
Batching non-membership proofs with bilinear accumulators

Steve Thakur

Axoni

Abstract

In this short paper, we provide protocols to batch and aggregate multiple non-membership
proofs into a single proof of constant size with bilinear accumulators. We subsequently use the
accumulator to construct a bilinear Vector Commitment with constant sized openings and a
linear public parameter. We also provide ways to speed up the verification of membership and
non-membership proofs and to shift most of the computational burden from the Verifier to
the Prover. Furthermore, we have designed the protocols so that the Verifier needs a constant
amount of storage for verification despite the linear public parameter. Since all the protocols
are public coin, they can me made non-interactive with a Fiat-Shamir heuristic.

1 Introduction

A cryptographic accumulator is a one-way membership function that answers a query about
whether a potential set of candidates is a subset of a given set without revealing the individual
members of the set. In this paper, we study a class of asymmetric accumulators that is based on
bilinear pairings of cyclic groups of prime order. First introduced by Nguyen in [Ngu05], these
accumulators have the major advantage over the better known accumulator of a Merkle tree in
that membership proofs are of constant size and multiple membership proofs can be batched or
aggregated together into a single proof. Furthermore, it was shown in [DT08] that they also allow
for non-membership witnesses. These advantages are shared with group-based accumulators of
which the two best known types are RSA accumulators and (imaginary quadratic) class group
accumulators.

A Vector Commitment (VC) is a closely related primitive [CF13]. It provides the same
functionality as an accumulator, but for an ordered list of elements rather than a set. A VC is a
position binding commitment and can be opened at any position to a unique value with a short
proof (preferrably independent of the length of the vector). Subvector commitments [LM18] are
VCs where a subset of the vector positions can be opened in a single short proof.

Since bilinear accumulators require groups far smaller than RSA groups for the same level
of security, we expect them to be substantially faster than RSA accumulators when it comes
to accumulation, generation of membership proofs (witnesses) and verification. In recent years,
cryptographic accumulators have seen a growing interest as a potential alternative to Merkle
trees for blockchains. In particular, significant progress was made in the paper [BBF19] where
the authors showed how to provide constant sized non-membership proofs for arbitrarily large sets
of data elements in group-based accumulators. In this paper, we show that this is also possible for
bilinear accumulators and subsequently construct a bilinear Vector Commitment with constant
sized openings and a linear public parameter.

Furthermore, we adapt techniques from [BBF19] and [Wes18] to speed up verifications of
membership and non-membership proofs and to shift most of the computational burden from
the Verifier to the Prover. In particular, we provide a protocol to reduce the Verifier’s task of

1

verifying membership proofs to a constant run time independent of the number of data elements
to be batched.

1.1 Notations and terminology

As usual, Fq denotes the finite field with q elements for a prime power q and Fq denotes its
algebraic closure. F∗q denotes the cyclic multiplicative group of the non-zero elements of Fq.

Definition 1.1. Batching and aggregation: Following the terminology of [BBF19] We use
the term batching for the action of creating a single membership (or non-membership) witness
for multiple data elements. Aggregation refers to the action of creating a single membership or
non-membership proof for the data elements using individual witnesses that have already been
created.

Neither of these mechanisms is afforded by Merkle trees, which is a primary reason for
exploring other families of cryptographic accumulators and Vector Commitments.

Definition 1.2. An argument system between a Prover and a Verifier is non-interactive if it
consists of a single round.

Definition 1.3. An argument of knowledge is said to be public coin if all challenges sent from
the Verifier to the Prover are chosen uniformly at random and independently of the Prover’s
messages.

If the challenges are public coin, any interactive argument of knowledge can be converted
into a non-interactive argument using a Fiat-Shamir heuristic ([FS86]). We now briefly introduce
pairings.

Definition 1.4. For abelian groups G1, G2, GT , a pairing

e : G1 ×G2 −→ GT

is a map with the following properties.

1. Bilinearity: e(x1 + x2, y1 + y2) = e(x1, y2) ∗ e(x1, y2) ∗ e(x2, y1) ∗ e(x2, y2)
∀ x1, x2 ∈ G1, y1, y2 ∈ G2.

2. Non-degeneracy: The image of e is non-trivial.

3. Efficient computability.

In pairing-based cryptography, we typically work in settings where the groups G1, G2, GT

are cyclic of order p for some 256-bit prime p so as to have a 128-bit security level. Such pairings
e : G1 ×G2 −→ GT are classified into three types:

- Type I: G1 = G2.

- Type II: G1 6= G2 but there is an efficiently computable isomorphism between G1 and G2.

- Type III: There is no efficiently computable isomorphism between G1 and G2.

