
Revisiting Leakage Abuse Attacks

Laura Blackstone∗

Brown University
Seny Kamara†

Brown University
Tarik Moataz‡

Aroki Systems

Abstract

Encrypted search algorithms (ESA) are cryptographic algorithms that support search over
encrypted data. ESAs can be designed with various primitives including searchable/structured
symmetric encryption (SSE/STE) and oblivious RAM (ORAM). Leakage abuse attacks attempt
to recover client queries using knowledge of the client’s data. An important parameter for any
leakage-abuse attack is its known-data rate; that is, the fraction of client data that must be
known to the adversary.

In this work, we revisit leakage abuse attacks in several ways. We first highlight some
practical limitations and assumptions underlying the well-known IKK (Islam et al. NDSS ’12)
and Count (Cash et al., CCS ’15) attacks. We then design four new leakage-abuse attacks
that rely on much weaker assumptions. Three of these attacks are volumetric in the sense that
they only exploit leakage related to document sizes. In particular, this means that they work
not only on SSE/STE-based ESAs but also against ORAM-based solutions. We also introduce
two volumetric injection attack which use adversarial file additions to recover queries even from
ORAM-based solutions. As far as we know, these are the first attacks of their kind.

We evaluated all our attacks empirically and considered many experimental settings in-
cluding different data collections, query selectivities, known-data rates, query space size and
composition. From our experiments, we observed that the only setting that resulted in reason-
able recovery rates under practical assumptions was the case of high-selectivity queries with a
leakage profile that includes the response identity pattern (i.e., the identifiers of the matching
documents) and the volume pattern (i.e., the size of the matching documents). All other attack
scenarios either failed or relied on unrealistic assumptions (e.g., very high known-data rates).
For this specific setting, we propose several suggestions and countermeasures including the use
of schemes like PBS (Kamara et al, CRYPTO ’18), VLH/AVLH (Kamara and Moataz, Euro-
crypt ’19), or the use of padding techniques like the ones recently proposed by Bost and Fouque
(Bost and Fouque, IACR ePrint 2017/1060).

∗laura blackstone@alumni.brown.edu.
†seny@brown.edu.
‡tarik@aroki.com. Work done while at Brown University.

Contents

1 Introduction 3
1.1 Theory vs. Practice of Known-Data Attacks . 5
1.2 Our Attacks . 7
1.3 Countermeasures . 8
1.4 Related Work . 8

2 Preliminaries 8

3 Volumetric Known-Data Attacks 11
3.1 Volume Analysis . 11
3.2 Selective Volume Analysis . 12
3.3 Subgraph Attacks . 13

4 Volumetric Injection Attacks 17
4.1 The Decoding Attack . 17
4.2 The Binary Search Attack . 18

5 Empirical Evaluation 19
5.1 Detailed Results . 24

5.1.1 C1: Single Keyword Queries . 24
5.1.2 C2: Size of the Query Space . 25
5.1.3 C3: Varying the Datasets . 26

6 Takeaways 28

7 Countermeasures 30

A Overview of ESA Constructions 38

B Count v.1 with δ < 1 41

C Keyword Selectivity 41

D Quantifying the Offset for Injection 42

2

1 Introduction

The area of encrypted search is concerned with the design and analysis of cryptographic techniques
to search over encrypted data. There are many ways to design encrypted search algorithms (ESA)
including using fully-homomorphic encryption (FHE) [28], oblivious RAM (ORAM) [31], functional
encryption [9], property-preserving encryption [2, 7, 8] and searchable/structured symmetric en-
cryption (SSE/STE) [68, 19, 18]. All these approaches achieve different tradeoffs between leakage,
expressiveness and efficiency.

At a high level, a static ESA is composed of two algorithms: a setup algorithm and a search
algorithm. Setup encrypts a data collection in such a way that it can later be queried using the
search algorithm. The most basic form of search is single-keyword search which, given a keyword
w, returns the documents in the collection that contain w. If the solution is dynamic, there is an
additional update algorithm to modify the encrypted data collection. In this work, we will focus on
SSE/STE- and ORAM-based ESAs, which we sometimes refer to as structured ESAs and oblivious
ESAs, respectively.

Leakage. While it is possible to search on encrypted data with essentially no leakage with time
and communication that is linear in the size of the document collection, this is however not a
viable approach for datasets of practical interest. Because of this, all known ORAM-, STE- and
PPE-based ESAs leak some information. This leakage comes in two forms: setup leakage, which is
revealed at setup time by the encrypted dataset, and query leakage, which is revealed at query time
by the encrypted dataset and the query operation. To better understand the real-world impact
of this leakage, an important research direction in encrypted search has been to design leakage
attacks. This line of work was initiated by Islam, Kuzu and Kantarcioglu in [38] in the context of
SSE and was expanded to PPE by Naveed, Kamara and Wright [56] and to ORAM by Kellaris,
Kollios, Nissim and O’Neill [46]. Since then, several works have further explored leakage attacks
including [13, 74, 48, 33] in the SSE setting and [13, 22, 34] in the PPE setting.

Leakage attacks. Leakage attacks come in different forms depending on the leakage profiles
they exploit, the adversarial models in which they work, the information they recover, the auxiliary
information they need and the assumptions they rely on. We can categorize attacks along the
following dimensions:

• adversarial model: snapshot attacks only require access to the encrypted document collection;
persistent attacks require access to the encrypted data collection and to the transcripts of the
query operations.

• target: data-recovery attacks recover information about the data collection whereas query-
recovery attacks recover data about queries;

• auxiliary data: sampled-data attacks require a sample from a distribution that is close (e.g.,
in statistical distance) to the distribution of the data collection; known-query attacks require
knowledge of a subset of the queries; known-data attacks require knowledge of a subset of the
data collection. An important parameter for known-data attacks is the known-data rate which
is defined as the fraction δ of documents in the client’s data collection that are known to the
adversary.

3

• passive or active: passive attacks do not require the adversary to choose any part of the client’s
data; active, or chosen-data attacks, require the adversary to choose some of the data in the
data collection.

In this work, we focus on the persistent model since it has recently been shown that solutions with
little to no leakage can be achieved in the snapshot setting using both PPE [50] and STE [3] (this
doesn’t take into account possible systems-level pitfalls as pointed out in [32]). We recall that
sampled-data attacks are commonly referred to as inference attacks, that known-data attacks are
commonly referred to as leakage abuse attacks and that chosen-data attacks are commonly referred
to as injection attacks.

Leakage profiles. Of course, an important characteristic of any leakage attack is what kind of
leakage it exploits. For example, the IKK attack exploits the co-occurrence pattern which reveals,
for every pair of queries, the number of times they appear in the same document. The Count attack
rely on the co-occurrence pattern and the response length pattern; the latter of which reveals, for
every query, the number of documents that contain it. The injection attacks of [74] exploit the
response identity (also known as the access pattern) which reveals, for every query, the identifiers
of the documents that contain it. Note that the response identity reveals the response length and
the co-occurrence pattern so the IKK and Count attack can apply to any construction that leaks
the response identity. An important class of leakage patterns for our purposes will be what we
call volumetric patterns. By this we mean any leakage pattern that reveals the size of documents.
Here, we will focus specifically on the volume pattern which reveals, for each query, the volumes of
the documents that contain it; and the total volume pattern which reveals, for each query, the sum
of the volumes of the documents that contain it.

Known-data attacks against structured ESAs. Known-data attacks were introduced by
Cash, Grubbs, Perry and Ristenpart in [13]. In that work, they described several attacks against
both SSE/STE- and PPE-based ESAs. They also introduced injection (or chosen-data) attacks
against PPE-based ESAs. Injection attacks were later demonstrated against structured ESAs by
Zhang, Katz and Papamanthou [74].

The IKK attack was first described in [38] as an inference attack that exploits the co-occurrence
pattern. [38] reported high recovery rates but the experiments conducted had several methodolog-
ical flaws. The most salient ones were that: (1) they were run on a small query space (of size 2500
out of a total of 77000 after stemming and removing stop words); and (2) the training and test data
collections were not independent. Motivated by this, Cash et al. re-evaluated the IKK attack with
independent testing and training data and found that IKK could not recover any queries. IKK was
then re-evaluated as a known-data attack and it was found that it could achieve reasonable recovery
rates if it was given 95% or more of the client’s data. Effectively, [13] showed that IKK failed as
an inference attack but worked as a known-data attack when δ ≥ .95. [13] then introduced a new
attack called the Count attack. This attack relies on co-occurrence and response length leakage
and was shown to perform better than the IKK attack. Recently, the ePrint version of [16] was
updated to include a new attack that performs better than the one originally published in [13].
Throughout this work, we will refer to the first Count attack as Count v.1 and to the new attack
as Count v.2.

4

Discussion and overview of our contributions. The IKK and Count attacks have received a
lot of attention and are commonly used to draw conclusions about various ESAs. As an example,
they are often cited as a reason to prefer oblivious ESAs over structured ESAs [70, 71, 73, 52, 20,
63, 27, 25, 29, 64, 58, 53, 51, 66, 65, 72, 26, 5, 37]. The results in this work underscore that the
study of and, especially, the interpretation of known-data attacks is more nuanced.

