
Space-efficient quantum multiplication of
polynomials for binary finite fields with

sub-quadratic Toffoli gate count

Iggy van Hoof

Technische Universiteit Eindhoven
i.v.hoof@student.tue.nl

Abstract. Multiplication is an essential step in a lot of calculations. In
this paper we look at multiplication of 2 binary polynomials of degree
at most n − 1, modulo an irreducible polynomial of degree n with 2n
input and n output qubits, without ancillary qubits, assuming no er-
rors. With straightforward schoolbook methods this would result in a
quadratic number of Toffoli gates and a linear number of CNOT gates.
This paper introduces a new algorithm that uses the same space, but by
utilizing space-efficient variants of Karatsuba multiplication methods it
requires only O(nlog2(3)) Toffoli gates at the cost of a higher CNOT gate
count: theoretically up to O(n2) but in examples the CNOT gate count
looks a lot better.

1 Introduction

Multiplication of two polynomials in a finite field is an important step in many
algorithms, such as point addition in elliptic curve cryptography. For classical
computers a wealth of variations exist, often based around Karatsuba’s multi-
plication method [6].

In the classical setting, temporary results for the steps of Karatsuba calcula-
tions have traditionally been stored separately. In 1993 Maeder [8] used around
2n additional space for multiplying degree-n polynomials. This was improved
by Thomé in 2002 to n temporary space which at the time was believed to
be optimal: “it does not seem likely that anything better than this result can
be obtained.” [13] However, in 2009 Roche did obtain a better result: O(log n)
space Karatsuba multiplication of polynomials without additional time by doing
many in-place operations [11]. This was expanded by Cheng [4] to also work
for integers. Despite the advantages these variants offer, these methods are still
relatively unknown.

This bound of O(log n) temporary storage is still higher than the bound
presented in this paper, which is reduced to 0 by partly overwriting the input
polynomial and restoring it before the end. With this advantage we can modify
the algorithms presented by Roche [11] for the quantum setting. The algorithms
in this paper have an exponential speedup over other quantum algorithms that
do not use extra space [10]. Other variants that reach the same speedup as

2 Hoof, I van

classical Karatsuba multiplication in the quantum setting so far have have done
so at the cost of space [7].

1.1 Overview

We introduce our notation for quantum computing by giving the elementary
quantum gates in section 2. Our new multiplication algorithm needs several
subroutines, specifically modular shifts and multiplication by a constant polyno-
mial, introduced in section 3. We introduce a Quantum Karatsuba algorithm for
multiplication without reduction in section 4 and in binary finite fields in section
5. Both algorithms run without ancillary qubits and have a sub-quadratic Toffoli
gate count. We implemented the algorithm in a simulated quantum computer
and present the gate counts for specific finite fields in section 6.

2 Quantum background

Quantum computing uses reversible gates, which unlike classical gates can be
run in reverse and require an equal number of input and output quantum bits
(qubits). In this paper we will not make use of the quantum properties of qubits,
but the gates we use can be applied to superpositions of qubits in states 1 and
0. For the purpose of multiplication we need two gates to do reversible addition
and multiplication:

– The CNOT, or Feynman, gate serves as the equivalent of XOR or F2-
addition. This gate takes 2 qubits as inputs and adds one input to the other
qubit and outputs the other qubit as itself: (a, b)→ (a⊕ b, b). It is reversible
and its own inverse: applying it twice would result in (a⊕ b⊕ b, b) = (a, b).
In Circuit 1 an example has been drawn. In algorithms we write this as
a← CNOT(a, b).

– The Toffoli (TOF) gate serves as the equivalent of AND or F2-multiplication
in our case. This gate takes 3 qubits as inputs and adds the result of mulitpli-
cation of the frist two qubits to the third qubit and outputs the other qubits
as themselves: (a, b, c)→ (a, b, c⊕(a·b)). It is also its own inverse. In circuit 2
an example has been drawn. In algorithms we write this as c← TOF(a, b, c)

a a⊕ b
b • b

Circuit 1: The CNOT gate

In addition to these operations, we will also need to swap some qubits. Unlike
the previous gates we do not build these in physical circuits. Rather, we change
the index on some qubits: if we were to swap qubits 1 and 2 we would simply
refer to qubit 1 as “2” and qubit 2 as “1” from that point on without counting

Space-efficient quantum multiplication... 3

a • a

b • b

c c⊕ (a · b)

Circuit 2: The TOF gate

a × b
b × a

Circuit 3: The swap

any quantum gates. In Circuit 3 an example has been drawn.
These 3 actions are the only essential ones we use in this paper. Although none
of these are explicit quantum actions, the quantum dimension comes from opti-
mizing for low Toffoli gate count. Currently no large quantum computer exists
but current estimates put the cost of one Toffoli gate at many times that of a
CNOT gate.

