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Abstract. Blaze, Bleumer and Strauss introduced the notion of proxy re-encryption
(PRE), which enables a semi-trusted proxy to transform ciphertexts under Alice’s
public key into ciphertexts under Bob’s public key. The important property to note
here is, the proxy should not learn anything about the plaintext encrypted. In 2009,
Weng et al. introduced the concept of conditional proxy re-encryption (CPRE), which
permits the proxy to re-encrypt only ciphertexts satisfying a condition specified by
Alice into a ciphertext for Bob. CPRE enables fine-grained delegation of decryption
rights useful in many practical scenarios, such as blockchain-enabled distributed cloud
storage and encrypted email forwarding. Several CPRE schemes exist in the literature
based on costly bilinear pairing operation in the random oracle model. We propose
the first construction of an efficient CPRE scheme without pairing, satisfying chosen
ciphertext security under the computational Diffie Hellman (CDH) assumption and
its variant in the random oracle model.

Keywords: Proxy Re-Encryption, Public Key, Conditional, Pairing-less, Unidirec-
tional, Single hop, CCA-secure.

1 Introduction

Proxy re-encryption (PRE) introduced by Blaze, Bleumer and Strauss [5] is a cryptographic
primitive which has come into light in the last two decades. It enables re-encryption of
ciphertexts under Alice’s public key into ciphertexts under Bob’s public key with the help of
a semi-trusted third party termed as proxy, who gains no information about the underlying
plaintext. Note that, this can be trivially achieved by Alice who can decrypt the ciphertext
and encrypt it further using Bob’s public key. However, this requires Alice to remain online
which is not always possible. In proxy re-encryption, the proxy is authorised to re-encrypt
ciphertexts under the public key of the delegator Alice using a special information (re-
encryption key) that is shared by Alice. It is to be noted that PRE provides delegation of
decryption rights without allowing the proxy to learn any information about the underlying
plaintext nor to recover the private key of the delegator Alice. Proxy re-encryption schemes
are categorised on various basis. Based on the direction of rights to delegate, PRE schemes
are classified into unidirectional and bidirectional schemes. Based on the number of re-
encryptions allowed, PRE schemes are classified into single-hop and multi-hop schemes. In
this work, we focus on single-hop unidirectional PRE schemes. PRE is extensively used in
encrypted email forwarding, distributed file systems, DRM of Apple’s iTunes, privacy in
public transportation and outsourced filtering of encrypted spam [2,3,6,35,27].



Owing to its transformational property, a major application of PRE is enabling secure
file sharing in blockchain powered data storage [1]. Decentralised applications (DApps) often
rely on third parties to provide services such as data storage. Therein, PRE facilitates
data owners to securely share their encrypted content with other users, while the third
party storage provider has no knowledge of the uploaded content. In 2009, Weng et al.
[33] introduced the notion of conditional proxy re-encryption (CPRE). CPRE is a variant
of PRE, enabling the delegator to implement fine-grained delegation of decryption rights.
Let us consider the following scenario. A DApp user Alice wishes to share her encrypted
data stored on the cloud. However, Alice chooses to share only her media files with Bob,
whereas share her account files with Carol alone. Note that, the traditional PRE schemes
fail to provide the desired fine-grained control of delegation. Conditional PRE efficiently
addresses the problem by assigning the decryption capability to Bob and Carol based on a
preferred conditions media and account set by Alice respectively. In CPRE, the ciphertexts
and re-encryption keys are generated only with respect to the condition and decryption
is possible only if the associated condition is satisfied. In order to facilitate secure data
sharing in the distributed cloud, it is essential to build efficient CPRE protocols. All the
existing CPRE protocols are designed using expensive bilinear pairing operations, which
makes it very difficult to be adopted in practice. We address this issue and propose an
efficient pairing-free solution tailored to practical settings such as cloud storage.

1.1 Related Work and Contribution

Removing pairing operations from unidirectional PRE constructions is one of the major
open problems stated by Canetti et al. [7]. As a solution to providing flexible delegation of
decryption rights, Weng et al. [33] introduced the notion of conditional proxy re-encryption.
Although several constructions achieving CPRE has been proposed in the literature, to the
best of our knowledge, all existing schemes are based on the expensive bilinear pairing op-
eration. In [33], the first construction of a CCA-secure CPRE scheme is proposed in the
random oracle model, assuming the 3-QBDH (3-Quotient Bilinear Diffie Hellman) assump-
tion. Their design involves computing two separate keys (re-encryption key and condition
key), used by the proxy to achieve conditional re-encryption. Tang et al. [30] independently
proposed the concept of conditional re-encryption labelled as type-based PRE enabling the
re-encryption key to transform a subset of ciphertexts. Their scheme is CCA secure based
on the CBDH (Computational Bilinear Diffie Hellman) and KE (Knowledge of Exponent)
assumptions in the random oracle model. Their construction limits the delegators and dele-
gatees to be in different systems, such that a user in a given system can only act as either (not
both) a delegator or a delegatee. Note that the security notions in [33,30] consider only sec-
ond level ciphertext security and does not address security of first level ciphertexts. Also,
the scheme due to Weng et al. [33] is shown to be vulnerable to CCA attack by Weng et al.
[34]. In 2009, Weng et al. [34] re-formalised the security notions of CPRE, by proposing a
rigorous security model addressing ciphertext security at both levels. They also proposed
a new construction of CCA-secure CPRE in the random oracle model, by combining both
keys (re-encryption key and condition key) into a single key, used for re-encryption. Their
scheme is CCA secure based on the DBDH (Decisional Bilinear Diffie Hellman) assumption
in the random oracle model. Later, Chu et al. [10] introduced a generalised version of CPRE,
termed conditional proxy broadcast re-encryption (CBPRE), that conditionally re-encrypts
ciphertexts for only a set of users at a time satisfying the specified condition, and proposed
an RCCA-secure CBPRE scheme based on the n-BDHE (n-Bilinear Diffie Hellman Expo-
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nent) assumption in the standard model. RCCA security is a weaker variant of CCA security
wherein a harmless mauling of the challenge ciphertext is tolerated. Fang et al. [14] formal-
ized the notion of anonymous RCCA-secure CPRE such that the condition associated with
the ciphertext remains anonymous to the proxy, and presented a concrete construction of
anonymous CPRE scheme based on the 3-QDBDH and truncated q-ABDHE (q-Augmented
Bilinear Diffie Hellman Exponent) assumption in the standard model. Fang et al. [12] pro-
posed the first Chosen-Ciphertext Secure anonymous conditional proxy re-encryption with
the added functionality supporting keyword search (C-PRES), based on the DBDH and
truncated q-ABDHE assumption in the random oracle model. Shao et al. [26] proposed
an identity based conditional proxy re-encryption scheme secure against CCA attack, se-
cure under the DBDH assumption in the random oracle model. Further, Liang et al. [19]
proposed a CCA-secure identity based CPRE scheme based on the DBDH assumption in
the standard model. However, He et al. [15] shows that the scheme in [19] is vulnerable
to CCA attack. Vivek et al. [31,32] proposed a CCA secure CPRE scheme secure under
the mCBDH (modified Computational Bilinear Diffie-Hellman) assumption in the random
oracle model. Further, Son et al. [28] proposed a CCA secure CPRE construction relying
on the hardness of DBDH assumption in the random oracle model, where they partially
outsource expensive operations such as re-encryption key generation and decryption to an
outsourcing server. Subsequently, Qiu et al. [24] proposed an efficient CPRE scheme and
prove its chosen-ciphertext security DBDH assumption in the random oracle model. In [20],
Liang et al. provided a generic approach to convert Hierarchical Identity-Based Encryp-
tion (HIBE) schemes to CCA secure CPRE schemes, and also gave an instantiation of a
CCA secure CPRE scheme in the standard model, based on Waters-HIBE scheme. Till
date, the scheme due to Vivek et al. [31] is the most efficient CPRE protocol based on
bilinear pairing.