To address this, we present in Section 3 several new known-data attacks that do not have
these limitations and that achieve higher recovery rates for much lower known-data rates. What
is perhaps surprising about our attacks is that they work not only against structured ESAs but
also against oblivious ESAs which contradicts the conventional wisdom that ORAM-based search
is resistant to leakage-abuse attacks.

Another contribution of our work is that we demonstrate, for the first time, that injection
attacks apply not only to PPE-based ESAs [13] and structured ESAs [74] but also to oblivious
ESAs. In particular, we describe in Section 4 two volumetric injection attacks, which contradicts
the conventional wisdom that ORAM-based search is resistant to injection attacks.

In Section 5, we report on a thorough empirical analysis of our attacks (the details are in
Appendix 5.1). Specifically, we evaluate the attacks in a host of different settings including different
keyword selectivities, query space compositions, query space sizes and datasets. This extensive
evaluation shows that the success rates of known-data attacks is very sensitive to various parameters
that were not considered in previous work. This highlights the importance of common but often
implicit assumptions made in the leakage attack literature.

Finally, in Section 7 we propose several countermeasures to mitigate all known-data attacks,
including our own.

1.1 Theory vs. Practice of Known-Data Attacks

Here, we revisit the state-of-the art in known-data attacks highlighting some of the practical limi-
tations and assumptions of the currently-known attacks.

Reliance on co-occurrence. Recall that all IKK, Count v.1 and Count v.2 attacks all rely on
the co-occurrence pattern. This particular leakage pattern, however, can be hidden using standard
SSE/STE techniques. In fact, we describe a construction in Appendix A, OPQ, that does not reveal
the co-occurrence pattern. As far as we know, this construction has not appeared in previous work
and may be of independent interest.

High known-data rates. The experimental results in [13] (cf., Figure 6) and [16] (cf., Figure 6)
show that the IKK, Count v.1 and Count v.2 attacks achieve non-trivial recovery rates only with
very high known-data rates: IKK needs to know 70% of the data to recover 5% of the queries;
Count v.1 needs to know 80% of the data to recover 40% of the queries (note that knowing even
up to 75% of the data results in a query recovery rate of 0%); and Count v.2 needs to know 75% of
the data to recover 40% of the queries. Given how high these known-data rates are, it is not clear
whether these attacks should be considered practical. An instructive question to ask here is how
exactly an adversary could, in practice, get up to, say 75%, of a client’s data? Recall that in the
encrypted search setting the client encrypts its data and outsources it to an untrusted server. In
particular, this means the client deletes the data from its system after setup which leaves the only
copy on the server and in encrypted form. In such a setting, there are a few scenarios in which an

5

adversary could recover 75% of the client’s data. One is that the client, for some reason, chooses
to encrypt public data which the adversary later recovers. A second is that the client decides to
release a large percentage of its data (after downloading and decrypting it from the server). A
third is that the client queries its data and over time caches enough of the results to amount to a
large percentage of the data. At this stage, a data breach occurs on the client and the cached data
is revealed to the adversary. The first two scenarios are relatively contrived and have more to do
with a misuse of the primitive: in such settings one should use private information retrieval. The
third scenario is perhaps less contrived but caching 75% of one’s data locally seems to defeat the
purpose of outsourced storage. Indeed, if a client is willing to store 75% of its data locally then
they might as well do search locally on the 75% and use encrypted search only for the remaining
25%.

High- vs. low-selectivity keywords. An important consideration when evaluating a query-
recovery attack is how exactly client queries are chosen. Most leakage attack papers make implicit
assumptions about this but the query distribution has a large impact on accuracy rates. For ex-
ample, the experiments in [13] assume the client queries high-selectivity keywords. It is not clear,
however, if this is realistic. In fact, we ran the IKK and Count attacks on low-selectivity keywords
over the Enron dataset and neither attack worked; even when the adversary had a complete knowl-
edge of the client’s data. More precisely, the IKK and Count attacks had recovery rate 0 even when
δ = 1 for keyword selectivities lower than 20.

Known queries. The IKK and Count v.1 attacks are described in [13] as known-data attacks
that do not require knowledge of any client queries. While it is true that these attacks can achieve
high recovery rates without knowledge of client queries, this only holds if the adversary has complete
knowledge of the data; that is, if δ = 1. If the adversary has less than full knowledge (i.e., δ < 1)
and no knowledge of any queries, then Count v.1 does not work. 1

Theoretical vs. practical attacks. In cryptanalysis it is common to distinguish between the-
oretical attacks and practical attacks. 2 The former are attacks that work in strong adversarial
models; often relying on assumptions about the adversary’s capabilities which rarely occur in prac-
tice. Examples include related-key attacks where the adversary is allowed to make chosen-plaintext
and chosen-ciphertext queries under related keys (e.g., through modification of keys). Another is
the known-key model where the adversary is assumed to know the key and its goal is to distinguish
ciphertexts from random. It is our belief that the IKK and Count attacks are mostly of theoretical
interest since they rely on strong assumptions like known-queries and high known-data rates and
have only been shown to work on high-selectivity keywords.

Should we discount theoretical attacks? Though these attacks are of theoretical interest it
does not mean we should dismiss them. Even theoretical cryptanalytic results have something to

1This may seem to contradict the results presented in [13] but the experimental evaluation of Count v.1 presented
in Figure 6 of [13] was incomplete. For δ = 1 (i.e., complete knowledge) the attack does not need knowledge of queries
but for δ < 1 it does. We confirmed this with the authors who updated their manuscript with the new Count v.2
attack which does not require knowledge of queries.

2We highly recommend the paper of Aumasson [6] for an insightful discussion of these issues.

6

Attack
Type Leakage Known δ for high δ for p-low δ for low

Sampled Known Injection pattern queries selectivity selectivity selectivity

IKK [38] 7 X 7 co X ≥95% � �
Count [13] 7 X 7 co, rlen X ≥80% � �
Zhang et al. [74] 7 7 X rid 7 − − −
SubgraphID 7 X 7 rid 7 ≥5% ≥50% ≥60%

SubgraphVL 7 X 7 vol 7 ≥5% ≥50% �
VolAn 7 X 7 tvol 7 ≥85% ≥85% �
SelVolAn 7 X 7 tvol, rlen 7 ≥80% ≥85% �
Decoding & Binary 7 7 X tvol 7 − − −

Table 1: Comparison of existing leakage abuse (known-data) and injection (chosen-data) attacks. The last
three columns give the known-data rate δ needed for a recovery rate of at least 20% against low-, pseudo-low-
and high-selectivity keywords, respectively. � means the experiment was not conducted in previous work.
� means that even a known-data rate of δ = 1 does not achieve at least 20% recovery rate. All experiments
were based on the Enron dataset [62] with 150 queries and a keyword space of 500 keywords.

teach us about the security of our constructions. It is important, however, to be clear and explicit
about the limitations of cryptanalytic results.

1.2 Our Attacks

Motivated by the discussion above, we revisit known-data attacks (i.e., leakage abuse attacks)
against SSE. We introduce four new attacks and two new injection attacks in Sections 3 and 4.
We also perform a thorough evaluation which we report on in Section 5 and provide in detail in
Appendix 5.1. Our attacks achieve high recovery rates with low known-data rates and do not rely
on known queries. We summarize the characteristics of our attacks in Table 1. Most surprisingly,
all but one of our attacks are volumetric and, therefore, apply not only to SSE/STE-based solutions
but also to ORAM-based constructions. As far as we know, these are the first known-data and
chosen-data attacks against ORAM. We now summarize our attacks and their performance:

• Volume analysis (VolAn): a known-data attack that exploits the total volume pattern. It has
high recovery rates when δ ≥ .8 and the client queries keywords with high-selectivity (i.e.,
10-13) or pseudo-low-selectivity (i.e., 1-2).

• Selective volume analysis (SelVolAn): an extension of volume analysis that relies on the total
volume and response length patterns. This attack has slightly higher recovery rates under the
same conditions as volume analysis.

• Subgraph attacks: a framework to design known-data attacks against atomic leakage patterns,
i.e., leakage pattern that reveals information about each matching document. We give two
concrete instantiations of our framework. The first is SubgraphID which exploits the response
identity and the second is SubgraphVL which exploits the volume pattern. Both attacks achieve
high recovery rates with very low known-data rates (i.e., with δ as low as .05) when the client
queries high-selectivity keywords. The recovery rate drops significantly and reaches 0% when
the client queries keywords with low selectivity (i.e., 1-2) and pseudo-low selectivity.

• the Decoding attack (Decoding): an injection attack that exploits the total volume pattern.
This attack always recovers its target query if the adversary can inject between 4 to 16KBytes
depending on the query’s selectivity.

7

• the Binary Search attack (Binary): an injection attack that also exploits the total volume
pattern. The attack requires logarithmic number of (adaptive) injections. The attack recovers
its target query if the adversary can inject around 8KBytes.

