) is incident with the 
line [l] ((p)I[l], if the following relations between their coordinates hold: li,i - pi,i =l1,0 
pi-1,i; li,i+1 – pi,i+1 =li,i p0,1. 

We consider graphs A(n,K*) and D(n, K*) with partition sets isomorphic to (K*)n  
given by equations of A(n,K) and D(n,K) where operation’’ – ‘’is changed for division 
/. It is clear that the set of indices A={(1; 0), (0; 1), (1; 1), (1; 2),  (2; 2), (2; 3), … , 
(i-1, i), (i, i),… } is a subset in  D={(1, 0), (0; 1), (1, 1), (1, 2), (2; 2), (2, 2)’,…, (i-1, 
i); (i; i - 1); (i, i); (i, i)’,…}. Points and lines of D(K) (or D(K*) are functions from  
KD-{(1,0)}and KD-{(0,1) (or (K*)D-{(1,0)} and (K*)D-{(0,1) ) and their restrictions on A-{(1,0)} 
and A-{(0,1)} define homomorphism Ψ of graph D(K) onto A(K) (or D(K*) and 
A(K*)). 
       For each positive integer m ≥2 we consider subsets A(m) and D(m) containing  
first m+1  elements of  A and D with respect to the above orders . 
      Restrictions of points and lines of D(K) (or D(K*) )onto D(m)-{(1,0)} and D(m)-
{(0,1)} define graph homomorphism  D∆(m)  with image denoted as D(n, K)(D(n, 
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K*)). Similarly  restrictions of points and lines of A(K) (or A(K*) onto  A(m) -{(1,0)} 
and A(m)-{(0,1)} defines homomorphism A∆(m) of  graph A(K) (or A(K*)) onto  graph 
denoted as A(m, K) (A(m ,K*) respectively).  
       We also consider the  map  ∆(m) on vertices of graph D(m, K) (or D(m,K*) ) 
sending its point  (p)ϵK D(m)-{(1,0)} (or ( K*) D(m)-{(1,0)} ) to its restriction into D(m)∩A-
{(1,0)} and its line[l]ϵK D(m)-{(0,1)} (or (K*) D(m)-{(0,1)}) to its restriction onto D(m)∩A-
{(0,1)}. This map is homomorphism of D(m, K) onto A(n, k), n=|D(m)∩A|-1 or 
D(m,K*) onto A(n,K*).   
Graph  D(q)=D(Fq) is q-regular forest. Its quotients D(n, q) are edge-transitive 
graphs. So their connected components are isomorphic. Symbol  CD(n, q)  stands for 
the graph which is isomorphic to one of such connected components. 
Family CD(n, q), n=2,3,…is a family of large girth for each fixed parameter q, q>2  
and n=2,3, … (see [35] and further references).  
       The question ‘’Whether or not CD(n, q) is a family of small world graphs’’ is still 
open’’. 
 Graph A(q), q>2 is a q-regular tree. Graphs A(n, q) are not vertex transitive. 
They form a family of graphs with large cycle indicator, which is q-regular family of 
small world graphs [36]. 
    The question ‘’Whether or not A(n,q), n=2,3,… is a family of large girth’’ is still 
open. 

 We hope that introduced above graphs A(n, Fq*) and D(n, Fq*) possess interesting 
extremal and spectral properties 

Groups GD(n, K) and GA(n, K) of cubical  transformations of affine space Kn asso-
ciated with graphs D(n, K) and A(n, K) are interesting objects of algebraic transfor-
mation group theory because of composition of two maps of degree 3 for vast majori-
ty of pairs will have degree 9. Constructions and applications of these families of 
transformations groups are recently observed in [37] where some extensions of  these 
groups are introduced. 
3.2.  Transformation groups related to  algebraic graphs A(n, K) and  D(n, K). 

All graphs defined in section 2 belong to class L of linguistic graphs Γ=Г(K) of type 
(1, 1, n-1), nϵN or n=∞.defined over commutative ring K which contains bipartite  
graphs with the point set P=Kn  and line set L=Kn  such that (p)=(p1, p2, … ,pn)ϵPn

 

and [l]=[l1,  l2, … , ln]ϵLn form an edge of Γ if  the following conditions holds 2ap2 – 
2bl2=

2f(l1, p1),  
3ap2–3bl2=

3f(p1, p12, l1 , l2), … , napn–nbln=
nf(p1, p2, …, pn, l1, l2, … , ln), 

where ia and  ib , i≥2 are elements of multiplicative group K* and fi are multivariate 
polynomials. (see [38]. [6]). We define colours (ρ((p)) and  ρ([l]) of the point (p) and 
the  line [l] as their  first coordinates p1 and  l1. We introduce well defined operator 
N(v, a)  of computing the neighbour of vertex v of colour aϵK and colour jump opera-
tor J(v,a) sending point or line v=(v1, v2, …, vn)  to u=(a, v2, v3,…,vn). 
     Let S(Kn) stands for the Cremona semigroup of polynomial transformations of free 
module Kn and  C(Kn) be affine Cremona group of invertible elements of S(Kn) with 
the polynomial inverse. These algebraic structures are important objects of algebraic 
geometry. One of the difficult problem is about constructions of families of stable 
subgroups Gn of C(Kn) (or semigroup Sn of S(Kn)) i. e groups of polynomial transfor-
mation  with maximal degree equals to constant c. Notice that for the majority of pairs 
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f, g ϵ C(Kn) of degrees r and s their composition has degree rs. So this problem is 
difficult, it has strong cryptographical motivations. 
    We consider totality St(K) of strings of kind (f1, f2,…, fk,) where  fi ϵK[x].  We will 
identify polynomial f and the map x→f(x) from S(K). The product of two chains (f1, 
f2,…, fk,)  and (g1, g2,…, , gt,)  is the chain (f1, f2,…, fk,,  g1(fk ),g2,(fk ), …, gt,(fk )). Empty string  
is the unity of  semigroup St(K). In fact St(K)is a semidirect product of a free semi-
group over the alphabet K[x] and Cremona semigroup S(K). We refer to St(K)  as 
semigroup of polynomial strings. Let St’(K) stands for the semigroup of strings of 
even length from St(K) and ∑(K) be subsemigroups of strings of even length with 
coordinates of kind x+c, cϵK. Let  u=(f1, f2,…, fk,) be an element of St’(K) and x→fk,(x) 
is an element of C(K). We refer to rev(u)= (fk-1,(fk,

-1(x)). fk-1,(fk,
-1(x))…., f1,(fk,

-1(x)).fk,
-

1(x)) as reverse string to u.  
     In the case of linguistic graph Г=Γ(K) of type (1,1,n-1)  the path consisting of its 
vertices v0, v1, v2, …,vk  is uniquely defined by initial vertex v0, and colours ρ(vi,), i=1, 
2,..., k of other vertices from the path. We can consider graph Г’=Γ(K[x1, x2, …, xn]) 
defined by the same with Γ equations but over the commutative ring K[x1, x2, …, xn]. 

