
Identity-Concealed Authenticated Encryption
from Ring Learning With Errors (Full version)

Chao Liu1, Zhongxiang Zheng2, Keting Jia2(�), and Limin Tao3

1 Key Laboratory of Cryptologic Technology and Information Security, Ministry of
Education, Shandong University, P.R. China

liu chao@mail.sdu.edu.cn
2 Department of Computer Science and Technology, Tsinghua University, P.R. China

ktjia@mail.tsinghua.edu.cn
3 Space Star Technology co., LTD, P.R. China

Abstract. Authenticated encryption (AE) is very suitable for a resources
constrained environment for it needs less computational costs and AE has
become one of the important technologies of modern communication se-
curity. Identity concealment is one of research focuses in design and anal-
ysis of current secure transport protocols (such as TLS1.3 and Google’s
QUIC). In this paper, we present a provably secure identity-concealed
authenticated encryption in the public-key setting over ideal lattices,
referred to as RLWE-ICAE. Our scheme can be regarded as a parallel
extension of higncryption scheme proposed by Zhao (CCS 2016), but in
the lattice-based setting. RLWE-ICAE can be viewed as a monolithic
integration of public-key encryption, key agreement over ideal lattices,
identity concealment and digital signature. The security of RLWE-ICAE
is directly relied on the Ring Learning with Errors (RLWE) assumption.
Two concrete choices of parameters are provided in the end.

Keywords: Authenticated encryption · RLWE · Lattice-based · Identity-
concealed · Provable security

1 Introduction

Authenticated encryption (AE) is a form of encryption that guarantees the con-
fidentiality and authenticity of data at the same time. Because AE can sign and
encrypt messages in single step, the computational cost of it is lower than that
of traditional signature-then-encryption methods. Some works also shows that
AE is functionally equivalent to one-pass authenticated key-exchange [21,8,12].
Since Zheng proposed the first AE scheme [31] in 1997, it has become one of the
important technologies of modern communication security.

By identity concealment, we mean that the protocol transcript shouldn’t leak
participants’ identity information. ID concealment is relevant for several reason-
s. For instance, if the identity is not protected in a wireless device, an attacker
can eavesdrop the communications to track the user’s location, which leads to
attacks directed towards selected users. Identity concealment is mandated or
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recommended by many standardized and deployed cryptographic protocols like
TLS1.3 [24], QUIC [26], EMV [6], etc. Furthermore, we say that a player enjoys
forward ID-privacy if his ID-privacy preserves even through his static secret-key
is compromised. For some famous protocols such as Zheng’s signcryption [31,3]
and one-pass HMQV (HOMQV) [15,13], the issue of ID-concealment was not
considered. In 2016, Zhao [30] introduced that ID-concealment can be integrat-
ed with AE to solve the problem of 0-RTT (zero-round trip time) with client
authentication. A 0-RTT option protocol allows the establishment of a secure
connection in “one-shot”, which means that cryptographically protected pay-
load data can be sent immediately along with the first single message sent from
a sender to a receiver, without the need for a latency-incurring prior handshake
protocol. This significant acceleration of connection establishment provides a
more smoothly Web browsing experience and better performance for applica-
tions with low latency requirements. Many large projects have been developed
and experimented with 0-RTT protocols, such as Google’s QUIC [16], TLS1.3
and Facebook’ Zero protocols [14]. But QUIC and TLS1.3 are now only support-
ing 0-RTT mode without client authentication. Zhao proposed higncryption [30]
which solved the problem of 0-RTT with client authentication by integrating
public-key encryption, entity authentication and ID-concealment into a single
primitive.

Some other properties are considered in nowadays public-key settings. A
protocol enjoys “receiver deniability”, which means that the session transcript,
especially the authentication value, can be simulated by a receiver with public pa-
rameters and his own secret-key. A protocol enjoys x-security [13], which means
that the leakage of ephemeral secret does not cause the exposure of sender’s static
secret or pre-shared secret. For some well-known protocols, Zheng’s signcryption
[31,3] does not enjoy x-security and is receiver undeniable. Krawczyk’s one-pass
HMQV (HOMQV) [13] scheme enjoys receiver deniability and x-security, but
without forward ID-privacy. Zhao’s higncryption [30] has a novel design, and
enjoys forward ID-privacy, receiver deniability and x-security.

But above existed authenticated encryptions are mainly based on the clas-
sic hard problems, such as the computational/decisional DH problem. It is well
known that DH problem is vulnerable to quantum computers [27]. Since the rapid
development of quantum computers, searching other counterparts based on prob-
lems which are believed to be resistant to quantum attacks is more and more
urgent. Naturally we think of such a question: can we come up with an authenti-
cated encryption that can resist quantum attacks and enjoys above several good
properties such as ID-concealment, receiver deniability and x-security? Note that
lattice-based cryptographic schemes have many advantages such as asymptotic
efficiency, conceptual simplicity and worst-case hardness assumption, and it is a
perfect choice to build lattice-based authenticated encryption in the public-key
settings.

Our Contributions. In this paper, we propose a new authenticated encryption
to solve the above motivating questions. We choose Ring Learning With Er-
rors (RLWE), which is as hard as some worst case lattice problems on ideal



Identity-Concealed Authenticated Encryption from RLWE 3

lattices [19,11] to construct our scheme. By utilizing some useful properties of
RLWE and discrete Gaussian distributions, we present an approach to combine
public/secret key in a manner similar to higncryption [30]. Our scheme not on-
ly enjoys many nice properties of higncryption such as identity concealment,
0-RTT option, forward ID-privacy, receiver deniability and x-security, but also
enjoys some properties of lattice-based cryptography, such as worst-case hard-
ness assumption, and resistance to quantum computer attacks. We manage to
establish a full proof of our scheme’ security in the Zhao’s strong model [30] by
replacing the Diffie-Hellman core of Zhao’s model with the lattice-based core.
Our scheme may have some other applications. For example we give a direct ap-
plication of one-pass ID-concealed authenticated key exchange protocol. In the
end, we choose the concrete parameters and give the security assessment.

Techniques in Our Scheme. In higncryption, the sender (the encryption party)
and the receiver (the decryption party) would compute a same element, which
is used in encrypting communication data. Since higncryption works on “nicely-
behaved” cyclic groups, which have the property of commutativity, such a “key
agreement” can be easily realized. While for lattice-based cryptographic, bene-
fitting from the growth of lattice-based key exchange protocols [9,23,5], we can
utilize the key agreement technique to construct our scheme. Ding et al. [9] firstly
introduced the key reconciliation mechanism to “handling the noises” of RLWE.
And Peikert [23] gave an improved version of reconciliation mechanism. We use
Peikert’s reconciliation mechanism to achieve the key agreement in our scheme.
Furthermore, since the perfect randomization properties of cyclic groups, the
static key can be “perfectly hidden” in the communication data. While for RL-
WE based scheme, the goal of perfectly hiding the keys can be realized by using
rejection sampling [17]. In the security aspect, secret hidden is necessary, so we
apply the rejection sampling technique in our scheme. To prove the security of
our scheme, we introduce vPWE assumption, which is a variant of Pairing with
Errors (PWE) assumption introduced by Ding et al. [10], and we show that vP-
WE assumption can be reduced to the RLWE problem. As long as the vPWE
assumption is hard, the security of our scheme can be guaranteed.