3 Basic Arithmetic

In this section we discuss reversible in-place algorithms for the basic arithmetic
of binary polynomials.

3.1 Addition and binary shift

|g0〉 |h1〉
|g1〉 |h2〉
|g2〉 |h3〉
|g3〉 |h4〉
|g4〉 |h5〉
|g5〉 |h6〉
|g6〉 |h7〉
|g7〉 |h8〉
|g8〉 |h9〉
|g9〉 • |h0〉

Circuit 4: Binary shift circuit for F210 with g0 + · · · + g9x
9 as the input and

h0 + · · ·+h9x
9 = g9 + g0x+ g1x

2 + (g2 + g9)x3 + g3x
4 + · · ·+ g9x

9 as the output.

The first operation we consider, addition, can easily be implemented for binary
polynomials. Individual additions can be done with a CNOT gate, the addition
of two polynomials of degree at most n takes n + 1 CNOT gates with depth
1. This operation uses ancillary qubits and the result of the addition replaces

4 Hoof, I van

either of the inputs. Since addition is component-wise, addition for polynomials
over F2 is the same as addition for elements of the field F2n .

Binary shifts are straightforward: they correspond to multiplying or dividing
by x. This requires no quantum computation by doing a series of swaps.

Finally, if we have a fixed n, a polynomial g(x) of degree at most n− 1 and
want to do a multiplication by x followed by a modular reduction by a fixed
weight-ω and degree-n polynomial m(x) that has coefficient 1 for x0, we can do
this in 2 steps. We represent m(x) as M where M is an ordered list of length ω
that contains the degrees of the nonzero terms in descending order, for example
if m(x) = 1 + x3 + x10 we get M = [10, 3, 0]. Let g(x) =

∑n−1
i=0 gix

i:

– Step 1: For every qubit gi change its index so that it represents the coefficient
of xi+1 mod n. Let hi be the coefficients of the relabeled polynomial, i.e.
hi+1 mod n = gi.

– Step 2: Apply CNOT controlled by the x0 term h0 (gn−1 before Step 1) to
hj , with j = M1, . . . ,Mω−2. In the example of 1 + x3 + x10 we would apply
1 CNOT to h3 controlled by h0.

See Circuit 4 for an example. After a multiplication by x the coefficient of x0

is always 0. Since m(x) always has coefficient 1 for x0, after a reduction by
m(x) that qubit will be 1 and if no reduction takes place that qubit is 0, which
means our modular shift algorithm is always reversible. This results in a total
of ω − 2 CNOT gates for a modular reduction, with depth ω − 2 and we do not
use ancillary qubits. Since we use reversible gates, running this circuit in reverse
corresponds to dividing by x modulo m(x).

3.2 Multiplication by a constant polynomial

|g0〉 • |g0 + g2〉
|g1〉 • |g1 + g2 + g3〉
|g2〉 • • × |g0 + g2 + g3〉
|g3〉 • × |g1 + g3〉

Circuit 5: Multiplication of g by 1 +x2 modulo 1 +x+x4. Depth 4 and 5 CNOT
gates.

Multiplication by a constant non-zero polynomial in a fixed binary field is F2-
linear: as the field polynomial is irreducible, every input corresponds to exactly
one output. We can see that any such multiplication can be represented as a ma-
trix, which we can turn into a circuit using an LUP -decomposition, an algorithm
also used by Amento, Rötteler and Steinwandt [1]. For example, multiplication
by 1 + x2 modulo 1 + x + x4 can be represented by a matrix Γ . Using the de-
composition Γ = P−1LU we get an upper and lower triangular matrix which we
can translate into a circuit. Any 1 not on the diagonal in U and L is a CNOT

Space-efficient quantum multiplication... 5

controlled by the column number on the row number. In cases of conflict1, for
U CNOT gates should be performed top row first, second row second and so on
and for L CNOT gates from the bottom row up. P represents a series of swaps,
and can be represented either as a permutation matrix or an ordered list with
all elements from 0 to n− 1.

Γ =

1 0 1 0
0 1 1 1
1 0 1 1
0 1 0 1

 = P−1LU =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1 0 0 0
0 1 0 0
0 1 1 0
1 0 0 1

1 0 1 0
0 1 1 1
0 0 1 0
0 0 0 1

Circuit 5 shows how we translate Γ . According to [1] this costs up to n2 + n
CNOT gates with depth up to 2n. We can improve this count by noting L and
U are each size n by n and can have up to (n2 − n)/2 non-diagonal non-zero
entries, giving us up to n2−n CNOT gates. Note that the LUP -decomposition is
precomputed and for any fixed polynomial and field we can give an exact CNOT
gate count and depth.