So the following symbolic computation can be defined. Take the symbolic point 
x=(x1, x2, …, xn), where xi are generic variables of  K[x1, x2, …, xn] and  polynomial 
string CϵSt’(K) which is a tuple of polynomials  f1,, f2,, ... , fk, from K[x1] with even 
parameter k. (x=x1). Form the path of vertices  v0,=x,   v1  such that  v1Ivo and 
ρ(v1)=f1(x1),  v2  such that  v2Iv1 and ρ(v2)=f2(x1), ..., vk  such that  vkIvk-1 and 
ρ(vk)=fk(x1). We choose parameter k as even number. So vk is the point from the parti-
tion set  K[x1, x2,…, xn]

n of the graph  Г’. 
We notice that the computation of each coordinate of vi  depending on variables x1, x2, 
…, xn and polynomials f1,, f2,, ... , fk needs only arithmetical operations of addition and 
multiplication. As it follows from the definition of linguistic graph final vertex vk 
(point) has coordinates (h1(x1), h2(x1,x2), h3(x1,x2,x3),...,hn(x1,x2,…, xn)), where 
h1(x1)=fk(x1). Let us consider the map ГH(C): xi→ hi(x1, x2,…, xn), i=1, 2,..., n which 
corresponds to  polynomial  string C.  
Proposition 1. The map  Гη :C → ГH(C) is a homomorphism of St’(K) into Cremona 
semigroup S(K n). 
Lemma 1 . Let u=(f1, f2,…, fk,) and x→fk,(x) is an element of C(K).Then for each lin-
guistic graph Γ of type (1, 1,n-1) element rev(u)u be an element of kernel of Гη. 
   More general form of this statement is proven in [14]. 
We refer to Гη as linguistic compression map. If K is finite then the map converts 
totality of potentially infinite strings into finite semigroup. 
Theorem 1.If Г is one of graphs D(n, K) and A(n,K) , then 
Гη(∑(K)) is stable subgroup ofC(K n) of degree 3. 
 We denote Гη(∑(K)) for Г=D(n,K) and  Г=A(n, K) as GD(n K) and GA(n, K).These 
groups were already used in all cryptographical applications of graphs D(n, K) and 
A(n,K). 
Proposition 2. Homomorphisms δ of D(n,K) onto A(m,K), n>m described in section 2 
induces homomorphism ind(δ) of GD(n,K) onto GA(m,K), n>m. 

4. On Eulerian groups and semigroups and multiplicative linguistic 

graphs. 
4.1 Basic constructions. 
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Similarly to the case of commutative ring we introduce a linguistic graph I= Г(G) 
over abelian group G defined as bipartite graph  with partition sets isomorphic to Gn 
such that (x1, x2,  …., xn) I [y1,  ,y2, …, yn] if and only if  x2/y2=g2w2(x1, ,y1), x3/ 
y3=g3w3(x1, x2, y1, y2), …, xn/yn=gnwn(x1, x2,  …., xn-1, y1, y2, …, yn-1), where gi ϵ G , 
i≥2 and wi are words in characters xi  and yj  from G. We define colours ρ((p)) and  
ρ([l]) of the point (p) and the  line [l] as their first coordinates p1 and  l1. We intro-
duce well defined operator N(v, a)  of computing the neighbour of vertex v of colour 
aϵG. 

Let K be a finite commutative ring with the multiplicative group K* of regular el-
ements of the ring. We take Cartesian power nE(K) =(K*)n  and consider an Eulerian 
semigroup nES(K) of transformations of kind x1 → d1x1

a(1,1)x2
a(1,2) … xm

a(1,n) , x2 → 
d2x1

a(2,1)x2
a(2,2) … xm

a(2,n) ,…,xm →dnx1
a(n,1)x2

a(n,2) … xm
a(n,n) ,where a(i,j) are elements of 

arithmetic ring Zd, d=|K*|, diϵK*. 
Let nEG(K) stand for Eulerian group of invertible transformations from nES(K). It 

is easy to see that the group of monomial linear transformations Mn  is a subgroup of 
nEG(K).  So semigroup nES(K) is a highly noncommutative algebraic system.  Each 
element from nES(K) can be considered  as transformation of a free module Kn.  
    The problems of constructions of large subgroups G of  nEG(K), pairs (g, g-1), g ϵG, 
and tame Eulerian homomorphismsE: G→H, i. e. computable in polynomial time t(n) 
homomorphisms of subgroup G of  nEG(K) onto  H< mEG(K) are motivated by tasks 
of Nonlinear Cryptography . 
We consider totality St(K*) of strings of kind (f1, f2,…, fk,) where  fi are expressions of 
kind  axd,dϵZm, m=|K*|, aϵK*.  We will identify polynomial f and the map x→f(x)  on 
K*. The product of two chains (f1, f2,…, fk,)  and (g1, g2,…, , gt,)  is the chain (f1, f2,…, fk,,  
g1(fk ),g2,(fk ), …, gt,(fk )). Empty string  is the unity of  semigroup St(K*). Let St’(K*) 
stand for the semigroup of strings of even length from St(K*) and  RS(K*) stand for 
totality of strings(f1, f2,…, fk,) with invertible maps x→ fk,(x) from St’(K*).We refer to 
elements of RS(K*) as reversible multiplicative strings. 
    Let K*[x1, x2, …, xn] be group of monomials from  K[x1, x2, …, xn]. with operation 
of multiplication. For each linguistic graph Г(K*) over K* we can consider infinite 
graph Г’=Γ(K*[x1, x2, …, xn]) defined by the same equations with Γ  but over the 
commutative  group  K*[x1, x2, …, xn]. 