Related Works. For authenticated protocols from ideal lattices, in 2015, Zhang
et al. [29] proposed an authenticated RLWE based key exchange and a one-pass
authenticated key exchange over ideal lattices. In 2017, Ding et al. [10] proposed
RLWE-based password authenticated key exchange, whose security is proved by
using PWE assumption. Yang et al. [28] introduced a RLWE-based two-message
key exchange scheme in 2018, and they used Peikert’s reconciliation mechanism
to construct the scheme.

Roadmap. In Sect. 2, we introduce some backgrounds such as notations, security
models, RLWE and some tools used in scheme. Our protocol RLWE-ICAE is
introduced in Sect. 3. And in Sect. 4, two theorems are given to guarantee the
security of the scheme. The parameters and the security assessment of our scheme
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are presented in Sect. 5. Finally, we conclude and discuss some further works in
Sect. 6.

2 Preliminaries

2.1 Notations

Let n be an integer of the power of 2. Denote the ring of integer polynomials R
as Z[x]/(xn + 1), and Rq := Zq[x]/(xn + 1) as the ring of integer polynomials
modulo xn+1 with every coefficient is reduced modulo positive integer q. Let the

norm of a polynomial be the norm of its coefficients vector. Let x
$←− χ denote the

coefficients of x are sampled based on the probability distribution χ. For any pos-
itive real β ∈ R, and a vector c ∈ Rm, let the continuous Gaussian distribution
over Rm with standard deviation β centered at c be defined by the probability

function ρβ,c(x) = ( 1√
2πβ2

)mexp(
−||x−v||22

2β2 ). Let DZn,β,c(x) =
ρβ,c(x)
ρβ,c(Zm) to indi-

cate the m-dimensional discrete Gaussian distribution. The subscripts β and c
are omitted when they are 1 and 0. Usually χβ denotes Gaussian distribution
with standard deviation β and centered at 0.

2.2 Authenticated Encryption with Associated Data

An authenticated encryption with associated date (AEAD) scheme transforms a
message M and a public packet header, which is usually implicitly determined
from the context, into a ciphertext C which provides both privacy (of M) and
authenticity (of C and H) [25]. We state the security of AEAD in [30] as follows.

AEAD security. Let
∏

= (K, E ,D) be a symmetric encryption scheme. The key
space K = {0, 1}κ is a finite nonempty set of strings. There is a probabilistic
polynomial-time algorithm takes a security parameter κ as input and samples
a key K from K. The polynomial-time encryption algorithm E : κ × {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗ ∪ {⊥} and the polynomial-time decryption algorithm D : κ ×
{0, 1}∗ × {0, 1}∗ → {0, 1}∗ ∪ {⊥} satisfy:

Pr[K ← K;H ∈ {0, 1}∗;M ∈ {0, 1}∗;C ← EK(H,M) : DK(C) 6= M ] ≤ negl(κ),

where negl is a negligible function. Generally, we assume the ciphertext C has
the associate data H. Let A be a polynomial-time adversary. A security game for
AEAD is described in Table 1. The advantage of A is defined to be Advaead∏ (A) =

|2 ·Pr[AEADA∏ returns true]− 1|. And we say
∏

scheme is AEAD-secure, if for

all sufficiently large κ, AdvAEAD∏ (A) ≤ negl(κ).

2.3 Security Model for ICAE

We recall the security model for identity-concealed authenticated encryption
(ICAE) scheme from [30]. An ICAE scheme IC is specified with four polynomial-
time algorithms (Setup, Keygen, Encrypt, Decrypt) as follows:
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Table 1. AEAD security game

main AEADA∏: procedure Enc(H,M0,M1): procedure Dec(C′):

K ← K If |M0| 6= |M1|, Ret ⊥ If σ = 1 ∧ C′ /∈ C then
σ ← {0, 1} C0 ← EK(H,M0) Ret DK(C′)
σ′ = AEnc,Dec C1 ← EK(H,M1) else Ret ⊥
Ret (σ′ = σ) If C0 = ⊥ or C1 = ⊥, Ret ⊥

C ∪←− Cσ; Ret Cσ

– Setup: takes the security parameter κ as input and outputs the system
parameter params used in the scheme.

– Keygen: takes params as input and outputs a key pair (pk, sk) used for
encryption and decryption.

– Encrypt: takes the sender’s private key sks and public identity information
pids = (ids, pks, certs) where certs is issued by a certificate authority, a
receiver’s public identity information pidr = (idr, pkr, certr), message M ∈
{0, 1}∗, and associated data H ∈ {0, 1}∗ as input. It returns a ciphertext C
or ⊥ which indicate encrypt failure. We allow pids = (ids, pks, certs) equal
to pidr = (idr, pkr, certr), which means that a user encrypts a message to
himself. We also assume some offline-computable intermediate randomness
used in generating C is stored in a variable ST C .

– Decrypt: takes a receiver’s private key skr, the receiver’s public identi-
ty information pidr = (idr, pkr, certr), a ciphertext C as input. It outputs
(pids,M) or an error ⊥.

We say that an ICAE scheme is correctness if for all sufficiently large secu-
rity parameter κ, key pairs (pks, sks) and (pkr, skr) which are output by Key-
gen(1κ), there is

Pr[Decrypt(skr, pidr,Encrypt(sks, pids, pidr, H,M)) 6= (pids,M)] ≤ negl(κ)

where H,M ∈ {0, 1}∗ such that Encrypt(sks, pids, pidr, H,M) 6= ⊥, and negl
is a negligible function.

Now we present the security model for ICAE. We assume each user possess-
es a single key pair for encryption and decryption, and each user can encrypt
messages to himself. In this model the adversary is allowed to register users
adaptively (hence has dishonest users). Let the number of users in the system be
N , which is a polynomial in the security parameter κ. We assume all the honest
users’ key pairs are generated by the challenger according to the key generation
algorithm specified in the system. Denote by HONEST (reps., DISHONEST),
the set of public identity information of all the honest (resp., dishonest) users.
We denote the public identity information of a user idi as pidi (1 ≤ i ≤ n), the
sender’s (resp., the receiver’s) public identity information as pids (resp., pidr).
The adversary’s abilities are formalized by providing the adversary with the
following oracles:

– ENO: takes (pids, pidr, H,M) as inputs, where pidr ∈HONEST
⋃

DISH−
ONEST. If pids ∈ HONEST, the oracle returns Encrypt(sks, pids, pidr,
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H,M), otherwise return ⊥. In order to allow for later Exposure query
against a ciphertext C, some specified offline-computable intermediate ran-
domness to generate C are allowed to be stored into ST C .