Certificate-based conditional PRE schemes have been proposed in [17,18], whose security
is reduced to the intractability of the DBDH problem in the random oracle model. Recently,
Liu et al. [23] proposed the notion of multi-conditional proxy broadcast re-encryption(MC-
PBRE), which allows re-encryption of ciphertexts to users satisfying any number of con-
ditions from a set of predefined conditions. Their construction is CCA secure under the
n-BDHE assumption in the standard model. As our focus is on CPRE schemes in the PKI
setting, we omit the variants and extensions of CPRE, such as hierarchical conditional
PRE [13], conditional broadcast PRE [10], outsourcing CPRE [28], type-based PRE [30],
multi-conditional PRE [23], collusion-resistant PRE and attributed based PRE [21,16] for
fine grained delegation of decryption rights.

Note that all the above mentioned schemes rely on bilinear pairing operations, as stated.
Pairing has been considered as one of the most expensive operations ever since its introduc-
tion in public key cryptographic primitives with respect to computational complexity and
memory requirement. Pairing operations are costly when compared to modular arithmetic
operations, and takes more than twice the time taken by modular exponentiation computa-
tion despite recent advances in implementation techniques [4]. To the best of our knowledge,
no pairing-free CPRE scheme exists in the literature. In this work, we propose an efficient
pairing-free unidirectional single-hop conditional proxy re-encryption scheme in the random
oracle model, by extending the PKI based PRE construction of Chow et al. [9] proposed in
2010. We also demonstrate the efficiency of our construction as compared to the most effi-
cient pairing-based CPRE protocols, in Section 4. Our scheme satisfies CCA security in the
random oracle model and is based on the Computational Diffie Hellman (CDH) assumption
and its variant. A notable feature of our work is that our scheme provides modularity, in the
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essence that, the CPRE scheme can function as a traditional PRE scheme in the absence of
a condition, with minor changes to the scheme.

2 Definition and Security Model

2.1 Definition

We describe the syntactical definition of unidirectional single-hop conditional proxy re-
encryption and its security notion. Weng et al. [33] designed the first CPRE model that
generates two different sets (re-encryption key and condition key) of keys pertaining to a
condition. A more generalized approach proposed by Weng et al. [34] combines both keys
into a single key used for re-encryption. We adopt the definition of unidirectional single-hop
conditional proxy re-encryption from the work of Weng et al. [34], as described next. In
our framework, the re-encryption key is composed of two parts: an ephemeral conditional
re-encryption key and a permanent re-encryption key. Between two users, the conditional re-
encryption key changes with a change in the condition, whereas the permanent re-encryption
key component remains unaltered throughout.

– Setup(λ): The setup algorithm is a probabilistic algorithm that takes the security
parameter λ as input and returns a set of public parameters params, shared by all the
system users.

– KeyGen(i, params): The key generation algorithm is a probabilistic algorithm which
takes as input a user index i and public parameters params and returns the public key
and private key pair (pki, ski) of a user i.

– ReKeyGen(ski, ω, pki, pkj , params): The re-encryption key generation algorithm is
a probabilistic algorithm which takes as input the private key ski, a condition ω, the
public keys pki and pkj of users i and j and public parameter params, and returns a
re-encryption key RK

i
ω→j = (RK〈c〉, RK〈p〉) comprising of two components: RK〈c〉 the

ephemeral conditional re-encryption key and RK〈p〉 the permanent re-encryption key.
– Encrypt(pki,m, ω, params): The encryption algorithm is a probabilistic algorithm which

takes as input the public key pki of a user i, a plaintext m ∈M, a condition ω and public
parameters params and returns a ciphertext Ci corresponding to m and condition ω
which is allowed to be re-encrypted towards another user. The ciphertext Ci is termed
as second-level ciphertext.

– Re-Encrypt(RK
i
ω→j , Ci, params): The re-encryption algorithm is a probabilistic al-

gorithm which takes as input a re-encryption key RK
i
ω→j , a second level ciphertext Ci

encrypted under pki associated with the condition ω and public parameters params, and
returns a ciphertext Dj encrypted under the public key pkj . The re-encrypted ciphertext
Dj is termed as first level ciphertext.

– Decrypt(ski, Ci, params): The decryption algorithm is a deterministic algorithm which
takes as input the private key ski of a user i, a second level ciphertext Ci, and public
parameters params and returns a plaintext m or the error symbol ⊥ if the ciphertext
is invalid.

– Re-Decrypt(skj , Dj , params): The re-decryption algorithm is a deterministic algo-
rithm which takes as input the private key skj of a user j, a first level ciphertext Dj ,
and public parameters params and returns a plaintext m or the error symbol ⊥ if the
ciphertext is invalid.
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The consistency of a CPRE scheme for any given public parameters params and a public-
private key pair {(pki, ski), (pkj , skj)} is defined as follows:

1. Consistency between encryption and decryption:

Decrypt(ski, (Encrypt(pki,m, ω, params), params) = m, ∀m ∈M.

2. Consistency between encryption, re-encryption and decryption:

Re-Decrypt(skj , Dj , params) = m, ∀m ∈M,

where Dj ← Re-Encrypt(RK
i
ω→j , Ci, params) is a first level ciphertext and Ci ←

Encrypt(pki,m, ω, params) is a second level ciphertext.

2.2 Security Model

We define the notion of semantic security for our CPRE scheme under chosen ciphertext
attack. Since there exists two levels of ciphertexts in a PRE scheme, namely first level and
second level ciphertexts, it is essential to define two types of security notions corresponding
to the two levels [22]. The semantic security against chosen ciphertext attack (CCA-security)
is defined by the following game between an adversary A and challenger C. The challenger
C simulates an environment running PRE for the adversary A by providing A with access
to the following oracles and answering the oracle queries issued by A as below:

– Uncorrupted key generation oracle Ou(i): C runs KeyGen(i, params) algorithm to gen-
erate the public and private key pair (pki, ski) and returns pki.

– Corrupted key generation oracle Oc(i): C runs KeyGen(i, params) algorithm to generate
the public and private key pair (pki, ski) and returns (pki, ski).

– Re-key generation oracle ORK(pki, ω, pkj): C obtains RK
i
ω→j ← ReKeyGen(ski, ω, pki,

pkj , params) and returns RK
i
ω→j to A.

– Re-encryption oracleORE(pki, pkj , (Ci, ω)) : C computesDj ← Re-Encrypt(RK
i
ω→j , Ci,

params), where RK
i
ω→j ← ReKeyGen(ski, ω, pki, pkj , params) and returns Dj to A.

– Second level decryption oracle ODec(Ci, pki) : C runs Decrypt(ski, Ci, params) and
returns the result to A.

– First level decryption oracle OReDec(Dj , pkj) : C runs Re-Decrypt(skj , Dj , params)
and returns the result to A.