1.3 Countermeasures

We propose several countermeasures and guidelines against both our new attacks and previously-
known attacks.

As discussed earlier, our empirical evaluation found only a single practical setting where our
attacks are successful: querying high-selectivity keywords using a scheme that leaks both the re-
sponse identity and the volume patterns. The simplest countermeasure to this is to use a scheme
that does not leak these patterns like the PBS construction of Kamara, Moataz and Ohrimenko
[45]. In Section 7, we demonstrate empirically that PBS is resistant to all known-data attacks (even
ours) as long as the client makes at least 4 queries. Specifically, we show that under this condition,
the best possible attack has recovery rate 0.02% recovery rate.

To mitigate theoretical attacks, like the IKK or Count attack which require high known-data
rates and exploit the co-occurrence pattern, we design a new scheme called OPQ that does not leak
this pattern. We also point out that, in [12], Bost and Fouque introduced padding techniques that
efficiently mitigate these attacks.

Finally, to protect against purely volumetric attacks one can use the recent constructions of
Kamara and Moataz [44] which are volume-hiding.

1.4 Related Work

We already mentioned work on leakage attacks and, more specifically, on leakage abuse attacks so
we focus here on work related to SSE/STE- and ORAM-based ESAs.

SSE/STE. SSE was introduced by Song, Wagner and Perrig [68]. Curtmola, Garay, Kamara and
Ostrovsky formalized SSE in [19] and described the first sub-linear and optimal-time constructions.
STE was introduced by Chase and Kamara in [18] as a generalization of SSE. Many works have
explored various aspects of SSE including dynamism [30, 42, 41, 69, 10, 17, 11, 23], locality [17,
15, 4, 55, 21], expressiveness [18, 14, 59, 24, 54, 40, 43], multiple clients [19, 39, 60, 35], and
leakage [27, 45, 44, 3].

ORAM. Goldreich and Ostrovsky introduced ORAM in [31], where they described constructions
with amortized square-root and polylog overheads. Shi, Chan, Stefanov and Li introduced tree-
based ORAMs which achieved worst-case polylog overhead in [67]. Since then, many works have
improved ORAM along many dimensions including communication complexity, round complexity,
client and server storage [47, 70, 63, 27].

2 Preliminaries

Notation. The set of all binary strings of length n is denoted as {0, 1}n, and the set of all finite
binary strings as {0, 1}∗. [n] is the set of integers {1, . . . , n}, and 2[n] is the corresponding power
set. The output x of an algorithm A is denoted by x← A. Given a sequence q of n elements, we

8

refer to its ith element as qi or q[i]. If S is a set then #S refers to its cardinality. If s is a string
then |s|2 refers to its bit length. Throughout, k will denote the security parameter.

The word RAM. Our model of computation is the word RAM. In this model, we assume memory
holds an infinite number of w-bit words and that arithmetic, logic, read and write operations can
all be done in O(1) time. We denote by |x|w the word-length of an item x; that is, |x|w = |x|2/w.
Here, we assume that w = Ω(log k).

Document collections. Let W be a keyword space. A document collection D = (D1, . . . ,Dn)
over W consists of n documents, each of which is a subset of W. We denote by D the space of all
document collections over W. We assume each document D ∈ D has a unique identifier that is
independent from its contents. For ease of exposition, we assume these identifiers are the integers
1 through n and that they are assigned to documents uniformly at random. For ease of exposition,
it will be helpful to consider the following functions. The identifier function id : D → [n] that
maps a document Di to its identifier i. The function D : W → 2D that maps a keyword w to the
documents that contain it. The identifiers function ids : W → 2[n] that maps a keyword w to the
identifiers of the documents that contain it. We refer to the word-length of a document |D|w as its
volume.

Throughout this work, we denote the adversary’s known dataset by D̃ and assume it is a subset
of the client’s document collection D chosen uniformly at random.

Structured ESAs. A static structured encrypted search algorithm ESA = (Setup, Search) con-
sists of two efficient algorithms. Setup takes as input a security parameter 1k and a document collec-
tion D = (D1, . . . ,Dn) and outputs a secret keyK and an encrypted data collection (EDB, ct1, . . . , ctn).
Search is a two-party protocol between a client and a server. The client inputs its secret key K and
a keyword w and the server inputs an encrypted collection (EDB, ct1, . . . , ctn). The client receives
a set of encrypted documents {cti}i∈ids(w) and the server receives ⊥. Structured ESAs are con-
structed using structured encryption (STE) [18] and, in particular, using a multi-map or dictionary
encryption schemes. We describe some examples in Appendix A.

Oblivious ESAs. ESAs can also be designed using ORAM. The simplest approach is similar
to the structured ESA construction described above but where EDB is replaced with an oblivious
RAM ORAM that stores a search structure (e.g., a multi-map). The Search algorithm then executes
the structure’s query algorithm and replaces each read operation with a call to the ORAM’s access
protocol. We describe some examples of oblivious ESA constructions in Appendix A.

Modeling leakage. Each ESA operation is associated with leakage which itself can be composed
of multiple leakage patterns. The collection of all these leakage patterns forms the scheme’s leakage
profile. Leakage patterns are (families of) functions over the various spaces associated with the
underlying data collection. For concreteness, we recall some well-known leakage patterns:

• the query equality pattern is the function family qeq = {qeqk,t}k,t∈N with qeqk,t : Dk ×Wt
k →

{0, 1}t×t such that qeqk,t(D, w1, . . . , wt) = M , where M is a binary t × t matrix such that
M [i, j] = 1 if wi = wj and M [i, j] = 0 if wi 6= wj . The query equality pattern is referred to as
the search pattern in the SSE literature;

9

• the identifier pattern is the function family rid = {ridk,t}k,t∈N with ridk,t : Dk ×Wt
k → [2[n]]t

such that ridk,t
(
D, w1, . . . , wt

)
= (ids(w1), . . . , ids(wt)). The identifier pattern is referred to as

the access pattern in the SSE literature;

• the response length pattern is the function family rlen = {rlenk,t}k,t∈N with rlenk,t : Dk×Wt
k → N

such that rlenk,t(D, w1, . . . , wt) =
(
#D(w1), . . . ,#D(wt)

)
;

• the volume pattern is the function family vol = {volk,t}k,t∈N with volk,t : Dk ×Wt
k → Nt such

that

volk,t(D, w1, . . . , wt) =

((
|D|w

)
D∈D(w1)

, . . . ,

(
|D|w

)
D∈D(wt)

)
.

• the total volume pattern is the function family tvol = {tvolk,t}k,t∈N with tvolk,t : Dk ×Wt
k → Nt

such that

tvolk,t(D, w1, . . . , wt) =

(∑
D∈D(w1)

|D|w, . . . ,
∑

D∈D(wt)

|D|w
)
.

Each operation of an ESA (e.g., setup, query) generates leakage which is the direct product of
one or more leakage patterns.

We say that a leakage pattern is atomic if it reveals information about each individual matching
document. For example, rid and vol are atomic whereas tvol is not. We say that a leakage pattern
is volumetric if it reveals size information about the matching documents. For example, vol and
tvol are volumetric. Attacks that rely on volumetric leakage are particularly interesting because
they apply to almost all constructions, including ORAM-based constructions.3

Security. In encrypted search we consider persistent and snapshot adversaries. A persistent
adversary receives: (1) the encrypted data; and (2) the transcripts of the interaction between the
client and the server when a query is made. A snapshot adversary, on the other hand, only receives
the encrypted data after a query has been executed.

The security of ESAs can be formalized using “leakage-parameterized” definitions following
[19, 18]. In this framework, a construction is proven secure with respect to a security definition that
is parameterized with a specific leakage profile. Leakage-parameterized definitions for persistent
adversaries were given in [19, 18] and for snapshot adversaries in [3]. 4 We recall these definitions
here informally and refer the reader to [19, 18, 3] for the formal definitions.

Definition 2.1 (Security vs. persistent adversary (Informal)). Let Λ =
(
LS,LQ

)
=
(
patt1, patt2

)
be a leakage profile. An encrypted search algorithm ESA is Λ-secure if there exists a ppt simulator
that, given patt1(D) for an adversarially-chosen document collection D and patt2(D, q1, . . . , qt) for
adaptively-chosen queries qi, can simulate the view of any ppt adversary. Here, the view includes
the encrypted data collection and the transcript of the queries.

3Note that different schemes have different leakage profiles but, until recently, all known constructions leaked one
of the patterns described above. The total volume pattern in particular is very difficult to supress and is leakaed by
all known constructions except for the constructions recently proposed in [44].

4Even though parameterized definitions were introduced in the context of SSE and STE, they can be (and have
been) applied to other primitives, including to FHE-, PPE-, ORAM- and FE-based solutions.