– DEO: takes (pidr, C) as inputs. If pidr ∈ HONEST, the oracle returns
Decrypt (skr, pidr, C), otherwise, returns ⊥.

– Exposure: takes C 6= ⊥ as input. If C is output by an earlier ENO query,
the oracle returns the offline-computable intermediate randomness (stored
in ST C) used in generating C.

– Corrupt: takes pidi ∈ HONEST as input, (1 ≤ i ≤ N), and returns user
idi’s private key ski.

Outsider unforgeability. Consider the following experiment for AOU :
The encryption experiment Encry-forgeAOU ,IC(κ):

– AOU is given the all the honest users’ public keys and can register arbitrary
public keys on its own with security parameter κ.

– AOU is allowed to issue ENO, DEO, Exposure and Corrput queries. AOU
then outputs (pidr∗ , C

∗) as its output.
– AOU succeeds if and only if:

1. Decrypt(skr∗ , pidr∗ , C
∗) = (pids∗ ,M

∗), where pids∗ ∈ HONEST;
2. AOU has not issued Corrupt(pids∗) or Corrupt(pidr∗) query, but is

allowed to query Exposure(C∗) to expose the intermediate randomness
in generating C∗.

3. C∗ is not the output of ENO(pids∗ , pidr∗ , H
∗,M∗) issued by AOU ,

but AOU is still allowed to query ENO(pids′ , pidr′ , H
′,M ′) for (pids′ ,

pidr′ , H
′,M ′) 6= (pids∗ , pidr∗ , H

∗,M∗) and in particular (pids∗ , pidr∗ , H
′,

M∗) for H ′ 6= H∗. AOU can even query ENO(pids∗ , pidr∗ , H
∗,M∗) as

long as its outputs returned is not C∗. And parts of C∗ (the H∗) may
appear in previous outputs of ENO.

– The experiment returns 1 if AOU succeeds, otherwise returns 0.

We say that an ICAE scheme IC has outside unforgeability, if for any PPT
adversary AOU , there is a negligible function negl such that:

Pr[Encry-forgeAOU ,IC(κ) = 1] ≤ negl(κ).

Next we introduce the definition of insider confidentiality, which is identical
to outsider unforgeability, except that Corrupt(pidr∗) is allowed to the adver-
sary.

Insider confidentiality. We assume that all the users have equal length public
identity information. Consider the following experiment for an adversary AIC :
The encryption experiment Encry-ConfidentAIC ,IC(κ):

– AIC is given the all the honest users’ public keys and can register arbitrary
public keys on its own with security parameter κ.
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– AIC is allowed to issue ENO, DEO, Exposure and Corrput queries. AIC
then outputs two equal length messages (M0,M1), an associated data H∗,
and two pairs of public identity information of equal length (pids∗0 , pidr∗)
and (pids∗1 , pidr∗) where pids∗0 , pids∗1 , pidr∗ ∈ HONEST.

– A uniform bit γ ∈ {0, 1} is chosen, and then a ciphertext C∗ = Encrypt(
sks∗γ , pids∗γ , pidr∗ , H

∗,Mγ) is computed and given to AIC .

– The adversary AIC can continue executing the second phase, except ask-
ing DEO(pidr∗ , C

∗), Exposure(C∗) or Corrupt(pidr∗) which will cause
AIC win the game trivially. But the adversary AIC is allowed to issue
Corrupt(pids∗0 ) and Corrupt(pids∗1 ), which can capture forward ID-privacy.

Eventually, AIC outputs a bit γ′.
– The output of the experiment is defined to be 1 if γ′ = γ, and 0 otherwise.

If the output of the experiment is 1, we say that AIC succeeds.

We say that an ICAE scheme IC has insider confidentiality, if for any PPT
adversary AIC there is a negligible function negl such that:

Pr[Encry-ConfidentAIC ,IC(κ) = 1] ≤ negl(κ).

Note that the definition of outsider confidentiality is identical to that of insider
confidentiality, except that neither Corrupt(pid∗s0) nor Corrupt(pid∗s1).

2.4 Ring Learning with Errors

In 2010, Lyubashevsky, Peikert and Regev [19] proposed the Ring Learning with
Erros problems (RLWE), which is based on the Learning with Errors (LWE)

in the ring setting. Assume there are uniform random elements a, s
$←− Rq and

an error distribution χ. Let As,χ denote the distribution of the RLWE pair

(a, as + e), where the error e
$←− χ. Given polynomial number of samples, the

search version of RLWE is to find the secret s, while the decision version of the
RLWE problem (DRLWEq,χ) is to distinguish As,χ from an uniform distribution
pair (a, b) on Rq ×Rq. RLWE enjoys a worst case hardness guarantee, which we
state here.

Theorem 1. ([19], Theorem 3.6) Let R = Z[x]/(xn + 1) where n is a power of
2, δ = δ(n) <

√
logn/n, and q = 1 mod 2n which is a ploy(n)-bounded prime

such that δq ≥ ω(
√
logn). Then there exists a ploy(n)-time quantum reduction

from Õ(
√
n/δ)-SIVP (Short Independent Vectors Problem) on ideal lattices in

the ring R to solve DRLWEq,χ with l−1 samples, where χ = DZn,ς is the discrete
Gaussian distribution with parameter ς = δq · (nl/log(nl))1/4/

√
2π.

We have the following useful facts.

Lemma 1. ([17], Lemma 4.4) For any k > 0, Prx←χβ (|x| > kβ) ≤ 2e−k
2/2.

Note that taking k = 13 gives tail probability approximating 2−121.
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Lemma 2. ([22]) Letting real β = ω(
√
logn), constant η > 1√

2π
, then we have

that Pr
v

$←−DZn,β
[||v|| > η·β

√
n] ≤ 1

2D
n, where D = η

√
2πe·e−π·η2 . In particular,

we have Pr
v

$←−DZn,β
[||v|| > β

√
n] ≤ 2−n+1.

2.5 The Rejection Sampling

Now, we recall the rejection sampling from [18].

Theorem 2. ([18], Theorem 3.4) Let S be a subset of Zm, all the elements of
S have norms less than T , β = w(T

√
logm) be a real, and φ : S → R be a

probability distribution. Then the distribution of the following algorithm F :

– c
$←− φ;

– z
$←− DZm,β,c;

– output (z, c) with probability min
(

DZm,β(z)
M ·DZm,β,c(z)

, 1
)

.

is within statistical distance 2−w(logm)

M from the distribution of the following al-
gorithm G:

– c
$←− φ;

– z
$←− DZm,β;

– output (z, c) with probability 1
M .

where M = O(1) is a constant. Moreover, the probability that F outputs some-

thing is at leat 1−2−w(logm)

M . More concretely, if β = ηT for any positive η, then

M = e12/η+1/(2η2) and the output of algorithm F is within statistical distance
2−100

M of the output of G, and the probability that F outputs something is at leat
1−2−100

M .