So the following symbolic computation can be defined. Take the symbolic point 
x=(x1, x2, …, xn), where xi are generic variables of  K*[x1, x2, …, xn] and  polynomial 
string CϵSt’(K*) which is a tuple of polynomials  f1,, f2,, ... , fk, from K*[x1] with even 
parameter k (x=x1). Form the path of vertices  v0,=x,   v1  such that  v1Ivo and 
ρ(v1)=f1(x1),  v2  such that  v2Iv1 and ρ(v2)=f2(x1), ..., vk  such that  vkIvk-1 and 
ρ(vk)=fk(x1). We choose parameter k as even number. So vk is the point from the parti-
tion set  K*[x1, x2,…, xn]

n of the graph  Г’. 
As it follows from the definition of linguistic graph final vertex vk (point ) has coordi-
nates (h1(x1), h2(x1,x2), h3(x1,x2,x3),...,hn(x1,x2,…, xn)), where h1(x1)=fk(x1).          Let us 
consider the map ГH*(C): xi→ hi(x1, x2,…, xn), i=1, 2,..., n which corresponds to  pol-
ynomial  string C.  
Proposition 3.  For each linguistic graph Г over K* the map  Гη* :C → ГH*(C) is a 
homomorphism of St’(K*) into Eulerian semigroup nES(K). 
       We refer to Гη * as linguistic multiplicative compression map. 
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Proposition4. For each linguistic graph  Г over K* the image  Гη*(RS(K*)) is a  sub-
group of  Eulerian group nEG(K). 
   We denoteГη(RS(K*)) for Г=D(n,K*) and  Г=A(n,K*) as GD(n,K*) and GA(n,K*). 
Proposition 5. Homomorphisms δ of D(n,K*) onto A(m,K*), n>m described in sec-
tion 2 induces tame Eulerian homomorphism of group  GD(n,K*) onto GA(m,K*), 
n>m. 

    Let π and δ be two permutations on the set {1,2,..., n}. Let us consider a trans-
formation of (K*)n, K=Zmor K= Fqand d =|K*|. We define transformation AJG(π, δ), 
where A is triangular matrix with positive integer entries 0≤a(i,j)≤d, i≥d defined by 
the following closed formula. 

yπ(1)=ϻ1xδ(1)
a(1,1)

 

yπ(2)= ϻ2xδ(1)
a(2,1)xδ(2)

a(2,2)
 

… 
yπ(n)= ϻnxδ(1)

a(n,1) xδ(2)
a(n,2)…xδ(n)

a(n,n)
 

where (a(1,1),d)=1, (a(2,2),d)=1,…,(a(n,n),d)=1. 
          We refer to  AJG(π, δ) as Jordan Gauss multiplicative transformation or simp-

ly JG element. It is an invertible element of  nES(K) with the inverse of kind  BJG(δ, π) 
such that a(i,i)b(i,i)=1 (mod d). Notice that in the case K= Zmstraightforward process 
of computation of the inverse of JG element is connected with the factorization prob-
lem of integer m. If n=1 and m is a product of two large primes p and q the complexi-
ty of the problem is used in RSA public key algorithm.  

We introduced Generalized Jordan Gauss elements  (GJG-transformations)of S(Kn) 
in the case of arbitrary commutative ring with nontrivial multiplicative group. 

For this task we consider the totality I(K) of Eulerian positive integers e such 
thatequation  xe=b where x ϵ K*, b ϵK*  has a unique solution and change condition 

(a(1,1),d)=1, (a(2,2),d)=1,…,(a(n,n),d)=1 in the definition of JG element for 
 a(i,i)ϵI(K). 
Noteworthy that such generalization is especially productive in the case of infinite 

rings. We refer to the composition of several GJG elements as computationally tame 
multiplicative transformation.  

Let nES’(K) stands for the group of computationally tame elements from nES(K). 
4.2. Generalizations. 

We consider totality BS(K*) of strings of kind (f0, f1, f2,…, fk,) where  fi are expressions 
of kind  axd, dϵZm, m=|K*|, aϵK* and k=0(mod 4).  We will identify polynomial f and 
the map x→f(x)  on K*. The product of two chains (f0,f1, f2,…, fk,)  and (g0,g1, g2,…, , gt,)  
is the chain (f0,f1, f2,…, fk-1,,  g0(fk ),g1,(fk ), …, gt-1,(fk ), gt(fk)). The string of kind (e), 
where e is identity map x→x  is the unity of  semigroup BS(K*). Let BR(K*) stand for 
totality of strings(f1, f2,…, fk,) from BS(K*) with invertible maps x→ fk,(x) from 
EG(K*).We refer to elements of  
 
 
BR(K*) as reversible multiplicative strings. Let u=(f1, f2,…, fk,) be an element of 
BR(K*). We refer to string rev(u)=(fk-1,(fk,

-1), fk-1,,(fk,
-1),,…, f1(,fk,

-1),  fk,
-1) as reverse 

string for u. Let K*[x1, x2, …, xn] be group of monomials from  K[x1, x2, …, xn] with 
operation of multiplication. For each linguistic graph Г(K*) over K*  of type (1, 1, n-
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1) we can consider infinite graph Г’=Γ(K*[x1, x2, ,…, xn]) defined by the same equa-
tions with Γ  but over the commutative  group  K*[x1, x2, …, xn]. 
    Let us consider the homomorphism of the group BS(K*) into Cremona semigroup 
S(Kn) defined in terms of linguistic graph I=In(K*). Notice that one can consider 
graph In(K’) over the extension K’ of K* with the usage of the same equations. Let us 
take K’=K*[x1, x2,…, xn],where xi are formal variables and consider an infinite graph  
In(K*[x1,x2,…,xn]), with partition sets P’=K*[x1,x2,…, xn]

n and L’=K*[x1, x2,…, xn]
n. 