Since this algorithm is introduced in [1] without correctness proof and we
will use it later for a bigger algorithm, we will write an explicit implementation
and go over the correctness of this algorithm. Note that since we are working
with reversible algorithms, multiplying by constant f(x) is the same as doing
the reverse of multiplying by constant f(x)−1.

Theorem 1. Algorithm 1 correctly describes multiplication by a non-zero con-
stant polynomial in a fixed binary field.

Proof. Since multiplication by a non-zero constant in a finite field is a linear
map, an invertible matrix Γ to represent this linear map must exist. Since Γ is
invertible, its decomposition L,U, P−1 must also consist of linear maps. Since we
are working in a binary field and U is an invertible upper-triangular matrix, the
diagonal of U is all-one. If we look at lines 1 through 4 of the algorithm, we can
see it corresponds to applying linear map U to g, as it results in gi =

∑n−1
j=0 ui,jgj

for i = 0, .., n−1. Analogously the same is true for L in lines 5 through 8. We can
also see that if P−1 is a row-permutation of the identity matrix, lines 9 through
13 will apply it correctly. Since P−1LU = Γ we have correctly applied the linear
map Γ .

Note that the algorithm is not optimized for depth, for example in circuit 5 the
first and second CNOT could be swapped so the depth would be 3 rather than
4.

1 Conflicts exist if according to the triangular matrix a CNOT would both have to be
applied on and controlled by a qubit. By doing the controlled operation first and
applying the operation on it afterwards, we ensure that the matrix multiplication is
correctly translated.

6 Hoof, I van

Algorithm 1: MULTf(x), from [1]. Reversible algorithm for in-place
multiplication by a nonzero constant polynomial f(x) in F2[x]/m(x)
with m(x) an irreducible polynomial.

Fixed input : A binary LUP-decomposition L,U, P−1 for a binary n by
n matrix that corresponds to multiplication by the
constant polynomial f(x) in the field F2[x]/m(x).

Quantum input: A binary polynomial g(x) of degree up to n− 1 stored in
an array G.

Result: G as f · g in the field F2/m(x).
1 for i = 0..n− 1 // U ·G
2 do
3 for j = i+ 1..n− 1 do
4 if U [i, j] = 1 then
5 G[i]← CNOT(G[i], G[j])

6 for i = n− 1..0 // L · UG
7 do
8 for j = i− 1..0 do
9 if L[i, j] = 1 then

10 G[i]← CNOT(G[i], G[j])

11 for i = 0..n // P−1 · LUG
12 do
13 for j = i+ 1..n− 1 do
14 if P−1[i, j] = 1 then
15 SWAP(G[i], G[j])
16 SWAP column i and j of P−1

Choice of field polynomials
When doing operations in a finite binary field we can choose what representation
we use, as long as the polynomial m(x) is irreducible. Our goal is to make the
matrices L and U as sparse as possible. For this purpose we also want our Γ
to be as sparse as possible, which can be achieved in two steps: pick irreducible
polynomials with as few non-zero coefficients as possible, i.e. trinomials when
available and pentanomials otherwise, and pick irreducible polynomials where
the second highest non-constant term has the lowest possible degree. For exam-
ple, the pentanomial 1 + x3 + x4 + x19 + x20 would require 108 CNOT gates,
the pentanomial 1 +x3 +x5 +x9 +x20 would require 55 CNOT gates, while the
trinomial 1 + x3 + x20 would require only 27. All 3 polynomials are irreducible.
In Table 1 we can see some examples of gate counts for various choices of n. The
depth count is an upper bound without accounting for swapping gates.

Space-efficient quantum multiplication... 7

Degree Irreducible polynomial Source CNOT gates Depth upper bound

4 [4, 1, 0] [2] 5 4
8 [10, 4, 3, 1, 0] [2] 20 14
16 [16, 5, 3, 1, 0] [2] 47 30
32 [32, 7, 3, 2, 0] [2] 133 93
64 [64, 4, 3, 1, 0] [2] 264 182
127 [127, 1, 0] [2] 396 293
128 [128, 7, 2, 1, 0] [2] 626 443
163 [163, 7, 6, 3, 0] [5] 740 975
163 [163, 89, 74, 15, 0] [3] 1885 1646
233 [233, 74, 0] [5] 3319 2976
256 [256, 10, 5, 2, 0] [2] 1401 1030
283 [283, 12, 7, 5, 0] [5] 2117 1700
283 [283, 160, 123, 37, 0] [3] 6785 6368
571 [571, 10, 5, 2, 0] [5] 4027 3177
571 [571, 353, 218, 135, 0] [3] 33182 32331
1024 [1024, 19, 6, 1, 0] [12] 8147 6624

Table 1: Comparison of the CNOT gates required for various instances of Algo-
rithm 1. Source is the source of the polynomial.