2.6 Reconciliation Mechanism

Firstly, We recall the reconciliation mechanism proposed by Peikert in [23] for
transforming approximate agreement to exact agreement. For integer q > p ≥ 2,
we define the modular rounding function b·ep : Zq → Zp as bxep := bpq · xe and

downward-rounded function b·cp : Zq → Zp as bxcp := bpq · xc.

Even modulus. Let the modulus q ≥ 2 is even, define two disjoint intervals I0 :=
{0, 1, . . . , b q4e−1}, I1 := {−b q4e, . . . ,−1} mod q. Then when v ∈ (I0+ q

2 )∪(I1+ q
2 ),

bve2 = 1, and when v ∈ I0 ∪ I1, bve2 = 0. Here we define the cross-rounding
function 〈·〉2 : Zq → Z2 as 〈v〉2 := b 4q · vc mod 2. Obviously, 〈v〉2 = b ∈ {0, 1}
such that v ∈ Ib ∪ ( q2 + Ib).

Lemma 3. ([23], Claim 3.1) For q ≥ 2 is even, if v is uniformly random chosen
from Zq, then given 〈v〉2, bve2 is uniformly random.
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Define the set E := [− q8 ,
q
8 ) ∩ Z. Suppose v, w ∈ Zq are sufficiently close, and

given w and 〈v〉2, we can recover bve2 using the reconciliation function rec:
Zq × Z2 → Z2:

rec(w, b) =

{
0 if w ∈ Ib + E(modq),

1 otherwise.

Lemma 4. ([23], Claim 3.2) For q ≥ 2 is even, if w = v + e mod q for some
v ∈ Zq and e ∈ E, then rec(w, 〈v〉2)= bve2.

Odd modulus. When q is odd, Peikert proposed a randomized function dbl:
Zq → Z2q to avoid the bias produced in the rounding function. Let v ∈ Zq,
function dbl is defined to be dbl(v) := 2v − ẽ ∈ Z2q where ẽ ∈ Z is independent
of v and uniformly random modulo two. Usually we write v with an overbar to
means that v̄ ← dbl(v).

Lemma 5. ([23], Claim 3.3) For q > 2 is odd, if v is uniformly random chosen
from Zq and v̄ ← dbl(v) ∈ Z2q, then bv̄e2 is uniformly random given 〈v̄〉2.

Define function HelpRec(X): (1) X ← dbl(X); (2) W ← 〈X〉2, K ← bXe2;
(3) return (K,W ).

Note that for w, v ∈ Zq, we need apply the appropriated rounding function
from Z2q to Z2, (which means that bxep = b p2q · xe, 〈x〉2 = b 4

2q · xc), and similar

to rec function. Then if (K,W )← HelpRec(X) and Y = X + e with ||e||∞ < q
8 ,

then rec(2 · Y,W ) = K. By applying coefficient-wise to the coefficients in Zq of
a ring elements we also can extend these definitions to Rq. That is, for a ring
elements v = (v0, . . . , vn−1) ∈ Rq, setting bve2 = (bv0e2, . . . , bvn−1e2); 〈v〉2 =
(〈v0〉2, . . . , 〈vn−1〉2), HelpRec(v) = (HelpRec(v0), . . . ,HelpRec(vn−1)) and for
a binary-vector b = (b0, . . . , bn−1) ∈ {0, 1}n, setting rec(v, b)=(rec(v0, b0),. . . ,
rec(vn−1, bn−1)).

2.7 A Variant of Pair With Errors Problem

The vPWE assumption. In [10], Ding et.al. propose the Pairing with Errors (P-
WE) assumption based on Ding’s reconciliation mechanism [9]. Here we proposed
a variant of their PWE assumption and we call it vPWE assumption. We replace
the Ding’s reconciliation mechanism with Peikert’s reconciliation mechanism. Let
χβ be a Gaussian distribution for fixed β ∈ R∗+. For any (X, s) ∈ Rq × Rq, if

(K,W )←HelpRec(X ·s), then set τ(X, s) := K = bX · se2. Let A be probabilis-
tic, polynomial-time algorithm. A takes inputs of the form (a,X, Y,W ), where
(a,X, Y ) ∈ Rq×Rq×Rq and W ∈ {0, 1}n, and outputs a list of values in {0, 1}n.
Given s randomly chosen from χβ , Y which is a “small additive perturbation”
of a · s, and W ← 〈X · s〉2, A’s objective will be outputting the string τ(X, s).

To states the hardness of vPWE assumption, We define the decision version
of vPWE problem vDPWE as follows. If vDPWE is hard, so is vPWE.
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Definition 1. (vDPWE) Given (a,X, Y,W, σ) ∈ Rq×Rq×Rq×{0, 1}n×{0, 1}n
where W = 〈K〉2 for some K ∈ Rq (K ← dbl(K)), and σ = rec(2 · K,W ).
The Decision vPWE problem (vDPWE) is to decide whether K = Xs + e1,
Y = as + e2 for some s, e1, e2 are drawn from χβ, or (K,Y ) are uniformly
random in Rq ×Rq.

In order to show the reduction of the vDPWE problem to the RLWE problem,
we would like to introduce a definition to what we called the RLWE-DH problem
[10] which can be reduced to RLWE problem.

Definition 2. (RLWE-DH) Let Rq and χβ be defined as above. Given an in-
put ring element (a,X, Y,K), where (a,X) is uniformly random in R2

q, The
DRLWE-DH problem is to decision if K is Xs + e1 and Y = as + e2 for some

s, e1, e2
$←− χβ or (K,Y ) are uniformly random in Rq ×Rq.

Theorem 3. ([10], Theorem 1) Let Rq and χβ be defined as above, then the
RLWE-DH problem is hard to solve if RLWE problem is hard.

Theorem 4. Let Rq and χβ be defined as above. The vDPWE problem is hard
if the RLWE-DH problem is hard.

Proof. Suppose there exists an algorithm D which can solve the vDPWE prob-
lem on input (a,X, Y,W, σ) where for some K ∈ Rq, W = 〈K〉2 and σ =
rec(2 ·K,W ) with non-negligible advantage. By using D as a subroutine, we can
build a distinguisher D′ on input (a′, X ′, Y ′,K ′), solve the RLWE-DH problem:

– Compute W = 〈K ′〉2 and σ = rec(2 ·K ′,W ).
– Run D using the input (a′, X ′, Y ′,W, σ).