After that we take a bipartite string u=(f0, f1, f2, f3, f4, f5,f6,…, ft-1, ft) formed by a totali-
ty of terms  from the subgroup  K*[x1] of K’=K*[x1, x2,…,xn] and the  point (x)=(x1, 
x2,…, xn) formed by generic elements of K’. This data defines uniquely a skating 
chain(x), J((x),f0)=(1x),N((1x),f1)=[2x],J([2x],f2)=[3x],N([3x],f3)=(4x),J((4x) , 
f4)=(5x),…, J([t-2x], ft-2)=[t-1x],N([t-1x],ft-1)=(tx),J((tx),ft)=(tx). 

Let (tx)be the tuple (ft, F2, F3,…,Fn) where Fi ϵK*[x1, x2,…, xn]. We define IΨ(u) as 
the map (x1, x2,…, xn)→(Ht, F2, F3,…,Fn) and refer to it as chain transition of point 
variety. 

The statement written below follows from the definition of the map.    
Lemma 2. Let I(K*)be a linguistic graph of type  (1, 1, n-1) over K* defined over 

multiplicative group of commutative ring K. Then map ψ=Iψ:BS(K*)→ nES(K*) is a 
homomorphism of semigroups. 

Lemma 3.Let uϵBR(K*) then u rev(u) is an element of kernel of Iψ, 

Corrolary. 
Iψ(BR(K*)) is a subgroup of Iψ(BS(K*)) 

Generalisation of  lemma 1 for the case of general linguistic graph over commutative 
group is proposed in [14]. 
  Let ED(n, K*) and EA(n, K*) stands for Iψ(BS(K*)) with I=D(n, K*) and I=A(n,K*). 
It is easy to see thatED(n, K*)>GD(n, K*) and EA(n, K*)>GA(n, K*). 
Below we define an extension of group of computationally tame transformations. 
4.3. On general linguistic graphs over commutative groups and generating pro-

cedure of mutually inverse transformations of (K*)
n
. 

       Similarly to the case of commutative ring we introduce a linguistic graph I(G)= 
Г(G) over abelian group G defined as bipartite graph  with partition sets P=Ps,m=Gs+m 

and L=Lr,m=Gr+m such that x=(x1, x2,…,xs, xs+1, xs+2, …,  xs+m)Iy=[y1, y2, … , yr , 

,yr+1,yr+2 , …, yr+s ] if and only if  x2/y2=g2w2(x1, ,y1), x3/ y3=g3w3(x1, x2, y1, y2), …, 
xn/yn=gnwn(x1, x2,  …., xn-1, y1, y2, …, yn-1), where gi ϵ G , i≥2 and wi are words in 
characters xi  and yj  from G. We refer to the triple (r, s, m) as type of I(G).We define 
colours ρ((p)) and  ρ([l]) of the point (p) and the  line [l] as the tuple of their   first 
coordinates of kind  a=(p1, p2,  …, ps) or  a=(l1,  l2 , …, lr )  and introduce well defined 
operator N(v, a)  of computing the neighbour of vertex v of colour aϵGs or aϵGr. Simi-
larly to the case of linguistic graph over commutative ring we define jump operator 
J(p, a), aϵKs on partition set  P and J(l,a), aϵKr  on partion set L by conditions 
J(p,a)=(a1,  a2, … as, p1+s, p2+s,  …, ps+n)and ρ(J(l,a))=[a1,  a2, …ar, p1+r, p2+r,  …, pr+m].   

Let as assume that G=K* and  consider semigroup sSr(K*) of tuples 
F=(f1(x1, x2,… ,xs),  f2(x1, x2,… , xs),…, fr(x1, x2,… , xs)) where fi(x1, x2,… ,xs) are mo-
nomial terms with coefficients from K*.We identify elements F of sSs(K*) with the 
maps α(F):x1→ f1(x1, x2,… ,xs),  x2→ f2(x1, x2,… ,xs),…,   xs → fs(x1, x2,… ,xs).For 
HϵsSr(K*) and F ϵsSr(K*) we define F(H) as tuple (f1(α(x1), α(x2),… ,α(xs)),  f2(α(x1), 
α(x2),… ,α(xs),…,  fr(α(x1), α(x2),… ,α(xs))for α=α(H). 
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        Let us consider a to totality sBSr(K*) of sequences of  kind u=(H0, G1, G2, 
H3,H4,G5, G6,…, Ht-1, Ht), t=4i, where Hkϵ S(Ks), 
Gj ϵSs,r(K).  We refer to sBSr(K*) as a totality of bigraded multiplicative symbolic 
strings. 

  We define a product of u with u’=(H’0, G’1, G’2, H’3, H’4, G’5, G’6,…, 
 H’l-1, Hl) as w=(H0, G1, G2, H3, H4, G5, G6,…, Ht-1, H’0(Ht), G’1(Ht), G’2(Ht),  H’3(Ht), 
H’4(Ht),  G’5(Ht), G’6(Ht), …, H’l-1(Ht),  H’l(Ht)).This operation converts sBSr(K*) into 
a semigroup. If Ht is an element ofsEG(K) then rev(u)=(Ht-1(Ht

-1),, Gt-2(Ht
-1), Gt-3(Ht

-

1)), H  t-4(Ht
-1),Ht-5(Ht

-1), Gt-6(Ht
-1),  Gt-7(Ht

-1),,…, H1(Ht
-1), Ht

-1), t=4i, where Hkϵ S(Ks), 
Linguistic compression homomorphism Iψ of  sBSr(K*)   into m+sEG(K) 
can be defined for arbitrary linguistic graph I(K*) of type s,r,m via generalisation of 
the definition of the map given in4.2.In general case Iψ(rev(u)u)=e. 

Let us consider group K’=K*[x1, x2,…xs.y1, y2,…, yr] and totality pBSp(K*) for 
p=s+r of chains of  maps F of kind  x1→f1, x2→f2,…, xs→fs, y1→g1, y2→g2,.., yr→gr 
from the semigroup pES(K). 

If r and s are chosen then we can  identify F with the pair of  elements 1F=( f1, 
f2,…, fs) ϵpSs(K*) and2F=( f1+s, f2+s,…, fp) ϵpSr(K*). 