10

Known leakage profiles. There are many ways to design ESAs and each one provides a tradeoff
between leakage and efficiency. Here, we summarize some of the most common leakage profiles and
refer the reader to Appendix A for an overview of how these profiles can be achieved (and their
cost). For ease exposition, we will ignore setup leakage in this work and just denote it by ?. This
is justified since none of our attacks rely on it and, moreover, there are no known attacks that
leverage it. As we show in Appendix A, there are structured ESAs with leakage profiles,

ΛBSL = (LS,LQ) =
(
?,
(
qeq, rid, vol

))
and

ΛOPQ = (LS,LQ) =
(
?,
(
qeq, tvol

))
,

and oblivious ESAs with leakage profiles,

ΛSMI = (LS,LQ) =
(
?,
(
rlen, rid, vol

))
and

ΛFLL = (LS,LQ) =
(
?,
(
rlen, tvol

))
.

Adversarial model. As discussed in Section 1, we consider two kinds of attacks each of which is
carried out by different adversaries. Known-data attacks (i.e., leakage-abuse attacks) are carried out
by a passive adversary that: (1) observes all query operations and therefore sees the query leakage;
(2) knows a fraction of the client’s data; and (3) knows the universe of keywords from which
the queries are drawn. Chosen-data attacks (i.e., injection attacks) are carried out by an active
adversary that can add arbitrary documents either adaptively (i.e., as a function of previously-
observed search results and/or leakage) or non-adaptively. 5

3 Volumetric Known-Data Attacks

In this section we present four new known-data attacks, three of which are volumetric. The first
is volume analysis which exploits the total volume pattern tvol. The second attack is selective
volume analysis which exploits the total volume and response length patterns (tvol, rlen). The
last two are concrete instantiations of an attack framework we refer to as subgraph attacks. The
first instantiation, the volumetric subgraph attack, exploits the volume pattern vol. The second
instantiation, the identifier subgraph attack exploits the identifier pattern rid.

Remark on queries vs. keywords. For ease of exposition, we will use the term query when re-
ferring to a keyword that is unknown to the attacker. In particular, given leakage patt(D, q1, . . . , qt)
on a sequence of t queries, the adversary’s goal will be to match each query qi to a keyword w ∈W.

3.1 Volume Analysis

Volume analysis exploits the total volume pattern. It can be viewed as a volume-based analogue
of frequency analysis. It takes as auxiliary input a known dataset D̃ and as leakage

tvol(D, q1, . . . , qt) = (v1, . . . , vt)

5Note that for chosen-data attacks, one assumes a trivial client that accepts all injected documents without any
filtering.

11

Consider the attack VolAn defined as follows:

• VolAn
(
D̃, (v1, . . . , vt)

)
:

1. initialize a map α : [t]→W;

2. let f(w) =
∑

D̃∈D̃(w) |D̃|w;

3. for all vi ∈ (v1, . . . , vt), set α(i) = argmaxw∈W
{
f(w) : f(w) ≤ vi

}
,

4. output α.

Figure 1: Volume analysis.

where vi =
∑

D∈D(qi)
|D|w. The attack then maps the ith query qi to the keyword w ∈W that has

the closest known volume to vi. More precisely, the attack maps qi to

argmaxw∈W

{
f(w) : f(w) ≤ vi

}
,

where f is the function

f(w) =
∑

D̃∈D̃(w)

|D̃|w,

that maps each keyword to its known volume. The pseudo-code of the attack is detailed in Figure 1.

Efficiency. The attack runs in O(t ·#W) time.

3.2 Selective Volume Analysis

We now describe an extension of volume analysis we call selective volume analysis, that exploits
the total volume tvol and the response length rlen. It takes as input known data D̃ and leakage

tvol× rlen(D, q1, . . . , qt) =

((
v1, r1

)
, . . . ,

(
vt, rt

))
where vi =

∑
D∈D(qi)

|D|w and ri = #D(qi). The attack proceeds in two steps: window matching
and selectivity filtering which we detail below.

Window matching. The first step is similar to volume analysis in that we map queries to
keywords with known volumes that are close to the observed volumes. The main difference, however,
is that instead of mapping to a single keyword we now map to a set of keywords. Specifically, we
map each query qi to all keywords with known volumes that are within a specific distance from the
query’s observed volume. The idea behind this approach can be seen with the following concrete
example. Suppose there are two keywords w1 and w2 with close volumes (with respect to the
original dataset) and recall that the adversary knows only a δ fraction of D. When δ < 1, it is
possible that the known volume of one keyword, say w1, is different than its real volume while the
other keyword’s known volume is the same as its real volume. In such a setting, volume analysis
might map the query to w2 instead of w1. Otherwise, if there is no potential volume in the window
[δ · vi, vi], for i ∈ [t], we just search for the closest volume to δ · vi in the known dataset such that

argmaxw∈W

{
f(w) : f(w) ≤ δ · vi

}
,

12

where f is the function f(w) =
∑

D̃∈D̃(w)
|D̃|w that maps each known keyword to its known volume.

Selectivity filtering. At this stage, the attack has a set Si of potential keyword matches. It
then starts filtering out keywords by removing any keyword that has a known selectivity that is too
far away from the observed selectivity (response length pattern). For this, we determine a range of
acceptable selectivities that are computed based on: (1) an error parameter ε; (2) the known data
rate δ; (3) the observed selectivity ri; (4) the observed volume of the keyword under consideration;
and (5) the average document size (over documents in D̃) θ.

The attack proceeds by first computing an estimated selectivity that will be more or less close to
the selectivities that the adversary knows of. In particular, for each keyword w ∈ Si, we compute
the estimated selectivity, r̂i as

r̂i = ri −
(
vi − f(w)

)
/θ,

where f(w) =
∑

D̃∈D̃(w)
|D̃|w. This equation can be explained as follows: we first calculate the

difference of the observed volume vi and the known volume of the selected keyword f(w); then
given the average document size θ, the quantity

(
vi−f(w)

)
/θ is an estimated number of documents

that the adversary does not know of. Finally, subtracting the latter from ri will give an estimated
selectivity for the keyword w.

Now given this estimated selectivity, our goal is to find out whether such a quantity is close
enough to the selectivity of keyword w. For this we simply check if r̂i is larger than #D̃(w) by
at most λ– a linear error that depends of the known-data rate δ, the selectivity ri, and an error
parameter ε. Note that the computation of λ can vary depending on the dataset. Finally, if the
selectivity is not close enough or if the observed selectivity is smaller than the selectivity of w, we
remove w from potential matches Si. We repeat these steps for all keywords w ∈ Si and we simply
map the ith query to the first keyword remaining in Si, for all i ∈ [t]. The pseudo-code of the
attack is detailed in Figure 2.

Efficiency. The attack runs in O(t ·#W) time.

3.3 Subgraph Attacks

In this section, we present our subgraph attack framework. Subgraph attacks are query-recovery
attacks with known-data that can exploit any atomic leakage pattern; that is, any pattern that
reveals a function of each matching document. Formally, a pattern patt is atomic if there exists a
function h : D→ Y such that

patt(D, q1, . . . , qt) =
(
L1, . . . , Lt

)
where, for all i ∈ [t], Li is a tuple (h(D))D∈D(qi). Atomic patterns are relatively common and
include the volume pattern vol and the identifier pattern rid. In the case of the volume pattern, h
is the function | · |w. In the case of the identifier pattern, h is the function ids. In the following,
we refer to the value h(D) as D’s handle. We stress that just because a subgraph attack can be
defined with respect to any atomic leakage pattern, it does not necessarily mean that it will be
successful against that pattern. Its accuracy has to be verified experimentally, as we do in Section
5. The attack is described in detail in Figure 3 and works as follows.

13

Let ε ∈ N be a public parameter, θ ∈ N be the average document size, and δ be the known-data rate.
Consider the SelVolAn attack defined as follows:

• SelVolAn
(
D̃,
(
(v1, r1), . . . , (vt, rt)

)
, δ, θ, ε

)
:

1. initialize t empty sets S1, . . . , St and a map α : [t]→W;

2. let f(w) =
∑

D̃∈D̃(w) |D̃|w;

3. for all i ∈ [t],

(a) for all v ∈ [δ · vi, vi],
– if there exists w ∈W such that f(w) = v, then set Si = Si

⋃
{w};

(b) if #Si = 0, set

Si =

{
argmaxw∈W

{
f(w) : f(w) ≤ δ · vi

}}
,

(c) for all w ∈ Si,
i. set λ = (1− δ) · ri/ε;
ii. compute

r̂i = ri −
(
vi − f(w)

)
/θ;

iii. if r̂i − λ > #D̃(w) or #D̃(w) > ri, then set Si = Si \ {w};
(d) set α(i) = w where w is the first keyword in Si;

4. output α.

Figure 2: Selective volume analysis.

Bipartite graphs. The attack takes as input an auxiliary data set D̃ ⊆ D and query leakage
(L1, . . . , Lt) defined as above. It starts by creating two bipartite graphs G̃ =

(
(L̃,W), Ẽ

)
and

G =
(
(L,Q),E

)
from the auxiliary data and the leakage, respectively. The vertex set L̃ is composed

of the handles of the known documents; that is,

L̃ =

{
h(D̃)

}
D̃∈D̃

.