• If D outputs 1 then K ′ is X ′s+ e1 for some e1
$←− χβ and Y ′ = as+ e2

for some s, e1
$←− χβ .

• Else (K ′, Y ′) is uniformly random element from Rq ×Rq.

Because D solves vDPWE with non-negligible advantage, D′ solves RLWE-
DH with non-negligible advantage as well, which contradicts RLWE-DH’s hard-
ness. ut

3 Protocol Construction of Encryption

3.1 The RLWE-ICAE

In this section we present a practical and carefully designed scheme: RLWE-
ICAE. The scheme consists of the following four algorithms, Setup, Keygen,
Encrypt and Decrypt.

Setup: On a security parameter κ, Setup(1κ) returns params = (n, q, α, β, a)
specifying the underlying ring Rq, Gaussian distribution χα, χβ used in the

scheme and public element a
$←− Rq, where n is a power of 2 and q is an odd

prime such that q mod 2n = 1.
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Keygen: On the parameters params, for each honest user i, (1 ≤ i ≤ N),

Keygen samples si, ei
$←− χα, sets pki = a · si + ei and ski = si, and outputs

the keypair (pki, ski). The CA issue a certificate certi used to authenticated the
binding between user identity idi and public-key pki.

Encrypt: Let
∏

= (K, E ,D) be an AEAD scheme. Let h : {0, 1}∗ → χα
be a cryptographic hash function that always outputs invertible elements in
Rq, M ∈ {0, 1}∗ be the message to be encrypted with an associated data H
and KDF : G × {0, 1}∗ → {0, 1}κ be a key derivation function. We denote
by Alice the sender with public identity information pidA = (idA, pkA = pA =

a · sA + eA ∈ Rq, certA), where sA, eA
$←− χα, and secret-key skA = sA, and by

Bob the receiver with possesses public identity information pidB = (idB , pkB =

pB = a · sB + eB ∈ Rq, certB), where sB , eB
$←− χα, and secret-key skB = sB .

Encrypt(skA, pidA, pidB , H,M) works as follows:

1. Sample r, f
$←− χβ and compute X = a · r + f ∈ Rq;

2. Compute d = h(X, pidA, pidB), r̂ = r + sAd and f̂ = f + eAd;

3. Go to step 4 with probability min(
DZ2n,β(v)

M ·DZ2n,β,v1
(v) , 1), where v ∈ Z2n is the

coefficient vector of element r̂ concatenated with the coefficient vector of f̂ ,
and v1 ∈ Z2n is the coefficient vector of sAd concatenated with the coefficient
vector of eAd; otherwise go back to step 1;

4. Sample g
$←− χβ , and compute X̃ = pA · d+X, PSA = pB · (r + sAd) + g;

5. Compute (PS,w)← HelpRec(PSA);

6. Derive key K1 = KDF (PS, X̃||pidB), where K1 ∈ K;
7. Compute CAE ← EK1

(H, pidA||X||M);

8. Finally, send the ciphertext C = (H, X̃, w,CAE) to the receiver.

Decrypt(skB , pidB , C(= (H, X̃, w,CAE))) works as follows:

1. Compute PSB = X̃ · sB and pre-shared secrecy PS = rec(2 · PSB , w), and

derive the key K1 = KDF (PS, X̃||pidB);
2. Run DK1(H,CAE). If DK1(H,CAE) returns ⊥, abort; otherwise get (pidA =

(idA, pA, certA), X,M);

3. Compute d = h(X, pidA, pidB). If X̃ equals to pA · d+X and pidA is valid,
accept (pidA,M); otherwise, abort.

Our scheme is presented in Figure 1. Note that we use rejection sampling in our
scheme, and this technique can protect the secret information sAd and eAd from
X̃ = a · (sAd + r) + (eAd + f). In our proof of insider confidentiality, such a
“secret hidden” is necessary. Reconciliation mechanism is used to compute PS
from two approximate values PSA and PSB , and this can be regarded to be a
key agreement of the sender and the receiver.

One-pass CAKE. In the RLWE-ICAE, there is K1 = KDF (PS, X̃||pidB).
We can redefine KDF to construct an one-pass CAKE. Define (K1,K2) =
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pidA pidB
pkA : pA ← a · sA + eA pkB : pB ← a · sB + eB
skA : sA skB : sB

where sA, eA
$←− χα where sB , eB

$←− χα

X ← a · r + f where r, f
$←− χβ

d← h(X, pidA, pidB)

X̃ = pA · d+X
PSA ← pB · (r + sA · d) + g

where g
$←− χβ

(PS,w)← HelpRec(PSA)

K1 ← KDF (PS, X̃||pidB)

CAE ← EK1(H, pidA||X||M)
H,X̃,w,CAE−−−−−−−−→ PSB ← X̃ · sB

PS ← rec(2 · PSB , w)

K1 ← KDF (PS, X̃||pidB)
(pidA, X,M)← DK1(H,CAE)
d← h(X, pidA, pidB)

Accept if pidA valid and X̃ = pA · d+X

Fig. 1. Protocol structure of RLWE-ICAE.

KDF (PS, X̃||pidB). Then to cast the RLWE-ICAE scheme into one-pass identity-
concealed authenticated key-exchange (CAKE), we need set the session-key to
be K2 which is computationally independent of the key K1. Hence the expo-
sure of K1 does not affect the session key security. Note that a similar scheme
is Zhang’s one-pass key exchange protocol from ideal lattices [29]. Compared
Zhang’s protocol, our scheme provides identity concealment.

3.2 Correctness

Note that in protocol, if bPSAe2 = rec(2 · PSB , w), where PSA ← dbl(PSA),
the protocols would be correct. By the definition of the reconciliation mechanism
and Lemma 4, there needs to ||PSA − PSB ||∞ < q

8 . We have

PSA = pB(r + sAd) + g = (asB + eB)(r + sAd) + g

= adsAsB + eBsAd+ arsB + reB + g,

PSB = X̃sB = (pAd+X)sB = (asAd+ eAd+ ar + f)sB

= adsAsB + eAsBd+ arsB + fsB ,

therefore, we need ||PSA−PSB ||∞ = ||eBsAd+ reB + g− eAsBd− fsB ||∞ < q
8

with overwhelming probability.
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4 Security for RLWE-ICAE

We assume KDF to be a random oracle. In this section, we show that our scheme
satisfies outsider unforgeability and insider confidentiality in the random oracle
model, under the AEAD security and the vPWE assumption.

4.1 Security Proof of Outsider Unforgeability

Theorem 5. The scheme RLWE-ICAE in Figure 1 satisfies outsider unforge-
ability in the random oracle model, under the AEAD security and the vPWE
assumption.