The CCA(chosen ciphertext attack) security model for the two ciphertext levels of a
single-hop unidirectional CPRE scheme are as follows:

Second level ciphertext security: Second level ciphertext security models the scenario
where the adversary A is challenged with a ciphertext C∗i , where C∗i is the challenge cipher-
text under the targeted public key pki∗ and a condition w∗. The CCA game is played in the
following phases:

1. Setup: The challenger C runs the Setup algorithm to generate the public parameters
params and returns params to the adversary A.

2. Phase 1: The adversary A adaptively issues queries to the above oracles simulated by
the challenger C, and C answers the queries.
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3. Challenge: The adversary A outputs a target public key pk∗i , a condition ω∗ and two
equal-length messages m0,m1 ∈M with the following constraints such that A is unable
to decrypt the challenge ciphertext trivially:
(a) pk∗i cannot be a corrupt user (pk∗i /∈ CU).
(b) For a public key pkj ∈ CU , A cannot issue query ORK(pk∗i , w

∗, pkj).
On receiving the two messages m0,m1, the challenger C selects δ ∈ {0, 1} at random
and generates a challenge ciphertext C∗i ← Encrypt(pk∗i ,mδ, ω

∗, params) and returns
C∗i to A.

4. Phase 2: A continues to issue queries to C as in Phase 1, with the following constraints
such that A cannot decrypt the challenge ciphertext trivially:
(a) For a public key pkj ∈ CU , A cannot issue query ORE(pk∗i , pkj , C

∗, ω∗).
(b) For a public key pkj and a first level ciphertext Dj ← Re-Encrypt(RK

i∗
ω→j , C

∗
i ,

params), A cannot issue query OReDec(Dj , pkj).
(c) A cannot issue query ODec(D

∗
j , pk

∗
i ).

5. Guess: A outputs its guess δ′ ∈ {0, 1}.

We define the advantage of A in winning the game against second level ciphertext security
as:

AdvIND−CPRE−CCAA,second = |2Prdδ′ = δc−1|

where the probability is over the random coin tosses performed by the challenger C and the
adversary A. A single hop unidirectional CPRE scheme is said to be (t, ε)IND −CPRE −
CCA secure for second level ciphertexts if the advantage of any t-time adversary A that
makes atmost qu queries to the uncorrupted key-generation oracle Ou, qc queries to the
corrupted key-generation oracle Oc, qRK queries to the re-encryption key-generation oracle
ORK , qRE queries to re-encryption oracle ORE , qDec queries to the decryption oracle ODec
and qReDec queries to the re-decryption oracle OReDec is:

AdvIND−CPRE−CCAA,second ≤ ε.

First level ciphertext security: In the first level ciphertext security game, the adversary
A is challenged with a first-level ciphertext, without any knowledge of its corresponding
second level ciphertext. The security game between the adversary A and the challenger C is
demonstrated below in phases:

1. Setup: The challenger C runs the Setup algorithm to generate the public parameters
params and returns params to the adversary A.

2. Phase 1: The adversary A adaptively issues queries to the above oracles simulated by
the challenger C, and C responds to the queries.

3. Challenge: The adversary A outputs a delegator’s public key pk′i, public key of the
delegatee (target user) pk∗j , a condition ω∗ and two equal-length messages m0,m1 ∈M
with a constraint that pk∗j cannot be a corrupt user (pk∗j 6∈ CU). This prevents A to
decrypt the challenge ciphertext trivially. On receiving the two messages m0,m1, the
challenger C selects δ ∈ {0, 1} at random and generates a challenge first level ciphertext
D∗j and returns to A.

4. Phase 2: A continues to issue queries to C as in Phase 1, with a constraint that for given
challenge second level ciphertext, A cannot issue query OReDec(D

∗
j , pk

∗
j ). This prevents

A to decrypt the challenge ciphertext D∗j trivially.
5. Guess: A outputs its guess δ′ ∈ {0, 1}.
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We define the advantage of A in winning the game against first level ciphertext security as:

AdvIND−CPRE−CCAA,first = |2Prdδ′ = δc−1|

where the probability is over the random coin tosses performed by the challenger C and the
adversary A. A single hop unidirectional CPRE scheme is said to be (t, ε)IND −CPRE −
CCA secure for first level ciphertexts if the advantage of any t-time adversary A, that makes
atmost qu queries to the uncorrupted key-generation oracle Ou, qc queries to the corrupted
key-generation oracle Oc, qRK queries to the re-encryption key-generation oracle ORK , qRE
queries to re-encryption oracle ORE , qDec queries to the decryption oracle ODec and qReDec
queries to the re-decryption oracle OReDec is:

AdvIND−CPRE−CCAA,first ≤ ε.

Hardness Assumptions

We state the computational hardness assumptions we use to prove the security of our scheme.
Let G be a cyclic group with a prime order q.

Definition 1. Computational Diffie-Hellman (CDH) assumption : The Computa-
tional Diffie-Hellman (CDH) assumption for group G says that, given the elements {g, ga, gb}
∈ G, there exists no probabilistic polynomial-time algorithm which can compute gab ∈ G with
a non-negligible advantage, where g is a generator of G and a, b ∈R Z∗q .

Definition 2. Modified Computational Diffie-Hellman (M-CDH) assumption [29]
: The Modified Computational Diffie-Hellman (M-CDH) assumption for group G says that,
given the elements {g, ga, gb} ∈ G, there exists no probabilistic polynomial-time algorithm
which can compute gb/a ∈ G with a non-negligible advantage, where g is a generator of G
and a, b ∈R Z∗q .

3 Our Proposed Unidirectional CCA-secure CPRE Scheme

3.1 Our Scheme

– Setup(λ): Let G be a subgroup of Z∗q with order q, where q is a prime. Let g be
a generator of the group G. Choose the following cryptographic hash functions: H1 :
G × {0, 1}∗ → Z∗q , H2 : Z∗q × Z∗q → Z∗q , H3 : G → {0, 1}log 2q, H4 : {0, 1}l0 × {0, 1}l1 →
Z∗q , H5 : G→ {0, 1}l0+l1 , H6 : G4×{0, 1}l0+l1 → G, H7 : G2×{0, 1}l0+l1 → Z∗q . The hash
functions are modelled as random oracles in the security proof. The message space M
is {0, 1}l0 and l1 is determined by security parameter λ. Return the public parameters
params = (G, q, g,H1, H2, H3, H4, H5, H6, H7, l0, l1).

– KeyGen(i, params): On input of a user index i and security parameter params, com-
pute the private key and its corresponding public key as below:
• Pick xi,1, xi,2 ∈R Z∗q .
• Set the private key ski = (xi,1, xi,2).
• Compute the public key pki = (pki,1, pki,2) = (gxi,1 , gxi,2).
• Return the public key and private key pair (pki, ski).
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– ReKeyGen(ski, ω, pki, pkj , params): On input of a delegator’s private key ski, a con-
dition ω, delegator’s public key pki and delegatee’s public key pkj , generate the re-
encryption key as below:

• Pick z1, h ∈R Z∗q .
• Compute v = H2(z1, h).
• Compute the permanent re-encryption key component RK〈p〉 = {V,W}, where V =
pkvj,2, W = H3(gv)⊕(z1||h). Note that the component RK〈p〉 remains fixed for a pair
of delegator and delegatee (pki, pkj), throughout all re-encryption key generation for
multiple conditions.