In practice, the groups G1,G2 are cyclic subgroups of the p-torsion subgroup of some pairing-friendly
elliptic curve over a prime field Fl and GT is the group of p-th roots of unity in the algebraic
closure Fl. The pairing is usually the (alternating) Weil pairing which is efficiently computable
using Miller’s algorithm. If the elliptic curve is supersingular, a symmetric pairing on the group of
p-torsion points can be derived by composing the Weil pairing with an appropriate endomorphism
of the elliptic curve. No such symmetric pairing exists for ordinary elliptic curves (as far as we
know).

2

1.2 Cryptographic assumptions

We state the computationally infeasible problems that the security of our constructions depends
on.

Definition 1.5. n-strong Diffie Hellman assumption: Let G be a cyclic group of prime
order p generated by an element g, and let s ∈ F∗p. Any probabilistic polynomial-time algorithm

that is given the set {gsi : 1 ≤ i ≤ n} can find a pair (a, g1/(s+a)) ∈ F∗p × G with probability at

most O(1p).

The following lemma follows immediately from the definition.

Lemma 1.1. Let α ∈ Fp and let f(X) be any polynomial in Fp[X] not divisible by (X + α).
Under the n-strong Diffie Hellman assumption, no probabilistic polynomial time algorithm can
compute an element w such that ws+α = gf(s).

Proof. Suppose a probabilistic polynomial time algorithm does produce an element w ∈ G
ws+α = gf(s). Since the polynomials f(X), X + α are relatively prime, we may compute
polynomials h1(X), h2(X) such that

f(X)h1(X) + (X + α)h2(X) = 1, deg h1(X) = 0.

Set w̃ := wh1(s)gh2(s). Then w̃(s+α)f(s) = g, which contradictions the n-strong Diffie Hellman
assumption.

Definition 1.6. Knowledge of exponent assumption:. Let G be a cyclic group of prime
order p generated by an element g, and let s ∈ F∗p. Suppose there exists a PPT algorithm A1

that given the set {gsi , gsiα : 1 ≤ i ≤ n}, outputs a pair (c1, c2) ∈ G × G such that c2 = cα1 .
Then there exists a PPT algorithm A2 that, with overwhelming probability, outputs a polynomial
f(X) ∈ Fp[X] of degree ≤ n such that c1 = gf(s), c2 = gαf(s).

2 Bilinear accumulators

We describe the setup in this section.

Let G1,G2,GT be cyclic groups of order p for some prime p such that there exists a pairing
e : G1 ×G2 −→ GT which is bilinear, non-degenerate and efficiently computable. Fix generators
g1, g2 of the cyclic groups G1,G2 respectively. Then e(g1, g2) is a generator of GT . Unlike in the
case of group-based accumulators, the (common) order of the groups is public. Instead, the secret
trapdoor is an integer s in the range [1, p− 1] which will serve as the private key. Unfortunately,
the generation of the private key requires a trusted setup. This can be partially mitigated by
using a secure multi-party computation ([BGM17]).

For a data set D = {d1, · · · , dn}, we define the accumulated state

Acc(D) := g

∏
d∈D

(d+s)

1 ∈ G1.

For a subset D0 ⊆ D, the witness for D0 is defined by

Wit(D0) := g

∏
d∈D\D0

(d+s)

1 .

3

The Verifier then needs to check whether

Wit(D0)

∏
d0∈D0

(d0+s)

= Acc(D).

Because of the bilinearity of the pairing, it is equivalent and usually more efficient to test the
following equation:

e(Wit(D0), g

∏
d0∈D0

(d0+s)

2) = e(Acc(D), g2).

Since none of the parties are aware of the value of s, it is necessary to broadcast the sets
{g1, gs1, · · · , gs

n

1 } and {g2, gs2, · · · , gs
n

2 } to the Prover.

The exponent
∏
d∈D

(d+ s) can be interpreted as a degree n polynomial in the variable s. The

coefficients of the polynomial are computed with a run time of O(n log(n)) using the Fast Fourier
transform. Furthermore, the set Fp[X] of polynomials with Fp-coefficients is a principal ideal
domain whose maximal ideals are those generated by the irreducible polynomials. For a data set
D, the polynomial f(X) =

∏
d∈D

(X + d) is monic of degree n = |D|. Let ci denote the coefficient

of Xi, i.e. f(X) =
n∑
i=0

ciX
i. The coefficients can be computed in run time O(n log(n)) using the

Fast Fourier transform. The elements

g
f(s)
1 =

n∏
i=0

(gs
i

1)ci , g
f(s)
2 =

n∏
i=0

(gs
i

2)ci

can then be computed by any party that possesses the elements {gsi1 , gs
i

2 : 0 ≤ i ≤ n}. The
collision-resistance of the bilinear accumulator hinges on the n-Strong Diffie Hellman assumption.