4 Quantum Multiplication for binary polynomials

This section details schoolbook multiplication and we present our new Karatsuba
algorithm.

4.1 Quantum Schoolbook Multiplication

The simplest way to multiply is schoolbook multiplication. For two polynomials
of degree at most n − 1 that takes n2 Toffoli gates, the number of pairs of
qubits from the first and second polynomial. While the computation does not
use ancillary qubits, the result needs to be stored separately from input in 2n−1
qubits; unlike the previous circuits we cannot replace either of the inputs with
the result since the Toffoli gate requires a separate output. If we want to apply
modular reduction steps by a weight-k and degree-n odd polynomial, this adds
(n− 1) · (k− 2) CNOT gates and uses no ancillary qubits (by using the modular
shift algorithm after every n multiplications). The result is stored in n qubits.

4.2 Classic Karatsuba multiplication in binary polynomial rings

Rather than using schoolbook multiplication, methods like Karatsuba multipli-
cation [6] can speed up multiplication of large numbers. We can look at in-place
multiplication in the classical case for ideas [11]. As input we take two polyno-
mials of size up to n, f(x) and g(x) as well as a polynomial of size 2n: h(x). As
output we desire h+ f · g. For some k such that n

2 ≤ k < n (we will always use

8 Hoof, I van

k = dn2 e) we can split each polynomial as follows: f = f0 + f1x
k, g = g0 + g1x

k

and h = h0 + h1x
k + h2x

2k + h3x
3k.

We compute intermediate products α = f0 · g0, β = f1 · g1 and γ = (f0 +f1) ·
(g0 + g1). Finally, we add these in the right way for Karatsuba multiplication:

h+ f · g = h+ α+ (γ + α+ β)xk + βx2k.

For cleanliness, we can split up our α, β, γ in the same way as f and g to get a
result with no overlap, which is useful for checking correctness:

h+f ·g = (h0+α0)+(h1+α0+α1+β0+γ0)xk+(h2+α1+β0+β1+γ1)x2k+(h3+β1)x3k.

Alternatively, we can rewrite this another way that will prove useful:

h+ f · g = h+ (1 + xk)α+ xkγ + xk(1 + xk)β.

4.3 Reversible Karatsuba multiplication in binary polynomial rings

Based on these equations we can split our multiplication algorithm into 2 parts:
given f(x), g(x), h(x) calculate h + f · g and given k, f(x), g(x), h(x) with k >
max(deg(f),deg(g)) calculate h + (1 + xk)f · g. We will look at our algorithms
for the 2 parts, which can then be used recursively to provide a significant
improvement to the schoolbook algorithm in terms of Toffoli gate count.

Algorithm 2: MULT1xk. Reversible algorithm for multiplication by
the polynomial 1 + xk.

Fixed input : A constant integer k > 0 to indicate part size as well as an
integer n ≤ k to indicate polynomial size.
` = max(0, 2n− 1− k) is the size of h2 and (fg)1. In the
case of Karatsuba we will have either n = k or n = k − 1.

Quantum input: Two binary polynomials f(x), g(x) of degree up to n− 1
stored in arrays A and B respectively of size n. A binary
polynomial h(x) of degree up to k + 2n− 2 stored in array
C of size 2k + `.

Result: A and B as input, C as h+ (1 + xk)fg
1 if n > 1 then
2 C[k..k + `− 1]← CNOT(C[k..k + `− 1], C[2k..2k + `− 1])
3 C[0..k − 1]← CNOT(C[0..k − 1], C[k..2k − 1])
4 C[k..2k + `− 1]← KMULT(A[0..n− 1], B[0..n− 1], C[k..2k + `− 1])
5 C[0..k − 1]← CNOT(C[0..k − 1], C[k..2k − 1])
6 C[k..k + `− 1]← CNOT(C[k..k + `− 1], C[2k..2k + `− 1])

7 else
8 C[0]← CNOT(C[0], C[k])
9 C[k]← TOF(A[0], B[0], C[k])

10 C[0]← CNOT(C[0], C[k])

Space-efficient quantum multiplication... 9

Line C in MULT1xk

C[0..k − 1] C[k..2k − 1] C[2k..2k + `− 1]

1 h0 h1 h2

2 h0 h1 + h2 h2

3 h0 + h1 + h2 h1 + h2 h2

4 h0 + h1 + h2 h1 + h2 + (fg)0 h2 + (fg)1
5 h0 + (fg)0 h1 + h2 + (fg)0 h2 + (fg)1
6 h0 + (fg)0 h1 + (fg)0 + (fg)1 h2 + (fg)1

Table 2: Step by step calculation of Algorithm 2.