• Compute z = 1
xi,1H1(pki,2,ω)+xi,2

. Note that the value z changes with a change in

condition ω for a pair of delegator and delegatee (pki, pkj).
• Compute z2 such that z1 · z2 = z mod q. Set the conditional re-encryption key

component RK〈c〉 = z2.
• Return RK

i
ω→j = (RK〈c〉, RK〈p〉) = (z2, V,W ).

Remark 1. When the condition ω between two users i and j changes, only the first
component, namely the conditional re-encryption key z2 alone needs to be recomputed
for a fresh value of z and sent to the proxy to avoid re-computation. All other components
(z1, v, V,W ) remains unaltered and can be computed once and stored locally.

Remark 2. In the absence of a condition ω, by changing the description of the hash
function H1 to H1 : G→ Z∗q , the CPRE scheme functions as a traditional PRE scheme,

where z is computed as z = 1
xi,1H1(pki,2)+xi,2

. All other computations remain unaffected.

– Encrypt(pki,m, ω, params): To encrypt a message m under a public key pki based on
a condition ω:

• Pick u ∈ Z∗q , r′ ∈ {0, 1}l1 .
• Set r = H4(m, r′).

• Compute D = (pk
H1(pki,2,ω)
i,1 pki,2)u.

• Compute E = (pk
H1(pki,2,ω)
i,1 pki,2)r.

• Compute F = H5(gr)⊕ (m||r′).
• Compute D = H6(pki, D,E, F )u.
• Compute E = H6(pki, D,E, F )r.
• Compute s = u+ r ·H7(D,E, F ) mod q.
• Return the second level ciphertext Ci = (D,E, F, s, ω).

Remark 3. In the absence of a condition ω, by changing the description of the hash
function H1 to H1 : G→ Z∗q , the CPRE scheme functions as a traditional PRE scheme.

The ciphertext components D and E are computed as D = (pk
H1(pki,2)
i,1 pki,2)u, E =

(pk
H1(pki,2)
i,1 pki,2)r. All other computations remain unaffected.

– Re-Encrypt(RK
i
ω→j , Ci, params): To re-encrypt a second-level ciphertext Ci under

the public key pkj using the re-encryption key RK
i
ω→j , parse Ci as (D,E, F, s, ω) and

RK
i
ω→j as (z2, V,W ). Perform the following computations:
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• Compute the terms E and D as follows:

E =
((
pk
H1(pki,2,ω)
i,1 pki,2

)s ·D−1)H7(D,E,F )−1

=
((
pk
H1(pki,2,ω)
i,1 pki,2

)u+r·H7(D,E,F )

·
(
pk
H1(pki,2,ω)
i,1 pki,2

)−u)H7(D,E,F )−1

=
((
pk
H1(pki,2,ω)
i,1 pki,2

)rH7(D,E,F )−1)H7(D,E,F )−1

=
(
pk
H1(pki,2,ω)
i,1 pki,2

)r
.

D = H6(pki, D,E, F )s · (EH7(D,E,F )
)−1

= H6(pki, D,E, F )u+r·H7(D,E,F ) ·
(
H6(pki, D,E, F )rH7(D,E,F )

)−1
= H6

(
pki, D,E, F

)u
.

• Check for condition satisfiability of ω for re-encryption by verifying the following
equation: (

pk
H1(pki,2,ω)
i,1 pki,2

)s ?
= D · EH7(D,E,F ) (1)

If it does not hold, the ciphertext is ill-formed and the condition ω does not pertain
to the other ciphertext components (D,E, F, s). Hence, return ⊥.

• Check if the ciphertext is well-formed by verifying the following equation:

H6(pki, D,E, F )s
?
= D · EH7(D,E,F )

(2)

If it does not hold, the ciphertext is ill-formed and cannot be transformed. Hence,
return ⊥.

• If both the conditions are satisfied, compute E′ = Ez2 .
• Return the first level ciphertext Dj = (E′, F, V,W ).

– Decrypt(ski, Ci, params): On input of a private key ski and a second level ciphertext
Ci, parse Ci as (E,E, F, s, ω), decrypt as below:
• Check if the ciphertext is well-formed by computing E and D and verifying if equa-

tions (1) and (2) hold.
• If they do not hold, return ⊥.
• Else, compute:

(m||r′) = H5(E
1

xi,1H1(pki,2,ω)+xi,2 )⊕ F. (3)

• Return m if E
?
= (pk

H1(pki,2,ω)
i,1 pki,2)H4(m,r

′) holds.

– Re-Decrypt(skj , Dj , params): On input of a private key skj and a first level ciphertext
Dj , parse Dj as (E′, F, V,W ) and decrypt as below:

• Compute (z1||h) = H3(V
1

xj,2 )⊕W.
• Check if V

?
= pk

H2(z1,h)
j,2 .

• If the condition does not hold, return ⊥.
• Otherwise, compute:

(m||r′) = H5(E′
z1)⊕ F. (4)

• If F
?
= (m||r′)⊕H5(gH4(m||r′)), return the plaintext m.
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3.2 Correctness

• Correctness of equation (1) for condition satisfiability:

RHS = D · EH7(D,E,F )

= (pk
H1(pki,2,ω)
i,1 pki,2)u · (pkH1(pki,2,ω)

i,1 pki,2)rH7(D,E,F )

= (pk
H1(pki,2,ω)
i,1 pki,2)u+rH7(D,E,F )

= (pk
H1(pki,2,ω)
i,1 pki,2)s

= LHS.

• Correctness of equation (2) for ciphertext verification:

RHS = D · EH7(D,E,F )

= H6(pki, D,E, F )u ·H6(pki, D,E, F )rH7(D,E,F )

= H6(pki, D,E, F )u+rH7(D,E,F )

= H6(pki, D,E, F )s

= LHS.

• Correctness of equation (3) for decryption of second-level ciphertext:

RHS = H5(E
1

xi,1H1(pki,2,ω)+xi,2 )⊕ F

= H5((pk
H1(pki,2,ω)
i,1 pki,2)

r
xi,1H1(pki,2,ω)+xi,2 )⊕ (m||r′)⊕H5(gr)

= H5(gr)⊕ (m||r′)⊕H5(gr)

= (m||r′)
= LHS.

• Correctness of equation (4) for decryption of first-level ciphertext:

RHS = H5(E′
z1)⊕ F

= H5((pk
H1(pki,2,ω)
i,1 pki,2)rz2)z1 ⊕ (m||r′)⊕H5(gr)

= H5((pk
H1(pki,2,ω)
i,1 pki,2)

r
xi,1H1(pki,2,ω)+xi,2 )⊕ (m||r′)⊕H5(gr)

= (m||r′)
= LHS.

3.3 Security Proof

Second Level Ciphertext Security:

Theorem 1. Our CPRE scheme is IND-CPRE-CCA secure for the second ciphertext in
the random oracle model, assuming M-CDH assumption holds in group G and the Schnorr
signature [25] is EUF−CMA secure. If there exists a (t, ε)IND-CPRE-CCA A who breaks
the IND-CPRE-CCA security of the given scheme with an advantage ε in time t, then there
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exists an algorithm C that can solve the M-CDH problem with advantage ε′ within time t′

where:

ε′ ≥ 1

qH5

(
ε

e(qRK + 1)
− qH4

2l1
− qH6

+ qH7

2l0+l1
− qDec

(qH4
+ qH5

2l0+l1
+

2

q

))
,

t′ ≤ t+ (qH1 + qH2 + qH3 + qH4 + qH5 + qH6 + qH7 + qu + qc + qRK + qRE + qDec

+ qReDec)O(1) + (qH6 + 2qu + 2qc + 2qRK + 8qRE + 6qDec + 4qReDec)te,

where e is the base of natural logarithm and te denotes the time taken for exponentiation
operation in group G. Note that the number of queries to any oracle is a polynomial in the
security parameter.