The product of two chains (F1,F2,…, Fk,)  and (G1, G2,…, , Gt,)  is the chain (F1, F2,…, 
Fk,,  G1(Fk ), G2,(Fk ), …, , Gt,(Fk )).    Empty chain is the unity of the semigroup pS(K*) 
formed by this totality of chains. In fact semigroup pS(K*) is a semidirect product of a 
free semigroup over the alphabet pSp(K*) and Eulerian semigroup pES(K*). We refer 
to this object as semigroup of strings of Eulerian transformations.We consider also 
semigroup pRS(K*)  of reversible strings of kind u=(F1, F2,…, Fk,),  Fkϵ pES(K*). For 
such special string we ntroduce  its reverse as rev(u)=(Fk-1((Fk,)

-1), Fk-2((Fk,)
-1),…, 

F1((Fk,)
-1), (Fk,)

-1)). Let pS’(K*) and pRS’(K*) be subsemigroups of strings of even 
length inpS(K*) and pRS(K*).   

Edge (p, l) of linguistic graph I(K*), where pϵP, lϵL, pIl can be presentedvia  the 
tuple (p1, p2,….,ps+m, l1, l2, …, lr)ϵ(K*)s+r+m  where p=(p1, p2,…., ps+m) and the tuple (l1, 
l2, …,lr) is a colour of the line l. 

We consider the graph I(K*[x1, x2,….,xs+m, y1, y2, …, yr]) defined by the same list of 
equations with I(K*) but over larger commutative group K’=K*[ x1, x2,….,xs+m, y1, y2, 
…, yr]. 

 The following symbolic computation can be defined. Take the symbolic edge 
x=(x1, x2, …, xs+m, y1, y2, …, yr) where xi and yi are generators of K’ over smaller 
commutative group K* and  polynomial string u=pS(K*) which is a tuple 

(F1, F2, …, Ft)ϵpS(K*)  of strings f1,, f2,, ,fp from K*[x1, x2,….,xs+m, y1, y2, …, 
yr]

p  with even parameter t .We have to complete the following steps. 
S0. Compute the line l=(y1, y2, …,yr, L1, L2, .., Lm). Noteworthy that LiϵK’. 
S1.  Take operation J(l,2F1) of change the colour of l for 2F1. 
Let 1l=J(l, 2F1). 
S2. Compute the neighbor 1p of the line of colour 1F1.We have 1p=N(1l, 1F1). 
S3. Change the colour of 1p for1F2. Let 2p=J(1p, 1F2). 
S4. Compute  the neighbouring line 2l of  2p with the colour 2F2.. 
Repeat steps S1-S4 with initial edge 2p, 2l and components F3 and F4 of the string F. 
After the completion of the cycle  S1-S4 of d=t/2 times we get the edge 
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dp, dl of the algorithm. Let (P1, P2, …,Ps, Ps+1, Ps+2, .., Ps+m) coordinates ofthe line 
dp of the graph I(K’) and L1, L2, …,Lr be the colour of the linedl.Noteworthy that(P1, 
P2, …,Ps)=

 1Ft.and (L1, L2, …,Lr)=
2Ft. . 

Finally we consider the map φ on edge variety ( K*)s+r+m of the original 
graph I*(K) given by the rule x1→P1, x2→P2,…, 
xs+m→Ps+m,y1→L1,y1→L2,…,yr→Lr , which is an element of m+s+rES(K). 

We refer to φ=Iφ as linguistic edge compression map of graph I(K*). 
Lemma 3. Let I(K*) be a linguistic graph of type  (s, r, m) over K* defined over 

multiplicative group of commutative ring K. Then edge compression  map φ=Iφ: 
r+sS(K*)→r+s+mES(K*) is a homomorphism of semigroups. 

Lemma 4.Let uϵpRS(K*)  then urev(u) is an element of kernel ofnIφ , 

Corrolary.
Iφ(

r+sRS(K*)) is a subgroup of 
Iφ(

r+s
S(K*)). 

We refer to elements ofIψ(sBSr(K*))and 
Iφ(

r+s
S(K*)) as chain transitions ofpointsand 

edgesof type(s, r, m)on the varieties(K*)
r+s

and(K*)
r+s+m

respectively. 
We consider totalities sRrof  Rs,rreversible strings from sBSr(K*)andr+sS(K*) with 

last component from sEG’(K) and s+rEG’(K)and Iψ(
sRr

) and 
Iφ(Rs,r)). Let 

nX(K*)be the totality of chain transition from setsIψ( sRr
)for all possible linguistic 

graphs I(K*) of type s, r, n-s,  0<r, s<n and nY(K*)  be the totality of chain transi-
tions from Iφ(Rs,r) of type s, r, n-s-r. We consider  multiplicative linguistic group 
nLG(K*) generated by elements  nX(K*) ,nY(K*)and all generalized Jordan-Gauss ele-
ments of nEG(K*). 

In some cases of special commutative rings K one can prove that 
nEG(K*)=nLG(K*).  The following natural algorithm for generation  of pair g and g-1 
consists of four  steps S1 – S4. 

S1. take several generalised Jordan-Gauss elements j1, j2, …, jk and compute their 
inverses. S2. select pairs s(i), r(i) fori=1, 2, …,t  and corresponding linguistic 
graphs L(i)=L(r(i), s(i))(K*)of type s(i), r(i), n-s(i).Take strings u(i) from the 
subsets(i)Rr(i)of s(i)BSr(i)(K*).Compute rev(u). Take linguistic compression homomor-
phism L(i)ψ and compute ai=

L(i)ψ(u(i)) and their inverses ai
-1=L(i)ψ(rev(u(i))). 

S3. select pairs s(i), r(i) for i=t+1,t+ 2, …, t+d and corresponding linguistic graphs 
L(i)=L(r(i), s(i))(K*). Take strings u(i) from the subset Rs(i),r(i) of  
s(i)+r(i)RS(K*)).Compute rev(u). Take linguistic compression homomorphism L(i)ψ and-
computes ai=

L(i)φ(u(i)) and their inverses ai
-1= L(i)φ(rev(u(i))). 

S4.take alphabet A ={j1, j2, …, jk, ,a1,a2, …, at+d} and write a word g in this alphabet 
z1z2…zl  where ziϵA. Then g-1 =zl

-1zl-1
-1…z1

-1. 

 

 

 

 

5. Inplementation of algorithm 2. 1. 2 with subsemigroups ED(n, K*) and 

EA(n, K*) and  corresponding cryptosystems. 