The straightforward approach would be for the Verifier to compute g

∏
d0∈D0

(d0+s)

2 ∈ G2 in order
to verify the equation

e(Wit(D0), g

∏
d0∈D0

(d0+s)

2) = e(Acc(D), g2).

However, this involves computing the coefficients ci (0 ≤ i ≤ |D0|) of the polynomial
∏

d0∈D0

(d0+s).

The fastest known algorithm (the Fast Fourier transform) for this has run time complexity
O(|D0| log(|D0|)) - followed by the exponentiations (gs

i

2)ci that have run times O(log(ci)). Furthermore,
this makes it necessary for the Verifier to possess the entire set {g1, gs1, · · · , gs

n

1 } which is not ideal.
To address this, we provide the protocols PoE and PoKE for bilinear accumulators which achieve
three goals.

1. They speed up the verification process by replacing some exponentiation operations by
polynomial division in Fp[X] which is substantially cheaper.

2. Secondly, they shift most of the computational burden from the Verifier to the Prover. This
is useful in settings where the Prover has more computational power at his disposal.

3. Finally, they reduce the in initial information necessary to be broadcasted to the Verifier to
the set {g1, gs1, g2, gs2} of size four. This is potentially useful in networks where the the Provers
are substantially fewer in number than the Verifiers.

Protocol 2.1. Protocol PoE (proof of exponent) for pairings (interactive version):

Parameters : A pairing e : G1 × G2 −→ GT of groups of prime order p; generators g1, g2
of G1, G2 respectively; a secret element s ∈ F∗p such that the Prover possesses the elements

{gsi1 , gs
i

2 : 0 ≤ i ≤ n}

4

Inputs: a, b ∈ G1; a polynomial f(X) ∈ Fp[X] of degree ≤ n
Claim: af(s) = b

1. The Verifier sends an element α (the challenge) to the Prover.

2. The Prover computes a h(X) and a element β such that f(X) = (X+α)h(X)+β. The Prover
sends Q := ah(s) to the Verifier.

3. The Verifier computes β := f(X) (mod (X + α)) and accepts if and only if the equation

e(Q, gs+α2) ∗ e(a, gβ2) = e(b, g2)

holds.

Note that because of the bilinearity of the pairing, we have

Qs+α1 aβ = b⇐⇒ e(Q, gs+α2) ∗ e(a, gβ2) = e(b, g2).

The proof consists of a single element of G1 and in particular, is of constant size. The protocol
can be made non-interactive using the Fiat-Shamir heuristic. Instead of the Verifier producing
the challenge, it is generated by a secure hashing algorithm H that outputs uniformly random
elements of F∗p. This hashing algorithm needs to be mutually agreed upon prior to the interaction.
Although the asymptotic complexity remains unchanged, this protocol swaps a few exponentiation
operations in the group G1 with polynomial division operations which are substantially faster.

Proposition 2.2. The protocol PoE for bilinear accumulators is secure under the n-strong Diffie
Hellman assumption.

Proof. Suppose, by way of contradiction, that a probabilistic polynomial time adversary A
produces a fake witness (Q1, Q2). Now,

Q2 = Qs1 ⇐⇒ e(Q1, g
s
2) = e(Q2, g2)

and the second equality is easily verified by the Verifier. Hence, A must produce an element
Q1 ∈ G1 such that Qs+α1 = ba−β. Since the element β is uniquely determined by the element α
which, in turn, is randomly generated, the probability of A being able to extract the (s+ α)-th
root of ba−β is negligible under the n-strong Diffie Hellman assumption.

We use the last protocol to modify the proof of membership for a data set.

Protocol 2.3. Protocol for the membership of a set.

Parameters : A pairing e : G1 × G2 −→ GT of groups of prime order p; generators g1, g2
of G1, G2 respectively; a secret element s ∈ F∗p such that the Prover possesses the elements

{gsi1 , gs
i

2 : 0 ≤ i ≤ n}
Inputs: A data set D0.

Claim: D0 ⊆ D.

1. The Prover computes the polynomial f0(X) :=
∏

d0∈D0

(X + d0).

2. The Prover computes

Wit(D0) := g

∏
d∈D\D0

(d+s)

1 .