Proof. If there exists a t-time adversary A who can break the (t, ε)IND-CPRE-CCA secu-
rity of our scheme, we show how to construct a polynomial time algorithm C who can break
the M − CDH assumption in G or the existential unforgeability against chosen message
attack (EUF -CMA) of the Schnorr Signature with non-negligible advantage. C is given an
instance of M-CDH challenge tuple (g, ga, gb), with a, b ∈R Z∗q as input, whose goal is to

compute gb/a. C acts as a challenger and plays the IND-CPRE-CCA game with the A as
described next. C maintains a list LK to store information about all user keys consisting of
tuples 〈(pki), xi,1, xi,2, ci〉. C also maintains a list LRK to store information about all the
generated re-encryption keys consisting of tuples 〈(pki), (pkj), ω, z2, V,W, τ〉.

− Phase 1 : C answers the queries issues by A to the oracles as follows:
• Uncorrupt Key Generation Query Ou(i) : Apply Coron’s technique [11] to generate

the uncorrupt keys by flipping a coin that takes the value ci ∈ {0, 1}, where ci = 1 is
obtained with probability ρ, which is to be determine later. Compute pki according
to the following cases:
∗ If ci = 1, pick xi,1, xi,2 ∈R Z∗q and compute pki = (pki,1, pki,2) = (gxi,1 , gxi,2).

Update LK with the tuple 〈(pki), xi,1, xi,2, ci = 1〉 .
∗ If ci = 0, pick xi,1, xi,2 ∈R Z∗q and compute pki = (pki,1, pki,2) = ((ga)xi,1 , (ga)xi,2).

Update LK with the tuple 〈(pki), xi,1, xi,2, ci = 0〉.
It is straightforward to note that the challenger C performs atmost 2 exponentiation
operations for every invocation to the uncorrupt key generation oracle.

• Corrupt Key Generation Query Oc(i): Pick xi,1, xi,2 ∈R Z∗q and compute the public
key pki = (pki,1, pki,2) = (gxi,1 , gxi,2). Update LK with the tuple 〈(pki), xi,1, xi,2, ci =
−〉.
It is straightforward to note that the challenger C performs atmost 2 exponentiation
operations for every invocation to the corrupt key generation oracle.

• Hash Queries :
-H1 query: If the query H1(pki,2, ω) has been placed on list LH1

in a tuple 〈pki,2 ∈
G, ω ∈ {0, 1}∗, δ ∈ Z∗q〉, return the predefined value H1(pki,2, ω) = δ. Else pick
δ ∈R Z∗q , update LH1

with the tuple 〈pki,2, ω, δ〉 and respond with H1(pki,2, ω) = δ.
-H2 query: If the query H2(z1, h) has been placed on list LH2

in a tuple 〈z1 ∈ Z∗q , h ∈
Z∗q , v ∈ Z∗q〉, return the predefined value H2(z1, h) = v. Else pick v ∈R Z∗q , update
LH2 with the tuple 〈z1, h, v〉 and respond with H2(z1, h) = v.
-H3 query: If the query H3(R) has been placed on the list LH3

in a tuple 〈R ∈ G, κ ∈
{0, 1}log 2q〉, return the predefined value H3(R) = κ. Else pick κ ∈R {0, 1}log 2q, up-
date list LH3

with the tuple 〈R, κ〉 and respond with H3(R) = κ.
-H4 query: If the query H4(m, r′) has been placed on the list LH4

in a tuple

11



〈m ∈ {0, 1}l0 , r′ ∈ {0, 1}l1 , r ∈ Z∗q〉, return the predefined value H4(m, r′) = r.
Else pick r ∈R Z∗q , update list LH4

with the tuple 〈m, r′, r〉 and respond with
H4(m, r′) = r.
-H5 query: If the query H5(R′) has been placed on the list LH5 in a tuple 〈R′ ∈
G, ψ ∈ {0, 1}l0+l1〉, return the predefined value H5(R′) = ψ. Else pick ψ ∈R
{0, 1}l0+l1 , update list LH5

with the tuple 〈R′, ψ〉 and respond with H5(R′) = ψ.
-H6 query: If the query H6(pki, D,E, F ) has been placed on the list LH6

in a tuple
〈pki ∈ G2, D ∈ G, E ∈ G, F ∈ {0, 1}l0+l1 , α ∈ Z∗q , β ∈ G〉, return the predefined
value H6(pki, D,E, F ) = β. Else pick α ∈R Z∗q , compute β = gα, update list LH6

with the tuple 〈pki, D,E, F, α, β〉 and respond with H6(pki, D,E, F ) = β.
-H7 query: If the query H7(D,E, F ) has been placed on the list LH7

in a tuple
〈D ∈ G, E ∈ G, F ∈ {0, 1}l0+l1 , θ ∈ Z∗q〉, return the predefined value H7(D,E, F ) =

θ. Else pick θ ∈R Z∗q , update list LH7 with the tuple 〈D,E, F, θ〉 and respond with

H7(D,E, F ) = θ.
• Re-encryption key generation query ORK(pki, ω, pkj) : Search the list LRK for a

tuple 〈(pki), (pkj), ω, z2, V,W, τ〉 to check the existence of a re-encryption key from
pki to pkj . If present, return the re-encryption key RK

i
ω→j = (z2, V,W ). Otherwise,

compute the re-encryption keys according to the following cases:
∗ If ci = 0 and cj = −, output ”failure” and abort.
∗ If ci ∈ {1,−}, generate the re-encryption key following the steps of re-encryption

algorithm:
· Compute z = 1

xi,1H1(pki,2,ω)+xi,2
.

· Pick h, z1 ∈R Z∗q .
· Compute the conditional re-encryption key z2 such that z1 · z2 = z mod q.
· Compute v = H2(z1, h). Compute the permanent re-encryption key compo-

nents V = pkvj,2, W = H3(gv)⊕ (z1||h).
· Update list LRK with the tuple 〈(pki), (pkj), ω, z2, V,W, τ = −〉.

∗ If ci = 0 and cj ∈ {0, 1}, generate the re-encryption key following the re-
encryption algorithm:
· Pick z1, z2, h ∈R Z∗q .
· Compute v = H2(z1, h), V = pkvj,2, W = H3(gv)⊕ (z1||h).
· Update list LRK with the tuple 〈(pki), (pkj), ω, z2, V,W, τ = 0〉.

It is straightforward to note that the challenger C performs atmost 2 exponenti-
ation operations for every invocation to the re-encryption key generation oracle.

• Re-Encryption query ORE(pki, pkj , Ci) : Check for condition satisfiability and ci-

phertext consistency by computing E and D and verifying if equations (1) and (2)
hold. If they fail to hold, return ⊥. Otherwise, compute the re-encrypted ciphertext
Dj as per the following cases:
∗ If (ci = 0 ∧ cj = −), search in list LH4 for a tuple 〈m, r′, r〉 such that

(pk
H4(pki,2,ω)
i,1

· pki,2)r
?
= E holds. Check list LRK for a tuple 〈(pki), (pkj), ω, z2, V,W, τ = 1〉.