Lemma 1. Given polynomials f, g of degree up to n− 1 with n > 1, polynomial
h of degree up to k + 2n − 2 with some k ≥ n and assuming Algorithm 3 cor-
rectly calculates h+ fg with degrees of f, g and h bounded as above, Algorithm 2
correctly calculates h+ (1 + xk)fg in F2[x] without altering the values of f and
g.

Proof. Let ` = max(0, 2n− 1− k). Table 2 gives the result of each step on array
C, split into 3 parts of size k, k and `−1 respectively: h = h0+h1x

k+h2x
2k. The

final result corresponds to h0+(fg)0+(h1+(fg)0+(fg)1)xk+(h2+(fg)1)x2k =
h0 +h1x

k +h2x
2k +fg+fgxk = h+ (1 +xk)fg, where (fg)0 is the first k terms

of f · g and (fg)1 is the last up to ` terms.
f and g do not have their values altered because arrays A and B remain

unchanged.

Algorithm 2 computes h+(1+xk)fg with at most 2k+2` ≥ 2k+2(2n−1−k) =
4n − 2 CNOT gates, at a depth of 4 per layer and 1 call to Algorithm 3 for an
n-by-n multiplication. For n = 1 both the depth and number of gates is 2 CNOT
and 1 TOF gates.

Lemma 2. Let k = dn2 e. Given polynomials f, g of degree up to n − 1 with
n > 1 and h of degree up to 2n − 2. Assuming Algorithm 2 correctly calculates
h′ + (1 + xk)f ′g′ for f ′, g′ up to degree k − 1 and h′ up to degree 3k − 2, and
Algorithm 3 correctly calculates h′′ + f ′′g′′ with f ′′, g′′ of degree k − 1 and h′′

of degree 2k − 2 without altering the values of f ′′ and g′′. Then Algorithm 3
correctly calculates h+fg in F2[x]. The values of f and g are the same after the
algorithm as they were before.

Proof. Table 3 gives the result of each line on array C, split into 4 parts of size
k, k, k and 2n− 1− 3k respectively: h = h0 + h1x

k + h2x
2k + h3x

3k. As can be
seen in the table, the final result corresponds to (h0 +α0) + (h1 +α0 +α1 +β0 +
γ0)xk + (h2 + α1 + β0 + β1 + γ1)x2k + (h3 + β1)x3k = h + f · g as discussed in
Section 4.2. Lines 7 and 8 are the inverses of lines 4 and 5 so return A and B to
their original states.

Algorithm 3 computes h+fg with 4(n−k) CNOT gates, at a depth of 4, 1 call to
itself for a k-by-k multiplication, 1 call to Algorithm 2 for a k-by-k multiplication

10 Hoof, I van

Algorithm 3: KMULT. Reversible algorithm for multiplication of 2
polynomials.

Fixed input : A constant integer n to indicate polynomial size and an
integer k < n ≤ 2k with k = dn

2
e for n > 1 and k = 0 for

n = 1, to indicate upper and lower half.
Quantum input: Two binary polynomial f, g of degree up to n− 1 stored in

arrays A and B respectively of size n. A binary polynomial
h of degree up to 2n− 2 stored in array C of size 2n− 1.

Result: A and B as input, C as h+ fg
1 if n > 1 then
2 C[0..3k − 2]← MULT1xk(A[0..k − 1], B[0..k − 1], C[0..3k − 2])
3 C[k..2n− 2]← MULT1xk(A[k..n− 1], B[k..n− 1], C[k..2n− 2])
4 A[0..n− k − 1]← CNOT(A[0..n− k − 1], A[k..n− 1])
5 B[0..n− k − 1]← CNOT(B[0..n− k − 1], B[k..n− 1])
6 C[k..3k − 2]← KMULT(A[0..k − 1], B[0..k − 1], C[k..3k − 2])
7 B[0..n− k − 1]← CNOT(B[0..n− k − 1], B[k..n− 1])
8 A[0..n− k − 1]← CNOT(A[0..n− k − 1], A[k..n− 1])

9 else
10 C[0]← TOF(A[0], B[0], C[0])

Line C in KMULT
C[0..k − 1] C[k..2k − 1] C[2k..3k − 1] C[3k..2n− 2]

1 h0 h1 h2 h3

2 h0 + α0 h1 + α0 + α1 h2 + α1 h3

3-5 h0 + α0 h1 + α0 + α1 + β0 h2 + α1 + β0 + β1 h3 + β1
6-8 h0 + α0 h1 + α0 + α1 + β0 + γ0 h2 + α1 + β0 + β1 + γ1 h3 + β1

Table 3: Step by step calculation of Algorithm 3.

and 1 call to Algorithm 2 for an (n− k)-by-(n− k) multiplication. For n = 1 we
just have a single TOF gate.