3. The Prover sends the Verifier a non-interactive PoE for Wit(D0)
f0(s) = Acc(D).

4. The Verifier computes f0(s) and accepts if and only if the PoE holds up to this scrutiny.

5

Thus, the proof of membership can be verified by a Verifier who possesses the set {g1, gs1, g2, gs2}.
We next show how the last protocol can be adapted to provide an argument of knowledge of the
logarithm. The goal is to construct a protocol with communication complexity much lower than
simply sending the logarithm to the Verifier. We will need this protocol to batch non-membership
proofs and subsequently, to construct our Vector Commitment.

Protocol 2.4. Protocol PoKE (proof of knowledge of the exponent) for bilinear accumulators
(interactive version):

Parameters: A pairing e : G1 ×G2 −→ GT ; Inputs: Elements a, b ∈ G1

Claim: The Prover possesses a polynomial f(X) ∈ Fp[X] such that af(s) = b

1. The Verifier sends a challenge α ∈ F∗p to the Prover.

2. The Prover computes the polynomial h(X) ∈ Fp[X] and the element β ∈ Fp such that
f(X) = (X + α)h(X) + β. The Prover then computes Q := ah(s) and sends Q, β to the Verifier.

3. The Prover computes g̃2 := g
f(s)
2 and sends it to the Verifier.

4. The Verifier then verifies the two equations

e(a, g̃2) = e(b, g2); e(Q, gs+α2) ∗ e(aβ, g2) = e(b, g2).

He then accepts if and only if both equations hold.

Note that by the bilinearity of the pairing, we have

e(a, g̃2) = e(b, g2)⇐⇒ loga(b) = logg2(g̃2),

e(Q, gs+α2) ∗ e(aβ, g2) = e(b, g2)⇐⇒ Qs+αaβ = b.

Since the Verifier only uses public randomness for the proof of exponentiation (PoE) and proof
of knowledge of the exponent (PoKE), both protocols can be made non-interactive using the
Fiat-Shamir heuristic.

We now describe two attacks to show that the Protocol PoKE needs both of the steps 2 and 3.

Attack 1: Suppose the pairing e is a type I pairing, i.e. G1 = G2. Suppose a malicious Prover
possesses a polynomial h(X) ∈ Fp[X] such that ah(s) = g2. He computes Q′ := bh(s) and sends
it to the Verifier. The Verifier then sees that e(a,Q′) = e(b, g2) and is tricked into believing the
veracity of the Prover’s claim. Thus, this protocol is not secure for type I pairings. Clearly, a
similar attack can be carried out for type II pairings as well.

Attack 2: Suppose a Prover possesses polynomials h1(X), h2(X) such that g
h1(s)
1 = a, g

h2(s)
1 = b

and h1(X) does not divide h2(X). With overwhelming probability, the challenge α ∈ F∗p is such
that the polynomials X + α and h1(X) are relatively prime. On receiving the challenge α, he
could simply compute a polynomial q(X) ∈ Fp and an element β ∈ Fp such that

h1(X)β + (X + α)q(X) = h2(X)

and send Q := aq(s), β to the Verifier. The Verifier then sees that Qs+αaβ = b and is fooled into
believing that the Prover possesses a (polynomial) discrete logarithm between a and b.

Note that when h1(X) divides h2(X), this does not constitute an attack since

a
h2(s)
h1(s) = b.

But in the case that h1(X) does not divide h2(X), this attack shows that it is not sufficient for
the Prover to send the pair (Q, β) ∈ G1 × Fp to the Verifier.

6

Proposition 2.5. The protocol PoKE for bilinear accumulators is secure under the n-strong Diffie
Hellman and KEA assumptions.

Proof. Suppose, by way of contradiction, that a malicious Prover is able to forge a fake PoKE.
So, with notations as in the protocol, the Prover does not possess a polynomial f(X) such that
af(s) = b but is able to produce elements Q ∈ G1, g̃2 ∈ G2 and β ∈ Fp such that e(a, g̃2) = e(b, g2)
and Qs+αaβ = b.

Unless the Prover possesses a polynomial h(X) and an efficiently computable isomorphism
φ : G2 −→ G1 such that ah(s) = g1 = φ(g2), the validity of the equation

e(a, g̃2) = e(b, g2)

implies the knowledge of the polynomial discrete logarithm between a and b with overwhelming
probability. So we may assume without loss of generality that the Prover possesses such a
polynomial h(X) and isomorphism φ : G2 −→ G1, i.e. the pairing e is of type I or II.

Now, the Prover produces an element Q ∈ G1 and β ∈ Fp such that Qs+α = ba−β. By

the KEA assumption, the Prover outputs a polynomial h1(X) ∈ Fp[X] such that Q = g
h1(s)
1 ,

ba−β = g
h1(s)s
1 . So

b = g
h(s)s
1 aβ = ah(s)h1(s)s+β,

a contradiction.

If the pairing e is a type III pairing, the protocol is substantially simpler.