For all keywords w ∈ W and documents D̃ ∈ D̃, Ẽ includes an edge
(
w, h(D̃)

)
if w ∈ D̃. The

second bipartite graph G = ((L,Q),E) is constructed as follows. The vertex set L is composed of
the observed document handles; that is,

L =

{
h(D)

}
D∈

⋃t
i=1 D(qi)

.

The vertex set Q = (q1, . . . , qt) is composed of the queries q1 through qt. The edges E are created
using the observed leakage by adding an edge (qj , h(D)) if h(D) ∈ Lj , for all j ∈ [t] and D ∈⋃t
i=1 D(qi).

Refinement. Given these two graphs, the algorithm’s goal is to match each qi in Q to some w in
W. For each qi, the attack will build a set of potential keyword matches Si ⊆W and keep refining

it using several filtering steps. We will denote by S
(j)
i the set of qi’s potential keyword matches

after the jth refinement step. Let S
(0)
i = W and let w∗i be qi’s correct match. The first filtering

14

Let ε ∈ N be a public error parameter and δ be the known-data rate. Let h : D → Y be the function
associated to patt. Consider the subgraph attack Subgraph defined as follows:

• Subgraph
(
D̃, (L1, · · · , Lt), ε, δ

)
:

1. initialize t empty sets S1, · · · , St and a map α : [`]→W;

2. create a bipartite graph G̃ =
(
(L̃,W), Ẽ

)
where

L̃ =
{
h(D̃)

}
D̃∈D̃

and Ẽ =
{(
w, h(D̃)

)
: ∀w ∈W,∀D̃ ∈ D̃, w ∈ D̃

}
3. create a bipartite graph G =

(
(L,Q),E

)
where

L =
{
h(D)

}
D∈

⋃t
i=1 D(qi)

and Q = (q1, · · · , qt) and

E =
{(
qj , h(D)

)
: ∀j ∈ [t],∀D ∈

t⋃
i=1

D(qi), h(D) ∈ Lj
}

4. for all i ∈ [t],

(a) for all w ∈W, if NG̃(w) ⊆ NG(qi), then set S
(1)
i = S

(1)
i

⋃
{w};

(b) for all w ∈ S(1)
i , if #NG̃(w) ≥ δ ·#NG(qi)− ε, then set S

(2)
i = S

(2)
i

⋃
{w};

(c) compute

S
(3)
i = S

(2)
i

⋂(⋂
α∈L̃∩Li

D̃α

)
;

(d) if #S
(3)
i = 1, then set α(i) = w where S

(3)
i = {w};

5. let A ⊆ [t] be the set of all indices for which #S
(3)
i = 1;

6. while #A is increasing,

(a) for all S
(`)
i such that #S

(`)
i > 1, then set

S
(`+1)
i = S

(`)
i \

(⋂
j∈A

α(j)

)
;

(b) if #S
(`+1)
i = 1, then set α(i) = w where S

(`+1)
i = {w};

(c) update A;

7. output α.

Figure 3: The Subgraph framework.

15

step is based on the observation that w∗i ’s matching documents in D̃ have to be a subset of qi’s
matching documents in D. More formally, we have

S
(1)
i =

{
w ∈W : N

G̃
(w) ⊆ NG(qi)

}
,

where N
G̃

(w) and NG(w) are the neighbors of w and qi in G̃ and G, respectively. The second

filtering step is based on the observation that the selectivity of w∗ in D̃ should be a δ fraction of
its selectivity in D, where δ is the known-data rate. Based on this we have

S
(2)
i =

{
w ∈ S(1)

i : #N
G̃

(w) ≥ δ ·#NG(qi)− ε
}
,

where ε is an error parameter we set experimentally.

Cross filtering. The next filtering step is optional and can be used only if the function h : D→ Y
is a bijection and if the adversary knows a large enough fraction of D. The observation we rely on

is that the correct keyword in a potential set S
(2)
i must be contained in all the documents in the

set h−1(Li). As a concrete example, consider the case where h is the document ID function id. In

this case, the observation above translates to the fact that the correct keyword w∗i in S
(2)
i must be

contained in all the documents (Dα)α∈Li . This follows from the correctness of the ESA scheme.
More formally, we have that

w∗i ∈ S
(2)
i

⋂(⋂
D∈h−1(Li)

D

)
.

Notice, however, that we may not be able to compute the above subset because it requires us to
invert h and recover all the documents that matched the query. In particular, we can only invert h
if our auxiliary dataset is complete, i.e., δ = 1. Nevertheless, we can approximate the set h−1 even
when δ < 1 as follows. We use the set L̃∩Li which is the subset of observed handles of documents
that we know. We then compute

S
(3)
i = S

(2)
i

⋂(⋂
α∈L̃∩Li

D̃α

)
.

At the end of this step, if the size of the set S
(3)
i is equal to 1, then this means that we found a

match for the ith query qi, and therefore update the map α accordingly.

Iterative elimination. The final step of the attack relies on the observation that if some w is
the correct match for a query qi then it cannot be the correct match for another query qj , where

i 6= j. In other words, if w is the unique element of some potential set S
(`)
i , for ` ∈ [4, t+ 3], then

w cannot be the matching keyword in some other potential set S
(`)
j and, therefore, we can remove

it from S
(`)
j . If this removal leads to S

(`)
j having a single element, then we can in turn remove that

element from other potential sets. This process keeps going until the potential sets stabilize. Note
that while the algorithm will terminate it may not find matches for all qi.

16

Efficiency. The first filtering step is O(t ·#W), the cross filtering step is

O

(
t+

t∑
i=1

∑
D∈D(qi)

#D

)

and the iterative elimination step is O(t2). In total, the algorithm runs in time

O

(
t ·#W +

t∑
i=1

∑
D∈D(qi)

#D

)
.

The volumetric subgraph attack. As discussed above, subgraph attacks can exploit any
atomic leakage pattern by properly instantiating the handle function h. The volumetric subgraph
attack results from instantiating h with the function | · |w which maps each document to its volume.
Note that | · |w is not bijective so this instantiation cannot use the cross filtering step.

The identifier subgraph attack. Our subgraph framework can also be used to exploit the
identifier pattern by instantiating h with the function ids that maps keywords to the identifiers of
the documents that contain it. Note that because ids is bijective, we can use the cross filtering step.

4 Volumetric Injection Attacks

Injection attacks were first proposed by Cash et al. [13] in the context of the PPE-based Shad-
owCrypt and Mimesis [36, 49] systems. The first injection attacks on structured ESAs were de-
scribed by Zhang, Katz and Papamanthou in [74]. In that work, two attacks are described, each of
which exploits the identifier pattern. In this section, we describe new volumetric injection attacks.
In particular, our attacks exploit the total volume pattern and, therefore, can even be used against
oblivious ESAs.

4.1 The Decoding Attack

The decoding attack is described in detail in Figure 4 and works as follows. It works in two phases:
baseline and recovery. In the baseline phase, the adversary waits until it has observed the total
volumes for all keywords in W. During the recovery phase, the adversary observes an additional
sequence of t ≥ 1 client queries q = (q1, . . . , qt) with total volumes v = (v1, . . . , vt). The attack
will recover all queries in q. We now describe each phase in more detail.

Baseline. During the baseline phase, the adversary observes queries until it holds the volumes
b = (b1 . . . , bm) of all the keywords w1, . . . , w` ∈W. It then creates a set of documents to inject as
follows. It first computes an offset γ defined as

γ = min

{
γ ∈ N : ∀i, j ∈ [m], γ 6 | bi − bj

}
.

For all keywords wi ∈ W, the adversary injects a document with volume i · γ filled with wi.
Intuitively, this step increases wi’s volume by i · γ.

17

Consider the attack Decoding defined as follows:

• Decoding
(
·
)
:

1. gather the baseline volumes b = (b1 . . . , bm) for all keywords in W and initialize a mapping
α : [`]→W;

2. compute

γ = min

{
γ ∈ N : ∀ i, j ∈ [t], γ 6 | vi − vj

}
;

3. for all wi ∈W, the adversary injects a document with volume i · γ containing wi;

4. gather the observed volumes v = (v1, . . . , vt);

5. for all i ∈ [t],

(a) find u ∈ [`] such that vi − u · γ = bj , for some j ∈ [m];

(b) set α(j) = wu;

6. output α.

Figure 4: The decoding attack.

Recovery. During the recovery phase, the adversary will observe volumes v = (v1, . . . , vt) on
queries q = (q1, . . . , qt). Note that for all i ∈ [t], the volume of qi can be written as

vi = bj + u · γ

for some j ∈ [m] and u ∈ [`]. The adversary’s goal now is to map qi to some keyword w ∈ W =
(w1, . . . , w`). It does this as follows. It checks if there exists a u ∈ [`] such that vi−u · γ is equal to
one of the baseline volumes (b1, . . . , bm). If this is the case, then the adversary maps qi to keyword
wu. Note that there can be at most a single baseline volume that satisfies this condition. To see
why, suppose there exists two baseline volumes β1 6= β2 and two values z 6= z′ in [`] such that

vi − z · γ = β1 and vi − z′ · γ = β2.