 5.1. Implementation of protocol 2.3.2. 
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           Recall that Alice and Bob have to use algorithm 2.2 with collision map u on 
(K*)m as  leading procedure. So Alice works with objects related to graph D(n, 

K*).She takes stringsu1, u2,…, us, s>1 of BS(K*). She computes images gi and hi of 

linguistic compresision maps 
D(n,K*)ψ ofBS(K*) onto ED(n, K*)and 

A(m,K*)ψ of 
BS(K*) onto EA(m, K}. Alice will use homomorphism φ of ED(n, K*)  onto EA(m(n), 
K*)  induced by graph homomorphism of D(n, K*) onto A(m. K*) (see section 3). 
Noteworthy that φ(gi)=hi . She use algorithm of section 4.3 and generate  pairs g, g-1 
from nLG(K) and h, h-1ϵmLG(K).Finally Alice computes pairsai=ggig

-1and bi=hhih
-

1and sends them to Bob. Further steps of algorithms follows to general scheme. As 
output correspondentsget collision element  u from mES(K*). 

     5.2. Conversion to a cryptosystem. 

Alice uses algorithm 4.3 to generate new pair of mutually invertible elements f and 

f-1. Assume that f is given by tuple (f1, f2,… fm) from the K*[x1, x2, …, xm] and u is 

presented by (u1,u2,… um).Alice computes string (f1u1, f2 u2, …, fkuk). and sends it to 

Bob. He restores the string (f1, f2,… fm) and uses this map for the encryption. Alice 
decrypts with f-1. 

5.3. Asymmetric schemes of multivariate cryptography on safe Eulerian mode. 

Let  F,F-1be an asymmetric multivariate encryption scheme like one of various  

modifications of Imai Matsumoto MIC cryptosystem or another known bijective 
quadratic multivariate scheme. Assume that multivariate encryption rule F is given in 
its standard form. Note that procedure of computation of  F-1 in the given point can 
be given as numerical algorithms. Alice selects g from ,mLG(K) given by the rule (g1, 

g2,… gm) and  computesg-1. She sends ‘’deformed  g’’ (see [16] and examples in 

[41]) in the form of tuple (g1u(f)1,g2u(f)2,…, gmu(f)m) together with F(g-1)  in its 
standard form. Bob is notified on the form of ‘’deformation rule’’. So he restores 
themap F. 

Correspondents works with the plainspace(K*)m and cipherspaceKm. Bob writes his 
massage p, transforms it to p’=f(p) and creates the ciphertext as F(p’)=c. Alice com-
putes F-1(c)=c’ and restores the plaintext as f-1(c’). 
Adversary is not able to apply known methods of Algebraic Cryptology, because of 
encryption multivariate map G=F(f) is not a bijective transformation of Km, it has 
unbounded degree. Task of finding of G’ on Km such that G(G’) acts on (K*)m as 
identity is unfeasible task because of standard form for G’ is not a rule of polynomial 
density. 

 Supporting procedure is algorithm of kind 2.1 with the same commutative ring Kand 
parameter  m.Alice creates elements z and  z-1 of mLG(K). She takes z of kind xi →zi 
(x1, x2,…, xm), i=1,2,…,m  and forms the tuple (z1u1, z2u2,…,zmum) to send it to Bob. 
He uses his knowledge on u to compute z. 

Alice sets pairs (ai, bi) to start supporting protocol 2.1. She sends bi(z
-1) which has 

polynomial density to Bob. Bob use his knowledge on z and computes  bi. Corre-
spondents execute protocol 2.1 and get collision stable map u.  



16 

 

Alice uses platform of 2.1 to generate mutually invertible transformations y and y-

1acting on Km.  She keeps y-1 for herself and sends y+u to Bob. He subtracts u and 
gets y. As in previous algorithm Alice and Bob use plainspace (K*)m and ciphertext 
Km. 

To encrypt Alice maps her message p in the alphabet K* to z-1(p)=m  and then she 
computes theciphertext c=y-1(m). Bob decrypts via application of y to c and computa-
tion z-1(y(c)). 

   Similarly Bob encrypts p via consecutive computation of z to p and y(z(p)).Alice 
applies y-1 to ciphertext c and computes the plaintext as z-1 (y-1 (c)).  

 

6.  Groups GD(n, K) and GA(m, K) and  corresponding cryptosystems. 
   

 6.1. Implementation of algorithm 2.1.1 with groups GD(n, K) and GA(m, K). 
    Implementation of 2.1.2 on the base of platform GD(n, K) and homomorphism of 
this group onto transformation group GA(m, K) is very similar to the case of the in-
verse Tahoma protocol presented in [14]. The difference is that the outcome  of di-
rected protocol is a collision element u from GA(m, K), recall that uis a cubic map. 
Let us describe the directed protocol. 
      Alice takes strings u1, u2,  …, ul. l>1 from the semigroup ∑(K).She takes elements 
g and g’ from∑(K) together with reversing strings rev(g) andrev(g’).  Alice formsele-
ments vi=gui rev(g) and v’i=g’uirev(g’). 
  She takes homomorphism Гη defined in section 3.2 for cases Γ=D(n, K) and A(m, K) 
and computes yi=

D(n, K)η(vi) and zi=
 A(n, K)η(v’i). Alice takes affine transformations 

T1and T2 of free modules Kn and Km respectively and forms cubic transformations 
ai=T1yi T1

-1 and bi=T2iziT2
-1 . She sends pairs (ai , bi),i=1,2,…, l to Bob. 

     He takes abstract alphabet c1, c2,…, cl and writes word w=w(c1, c2, …, cl) of some 
length t, t>l. Bob specialize ci as ai and computes cubical transformationw(a1, a2,…, 
al)=v to Alice but keep specialisation u= w(b1, b2, …, bl) for himself. Alice restores u 
via following steps. 
S1. Computation of T1

-1vT1 =v’ , rev(g)v’g=v’’. 
S2.  Computation of ind(δ)(v’’)=y. 
S3.  Computation of y’=(g’)yrev(g’) and u as T2iyT2

-1. 
6.2. Conversion to cryptosystem. 