Protocol 2.6. Protocol PoKE (proof of knowledge of the exponent) for type III bilinear accumulators:

Parameters: A type III pairing e : G1 ×G2 −→ GT ; Inputs: Elements a, b ∈ G1

Claim: The Prover possesses a polynomial f(X) ∈ Fp[X] such that af(s) = b

1. The Prover computes Q := g
f(s)
2 and sends it to the Verifier.

2. The Verifier accepts if and only if e(a,Q) = e(b, g2).

Thus, the proof consists of a single element of G2 and the Verifier’s task boils down to
computing just one pairing.

2.1 Aggregation of membership witnesses

Let d1, d2 be two accumulated data elements and w1, w2 their witnesses with respect to the
accumulator Acc(D). Thus,

Acc(D) = ws+d11 = ws+d22 .

Set c := (d1 − d2)−1 ∈ F∗p and w1,2 := w−c1 wc2. Then w
(s+d1)(s+d2)
1,2 = Acc(D). Thus, w1,2 is a

witness for {d1, d2}. This technique can be generalized to larger sets as follows.

Let D1, D2 be two disjoint accumulated data sets and w1, w2 their witnesses with respect to
the accumulator Acc(D). For brevity, we write

f1(X) :=
∏
d1∈D1

(X + d1), f2(X) :=
∏
d2∈D2

(X + d2).

Thus,

Acc(D) = w
f1(s)
1 = w

f2(s)
2 .

7

Since the polynomials f1(X), f2(X) are relatively prime and Fp[X] is a principal ideal domain,
we may compute polynomials h1(X), h2(X) ∈ Fp[X] such that

h1(X)f1(X) + h2(X)f2(X) = 1 ∈ Fp[X], deg hi(X) < deg f3−i(X).

Furthermore, the run time complexity of computing these polynomials is O(N log2(N) log(log(N))

where N = max(deg f1(X),deg f2(X)). Now, the element w1,2 := w
h2(s)
1 w

h1(s)
2 is such that

w
f1(s)f2(s)
1,2 = Acc(D). Thus, w1,2 is a witness for the union D1 ∪ D2.

2.2 Non-membership proofs

In this subsection, we show that we can have non-membership proofs of constant size with bilinear
accumulators. As before, let D be the set of accumulated elements and let D0 be a set of elements
disjoint from D. For brevity, we write

f(X) :=
∏
d∈D

(X + d), f0(X) :=
∏
d0∈D0

(X + d0).

Since the polynomials f(X), f0(X) are relatively prime, we may compute polynomials h(X), h1(X) ∈
Fp[X] such that

f0(X)h0(X)− f(X)h(X) = 1 ∈ Fp[X], deg h(X) < deg f0(X).

Set w(D0) := g
h0(s)
1 ∈ G1. Then

w(D0)
f0(s) = Acc(D)h(s)g1.

We use the pair (w(D0), g
h(s)
2) ∈ G1×G2 as the (constant-sized) non-membership witness for D0.

The problem that arises here is that a malicious Prover could provide a false witness since
the Verifier does not know the polynomial h(X). The most obvious solution to this would be to
require the Prover to send h(X) to the Verifier. However, that would require witnesses of size
linear in the size of the set D0 which is not desirable. Instead, following the idea presented in
[BBF19] for the PoKE in group-based accumulators, we use the non-interactive PoKE for pairings
to demonstrate that the element gh(s) was computed in an honest manner. If the pairing e is a
type III pairing, the PoKE for gh(s) is redundant since being able to compute gh(s) demonstrates
the knowledge of h(X). We summarize the non-interactive protocol below.

Protocol 2.7. Protocol for non-membership proofs with the bilinear accumulator

Parameters: A pairing e : G1 × G2 −→ GT ; the accumulated data set D; a data set D0 with
|D0| ≤ |D|
Claim: D0 ∩ D = ∅.

1. The Prover computes the polynomials

f(X) :=
∏
d∈D

(X + d), f0(X) :=
∏
d0∈D0

(X + d0).

2. The Prover computes polynomials f0(X), h(X) ∈ Fp[X] such that

f0(X)h0(X)− f(X)h(X) = 1 ∈ Fp[X], deg h(X) < deg f0(X).

8

3. The Prover computes w1 := g
h0(s)
1 and sends the pair

(w1, w2) := (g
h0(s)
1 , g

h(s)
2) ∈ G1 ×G2

to the Verifier.

4. The Prover provides a non-interactive PoKE for the equation g
h(s)
2 = w2 (redundant if e is a

type III pairing).

5. The Prover computes g̃2 := g
f0(s)
2 and sends g̃2 to the Verifier along with a non-interactive PoE

for the equation g̃2 = g
f0(s)
2 .