If such a tuple does not exist, compute the re-encryption key as shown :
· Pick z1, γ ∈R Z∗q . Set the conditional re-key z2 = (z1)−1 · γ.
· Pick h ∈R Z∗q , compute v = H2(z1 · γ−1, h).
· Compute V = pkvj,2, W = H3(gv)⊕ (z1 · γ−1||h).
· Update list LRK with the tuple 〈(pki), (pkj), ω, z2, V,W, τ = 1〉.

Compute E′ = grz2 and return Dj = (E′, F, V,W ).
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∗ For all other values of ci and cj , first check the list LRK for the presence of
a tuple 〈pki, pkj , ω, r, V,W, τ〉. If such a tuple does not exist, generate a new
re-encryption key by invoking the re-key generation oracle ORK(pki, ω, pkj) and
further calling the re-encryption algorithm Re-Encrypt(RK

i
ω→j , Ci, params) to

obtain Dj . Return the re-encrypted ciphertext Dj to A.
It is straightforward to note that the challenger C performs atmost 8 exponentiation
operations for every invocation to the re-encryption oracle.

• Second level decryption query ODec(Ci, pki) : Check if the ciphertext is well-formed

by computing E and D and verifying if equations (1) and (2) hold. If they fail
to hold, return ⊥. Otherwise, if ci = − or ci = 1, run Decrypt(ski, Ci, params)
algorithm to decrypt Ci and return m. Else, if ci = 0, decrypt as below:
∗ Retrieve from list LH6

the tuple 〈pki, D,E, F, α, β〉.
∗ Extract gr = (E)

1
α .

∗ Obtain the plaintext (m||r′) = F ⊕H5(gr).
∗ Return the plaintext m.

It is straightforward to note that the challenger C performs atmost 6 exponentiation
operations for every invocation to the second level decryption oracle.

• First level decryption query OReDec(Dj , pkj) : Check the re-key list LRK for the ex-
istence of a tuple 〈(pki), (pkj), ω, z2, V,W, τ = 0〉. Decrypt according to the following
two scenarios:

- If such a tuple exists, compute E = (E′)
1
z2 . Search lists LH4 and LH5 for tuples

〈m, r′, r〉 and 〈R′, ψ〉 respectively that satisfies the follows:

R′
?
= gr,

(
pk
H1(pki,2,ω)
i,1 pki,2

)r ?
= E,ψ ⊕ (m||r′) ?

= F.

If all the conditions hold, return m, otherwise return ⊥.
- If such a tuple does not exist, search lists LH2

, LH3
, LH5

and LH4
for tuples

〈z1, h, v〉, 〈R, κ〉, 〈R′, ψ〉 and 〈m, r′, r〉 respectively such that the following con-
ditions hold:

R
?
= gv, pkvi,2

?
= V, κ⊕ (z1||h)

?
= W,R′

?
= gr, ψ ⊕ (m||r′) ?

= F.

If all the conditions hold, return m. Otherwise, return ⊥.
It is straightforward to note that the challenger C performs atmost 4 exponentiation
operations for every invocation to the first level decryption oracle.

− Challenge : When A decides that Phase 1 is over, it outputs the target public key pk∗i ,
a condition ω∗ and two messages m0,m1 ∈R {0, 1}l0 . C recovers tuple 〈pk∗i , x∗i,1, x∗i,2, c∗i 〉
from list LK and responds as follows:
1. If c∗i = 1, report failure and abort.
2. Else, if c∗i = 0, select δ ∈R {0, 1}.
3. Choose r′∗ ∈R {0, 1}l1 and implicitly define H4(mδ, r

′∗) = b/a.
4. Select s∗, t∗ ∈R Z∗q and define u , s∗ − b

a t
∗.

5. Compute D∗ = ga(x
∗
i,1H1(pk

∗
i,2,ω

∗)+x∗i,2)s
∗
· gb(x

∗
i,1H1(pk

∗
i,2,ω

∗)+x∗i,2)(−t
∗).

6. Compute E∗ = (gb)x
∗
i,1H1(pk

∗
i,2,ω

∗)+x∗i,2 .
7. Check list LH6

for the existence of a tuple 〈pki∗ , D∗, E∗, F ∗, α′, β〉 or 〈pki∗ , D∗, E∗, F ∗,
α, β′〉. If such a tuple exists, recompute from step (2) with fresh random values.

8. Set H6(pki∗ , D
∗, E∗, F ∗) = β where β = (ga)α, α ∈R Z∗q . Update list LH6

with new
values.
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9. Compute E
∗

= (gb)α, where α is obtained from step (8).
10. Pick F ∗ ∈R {0, 1}l0+l1 ,

11. Set H7(D∗, E
∗
, F ∗) = t∗.

12. Implicitly define H5(gb/a) = (mδ||r′∗)⊕ F ∗.
13. Return the challenge ciphertext C∗i = (D∗, E

∗
, F ∗, s∗, ω∗).

Note that the challenge ciphertext C∗i is identically distributed as the original ciphertext
generated from the encryption algorithm, as shown below:

D∗ =ga(x
∗
i,1H1(pk

∗
i,2,ω

∗)+x∗i,2)s
∗
gb(x

∗
i,1H1(pk

∗
i,2,ω

∗)+x∗i,2)(−t
∗)

=ga(x
∗
i,1H1(pk

∗
i,2,ω

∗)+x∗i,2)(s
∗− ba t

∗)

=
(
pk
H1(pki∗,2)
i∗,1 pki∗,2

)u
.

E∗ =gb(x
∗
i,1H1(pk

∗
i,2,ω

∗)+x∗i,2)

=(gax
∗
i,1H1(pk

∗
i,2,ω)+ax

∗
i,2)

b
a

=
(
pk
H1(pki∗,2,ω

∗)
i∗,1 pki∗,2

)r
.

E
∗

=(gb)α = (ga·α)
b
a = H6(pki∗ , D

∗, E∗, F ∗)r.

F ∗ =H5(gb/a)⊕ (mδ||r′) = H5(gr)⊕ (mδ||r′).

s∗ =u+
b

a
· t∗ = u+ r∗ ·H7(E∗, E

∗
, F ∗).

− Phase 2 : A continues to issue queries to C as in Phase 1, with the restrictions described
in IND-CPRE-CCA game.

− Guess : Eventually, A outputs its guess δ′ ∈R {0, 1} to C. The challenger C randomly
picks a tuple 〈R′, ψ〉 from LH5

list and outputs R′ as the solution to the M-CDH problem
instance.

− Probability Analysis: Next, we proceed to the analysis of the simulation. The main
idea of the proof is borrowed from [8]. First, we evaluate the simulation of the random
oracles. The simulations of the oracles are perfect unless the following events take place:
− E4∗ : (mδ, r

′∗) is queried to H4.
− E5∗ : (gb/a) is queried to H5.
− E6∗ : (pki∗ , D

∗, E∗, F ∗) is queried to H6 before Challenge phase.

− E7∗ : (D∗, E
∗
, F ∗) is queried to H7 before Challenge phase.