Theorem 2. Given polynomials f, g of degree up to n− 1 and h of degree up to
2n − 2, Algorithm 3 correctly calculates h + fg. The values of f and g are the
same after the algorithm as they were before.

Proof. We use proof by induction. For n = 1 line 10 of Algorithm 3 correctly
calculates h+ fg without altering f or g.

For n = 2 two calls are made to Algorithm 2 and one call to Algorithm 3 with
n′ = 1 and k′ = 1. Lines 7-9 of Algorithm 2 correctly calculate h′+ (1 +xk)f ′g′.

For n > 2 we use lemmas 1 and 2 as our inductive steps. Every time Algorithm
3 is called recursively to calculate h′+ f ′g′ with f ′, g′ of degree n′− 1, it is with
either n′ = dn2 e or n′ = n− dn2 e = bn2 c.

The series dn2 e, d
dn2 e
2 e, d

d
dn

2
e

2 e
2 e, ... reaches 1 in O(log n) steps and bn2 c ≤ d

n
2 e.

From this we can see that we reach n′ = 1 or 2 in finite steps. By induction

Space-efficient quantum multiplication... 11

Algorithm 3 correctly calculates h + fg and returns f and g to their original
values.

5 Reversible Karatsuba multiplication in binary finite
fields

With this basis, we can move on to the modular multiplication. We will need
Algorithm 1, which we will also run in reverse for multiplication by an inverse,
and the binary shifts from Section 3.1, which we will refer to as MODSHIFT,
as well as the previous Karatsuba algorithms. Unlike before, we will assume we
start with an all-zero input as it saves a significant number of additions, although
it would cost no Toffoli gates: lines 2 and 8-9 would have to be run in reverse on
that input. We can see in Algorithm 4 the number of operations we use:

– 3 calls to Algorithm 3: twice for k-by-k multiplication and once for (n− k)-
by-(n− k) multiplication.

– 3 calls to Algorithm 1 (once in reverse), each time for multiplication by the
same polynomial 1 + xk.

– k calls to MODSHIFT.
– 4 times (n − k) CNOT gates, half of which can be performed at the same

time.

Note that Algorithm 3 can multiply two polynomials f and g of degree at most
dn2 e − 1 while needing n space for the output polynomial h, which has degree
n − 1 at most in the case that n is odd. We make recursive calls to Algorithm
3 rather than Algorithm 4 because it uses significantly fewer CNOT operations
and fits in the required space.

Line C in MODMULT

1 β

2-4 (1 + xk)β mod m

5-7 γ + (1 + xk)β mod m

8,9 xkγ + xk(1 + xk)β mod m

10 (1 + xk)−1(xkγ + xk(1 + xk)β) mod m

11 α+ (1 + xk)−1(xkγ + xk(1 + xk)β) mod m

12 (1 + xk)α+ xkγ + xk(1 + xk)β mod m

Table 4: Step-by-step calculation of Algorithm 4.

Theorem 3. Algorithm 4 correctly calculates fg in a field F2[x]/m(x) and the
values of f and g are the same after the algorithm as they were before.

Proof. Table 4 gives the result of each line on array C. As can be seen in the
table, the final result corresponds to (1 + xk)α + xkγ + xk(1 + xk)β mod m.
Lines 6 and 7 are the inverses of lines 3 and 4 so return A and B to their original
states.

12 Hoof, I van

Algorithm 4: MODMULT. Reversible algorithm for multiplication of
2 polynomials in F2[x]/m(x) with m(x) an irreducible polynomial.

Fixed input : A constant integer n to indicate field size, k = dn
2
e. m(x) of

degree n as the field polynomial. The LUP-decomposition
precomputed for multiplication by 1 + xk modulo m(x).