5. The Verifier checks whether
w
f0(s)
1 = Acc(D)h(s)g1

by verifying the equivalent equation

e(w1, g̃2) = e(Acc(D), w2) ∗ e(g1, g2).

He then verifies the PoKE for g
h(s)
2 = w2 and the non-interactive PoE for the equation g̃2 = g

f0(s)
2 .

He accepts if and only if all of these proofs hold up to this scrutiny.

Thus, the Verifier only needs the set {g1, gs1, g2, gs2} to perform the verification. His computational
burden is reduced to computing two pairings in addition to verifying a non-interactive PoE and
a non-interactive PoKE. We now prove the security of this protocol under the n-strong Diffie
Hellman assumption.

Theorem 2.8. The non-membership protocol for the bilinear accumulator is secure under the
n-strong Diffie Hellman and KEA assumptions.

Proof. Recall that in Proposition 2.4, we showed that the protocol PoKE (and consequently, the
non-interactive PoKE) is secure under the n-strong Diffie Hellman and KEA assumptions. Hence,

if the non-interactive PoKE for w2 = g
h(s)
2 is valid, the Verifier can assume that g

h(s)
2 was computed

in an honest manner. Similarly, we showed that the non-interactive PoE is secure under the same
assumptions.

Let D denote the accumulated data set and let D0 be a set such that D0∩D is non-empty. Set
f0(X) :=

∏
d∈D0

(X + d). Suppose, by way of contradiction, that a probabilistic polynomial time

adversary A produces a false non-membership witness w(D0) such that w(D0)
f0(s) = Acc(D)h(s)g1

for some polynomial h(X) ∈ Fp[X]. Choose an element d0 ∈ D0 ∩ D and write
f0(X) = (X + d0)f2(X). Let w0 be the membership witness of d0, i.e.

w0 := g

∏
d∈D\{d0}

(s+d)

1 .

Then we have
(w(D0)

f2(s)w
−h(s)
0)(s+d0) = g1,

a contradiction since by the strong Diffie Hellman assumption, the PPT adversary outputs a
s+ d0-th root of g1 with negligible probability.

9

2.3 Aggregation of non-membership witnesses

In this subsection, we show how one can aggregate witnesses for non-membership.

As before, let D be the accumulated data set of size n. Let D1, D2 be disjoint data sets such
that |D1|+ |D1| << n. Set

f1 :=
∏
d1∈D1

(X + d1), f1 :=
∏
d2∈D2

(X + d2).

Suppose we have non-membership witnesses (w1, g
e1(s)
2), (w2, g

e2(s)
2) for D1, D2 respectively

along with non-interactive proofs of knowledge for the polynomials e1(X), e2(X). We compute
polynomials f̃1(X), f̃2(X) such that

f1(X)f̃1(X) + f2(X)f̃2(X) = 1, deg f̃2(X) < deg f1(X)

and define
ẽ1,2(X) := e1(X)f1(X)f̃1(X) + e2(X)f2(X)f̃2(X).

We compute polynomials q(X), e1,2(X) ∈ Fp[X] such that

ẽ1,2(X) = q(X)f1(X)f2(X) + e1,2(X), deg e1,2(X) < deg f1(X)f2(X).

Now set

w1,2 :=
(
w
f̃2(s)
1 w

f̃1(s)
2

)q(s)
.

By construction,

w
f1(s)f2(s)
1,2 = Acc(D)e1,2(s)g1.

Since we have proofs of knowledge of e1(X), e2(X), we also have a proof of knowledge of e1,2(X).

Thus, the pair (w1,2, g
e1,2(s)
2) along with a non-interactive proof of knowledge of e1,2(X) serves as

a non-membership witness for the union D1 ∪ D2.

2.4 Construction of the bilinear accumulator

Let E be an elliptic over a finite field Fl for some 256-bit prime l. Let πE be the Weil l-integer
corresponding to the isogeny class of E. Then for any power ld, the size #E(Fld) of the group of
Fld-rational points of E is given by

#E(Fld) =
∣∣(1− πd

E
)(1− π̄d

E
)
∣∣.

We choose the pair (l, E) such that such that #E(Fl) has a large prime divisor p and the co-factor
#E(Fl)

p is a small integer. Set G1 := E(Fl)[p], the p-torsion subgroup of #E(Fl) and let g1 be

a generator of G1. Choose a point g2 ∈ E(Fl)[p] such that g1, g2 are linearly independent and
define G2 to be the group generated by g2 so that

#E(Fl)[p] = G1 ×G2.