Alice can take two other invertible affine transformations T’1 and T’2 of free module 
Km and generate pair of mutually inverse elements g and g-1 from GA(m, K) and sends 
h=T’1gT’2+u to Bob. 
He restores encryption map  f=T’1gT’2. Alice can decrypt with T2

-1g-1T1
-1. The  disad-

vantage of this cryptosystem is the fact that decryption map is also cubical one.It 
means that in the case of O(n3) interceptions of plaintext-ciphertext pairs the adver-
sary is able to conduct linearization attack in time O(n10). 
Natural recommendation is to execute just O(n2) exchanges and set the new encryp-
tion rule (possibly with new session of  protocol 6.1). 
6. 3. Transform to Eulerian mode. 
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Alice can use algorithm 4. 3 for generation of z, z-1 from can send zf-1to Bob. He re-
stores z.So correspondents works with plainspace (K*)m and cipherspace Km. Bob 
encrypts his plaintext p as c=f(z(p).Alice restores p as z-1f-1( c). 

6.4. On schemes of quadratic multivariate cryptography on safe Eulerian mode. 

    Assume that scheme F , F-1 as in 5.3 where F is quadratic multivariate map is cho-
sen by Alice. Let D be the differential operator d/dx1+d/dx2+…,+d/dxm. After the 
completion of 6.1. Alice takes the collision map u: xi→ui and forms the tuple v=(Du1,  
Du2,…, Dum).Now she  transforms F=(f1, f2, …, fm) to W=(f1+ v1, f2+v2, …, fm+vm). Alice 
sends W to Bob. He restores F. 

    Now correspondents can work on Eulerian mode.Bob transforms his plaintext p 
ϵ(K*)minto p’=z(p) and compute the ciphertext as F(p’). Alice uses  computational 
procedure for F

-1
and z

-1
 to decrypt. 

6.5. On the usage of toric  and stable platforms  in tandem. 

6.5.1 Public key algorithm with Eulerian transformations on private mode. 

Correspondents can implement schemes 2.2.3 and 2.2.1 with the platforms of Sections 
5  and 6. The output for  each of these versions will be the collision map uϵmLS(K)  
and another collision element y ϵKm.  
       Alice can generate a public key map  suggested in the paper [9] ( case of arith-
metical ring Z,d d>2) and [10] (the case of finite field). 

      So she generate  maps z  and  z-1  from 
mLG(K) as in 6.3 and cubical  map 

f=T’1gT’2 as in 6.2 and its reverse f-1. Alice takes composition f(z) as in 6.2.  She 
computes f(z)+y(u) and sends it to Bob. He restores f(z) and uses this map for encryp-
tion. Alice decrypt the ciphertext via consequtive applications of f-1  and z-1  to ci-
phertext. Let us parameter t’ stands for the length of reimage of g in   ∑(K). 

We refer to t’ as the length of the string. Computer simulations demonstrates  the 

‘’condensed matters physics’’ digital effect. If t’ is ’’sufficiently large’’, then M(g, m 

,t’) is independent from t’ constant.  We have written a program for the implementa-

tion of the protocol. It written in C++ and compiled with the gcc compiler. We used 

an average PC with processor Pentium 3.00 GHz, 2GB memory RAM and system 

Windows 7. We have implemented three cases: 

(1) T’1  and T’2  are identities , 
(2) T’i ,i=1,2  is the   map of kind x1→ x1+ a2x2+a3x3+ … +amxm,  x2→ x2, x3→x3, 

…, xm→ xm, ai≠0, i=1,2,…,m, 
(3)  Ti= Aix+ bi;  where the majority of  entries of each matrix  Ai and coordinates 

of vector  bi are  nonzero elements. 
The  number of monomials depends from parameters m and t’  and the form of trans-
formation Ti. Let us assume that parameter m ,  matrices Ti and commutative ring are 
chosen, So the  value of  M(g, m, t’) depends only from variable t’  
Computer simulation shows that if t’ is “sufficiently large” then M(g,m, t’) is a con-
stant.  
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Table 1 . Number of  monomial terms of the encryption  map,  K= Fq, 
q=232, the case І 

 

 length of the string t’ 
m 16 32 64 128 

16 250 250 250 250 
32 770 1010 1010 1010 
64 1810 3074 4066 4066 
128 3890 7202 12290 16322 

 
Table 2. Number of  monomial terms of the encryption  map, K= Fq, 

q=232, the case ІІ 
 

 length of the string t’ 
n 16 32 64 128 

16 3426 3426 3426 3426 
32 19392 26310 26310 26310 
64 89472 148420 206222 206222 
128 383232 692676 1161356 1633054 

 

Table 3. Number of  monomial terms of the encryption map, K= Fq,  
q=232, the case  ІІІ 

  length of the string  

m 16 32 64 128 

16 6544 6544 6544 6544 
32 50720 50720 50720 50720 
64 399424 399424 399424 399424 
128 3170432 3170432 3170432 3170432 

 

Table  4. Number of monomial terms of the encryption map, K= Zq,  
q=232, the case  І 

 
  length of the string t’ 
M 16  32  64  128  256  
16  257   257   257   257   257 
32  785   1025   1025   1025   1025 
64  1841   3105   3849   4097   4097 

128  3953   7265   9578   13681   15992 
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Table  5: Number of monomial terms of the encryption map. K= Zq,  

q=2
32, case II 

 
  length of the string t’ 
m 16  32  64  128  256  
16  8840   8840   8840   8840   8840 
32  94087   113168   113168   113168   113168 
64  868811  1309887 1549061 1599519 1599520 

128 7380170  986066  17063985  19410643  22875533 
 

Table  6: Number of monomial terms of the encryption map. K= Zq,  

q=2
32,  case III 

 
  length of the word  

 16  32  64  128  256  
16  15504   15504   15504   15504   15504 
32  209440   209440   209440   209440   209440 
64 3065920 3065920 3065920 3065920 3065920 

128 46866560  46866560  46866560  46866560  46866560 
 

6.5.2.Correspondents can implement schemes 2.2.3 and 2.2.1 with the platforms of 
Sections 5  and 6.The output for  each of these versions will be the collision map u 
ϵmLS(K)  and another collision elementy ϵKm. 
In this case Alice can select arbitrary element z given by a string (z1,z2, …,zm)  from 
mLG(K) and  cubic (or quadratic)  multivariate scheme of kind (F, F-1). 
She sends tuples (z1u1,z2u2,…,zmum)  and (f1+y1 , f2+y2 , …, fm+ym) (in the case of 
deg(F)=2  we compute ((f1, f2, …, fm) +(Dy1,Dy2, …,Dym)).Bob restores z and F and 
correspondents work with plainspace (K*)m and K m similarly to previous case 6.5. 
6.5.3.Usage of recurrent and governing rules to work with combine multivariate 

transformations of different nature. 