Proof. We proof the lemma by showing that if

Pr[Encry-forgeAOU ,RLWE-ICAE(κ) = 1] > negl(κ)

vPWE problem defined in Sect. 2.7 can be solved with non-negligible probability.
Assume that the output ciphertext ofAOU in Encry-forgeAOU ,RLWE-ICAE(κ)

is (pidr∗ , C
∗). For presentation simplicity, we assume the adversary can correct-

ly guess the honest users (pids∗ , pidr∗) of successful forgery (which occurs with
probability at least 1

N2 ). We assume that AOU ’s first successful forgery output
is (pidr∗ , C

∗), and it does not query DEO(pid′r, C
′) such that (pid′r, C

′) is also
a valid forgery before AOU outputting (pidr∗ , C

∗).

Given (pks∗ = a ·sks∗+es∗ , pkr∗ = a ·skr∗+er∗), where sks∗ , es∗ , skr∗ , er∗
$←−

χα. We present the proof for the commonly viewed harder case: when pids∗ =
pidr∗ . The proof can be extended to the case when pids∗ 6= pidr∗ straightfor-
wardly. Construct a simulator S which takes (params, pidA) as input, where
the pA = asA + eA is included in pidA for (sA, eA) unknown to S, also given
(a, pA, pA,W ) where W ← 〈pAsA〉2 (pAsA ←dbl(pAsA), defined in Sect.2.6),
and its goal is to compute τ(pA, sA) = rec(pAsA,W ). Note computing τ(pA, sA)
is as hard as breaking vPWE assumption.

To compute τ(pA, sA), S sets the public-key of sender and receiver to be pA,
and sets the other honest users’s public and secret keys on its own. Then the
simulator can act on behalf of all the honest users except user pidA. Hence we
focus on the simulation of pidA to deal with oracle queries made by AOU against
pidA.

To keep the consistency of the random oracle KDF , we use a proof strategy
used in [20,10] that when an adversary causes some events to occur, the simulator
can set the associated values of that event. Define two events, corresponding to
the adversary who makes a KDF inputs guess in ENO and DEO query. We
also define an associated values for those event.

– Encorrectsk: for some X̃, pidr, A makes a KDF (PS, X̃||pidr) query, an
ENO query with input (pids, pidr, H,M), where the latest query is either

the KDF query or the ENO query, 〈PSA〉2 = w, bPSAe2 = PS = rec(2·X̃ ·
skr, w), (PSA ← dbl(PSA)) where PSA is generated by A and skr is the se-

cret key of pidr. The associated value of this event is (w,KDF (PS, X̃||pidr)(=
K1)).
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– Decorrectsk: for some X̃, pidr, A makes a KDF (PS, X̃||pidr) query, an

DEO query with input (pidr, C = (H, X̃, w,CAE)), where the latest query
is either the KDF query or the DEO query, rec(2 ·PSA, w) = PS = rec(2 ·
X̃ · skr, w) where PSA is generated by A and skr is the secret key of pidr.

The associated value of this event is KDF (PS, X̃||pidr)(= K1).

Note that in outsider unforgeability, since Corrupt(pids∗) or Corrupt(pidr∗)
is disallowed, S can perfectly handle all Corrput queries in the security game.

Now we consider a query ENO(pids, pidr, H,M) with the user who with
identity information pidr and public-key pkr. Consider the different case of pids
in the following.

I. When pids ∈ DISHONEST: the output of ENO(pids, pidr, H,M) is
simply defined to be ⊥; II. When pids ∈ HONEST : (1) In the case of pids 6=
pidA: such an oracle query can be perfectly handled by the simulator S as the
scheme does; (2) In the case of pids = pidA: If pidr ∈ HONEST but pidr 6=
pidA, let pkr = pB = asB + eB , where sB , eB is sampled by S himself. Then
S works as the honest pidA does, except PSA = X̃ · sB . Otherwise (pidr /∈
HONEST or pidr = pidA), S computes X = ar + f , d = h(X, pidA, pidB) and

X̃ = pAd+X as the honest sender does. Then if the adversary makes this ENO
query such that causes an Encorrectsk event to occur, sets w to be the first
element of the associated values of the event, and K1 to be the second element

of the associated values of the event, otherwise S sets w
$←− {0, 1}n, and K1 to

be a string which is taken uniformly at random from K of AEAD. Finally S
computes CAE = EK1(H, pidA||X||M), and returns C = (H, X̃, w,CAE) as the
output of ENO(pids, pidr, H,M).

Also the intermediate randomness generated by S is stored in ST C . Then S
can perfectly handle all the ENO, Corrupt and Exposure queries.

Note that for a query DEO(pidr, C = (H, X̃, w,CAE)) made by the adver-
sary, if pidr ∈ DISHONEST, the oracle can output ⊥ simply, and other case
except that pidr ∈ HONEST, pidr = pidA, S can works as the scheme does.
Hence we only consider the case of pidr ∈ HONEST and pidr = pidA.

Firstly, if C was ever output by ENO(pids, pidA, H,M) query for some M ∈
{0, 1}∗ and pids ∈ HONEST, S outputs (pids,M) simply. Otherwise, if this
ENO query causes a Decorrecksk event to occur, sets K1 to the associated
value of the event and uses K1 to decrypt CAE , finally returns the results to the
adversary. Otherwise, the simulator returns ⊥ which indicates C is an invalid
ciphertext for pidr. Denote by failure event that the simulator S outputs ⊥ for
(pidA, C), while DEO(pidA, C) does not. If failure event does not occur, then
the simulation S for DEO is perfect. So we next to show that the probability of
failure event occur is negligible.

If C was ever output by the ENO oracle, there are two cases: (1) When C ←
ENO(pidi, pidA, H,M) for arbitrary (pidi, H,M), where pidi ∈ HONEST, S
outputs (pids,M) simply, and failure event will never occur. (2) When C ←
ENO(pidi, pidj , H,M) for arbitrary (pidi, H,M) where pidj 6= pidA, since in

ENO oracle the input for KDF is X̃||pidj and in DEO oracle is X̃||pidA,
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by the security of AEAD defined in Sect.2.2, DEO(pidA, C) outputs ⊥ with
overwhelming probability, and failure event will never occur.

So when failure occurs, with overwhelming probability it holds that C was
not ever output by the ENO oracle and Decorrecksk event does not occur. But
still DEO(pidA, C = (H, X̃, w,CAE)) query outputs a valid decryption value,
then there must have that (H,CAE) make up a valid ciphertext with respect to

K1 = KDF (PS, X̃||pidA) for AEAD, where PS = rec(2 · X̃ · skA, w). If we can
show that the last case occur with negligible probability, then failure occurs
with negligible probability.