As C chooses F ∗ ∈R {0, 1}l0+l1 , Pr[E6] ≤ qH6

2l0+l1
and Pr[E7] ≤ qH7

2l0+l1
.

The simulation for corrupted key generation and uncorrupted key generation is perfect.
We evaluate the simulation of the re-encryption and decryption oracles. We denote the
event that C aborts the game during the conditional re-key generation or Challenge
phase using Abort. Note that in both phases, C does not abort in case of the following
events:
− E1: ci = 1 in a re-encryption key generation query.
− E2: c∗i = 0 in the Challenge phase.

Then we have Pr[¬Abort] ≥ ρqRK (1− ρ), which is maximised at ρOPT = qRK
1+qRK

. Using

ρOPT , we obtain the probability Pr[¬Abort] is atleast 1
e(1+qRK) , where e is the base of

the natural logarithm.
We analyse the simulation of the decryption oracle. The simulation of the decryption
oracle is perfect unless the simulation errs by rejecting valid ciphertexts, i.e., a valid
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ciphertext Ci is produced without querying gr to H5 where r = H4(m, r′). We use
the notations for the following events: Evalid to denote that the ciphertext is a valid
ciphertext, E4 to denote that (m, r′) is queried to H4 and E5 to denote that gr is
queried to H5. We estimate Pr[Evalid|¬E4 ∨ ¬E5] ≤ Pr[Evalid|¬E4] + Pr[Evalid|¬E5]:

Pr[Evalid|¬E4] = Pr[Evalid ∧ E5|¬E4] + Pr[Evalid ∧ ¬E5|¬E4]

≤ Pr[E5|¬E4] + Pr[Evalid|¬E5 ∧ ¬E4]

≤ qH5

2l0+l1
+

1

q

Similarly, we obtain Pr[Evalid|¬E5] ≤ qH4

2l0+l1
+ 1

q . Let Ederr denote the event that

Evalid|(¬E4 + ¬E5) happens for the entire simulation. Since the adversary can pose
atmost qDec decryption queries, we obtain:

Pr[Ederr] ≤ qDec
(
qH4

+qH5

2l0+l1
+ 2

q

)
.

We use Eerr to represent the event (E4∗ ∨ E5∗ ∨ E6∗ ∨ E7∗ ∨ Ederr)|¬Abort. If Eerr
does not happen, the adversary A has no advantage greater than 1

2 in guessing the bit
δ owing to to the randomness in the output of H5. The probability that the adversary
correctly guesses δ is:

Pr[δ′ = δ] = Pr[δ′ = δ|¬Eerr]Pr[¬Eerr] + Pr[δ′ = δ|Eerr]Pr[Eerr]

=
1

2
(1 + Pr[Eerr]).

And, Pr[δ′ = δ] ≥ Pr[δ′ = δ|¬Eerr]Pr[¬Eerr] ≥ 1
2 (1− Pr[Eerr]).

From the definition of the advantage of IND-CPRE-CCA adversary, we have:

ε = |2Pr[δ′ = δ]− 1|
≤ Pr[Eerr]
= Pr[(E4∗ ∨ E5∗ ∨ E6∗ ∨ E7∗ ∨ Ederr)|¬Abort]

≤ Pr[E4∗ ] + Pr[E5∗ ] + Pr[E6∗ ] + Pr[E7∗ ] + Pr[Ederr]

Pr[¬Abort].

We have Pr[E4∗ ] ≤
qH4

2l1
since the challenger C picks r′ ∈R {0, 1}l1 , and we obtain the

bound on Pr[E5∗ ]:

Pr[E5∗ ] ≥ Pr[¬Abort] · ε− Pr[E4∗ ]− Pr[E6∗ ]− Pr[E7∗ ]− Pr[Ederr]

≥ ε

e(qRK + 1)
− qH4

2l1
− qH6

2l0+l1
− qH7

2l0+l1
− qDec

(qH4
+ qH5

2l0+l1
+

2

q

)
If the event E5∗ takes place, then C can solve the DCDH instance with the advantage:

ε′ ≥ 1

qH5

Pr[E5∗ ]

≥ 1

qH5

(
ε

e(qRK + 1)
− qH4

2l1
− qH6 + qH7

2l0+l1
− qDec

(qH4 + qH5

2l0+l1
+

2

q

))
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The reduction involves asking qH6
, qu, qc, qRK , qRE , qDec and qReDec queries to the

H6 hash function, uncorrupted key-generation, corrupted key-generation, re-encryption
key generation, re-encryption, second level decryption and first level decryption oracles,
and the number of exponentiations done under these queries are 1, 2, 2, 2, 8, 6 and 4
respectively. Hence, the total number of exponentiation operations done is (qH6

+ 2qu +
2qc+2qRK+8qRE+6qDec+4qReDec)te where te is the time taken for one exponentiation
operation. Therefore, if the event E5∗ takes place, then C solves the M − CDH hard
instance within a running time:

t′ ≤ t+ (qH1
+ qH2

+ qH3
+ qH4

+ qH5
+ qH6

+ qH7
+ qu + qc + qRK + qRE + qDec

+ qReDec)O(1) + (qH6
+ 2qu + 2qc + 2qRK + 8qRE + 6qDec + 4qReDec)te.

This completes the proof of the theorem. ut

Theorem 2. Our CPRE scheme is IND-CPRE-CCA secure for the first ciphertext in the
random oracle model, assuming the CDH assumption holds in group G and the Schnorr
signature [25] is EUF − CMA secure. If there exists a (t, ε)IND-CPRE-CCA A who
breaks the IND-CPRE-CCA security of the given scheme with an advantage ε in time t,
then there exists an algorithm C that can solve the CDH problem with advantage ε′ within
time t′ where:

ε ≥ 1

qH5

( 2ε

e(2 + qRK)2)
− qH4

2l1
− qH7

2l0+l1
− qDec

(qH4
+ qH5

2l0+l1
+

2

q

))
t′ ≤ t+ (qH1

+ qH2
+ qH3

+ qH4
+ qH5

+ qH6
+ qH7

+ qu + qc + qRK + qRE + qDec

+ qReDec)O(1) + (qH6
+ 2qu + 2qc + 2qRK + 8qRE + 6qDec + 4qReDec)te,

where e is the base of natural logarithm, and te denotes the time taken for exponentiation
operation in group G. Note that the number of queries to any oracle is a polynomial in the
security parameter.

Proof. If there exists a t-time adversary A who can break the (t, ε)IND-CPRE-CCA se-
curity of our scheme, we show how to construct a polynomial time algorithm C which can
break the CDH assumption in G or existential unforgeability against chosen message attack
(EUF -CMA) of the Schnorr Signature with non-negligible advantage. C is given an instance
of CDH challenge tuple (g, ga, gb), with a, b ∈R Z∗q as input, whose goal is to compute gab. C
acts as a challenger and plays the IND-CPRE-CCA game with the A as described next. C
maintains lists LK and LRK to store information about all the public keys and re-encryption
keys as described in the second level security game.

− Phase 1 : C answers the queries issues by A as follows:

• Uncorrupt Key Generation Query Ou(i) : The uncorrupted user keys are generated
using Coron’s technique [11] by flipping a coin that takes the value ci ∈ {0, 1}, where
ci = 1 is obtained with probability ρ, which is to be determine later, in the exact
manner as demonstrated in the second level ciphertext security game.