But this implies that γ · (z′−z) = β1−β2 which is a contradiction since γ 6 | bi− bj , for all i, j ∈ [m].

Correctness & efficiency. The decoding attack recovers all queries in q as long as the user did
not add any documents of its own. As described, the attack recovers all queries in q by injecting
#W documents with a total volume of O(γ ·#W2). Note, however, that the attack can be made
a lot more efficient if the adversary is only interested in recovering queries within some target
set T ⊂ W. In this case, in the baseline phase the adversary only needs to gather the baseline
volumes for queries in T . Similarly, it only needs to inject documents for keywords in T . With this
modification, the attack recovers queries in q ∩ T by injecting T documents with a total volume
of O(γ · #T 2). Our evaluation demonstrates that the offset γ for different subsets of the Enron

dataset is between 4 and 16 KBytes depending on the query selectivity (see Appendix D).

4.2 The Binary Search Attack

The binary search attack is described in detail in Figure 5 and works as follows. It works in
three phases: baseline, targeting and recovery. In the baseline phase, the adversary waits until it

18

has observed the total volumes for all keywords in W. During the targeting phase the adversary
observes more client queries until it decides on a query q0, with total volume v0, that it wishes to
target. In the recovery phase, the adversary observes an additional sequence of t > log #W client
queries q = (q1, . . . , qt) with volumes v = (v1, . . . , vt) that it will use to recover its target q0. We
now describe each phase in more detail.

Baseline. During the baseline phase, the adversary observes queries until it holds the volumes
b(0) = (b1, . . . , bm) for each keyword w1, . . . , w` ∈W(0), where W(0) = W.

Targeting. During the targeting phase, the adversary observes queries until it decides on a target

query q0 with total volume v0. It then partitions W(0) into two equal-sized sets, W(0)
0 and W(0)

1 and
computes an offset

γ = min

{
γ ∈ N : ∀j ∈ [m], γ 6= |v0 − b(0)j | ∧ γ ≥ |W

(0)
1 |w

}
.

The adversary then injects a document with volume γ that contains all the keywords in W(0)
1 .

Recovery. In the first round of the recovery phase, the adversary observes the total volume v1
for query q1. It then uses γ to decide on one of three cases:

• if v1 = v0 + γ then the adversary concludes that q1 = q0 and that q0 ∈W(0)
1 ;

• if v1 = v0 then the adversary concludes that q1 = q0 and that q0 ∈W(0)
0 ;

• if v1 6= v0 and v1 6= v0 + γ then the adversary concludes that q1 6= q0.

If q0 ∈W(0)
1 the adversary sets W(1) = W(0)

1 . If q0 ∈W(0)
0 it sets W(1) = W(0)

0 . For both these cases,
before moving to the next round, the adversary re-injects a document with volume γ such that

γ = min

{
γ ∈ N : ∀j ∈ [m], γ 6= |v1 − b(1)j | ∧ γ ≥ |W

(1)
1 |w

}
,

where b(1) = (b(0), b
(0)
1 +γ, · · · , b(0)m +γ), W(1)

0 and W(1)
1 are the two partitions of W(1). If otherwise

q1 6= q0, the adversary moves to the next round without changing W(0) nor injecting a new file.

Correctness & efficiency. The binary search attack will recover q0 as long as: (1) it appears
log #W times in q = (q1, . . . , qt); (2) it has a unique volume in the baseline volumes; and (3) the
user did not add any document of its own. The attack needs to inject log #W files with a total
volume of Ω(#W). Our evaluation demonstrates that the size of the query space was the main
factor that determines the total injected volume (i.e., γ ' #W/2u for all u ≤ log #W for different
subsets of the Enron dataset). The total injected volume was around 8KBytes (see Appendix D).

5 Empirical Evaluation

To evaluate the effectiveness of our attacks, we implemented and evaluated them under different
conditions. The results are perhaps surprising and provide a new and more nuanced perspective
on the potential impact and limitations of leakage abuse attacks.

19

Consider the attack Binary defined as follows:

• Binary
(
·
)
:

1. gather the baseline volumes b(0) = (b
(0)
1 . . . , b

(0)
m) for all keywords in W(0) = W;

2. partition W(0) into two equal-sized sets, W(0)
0 and W(0)

1 ;

3. observe queries and determine a target query q0 with total volume v(0) = v0;

4. compute

γ = min

{
γ ∈ N : ∀j ∈ [m], γ 6= |v(0) − b(0)j | ∧ γ ≥ |W

(0)
1 |w

}
;

5. injects a document with volume γ that contains all the keywords in W(0)
1 ;

6. while #W(u) > 1 and for every new observed volume vi,

(a) if vi = v(u) + γ then set W(u+1) = W(u)
1 ;

(b) if vi = v(u) then set W(u+1) = W(u)
0 ;

(c) if vi 6= v(u) + γ and vi 6= v(u), then move to the next round;

(d) if W(u) has been updated, then,

i. partition W(u+1) into two equal-sized sets, W(u+1)
0 and W(u+1)

1 ;

ii. set v(u+1) = vi;

iii. compute

γ = min

{
γ ∈ N : ∀j ∈ [m], γ 6= |v(u+1) − b(u+1)

j | ∧ γ ≥ |W(u+1)
1 |w

}
,

where b(u+1) = (b(1), · · · ,b(u), b
(u)
1 + γ, · · · , b(u)m + γ);

7. output W(log#W) = {w}.

Figure 5: Binary Search Attack.

20

Document collections. We build our document collections using the Enron Email dataset [62].
This dataset is composed of 150 folders with a total of 520, 901 files. Each folder corresponds to the
email account of a single individual and is itself composed of several folders including, for example,
inbox, sent, contacts, discussion threads, etc. Starting from the entire Enron dataset, we
generated different subsets that capture different settings of interest:

• single user (SU): is a document collection composed of one individual’s email account. For this
dataset, we picked the arnold-j folder which is 11.6MBytes and is composed of 4, 944 files.
The total number of keywords is 40, 363. This collection models the traditional single user ESA
setting where a single client uses an ESA to encrypt and privately access its own dataset.

• small multiple users (S-MU): is a document collection composed of multiple email accounts. For
this dataset, we picked 5 folders with a total size equal to 26Mbytes. This document collection
is composed of the following email accounts: baughman-d, gay-r, heard-m, hendrickson-s

and linder-e. The dataset is composed of 9, 416 files in total. The total number of keywords
is 77, 762. This collection models the multi-user ESA setting in which there is one party (e.g.,
a company) that uses an ESA to encrypt and store multiple users’ documents. Here, queries
can be performed by a subset of authorized users.

• medium multiple user (M-MU): is the same as above except that we increase the number of
folders to 10 with a total size of 49Mbytes. The data collection is composed of the same email
accounts as above plus: allen-p, buy-r, forney-j, hyvl-d and keiser-k. The total number
of keywords is 115, 679.

The purpose of the first two collections is to see whether the effectiveness of our attacks will vary as
a function of different data distributions. The third collection is used to understand if increasing the
size of the dataset impacts the effectiveness of the attacks. We note that we performed evaluations
which we do not report here in order to avoid redundancy. In particular, we evaluated the attacks
on a larger document collection from Enron of size 106MBytes and the results were similar to
the ones on M-UM. We also evaluated our attacks on a subset of the TREC 2007 Public Corpus

dataset [57], an email dataset composed of 75, 419 emails (including spam), and the results were
similar.

Data indexing. We indexed each data collection using Apache Lucene [1]. We removed 224 stop
words listed in the SnowBall list [61]. Furthermore, we used the Porter Stemming implementation
of Lucene so all words that share the same stem are mapped to the same root.

Query frequency. We observed that previous works on leakage abuse attacks [38, 13] evaluated
the effectiveness of their attacks on the most frequent keywords in the dataset. While this assump-
tion might hold in some settings, it is far from clear if this a reasonable assumption in practice. In
fact, it might seem that users would more often search for keywords that occur less frequently in
their dataset rather than for keywords that occur frequently. With this in mind, we evaluated all
of our attacks in three different settings:

• high selectivity : the queries are sampled from the set of keywords with the highest selectivities
(i.e., that appear in the largest number of documents). We noticed that keyword selectivities

21

in Enron are power-law distributed (see Appendix C) which implies that high-selectivity key-
words tend to have unique selectivities while low-selectivity keywords tend to have less unique
selectivities (in our datasets it was none).

• low selectivity : the queries are sampled from the set of keywords with the lowest selectivities.
In our datasets, all the low-selectivity keywords had selectivity 1.

• pseudo-low selectivity : in this case we consider low-selectivity keywords with a slightly higher
selectivity than above. In particular, we consider the case where the selectivity ranges from 10
to 13.