Define GT as the group of p-th roots of unity of Fl. More precisely, if k is the smallest integer
such that lk ≡ 1 (mod p), GT is the group of p-th roots of unity of Flk . The integer k is called
the embedding degree of E with respect to p. The elliptic curve is said to be pairing friendly if
the embedding degree is reasonably small for some large prime p dividing #E(Fl).

10

Now, we have the Weil pairing

eWeil : E(Fl)[p]× E(Fl)[p] −→ GT

which is bilinear, alternating, non-degenerate and efficiently computable by Miller’s algorithm.
We define the pairing

e : G1 ×G2 −→ GT

as the restriction of the Weil pairing to G1 ×G2.

Symmetric pairings: Some bilinear accumulators such as the one constructed in [Ngu05] make
use of symmetric bilinear pairings. To construct such a pairing, we need to choose a supersingular
elliptic curve E over a field Fq. The Weil q-integer πE is an algebraic integer such that πE π̄E = q,
[Q(πE) : Q] = 2 and π6E ∈ Z. We use the elliptic curve E to construct a symmetric pairing as
follows.

The endomorphism ring End(E) is a maximal order in the quaternion algebra Ql,∞ ramified
exclusively at l and ∞. Furthermore, End(E) acts transitively on the group E(Fl)[p]. With
notations as in the preceding paragraph, we choose an endomorphism φ : E −→ E that does not
preserve the cyclic group E(Fl)[p] and define G2 := φ(G1). We then have the symmetric pairing

esym : G1 ×G1 −→ GT , esym(x, y) = e(x, φ(y)).

On the other hand, if E is an ordinary elliptic curve, the endomorphism ring End(E) is an
order in some imaginary quadratic field in which both p and l split. The group E(Fl)[p] is stable
under the action of End(E) and hence, no such symmetric pairing exists.

2.5 Complexities of operations for pairings

We briefly summarize the complexities of the operations involved in bilinear accumulators.

Let p be a prime and f(X), g(X) polynomials in Fp[X] of degrees m, n respectively with
m ≤ n. The product f(X)g(X) can be computed with O(n log(n) log(log(n))) operations in
Fp. A Euclidean division has the same asymptotic complexity. The greatest common divisor
gcd(f(X), g(X)) can be computed in run time O(n log2(n) log(log(n))) along with polynomials
f1(X), g1(X) such that

(2.1) gcd(f(X), g(X)) = f1(X)f(X) + g1(X)g(X), deg f1(X) ≤ deg g(X)

The Weil pairing is computed in run time O(log3(p)) with Miller’s algorithm. With Karatsuba’s
optimization of field multiplications, the run time can be brought down to O(log2.585(p)).

2.6 Comparison between bilinear and group-based accumulators

For 128-bit security, the bilinear accumulator requires a suitable elliptic curve over a 256-bit
prime field. On the other hand, the RSA accumulator requires a 3072-bit RSA modulus and a
class group accumulator requires a 1600-bit discriminant. As a result, the bilinear accumulator
is substantially faster when it comes to accumulation, witness generation and verification. We
refer the reader to Tremel’s thesis ([Tre13]) for a much more detailed comparison.

The major downside to bilinear accumulators is that the public key is linear in the size of the
accumulator. This is somewhat offset by the fact that the run time of hashing data to primes
for the group-based accumulator is linear in the size of the accumulator. In fact, if the Prover
and the Verifier perform the hashing to the primes separately, this hashing consumes more time

11

than does the public key generation for a bilinear accumulator. Furthermore, since the primality
checks are probabilistic rather than deterministic in nature, there is a small probability of hashing
data to pseudo-primes rather than primes.

Unfortunately, the bilinear accumulator requires a trusted setup for the generation of the
secret key. While this is far from ideal, this shortcoming can be mitigated by a secure multi-party
computation which is more efficient that the one needed for the RSA key generation. Furthermore,
accumulation with a distributed private key is more plausible with a bilinear accumulator than
with a RSA accumulator.

The only known group-based accumulator with a trustless setup is the class group accumulator
whic hinges on the infeasiblity of computing the class group of an imaginary quadratic field.
However, the group operations in class groups of imaginary quadratic fields are too slow at the
moment for deployment in the near future.

3 Vector Commitments

The aim of this section is to construct a Vector Commitment with constant sized openings using
the universal bilinear accumulator constructed in the preceding section. Informally, a Vector
Commitment is a binding commitment to a vector in the same way that an accumulator is a
binding commitment to a set.