Consider two cases. (1) If K1 = KDF (PS, X̃||pidA) was set by S when
dealing with a ENO(pidA, pidA, H

′,M ′) query. Recall that in this case K1 is
set without querying KDF query (but with checking whether Encorrectsk
event occurs or not). This implies that by the security of KDF , with over-

whelming probability, (X̃, w) is part of the output of ENO(pidA, pidA, H
′,M ′)

query set by S. We denote by (H ′, X̃, w, C ′AE) the output of S when dealing

with ENO(pidA, pidA, H
′,M ′) query. Note that C = (H, X̃, w,CAE) was not

ever output by the ENO oracle, so (H ′, C ′AE) 6= (H,CAE). This means that
(H ′, C ′AE) is a new valid AEAD ciphertext w.r.t. K1, and by the AEAD security
this occurs with negligible probability. (2) Otherwise, K1 was neither defined for
the KDF oracle nor ever set by S. By the AEAD security, this case occurs with
negligible probability. Hence failure event occurs with negligible probability and
S can handle all DEO queries in the security game.

For keeping the consistency, from now on whenever AOU makes an KDF
oracle query, if this query causes an Encorrectsk event or a Decorrecksk
event to occur, outputs the associated value of that event (for Encorrectsk
event, outputs the second one of the associated values), else outputs K1 to be a
string which is taken uniformly at random from K of AEAD.

Then from the view of AOU , the simulation S is computationally indistin-
guishable from that in the real attack game.

Recall that (pidr∗ , C
∗ = (H∗, X̃∗, w∗, C∗AE)) is a successful forgery by AOU .

We say that AOU must have made the RO query d∗ = h(X∗, pids∗ , pidr∗) such

that X̃∗ = pks∗ · d∗ +X∗ = pA · d∗ +X∗, where X∗ may be generated by AOU
himself. Otherwise, with overwhelming probability, Decrypt(skr∗ , pidr∗ , C

∗) re-
turns ⊥ in the random oracle model. Then similar with the analysis of fail-
ure event occurs in simulating the DEO query, AOU must have cause an
Encorrectsk event or a Decorrectsk event to occur, which means that AOU
must have made the RO query to get K∗1 = KDF (PS, X̃∗||pidA), where PS =

rec(2 · PSA, w) = rec(2 · X̃∗ · sA, w∗) and PSA is generated by A himself.
Then rewind the adversary to the point that it just made the RO query

h(X∗, pids∗ , pidr∗) = h(X∗, pidA, pidA), and let this RO query return back a
d∗
′

which was different from d∗ and was taken uniformly at random from h’s
range. By the general forking lemma [4],AOU will also output a successful forgery

(pidr∗ , C
∗′ = (H∗

′
, X̃∗

′
, w∗

′
, C∗

′

AE)) with non-negligible probability in the second

run after rewinding. In this case X̃∗
′

= pA·d∗
′
+X∗, andAOU will make the query

KDF (PS′, X̃∗
′ ||pidA) with PS′ = rec(2·PS′A, w∗

′
) = rec(2·X̃∗′ ·sA, w∗

′
), where
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PS′A is generated by the adversary himself. This means that X̃∗ · sA ≈ PSA;

X̃∗
′ · sA ≈ PS′A. The simulator can set ξ1 = PSA ≈ (pA · d∗ + X∗) · sA,

ξ2 = PS′A ≈ (pA ·d∗
′
+X∗)·sA, then compute ξ3 = (ξ1−ξ2)·(d∗−d∗′)−1 ≈ pAsA.

Finally, for a quadruple (a, pA, pA,W ) where pA = asA + eA with sA, eA
$←− χα

and W ← 〈pAsA〉2, S adds the value of rec(2 ·ξ3,W ) to the list of possible values
for τ(pA, sA), which violates the vPWE assumption.

But to apply the forking lemma, it needs to ensure that the RO query d∗ =
h(X∗, pidA, pidA) must be prior to the RO query KDF (PS, X̃∗||pidA) where

PS = rec(2 · X̃∗ · sA, w) for some w in the successful forge. In the following

we show that the probability that AOU makes KDF (PS, X̃∗||pidA) prior to
h(X∗, pidA, pidA) is negligible.

Suppose (H, X̃∗, w, CAE) = Encrypt(pidi, pidA, H,M) with pidi ∈ DISHO−
NEST or pidi ∈ HONEST but corrupted. We denote by pki = pC = asC +eC ,
X̃∗ = pC · di + Xi with di = h(Xi, pidi, pidA). This means that the target

X̃∗, which is appeared in the successful forgery, has already appeared in a
former output of Encrypt(pidi, pidA, H,M) with some pidi 6= pidA (that is

X̃∗ = pC · di + Xi = pA · d∗ + X∗). We refer to such an event as collision.
Then when collision event occurs, prior to the query d∗ = h(X∗, pids∗ , pidr∗),

the KDF (PS, X̃∗||pidA) oracle query was either made by AOU itself or by the
corrupted user pidi. Because for any pair of (pidi, pidj , X) 6= (pidi′ , pidj′ , X

′),
there is

Pr[pki · h(X, pidi, pidj) +X = pki′ · h(X ′, pidi′ , pidj′) +X ′] ≤ 2−l,

where l is the output length of random oracle h. Hence for a polynomial-time
adversary A, the probability of A causes a collision event to occur is negligible.
Hence finishes the proof of outsider unforgeability. ut

4.2 Security Proof of Insider Confidentiality

Theorem 6. The scheme RLWE-ICAE in Figure 1 satisfies insider confiden-
tiality in the random oracle model, under the AEAD security and the vPWE
assumption.

Proof. We proof the lemma by showing that if

Pr[Encry-ConfidentAIC ,RLWE-ICAE(κ) = 1] > negl(κ),

vPWE problem defined in Sect. 2.7 can be solved with non-negligible probability.
We first assume that the challenger C has correctly guessed the target receiver

pidr∗ (for this happens with probability 1
N ). Assume pB = asB + eB , X∗ =

ar∗ + f∗ and W = 〈X∗sB〉2 (X∗sB ←dbl(X∗sB), defined in Sect.2.6), where

sB , eB
$←− χα and r∗, f∗

$←− χβ . The goal of C is to compute τ(X∗, sB) given
(a,X∗, pB ,W ).

Firstly, C sets the target receiver’s public-key to be pkr∗ = pB , and sets all
the rest users’ public/secret key pairs by itself. Then C can perfectly handle the
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oracle queries made by the adversary AIC except against user pidr∗ = pidB . In
the following, we make C simulates the target receiver pidB similar to the proof
of outsider unforgeability.

Recall the encrypt experiment Encry-ConfidentAIC ,RLWE-ICAE(κ), the ad-
versary outputs the associated data H, two equal length messages (M0,M1),
two pairs of public identity information (pids∗0 , pidr∗) and (pids∗1 , pidr∗) with
pids∗0 , pids∗1 , pidr∗ ∈ HONEST and we assume pidr∗ = pidB . C chooses a ran-

dom bit γ
$←− {0, 1} and sets the target ciphertext C∗ as follows.