Size and composition of the query space. We first fix the size of the query space, Q, to be 500.
We then study the impact of increasing #Q. In particular, we increased #Q up to 5000 keywords.
We also consider two ways of instantiating the query space. The first consists of populating Q with
keywords that only exist in the known-data collection D̃. This guarantees that all q ∈ Q must exist
in D̃. As a consequence, the attacker would know that any client query will match at least one
document in D̃. The second approach consists of populating Q from keywords that exist in the
client’s collection D.

Experimental setting. As described above, there are several variables that can impact the
effectiveness of our attacks. In our evaluation, we considered many different combinations of these
variables and organized them in three main categories:

• (C1) single keyword queries: we consider the SU dataset and fix the size of the query space to
be 500. We then vary the query selectivity and query space composition; refer to Figures 6a,
6b, 6c and 6d.

• (C2) size of the query space: this second category is the same as the first except that we increase
the size of the query space to be 5000; refer to Figures 8a, 8b, 8c and 8d.

• (C3) varying the datasets: the third category is similar to the first category except that we
replace the SU dataset with the S-MU and M-MU datasets; refer to Figures 10a, 10b, 10c and
10d.

All our attacks are evaluated against a query sequence q of size t = 150. The queries are sampled
uniformly at random from the corresponding keyword space Q whose composition varies depending
on the chosen approach (see above). In all our experiments, we start with the adversary knowing
the entire client collection and then gradually decrease this knowledge until it knows only 5% of
the documents (chosen uniformly at random). For each attack, we report the recovery rate, i.e.,
the number of queries recovered correctly over the total number of queries. We run all experiments
5 times and report the minimum, median and maximum of the recovery rate. All attacks are
implemented in Java and the experiments were run on a MacBook 3.1 GHz Intel Core i7 with
16GBytes of RAM.

Baseline. In all our experiments we have included the count-only attack which is simply the
Count attack [13] without the co-occurence matrix. This depicts constructions for which we have
suppressed the co-occurence leakage, refer to Appendix A.

22

Overview of results. We noticed that the recovery rate of our attacks is impacted the most
by the selectivity of the queries. In fact, it seems that evaluating known-data attacks on high-
vs. low-selectivity queries leads to completely opposite conclusions.6 Moreover, we noticed that
changing the datasets or increasing the size of the query space led to some fluctuations but the
overall trends remained the same. This shows that our attacks work across different settings and
different dataset compositions. We found, however, that if client queries are not in the adversary’s
known dataset then the recovery rate is always low. This simply follows from the fact that there are
several queries for which the adversary does not hold any part of the response. Below, we provide
more detailed comments on the results of our evaluations:

• When the query space is composed of high-selectivity keywords, both SubgraphID and SubgraphVL

have a recovery rate of about 70% even with a known-data rate of 5% (see Figure 10a). We be-
lieve that the low known-data rate makes these attacks practical for high-selectivity keywords.
However, if the query space is composed of low-selectivity keywords, then the recovery rate
drops significantly. In fact, we found that SubgraphVL does not work at all while SubgraphID

has a recovery rate of about 20% even when δ = 1; that is, with full knowledge of the client’s
data. With a known-data rate of δ = 1/2, SubgraphID only has 10% recovery rate. It tends to
0 for known-data rates smaller than 10%.

• For VolAn and SelVolAn, our evaluation shows that both attacks work only when: (1) the query
space consists of high-selectivity keywords; and (2) the adversary has a high known-data rate,
often at least .85. We refer the reader to Figure 6a for an example. In the case where the query
space consists of low-selectivity keywords, the recovery rate is very low: around 10% even when
δ = 1/2. It drops significantly when δ gets smaller.

• When the query space consists of pseudo-low-selectivity keywords (i.e., with selectivity between
10 and 13), both the VolAn and SelVolAn attacks have high recovery rate only when the known-
data rate δ ≥ .8 (see Figure 7). As δ decreases, the recovery rate stabilizes at around 18% and
starts to decrease again to 0 when δ ≤ 0.15. Note that this recovery rate is the highest among
the three selectivity classes for these two attacks. The recovery rates of both SubgraphID and
SubgraphVL against pseudo-low-selectivity queries are slightly better than the recovery rates
of SelVolAn and VolAn. SubgraphID and SubgraphVL also do better on pseudo-low-selectivity
keywords than they do on low-selectivity keywords. However, they do a lot worse than they do
against high-selectivity keywords.7

Results on chosen-data attacks. Since our injection attacks always succeed we do not evaluate
their success rate empirically. We report, however, that in order to succeed we set the size of the
keyword universe W to 500. Also, for the Decoding attack, one has to inject between 4 and 16
KBytes to recover one keyword depending on the type of the document collection and the keyword
selectivity. For the Binary attack, the adversary has to inject around 8 KBytes for all document
collections and this holds independently of the selectivity of the keyword. We provide more details
about our evaluation in Appendix D.

6We recall that the experiments in [13] were done exclusively on high-selectivity keywords.
7We also conducted experiments in which the queries were sampled uniformly at random from the entire keyword

space. The results were similar to the low-selectivity case (the SubgraphID recovery rate was slightly higher though).

23

5.1 Detailed Results

We provide in the following more elaborate details about each of the categories that we have
introduced above.

5.1.1 C1: Single Keyword Queries

In this section, we detail the evaluation for each of the attacks described in Section (3) in the C1
setting.

SubgraphID attack. When the query space is composed of high-selectivity keywords in the adver-
sary known data D̃, the attack’s recovery rate is high in general. As can be seen in Figure (6a),
the recovery rate is around 90% for any known-data rate larger than 50%. The recovery rate then
decreases to 50% with 30% known-data but then increases back to 80% with 5% known data. We
believe that this surprising behavior is an artifact of the dataset used in the experiment as it is
not repeated when the attack is run on other datasets. When the query space is composed of
high-selectivity keywords, the attack also has high recovery rate. As illustrated in Figure (6b), the
rate is around 90% for known-data rates larger than 50%. The recovery rate then decreases and
stabilizes around 40%. On the other hand, when the query space is composed of the low-selectivity
keywords, the recovery rate drops considerably. This can be seen in Figure (6c), where it decreases
steadily and slightly fluctuates around 20% . Finally, in the case where the query space is composed
of the low-selectivity keywords, the recovery rate decreases steadily from 23% to 0%. As can be seen
in Figure (6d), for smaller known-data rates (i.e., below 50%) the recovery rate is less than 10%.
Finally, as illustrated in Figure (7), when the query space is composed of pseudo-low-selectivity
keywords, the recovery rate drops sharply and becomes very low for known-data rates smaller than
50%.

SubgraphVL attack. The recovery rate of SubgraphVL is similar to the one of SubgraphID when
the query space is composed of the high-selectivity keywords. This can be seen in Figures (6a)
and (6b). The recovery rate is also similar on pseudo-low-selectivity keywords which can be seen
in Figure (7). On the other hand, as can be seen in Figures (6c) and (6d), the attack does poorly
against low-selectivity keywords. In this case, the recovery rate is insignificant and is around 0%
and 4%.

VolAn attack. As can be seen in Figures (6a) and (6b), the VolAn attack does well against high-
selectivity keywords (i.e., recovery rate of 96%) when the adversary has full knowledge of the client’s
data but it drops own to 12% even with a known-data rate of 95% and further down to 5% with
a known-data rate of 90%. For known-data rates lower than 85%, the recovery rate is almost null.
When the query space is composed of pseudo-low-selectivity keywords, the recovery rate has similar
behavior but with higher values. This can be seen in Figure (7). When the query space is composed
of the low-selectivity keywords, the recovery rate decreases steadily from 18% to 2%. The drop-off
is slightly sharper when the query space is composed of keywords from the client’s dataset; refer to
Figures (6c) and (6d).

SelVolAn attack. The recovery rate of SelVolAn behaves similarly to the one of VolAn except that
it is slightly larger. It is around 96% when the adversary has full knowledge of the dataset, but drops

24

sharply to 28% with 95% known-data rate, and then to 18% with 90% known-data rate. The attack
does exactly the same as VolAn when the query space is composed of the pseudo-low-selectivity
keywords.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

R
e
c
o
v
e
ry

 r
a
te

Partial Knowledge in %

Count-Only

VolAn

SelVolAn

Subgraph
ID

Subgraph
VL

(a) ? = high selectivity, � = partial

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

R
e
c
o
v
e
ry

 r
a
te

Partial Knowledge in %

Count-Only

VolAn

SelVolAn

Subgraph
ID

Subgraph
VL

(b) ? = high selectivity, � = entire

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

R
e
c
o
v
e
ry

 r
a
te

Partial Knowledge in %

Count-Only

VolAn

SelVolAn

Subgraph
ID

Subgraph
VL

(c) ? = low selectivity, � = partial

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

R
e
c
o
v
e
ry

 r
a
te

Partial Knowledge in %

Count-Only

VolAn

SelVolAn

Subgraph
ID

Subgraph
VL

(d) ? = low selectivity, � = entire

Figure 6: SU dataset. 150 keywords queried u.a.r. from 500 ? keywords in the � dataset.