    Let us assume that Alice takes several bijective transformations F1, F2, …, Fkof 
degree at most 2.  She can use transformation y= (y1, y2, …, ym)and deliver several 
elements iy,  i=1, 2, …, t from the stable platform via recurrent procedure. One of the 
options is the following. Alice sends r1=

1y+y, r2 =
2y(1y)+1y,…, rk=

ky(k-1y)+k-1ytoBob. 
So he computes iy. Secondly she computes   D(iy)=(D(iy1), D(iy2), …, , D(iym)) and 
sends to Bob elements Gi=Fi+D(iy) where + is an operation in K[x1, x2,…, xm]m. 

So Bob can use a sequence of elements u(1)=1y, u(2)=y2, ..,u(k)=ky,u(k+1)=F1,, 
u(k+2)=F2, …,u(2k)=Fk  of the alphabet A .  

Alice writes governing rule in the form of word w=w(z(1), z(2), …, z(2k))= 
z(i1)z(i2)…z(il) in formal alphabet Z formed  by z(i), i=1,2,…,2k wherei1, i2, …, il is 

a sequence of elements from {1, 2, …, 2k}.She sends w via open channel to Bob. He 
specialises z(ij) as u(ij), j=1,2,….,2k, writes his message as p=(p1, p2, …, pm) and 
computes ciphertext with the procedure c1=u(i1)(p),cj=u(ij(cj-1), j=2,3,…,2k,c=c2t. 
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Alice writes reverse word and takes sequence u(i2t)
-1, u(i2t-1)

-1, … , u(i1)
-1 for the de-

cryption. 
Correspondents can use  the above platform in tandem with the standard platform  

mLS(K) of toric directed Tahoma protocol with the output uϵmLS(K).Alice can gener-
ate pairs  iu, iu-1,i=1,2,…,l from mLG(K). She uses open recurrent rules to compute 
(1u1∙u1, 

1u2∙u2, ,…, 1um∙um)=1h, (2u(1u)1∙1u1, 
2u(1u)2∙1u2,…, 2u(1u)m∙1um)= 2h,…,  

(lu(l-1u)1∙l-1u1, (
lu(l-1u)2∙l-1u2,…, (lu(l-1u)m∙l-1um)=lh for Bob.He restores iu=v(i). 

Alice writes second governing rule in the form of word w’=w’(z(1), z(2), …, z(l))= 
z(i1)z(i2)…z(it), t>l-1  in formal alphabet Z‘ formed by z(i), i=1,2,…,l wherei1, i2, 

…, it is a sequence of elements from {1, 2, …, l}.She sends w’via open channel to 
Bob. He specialises z(ij) as v(ij), j=1,…., t. writes his message as p=(p1, p2, …, pm) and 

applies elements v(i1), v(i2),…, v(it), u(i12t), u(i1), …, u(i2k).                 
7. Conclusion. 
Let us consider totality V(K) of elements F of Cremona semigroup of polynomial 
degree O(nt) and polynomial density O(nd)such  that the restriction F’ of F onto (K*)m 
is an injective map and there is a polynomial algorithm of computation of reimage of 
element from Im(F’)=F((K*)m). We assume that element of V(K) is given via its 
standard form. In fact we are interested only in the usage of F’. It means that we can 
substitute each syllable x1

a of each monomial term for x1
a mod (K*). So without loss of 

generality we may assume that t=1. 
   We assume that commutative ring K with unity has nontrivial multiplicative group 
K*. Noteworthy that variety mV(K) contains all bijective maps of C(Km) of bounded 
degree for which a polynomial  procedure to compute reimage x of F(x) is available. 
Wide class of such maps is formed by explicit constructions of Multivariate cryptog-
raphy designed as potential candidates for a secure public keys or stream ciphers of 
multivariate nature. For us existence of effective cryptanalysis for such candidates is 
immaterial. 
           Some examples of non-bijective elements of mV(K)for special rings are given 
in [30] or [31]. 
         Construction of group mLG(K)allows to generate pair of mutually inverse ele-
ments z, z-1of the group and to transfer selected F from mV(K) into newmap 
x→Y=F(z(x)) from mV(K).  Really both F’ and  F’(z) have degree O(n). 
 (2) So the owner of the pair  (Alice) can announce Y written in standard form as new 
public key cryptosystem with the plainspace (K*)m and  ciphertext    Km. 
(3) Alternatively Alice and her correspondent (Bob) can use cryptosystem of El 
Gamal type based on subsemigroups of nES(K) and mES(K) (see  [32]). Security of 
this cryptosystem is based on the word problem. Notice that together of algorithm of 
the section 4.3 inverse protocol can be used in the wide case of finite commutative 
ring with nontrivial multiplicative group. So correspondents elaborate pair u, u-1 

where u belongs to  Alice and u-1 is in the  possession of Bob. 
Alice send  F(z(u)) to Bob and he restores Y=F(z). Bob can write plaintext pϵ(K*)m 

and form ciphertext as Y(p). Alice can compute c’=F-1(c) and compute his plaintext as  
z-1 (c’). 
Notice that this algorithm is asymmetrical. Bob does not have ‘’ local inverse’’Y’ of Y 
for which Y’Y acts identically on the variety (K*)m.  
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(4) For safe delivery of Y to Bob correspondents may use direct Tahoma protocol 
with two platforms nES(K) and GD(n,K). So they elaborate uϵ mES(K) and g ϵ 
GD(m.K) for Alice and Bob. Alice sends ug+F(z) to Bob. He restores F(z) via sub-
traction of ug.The remaining part of such  algorithm is same with previous one. 
 Correspondents can use symmetric scheme because Alice can deliver z and F on 
secure mode via schemes of section 6. 
Known methods of algebraic cryptanalysis with the usage of Shirshov-Grobner algo-
rithms are not applicable to suggested above cryptosystems especially in the cases of 
alternative form to public key cryptosystems.  
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