For presentation simplicity, we denote by pks∗γ = pA the public key of the
user s∗γ , (there is possible that pids∗γ = pidr∗ and thus pA = pB). C computes

d∗ = h(X∗, pids∗γ , pidr∗) = h(X∗, pidA, pidB) with X∗, and then computes X̃∗ =
pA · d∗ + X∗. Then if this ENO query causes an Encorrectsk (defined in the
proof of outsider unforgeability) event to occur, set w∗ to be the first element
of the associated values of the event, and K1 to be the second element of the

associated values of the event, otherwise S sets w∗
$←− {0, 1}n, and K1 to be a

string which is taken uniformly at random from K of AEAD. Finally C computes
C∗AE = EK1(H, pids∗γ ||X

∗||Mγ) to return. Then whenever the adversary makes a
KDF query, if this query cause an Encorrectsk event or a Decorrecksk event
to occur, outputs the associated value of that event (for Encorrectsk event,
outputs the second one of the associated values), else outputs K1 to be a string
which is taken uniformly at random from K of AEAD.

Note that X̃∗ = pA ·d∗+X∗ = a(sAd
∗+r∗)+(eAd

∗+f∗), and d∗ is returned
by RO oracle. By Theorem 1 of rejection sampling, the finally distribution of
sAd

∗+r∗ and eAd
∗+f∗ in the outputs will be indistinguishable with r∗ and f∗ for

the adversary. As long as the adversary can’t solve the decision RLWE problem,
X̃∗ is indistinguishable with random chosen elements from Rq. In this way, X̃∗

can perfectly hides the sender’s identity information even if the adversary corrupt
pids∗0 or pids∗1 . Then to win such an insider confidentiality game in the RO model,
by the AEAD security, the adversary must have caused Encorrectsk event to
occur, (which is similar to the proof of outsider unforgeability) which means that

AIC must have made the RO query to get K∗1 = KDF (PS, X̃∗||pidB), where

PS = rec(2 ·PSA, w∗) = rec(2 · X̃∗ · sB , w∗) and PSA is generated by A himself.

Similar to the proof of outsider unforgeability, C rewinds the adversary to the
point that it just makes the oracle query h(X∗, pidA, pidB), and redefines a new
output d∗

′
= h(X∗, pidA, pidB) with d∗

′
is different from d∗ and is taken uni-

formly at random from h’s range. Then re-runs the adversary from this rewinding
point. By the forking lemma, the adversary will make the query make the query
KDF (PS′, X̃∗

′ ||pidB) with PS′ = rec(2·PS′A, w∗
′
) = rec(2·X̃∗′ ·sB , w∗

′
), where

PS′A is chosen by the adversary himself.

Simulator can get ξ1 = PSA ≈ (pA · d∗ + X∗) · sB , ξ2 = PS′A ≈ (pA · d∗
′

+

X∗) · sB , then the simulator can compute ξ3 = ξ1− (ξ1− ξ2) · (d∗− d∗′)−1 · d∗ ≈
X∗sB . Finally, S adds the value of rec(2 · ξ3,W ) to the list of possible values for
τ(X∗, sB), which violates the vPWE assumption. ut
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5 Concrete Parameters

In this section, we present the choices of parameters and give the complexity
assessment of RLWE-ICAE.

We use the property for product of two Gaussian distributed random val-
ues which are stated in [29]. Let x, y ∈ R be two polynomials with degree of
n. Assume that the coefficients of x and y are distributed according to a dis-
crete Gaussian distribution with parameter βx, βy, respectively. Then we have
that the individual coefficients of the polynomial xy are approximately normally
distributed around zero with parameter βxβy

√
n. Hence for ||PSA − PSB ||∞ =

||eBsAd + reB + g − fsB − eAsBd||∞ < q
8 , applying Lemma 1 we have that

||kA − kB ||∞ > 13 ·
√

2nα2β2 + β2 + 2n2α6 with probability approximating

2−121. We set 13 ·
√

2nα2β2 + β2 + 2n2α6 < q
8 to make sure the correctness

of the scheme. Note that since the Theorem 1 of rejection sampling, the distri-
butions of r + sAd is according to χβ . We follow a way of parameter choosing
in [29]. To choose an appropriate β, we set η = 1/2 in Lemma 2 such that
||sAd|| ≤ 1/2nα2 with probability at most 2 · 0.943−n. In order to make the re-
jection sampling work, we need to set β ≥ ζ · 1/2nα2 for some constant ζ. When
we set ζ = 12, by Theorem 1, there is an expect number of rejection sampling

about M = 2.72 and a statistical distance about 2−100

M .

For the security of our parameters, Alkim et al. [2] analysised RLWE and L-
WE using two BKZ types attacks: prime attack and dual attack [7]. The thoughts
of their approach is to replace the enumeration core-SVP algorithm in BKZ by
sieve algorithm, and only evaluate the cost of one call to an SVP oracle in di-
mension b. For more detail, we refer to [2]. We use their techniques to assess the
core-SVP security. But to estimate the security of our scheme more accurately,
we follow Albrecht’s estimation [1] about the number for the calls to core-SVP
oracle. Albrecht estimated it to be 8d, where d is the dimension of the embedding
lattice. We will first compute the core-SVP security, then multiple it with 8d to
obtain the final security.

Two recommend parameters choices is given in Table 2. Remark that q must
be a prime and satisfies q = 1 mod 2n. In the table, we denote classical security
as the best-known classical attack time complexity, and quantum security as the
best-known quantum attack time complexity [2].
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Table 2. Recommend Parameters for RLWE-ICAE

I II

n power of 2 1024 2048

α 2.828 2.828

β > 1
2
nα2ζ = 1

2
nα2 · 12 49152 98304

log2β ≈15.6 ≈16.6

q > 104 ·
√

2nα2β2 + β2 + 2n2α6 231362561 654340097

log2q ≈27.8 ≈29.3

classical security 120 bits 256 bits

quantum security 110 bits 234 bits

6 Conclusion

We proposed a lattice based identity-concealed authenticated encryption scheme:
RLWE-ICAE. The scheme enjoys many nice properties of higncryption such as 0-
RTT option, forward ID-privacy, receiver deniability and x-security. Meanwhile
since our scheme is based on RLWE, it also enjoys the properties of lattice-
based cryptography, such as conceptual simplicity, worst-case hardness assump-
tion, and resistance to quantum computer attacks. Our scheme benefits from
Peikert’s reconciliation mechanism [23] technique which can help two parties
compute a same element from two approximate values. We use the rejection
sampling technique to hide the static secret information. To prove the security
of our scheme, we introduce vPWE assumption, which is a variant of Pairing
with Errors assumption [10] by replacing the reconciliation mechanism in [10]
with Peikert’s version [23]. For further works, we will consider to construct an
identity concealed key exchange from ideal lattices.
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