Quantum input: Two binary polynomials f(x), g(x) of degree up to n− 1
stored in arrays A and B respectively of size n. An all-zero
array C of size n

Result: A and B as input, C as f · g mod m.
1 C[0..n− 1]← KMULT(A[k..n− 1], B[k..n− 1], C[0..n− 1])
2 C[0..n− 1]← MULT1+xk (C[0..n− 1])
3 A[0..n− k − 1]← CNOT(A[0..n− k − 1], A[k..n− 1])
4 B[0..n− k − 1]← CNOT(B[0..n− k − 1], B[k..n− 1])
5 C[0..n− 1]← KMULT(A[0..k − 1], B[0..k − 1], C[0..n− 1])
6 B[0..n− k − 1]← CNOT(B[0..n− k − 1], B[k..n− 1])
7 A[0..n− k − 1]← CNOT(A[0..n− k − 1], A[k..n− 1])
8 for i = 0..k − 1 do
9 C[0..n− 1]← MODSHIFT(C[0..n− 1])

10 C[0..n− 1]← MULT−1

1+xk (C[0..n− 1])

11 C[0..n− 1]← KMULT(A[0..k − 1], B[0..k − 1], C[0..n− 1])
12 C[0..n− 1]← MULT1+xk (C[0..n− 1])

6 Results

Algorithm 4 uses the same number of Toffoli gates as regular Karatsuba mul-
tiplication: 3 half-sized multiplications. This means the asymptotic number of
Toffoli gates is the same as for regular Karatsuba: O(nlog(3)) ≈ O(n1.58). This
is a significant improvement over the n2 Toffoli gates required for schoolbook
multiplication. The number of CNOT gates is less clear as the number of CNOT
gates required for the multiplications with constant polynomials is strongly de-
pendent on our choice of field polynomial. It is not within the scope of this paper
to find a stronger bound than O(n2) for the number of CNOT gates, which is
currently used for the constant multiplication. In a strict comparison of these
CNOT gates, this is worse than the O(n) CNOT gates used by modular school-
book multiplication, even if we can find a better estimate, but our primary goal
is minimizing the number of Toffoli gates without introducing ancillary qubits.
In our implementation, even the sum of CNOT and Toffoli gates ends up lower
after some degree than the number of Toffoli gates for schoolbook multiplication.

We implemented Algorithm 4 in Java to simulate the execution. Code can be
found in [14]. We used the program to automatically count the number of gates
and give an estimate of the depth, see Table 5 for the results. Depth count is
done by maintaining a set of gates and checking every gate: if they overlap with
the previous gate(s) the depth is increased by 1 and if they are not overlapping
the gate is added to the set of gates to check against. The set of gates is cleared

Space-efficient quantum multiplication... 13

Degree schoolbook TOF gates Algorithm 4 TOF gates CNOT gates Depth upper bound

2 4 3 11 10
4 16 9 49 36
8 64 27 220 139
16 256 81 725 396
32 1,024 243 2,371 1204
64 4,096 729 7,160 3,312
127 16,129 2,185 21,028 9,063
128 16,384 2,187 21,898 9,586
163 26,569 4,387 38,143 18,647
233 54,289 6,323 66,974 32,505
256 65,536 6,561 66,107 27,756
283 80,089 10,273 91,737 43,249

571 326,041 31,171 274,967 124,999
1024 1,048,576 59,049 600,089 240,678

Table 5: CNOT and TOF gate count and depth upper bounds for various in-
stances of Algorithm 4 as well as TOF gate count for schoolbook multiplication.
Field polynomials used are the same as in Table 1, with the irreducible polyno-
mial chosen that has the lowest CNOT count.

and replaced with the last gate whenever the depth is increased. The author is
aware of methods to improve the depth but leaves this to future work.

When doing classical Karatsuba multiplication, the recursive Karatsuba mul-
tiplication is often substituted for schoolbook multiplication starting at a cutoff.
For example, if multiplication is at most 7 times as expensive as addition, multi-
plication of two polynomials of degree at most 2 might be replaced by schoolbook
multiplication to get 4 TOF gates instead of 3 TOF and 8 CNOT gates. How-
ever, the author is unaware of any realistic estimates of cost difference between
CNOT and Toffoli gates where the difference is this small.

6.1 Comparison to other instances of binary finite field
multiplication

Field size 2n Toffoli gates CNOT gates qubits
n = Here [7] [9] Here [7] [9] Here [7] [9]

4 9 9 16 49 22 3 12 17 12
16 81 81 256 725 376 45 48 113 48
127 2185 2185 16129 21028 13046 126 381 2433 381
256 6561 6561 65536 66107 57008 765 768 7073 768

n O(nlog2 3) O(nlog2 3) n2 O(n2) O(nlog2 3) O(n) 3n O(nlog2 3) 3n

Table 6: Comparison of this work with the works of Kepley and Steinwandt [7]
and Maslov et al. [9] in terms of Toffoli and CNOT gates as well as qubit count.