The first Vector Commitment with public parameters as well as openings of constant size was
constructed in [BBF19] using their universal group-based accumulator. Unfortunately, this does
not seem feasible for a bilinear Vector Commitment since the bilinear accumulator has linear
public parameters. But our construction does yield a bilinear VC with linear public parameters
and openings of constant size which we expect to have a significant speed advantage over a
group-based VC. Furthermore, rather than storing the entire public parameter, the Verifier only
needs to store the set {g1, gs1, g2, gs2} in addition to his membership proofs. Thus, his total amount
of necessary storage is of constant size.

Definition 3.1. A Vector Commitment (VC) is a tuple consisting of the following PPT algorithms:

1. VC.Setup(λ, n,M): Given security parameter λ, length n of the vector and message spaceM
of vector components, output public parameters pp which are implicit inputs to all the following
algorithms.

2. VC.Com(m) −→ τ : Given an input m = (m1, · · · ,mn) output a commitment com.

3. VC.Update(com,m, i, τ): Given an input message m and a position i, output a commitment
com and advice τ .

4. VC.Open(com,m, i, τ): On input m ∈ M and i ∈ [1, n], the commitment com and advice τ ,
output an opening π that proves m is the i-th committed element of com.

5. VC.Verify(com,m, i, τ)−→ 0/1: On input commitment com, an index i ∈ [1, n] and an
opening proof π, output 1 (accept) or 0 (reject).

A vector commitment is said to be a subvector commitment (SVC) if given a vector m and a
subvector m′, the committer may open the commitments at all the positions of m′ simultaneously.
This notion was first introduced in [LM18]. It is necessary for each opening to be of size
independent of the length of m′, since otherwise it would be no more efficient than opening
the positions separately. For instance, a Merkle tree is an example of a Vector Commitment that
is not a subvector commitment since its position openings are not constant sized and secondly,
the openings of several positions cannot be compressed into a single proof. In the rest of this
section, we construct a SVC using the accumulator constructed in Section 2.

12

We start by constructing a bilinear accumulator as in the last section. The message space
M is the set {0, 1}∗. Our construction associates the element i + pZ ∈ F∗p for each index i of
the vector. We now define a bit-vector m = (m1, · · · ,mp−1) of length p− 1 as follows. For each
index i, we set

mj =

{
1 if j + pZ was accumulated .

0 otherwise.

The bit-vector m is sparse, i.e. most of its entries are 0. The opening of the i-th index
is a membership proof of i + pZ if mi = 1 and a non-membership proof if mi = 0. With the
accumulator we constructed in the last section, each opening is of constant size. Furthermore,
the openings of multiple indices can be batched into a constant sized proof by aggregating
all the membership witnesses for F∗p-elements on the indices opened to 1 and batching all the
non-membership witnesses for elements at the indices opened to 0.

We use our accumulator to commit to the set of elements corresponding to indices such that
mi = 1. The opening of the i-th index to mi is an inclusion proof for di and the opening to
mi = 0 is an exclusion proof for di. With our bilinear accumulator, the opening of each index is
constant-size. Furthermore, the openings of multiple indices can be batched into a single constant
sized proof using membership proofs for elements on the indices opened to elements of F∗p and
non-membership proofs for elements opened to 0.

References

[BBF19] D. Boneh, B. Bunz, B. Fisch, Batching Techniques for Accumulators with Applications to IOPs and
Stateless Blockchains

[BGG17] S. Bowe, A. Gabizon, M. Green, A multi-party protocol for constructing the public parameters of the
Pinocchio zk-SNARK

[BGM17] S. Bowe, A. Gabizon, I. Myers, Scalable Multi-party Computation for zk-SNARK Parameters in the
Random Beacon Model

[CF13] D. Catalano, D. Fiore, Vector commitments and their applications

[DT08] I. Damgard, N. Triandopolous, Supporting Non-membership Proofs with Bilinear-map Accumulators

[CPZ18] A. Chepurnoy, C. Papamanthou, Y. Zhang, EDRAX : A Cryptocurrency with Stateless Transaction
Validation

[FST06] D. Freeman, M. Scott, E. Teske, A taxonomy of pairing-friendly elliptic curves

[FS87] A. Fiat, A. Shamir, How to prove yourself: Practical solutions to identification and signature problems.

[LM18] R. Lai, G. Malavolta, Optimal succinct arguments via hidden order groups

[Mil86] V. Miller, Short Programs for functions on Curves

[Ngu05] L. Nguyen, Accumulators from bilinear pairings and applications

[Tre13] E. Tremel, Real world performance of cryptographic accumulators

[Wes18] B. Wesolowski, Efficient verifiable delay functions

13

Steve Thakur
Axoni Research Group
New York City
NY, USA

Email: steve.thakur@axoni.com

Copyright (c) 2019 Schvey, Inc. dba Axoni. All rights reserved.

14