• Corrupt Key Generation Query Oc(i) : The corrupted user keys are generated as
shown in the second level ciphertext security game.

• The challenger C responds to the oracle queries, re-encryption key generation, re-
encryption, second level and first level decryption queries are simulated as shown for
the second level ciphertext security game.
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− Challenge: A outputs two messages m0,m1 ∈R {0, 1}l0 , the delegator and delega-
tee’s (target) public keys pki′ , pk

∗
i and a condition ω. C recovers tuples 〈pki′ , xi′,1, xi′,2, c′i〉,

〈pk∗i , x∗i,1, x∗i,2, c∗i 〉 from list LK . If c′i ∈ {1,−} and c∗i = 0, C picks δ ∈R {0, 1} and com-
putes the challenge ciphertext σ∗i as below:

1. Note that, by definition z∗ = z1 · z2 = 1
a(xi′,1H1(pki′,2,ω)+xi′,2)

, where a is not known

to C.
2. Pick z1 ∈R Z∗q . From definition, z2 =

z−1
1

a(xi′,1H1(pki′,2,ω)+xi′,2)
.

3. Pick r′ ∈ {0, 1}l1 . Implicitly define H4(mδ, r
′∗) = ab.

4. Compute E′∗ = g
b
(

1
x
i′,1H1(pk

i′,1,ω)+x
i′,2

)
.

5. Pick F ∗ ∈R {0, 1}l0+l1 . Implicitly define F ∗ = H5(gab)⊕ (mδ||r′).
6. Pick h ∈R Z∗q . Compute v = H2(z1, h), V ∗ = gv, W ∗ = H3(gv)⊕ (z1||h).

7. Output the challenge ciphertext D∗i = (E′
∗
, F ∗, V ∗,W ∗) to A.

Note that the challenge ciphertext C∗i is identically distributed as the actual ciphertext
generated from the re-encryption algorithm, as shown below:

E′∗ = g
b
(

1
x
i′,1H1(pk

i′,1,ω)+x
i′,2

)
= g

ab·
(

1
a(x

i′,1H1(pk
i′,1,ω)+x

i′,2)

)
= grz2 .

F ∗ = H5(gab)⊕ (mδ||r′) = H5(gr)⊕ (mδ||r′).

− Phase 2 : A continues to issue queries to C as in Phase 1, with the restrictions described
in the IND-CPRE-CCA game, and C responds in the same manner as in Phase 1.

− Guess : Eventually, A outputs its guess δ′ ∈R {0, 1} to C. The challenger C randomly
picks a tuple 〈R′, ψ〉 from LH5 list and outputs R′ as the solution to the CDH problem
instance.

− Probability Analysis: We proceed to the analysis of the simulation. The simulation
of random oracles are perfect unless the following events occur:

− E4∗ : (mδ, r
′∗) is queried to H4.

− E5∗ : (gab) is queried to H5.

Next, we evaluate the simulation of the re-encryption and decryption oracles. We denote
the probability that the challenger C aborts the game during the re-encryption key
generation or Challenge phase using Abort. Note that in both the phases, C does not
abort in case of the following events:

− E1: ci = 1 in the re-encryption key generation query.
− E2: c∗i = 0 ∧ c′i 6= 0 in the Challenge phase.

We get Pr[¬Abort] ≥ ρqRK (1− ρ)2, which is maximum at ρOPT = qRK
2+qRK

. Using ρOPT ,

we obtain the probability Pr[¬Abort] is atleast 2
e(2+qRK)2 .

The analysis of the simulation of the decryption oracle is the same as shown in second
level ciphertext security game. Since the adversary can pose atmost qDec decryption
queries, we obtain:

Pr[Ederr] ≤ qDec
(
qH4

+qH5

2l0+l1
+ 2

q

)
.

We use Eerr to represent the event (E4∗ ∨ E5∗ ∨ Ederr)|¬Abort.
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Following a similar analysis shown for second level ciphertext security, we obtain the
following bound on Pr[E5∗ ]:

Pr[E5∗ ] ≥ Pr[¬Abort] · ε− Pr[E4∗ ]− Pr[Ederr]

≥ 2ε

e(2 + qRK)2)
− qH4

2l1
− qH7

2l0+l1
− qDec

(qH4
+ qH5

2l0+l1
+

2

q

)
If the event E5∗ takes place, then C can solve the CDH instance with the advantage:

ε′ ≥ 1

qH5

Pr[E5∗ ] ≥
1

qH5

(
2ε

e(2 + qRK)2)
− qH4

2l1
− qDec

(qH4 + qH5

2l0+l1
+

2

q

))

Also, if the event E5∗ takes place, C solves the CDH hard instance with a running time:

t′ ≤ t+ (qH1 + qH2 + qH3 + qH4 + qH5 + qH6 + qH7 + qu + qc + qRK + qRE + qDec

+ qReDec)O(1) + (qH6 + 2qu + 2qc + 2qRK + 8qRE + 6qDec + 4qReDec)te.

This completes the proof of the theorem. ut

4 Comparison

This section provides a comparison of our CPRE scheme with the well-known pairing based
CPRE scheme in the literature. We use the following notations: te and tbp to denote the
time required for exponentiation and bilinear pairing respectively. Note that pairing is as
one of the most expensive operations in terms of computational complexity and memory
requirement. In fact, pairing operations take more than twice the time taken by modular
exponentiations. Till date, the scheme due to Vivek et al. [31] is the most efficient CPRE
scheme based on bilinear pairing. Table 2 shows the computational efficiency of our scheme
along with the a few existing pairing based CPRE schemes. The comparisons indicate that
our proposed design is much more efficient than the existing pairing based CPRE schemes
and incurs minimal efficiency loss.

Scheme KeyGen ReKeyGen Encrypt Decrypt Re-Encrypt Re-Decrypt

Son et al.[28] te 4te 3te + 2tbp 3te + 2tbp te + 2tbp 3te + 2tbp
Qiu et al.[24] te 3te 4te + tbp 2te + 3tbp te + 5tbp 2te + tbp
Liang et al.[20] 4te 9te + tbp 5te + tbp 2te + 6tbp 6te + 7tbp 5te + 12tbp
Vivek et al.[31] 2te 3te 7te + tbp 6te + tbp 3te + tbp 4te
Our Scheme 2te 2te 6te 6te 5te 3te

Table 2: Efficiency comparison of pairing-based unidirectional CPRE schemes with our scheme.
The comparison shows that our scheme is more efficient than all the existing CPRE schemes.

5 Conclusion

In this paper, we have proposed an efficient unidirectional CPRE scheme without pairing,
which is CCA-secure in the random oracle model. To the best of our knowledge, ours is the
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only scheme that does not make use of pairing, and is hence more practical in real-world
scenarios. Our model is designed to benefit blockchain based distributed cloud-storage and
tag-based email application. A notable feature unique to our scheme is modularity, that
converts the CPRE scheme to a traditional PRE scheme by a minor modification to the
description of the hash functionH1 as shown in Section 3.1. Note that in the proposed scheme
as well as in all CPRE schemes proposed in the literature, the sender (encryptor) should be
aware of the condition. Typically, the conditions will be known only to the delegator and
hence we need an encryption scheme that is oblivious to the conditions that are imposed by
the delegator on the proxy. Thus, devising a proxy re-encryption scheme that is independent
of the condition will be an interesting and useful direction, and we leave it as an open
problem.
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