14 Hoof, I van

We compare our algorithm to two previous instances of multiplication: a variant
by Kepley and Steinwandt [7] that optimizes TOF gate count and a variant by
Maslov, Mathew, Cheung and Pradhan [9] that does not use Karatsuba. Other
variants exist, such as a Karatsuba variant by Parent, Roetteler and Mosca [10],
that are worse in terms of space or Toffoli gate count. Since Kepley and Stein-
wandt use Clifford and T-gates rather than CNOT and Toffoli, we translate 7 of
their T-gates and 8 Clifford gates to 1 Toffoli gate, and translate any remaining
Clifford gates to CNOT. The resulting comparison is in Table 6. We can see
that although Algorithm 4 does not compare favorably in every regard, both
the number of Toffoli gates and the number of qubits are best compared to the
alternatives.

7 Conclusion

Algorithm 4 provides a multiplication algorithm for binary polynomials in finite
fields without using ancillary qubits and which has sub-quadratic Toffoli gate
count. The CNOT gate count is high and the depth is not optimized, which
is left open for future work: multiplication by a constant polynomial in F2n

can likely be done in approximately linear time, which would bring down the
theoretical CNOT gate count to the same order as classical Karatsuba. The
saving in Toffoli gate count is the same as for Karatsuba on classical computers:
for cryptographic field sizes the savings in Toffoli gates ranges from 80 to over
90 percent. This provides a basis for future work on elliptic curve problems on
quantum computers as well as potential other work.

Acknowledgements The author thanks Tanja Lange for her insights into quan-
tum algorithms and classical finite field operations, Tanja Lange and Gustavo
Banegas for their advice and supervision both on this paper and the master
thesis this paper originates from, and to Daniel J. Bernstein for his insights into
both quantum computing and classical multiplication algorithms.

References

1. B. Amento, M. Rötteler, and R. Steinwandt, Efficient quantum circuits for
binary elliptic curve arithmetic: reducing T-gate complexity, Quantum Information
& Computation, 13 (2013), pp. 631–644.

2. R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and
F. Vercauteren, eds., Handbook of Elliptic and Hyperelliptic Curve Cryptog-
raphy, Chapman and Hall/CRC, 2005.

3. G. Banegas, R. Custódio, and D. Panario, A new class of irreducible pen-
tanomials for polynomial-based multipliers in binary fields, Journal of Crypto-
graphic Engineering, (2018), pp. 1–15.

4. Y. Cheng, Space-Efficient Karatsuba Multiplication for Multi-Precision Integers,
CoRR, abs/1605.06760 (2016).

Space-efficient quantum multiplication... 15

5. FIPS, PUB 186-4: Federal information processing standards publication. digital
signature standard (DSS), Information Technology Laboratory, National Institute
of Standards and Technology (NIST), Gaithersburg, MD, (2013), pp. 20899–8900.

6. A. A. Karatsuba and Y. P. Ofman, Multiplication of many-digital numbers by
automatic computers, in Doklady Akademii Nauk, vol. 145, Russian Academy of
Sciences, 1962, pp. 293–294.

7. S. Kepley and R. Steinwandt, Quantum circuits for F2n -multiplication with
subquadratic gate count, Quantum Information Processing, 14 (2015), pp. 2373–
2386.

8. R. Maeder, Storage Allocation for the Karatsuba Integer Multipliation Algorithm,
in Design and Implementation of Symbolic Computation Systems, International
Symposium, DISCO ’93, Gmunden, Austria, September 15-17, 1993, Proceedings,
1993, pp. 59–65.

9. D. Maslov, J. Mathew, D. Cheung, and D. K. Pradhan, An O(m2)-depth
quantum algorithm for the elliptic curve discrete logarithm problem over GF (2m)a,
Quantum Information & Computation, 9 (2009), pp. 610–621.

10. A. Parent, M. Roetteler, and M. Mosca, Improved reversible and quantum
circuits for Karatsuba-based integer multiplication, in 12th Conference on the The-
ory of Quantum Computation, Communication and Cryptography, TQC 2017,
June 14-16, 2017, Paris, France, 2017, pp. 7:1–7:15.

11. D. S. Roche, Space- and Time-Efficient Polynomial Multiplication, in Proceed-
ings of the 2009 international symposium on Symbolic and algebraic computation,
ACM, 2009, pp. 295–302.

12. G. Seroussi, Table of low-weight binary irreducible polynomials, Hewlett-Packard
Laboratories, 1998.

13. E. Thomé, Karatsuba multiplication with temporary space of size≤ n, Online,
September, (2002). https://members.loria.fr/EThome/files/kara.pdf.

14. I. van Hoof, QMKMBP: Quantum modulo Karatsuba multiplier for binary poly-
nomials. Github, 2019. https://github.com/ikbenbeter/QMKMBP.

https://members.loria.fr/EThome/files/kara.pdf
https://github.com/ikbenbeter/QMKMBP

	Space-efficient quantum multiplication of polynomials for binary finite fields with sub-quadratic Toffoli gate count