5.1.2 C2: Size of the Query Space

We now describe our evaluation for each of the attacks in Section (3) in the C2 setting. We note
that the increase of keyword space does not have any impact on the recovery rate when the query
space is composed of low-selectivity keywords. In fact, the results are very similar to the ones
in the C1 experiments (see Figures (8c) and (8d)). This is mainly due to the fact that, in the
SU dataset, there are 17745 keywords with the same selectivity (of 1), i.e., there are 17745 low-
selectivity keywords. Therefore, increasing the query space size from 500 to 5000 does not have
any impact because all the keywords will still have the same selectivity as in C1. In the following,
we only focus on the case where the query space is composed of the high-selectivity keywords. In
fact, since the selectivities are power law distributed, high-selectivity keywords tend to have unique
selectivities; which leads to slightly different results as we going to explain below.

SubgraphID attack. The recovery rate of SubgraphID is similar to its recovery rate in C1 for any
known-data rate larger than 50%. This can be seen in Figure (8a). The attack does slightly better

25

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

R
e

c
o

v
e

ry
 r

a
te

Partial Knowledge in %

Count-Only

VolAn

SelVolAn

Subgraph
ID

Subgraph
VL

Figure 7: 150 keywords queried u.a.r. from 500 pseudo-less frequent keywords in SU.

for known-data rates between 25% and 50%. However, contrary to C1, and when the known-data
rate is 20% or smaller, the recovery rate decreases considerably and reaches 35% with a known-data
rate of 5%. This could be explained by the fact that the queries can include keywords with lower
selectivities which negatively impact the accuracy of the attack for low known-data rates. On the
other hand, when the query space is composed of keywords from the client’s dataset, the recovery
rate slightly decreases; especially with known-data rates between 20% and 50%. This can be seen
in Figure (8b).

SubgraphVL attack. The recovery rate of SubgraphVL is similar to SubgraphID except that, starting
from a 50% known-data rate, the recovery rates are 10% to 20% lower than those in C1.

VolAn and SelVolAn attacks. Both of the attacks behave similarly to how they behave in the
C1 setting. However, the recovery rate of both slightly increases. In particular, instead of a sharp
decrease at a 95% known-data rate, the drop-off is slightly smoother. For example, SelVolAn can
still achieve 56% recovery at 95% and 16% recovery at 80%. This new behavior could stem from the
fact that the total volume of keywords with lower selectivities is more identifying. Note however
that with a 70% known-data rate or smaller, the recovery rate is almost null.

5.1.3 C3: Varying the Datasets

In this section, we describe the results of our evaluation for each of the attacks described in Sec-
tion (3) in the C3 setting. We note that, here, varying the datasets does not impact the recovery
rate when the query space is composed of low-selectivity keywords. In fact, the curves are very
similar to the ones in the C1 and C2 experiments; this can be seen in Figures (9c), (9d), (10c)
and (10d).

SubgraphID and SubgraphVL attacks on the S-MU Dataset. When the query space is com-
posed of keywords from adversary’s known dataset D̃, the recovery rate is stable at around 80%.
Otherwise, when the query space is composed of keywords from the client’s dataset, the recovery

26

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

R
e
c
o
v
e
ry

 r
a
te

Partial Knowledge in %

Count-Only

VolAn

SelVolAn

Subgraph
ID

Subgraph
VL

(a) ? = high selectivity, � = partial

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

R
e
c
o
v
e
ry

 r
a
te

Partial Knowledge in %

Count-Only

VolAn

SelVolAn

Subgraph
ID

Subgraph
VL

(b) ? = high selectivity, � = entire

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

R
e
c
o
v
e
ry

 r
a
te

Partial Knowledge in %

Count-Only

VolAn

SelVolAn

Subgraph
ID

Subgraph
VL

(c) ? = low selectivity, � = partial

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

R
e
c
o
v
e
ry

 r
a
te

Partial Knowledge in %

Count-Only

VolAn

SelVolAn

Subgraph
ID

Subgraph
VL

(d) ? = low selectivity, � = entire

Figure 8: SU dataset. 150 keywords queried u.a.r. from 5000 ? keywords in the � dataset.

rate of both attacks decreases steadily and hits 38% and 22% with a 5% known-data rate, respec-
tively. This is illustrated in Figures (9a) and (9b). Compared to previous experiments, the recovery
rate is slightly higher, especially in Figure (9a).

VolAn and SelVolAn attacks on the S-MU Dataset. Compared to the C2 setting, the recovery
rate of both of these attacks is even smoother. In fact, the sharp drop-off is replaced with a smooth
decrease; especially when the query space is composed of keywords from the adversary’s known
dataset. In fact, between a known-data rates of 95% and 40%, the recovery rate decreases between
50% and 20%. This is one of the highest recovery rates for theses two attacks that we found. This
increase is smaller when the query space is composed of keywords from the client’s dataset; refer
to Figures (9a) and (9b).

SubgraphID and SubgraphVL attacks on the M-MU Dataset. The recovery rates are similar
to the ones for the S-MU dataset, except that with known-data rates between 70% and 95%, the
recovery rate drops considerably—by 10% to 20% depending on the composition of the query space.
This can be seen in Figures (10a) and (10b).

27

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

R
e
c
o
v
e
ry

 r
a
te

Partial Knowledge in %

Count-Only

VolAn

SelVolAn

Subgraph
ID

Subgraph
VL

(a) ? = high selectivity, � = partial

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

R
e
c
o
v
e
ry

 r
a
te

Partial Knowledge in %

Count-Only

VolAn

SelVolAn

Subgraph
ID

Subgraph
VL

(b) ? = high selectivity, � = entire

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

R
e
c
o
v
e
ry

 r
a
te

Partial Knowledge in %

Count-Only

VolAn

SelVolAn

Subgraph
ID

Subgraph
VL

(c) ? = low selectivity, � = partial

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

R
e
c
o
v
e
ry

 r
a
te

Partial Knowledge in %

Count-Only

VolAn

SelVolAn

Subgraph
ID

Subgraph
VL

(d) ? = low selectivity, � = entire

Figure 9: S-MU dataset. 150 keywords queried u.a.r. from 500 ? keywords in the � dataset.

VolAn and SelVolAn attacks on the M-MU Dataset. The recovery rates are similar to the C1
setting.

6 Takeaways

In this work we revisited leakage abuse and injection attacks against ESAs. In particular, we argued
that the often-cited IKK and Count attacks are mostly of theoretical interest due to the following
limitations and assumptions:

• high known-data rates: both the IKK and Count attack require high known-data rates to
achieve reasonable recovery rates and it is not clear whether such rates are realistic;

• known queries: in addition to relying on known-data, the Count v.1 attack also relies on known
queries;

• suppressable leakage: the IKK and Count attacks rely on the co-occurrence pattern which can
be easily hidden at the cost of additional storage using our OPQ construction.

• experimental evaluation: the experimental evaluations of the IKK and Count attack were not

28

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

R
e
c
o
v
e
ry

 r
a
te

Partial Knowledge in %

Count-Only

VolAn

SelVolAn

Subgraph
ID

Subgraph
VL

(a) ? = high selectivity, � = partial

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

R
e
c
o
v
e
ry

 r
a
te

Partial Knowledge in %

Count-Only

VolAn

SelVolAn

Subgraph
ID

Subgraph
VL

(b) ? = high selectivity, � = entire

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

R
e
c
o
v
e
ry

 r
a
te

Partial Knowledge in %

Count-Only

VolAn

SelVolAn

Subgraph
ID

Subgraph
VL

(c) ? = low selectivity, � = partial

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

R
e
c
o
v
e
ry

 r
a
te

Partial Knowledge in %

Count-Only

VolAn

SelVolAn

Subgraph
ID

Subgraph
VL

(d) ? = low selectivity, � = entire

Figure 10: M-MU dataset. 150 keywords queried u.a.r. from 500 ? keywords in the � dataset.

conducted in all settings of interest. This includes, for example, querying low-selectivity key-
words or keywords that are not in the adversary’s known dataset.

New attacks. To address these limitations, we introduced four new known-data attacks and two
new injection attacks. We believe our known-data attacks are of practical interest since they work
with low known-data rates and do not rely on any known queries. Most surprisingly, our attacks
make use of only volumetric leakage and therefore apply, not only to structured ESAs, but also to
oblivious ESAs.

We implemented our attacks and evaluated them empirically in various settings and using
different kinds of queries. We hope that our study provides useful insights that may help the
community better understand the real-world impact of leakage abuse attacks. In the following, we
list our main takeaways, sometimes referencing the constructions described in Appendix A:

• None of the attacks worked against low-selectivity or pseudo-low-selectivity keywords;

• When querying high-selectivity keywords, the rid and vol patterns (which are respectively leaked
by the BSL and SMI constructions) can be exploited by our Subgraph attacks with very low
known-data rates (as low as 5%). Note that high recovery rates are maintained across different
settings. In addition, we believe our attacks would do even better on larger data collections.

29

For example, on collections on the order of gigabytes we estimate that relatively high recovery
rates could still be achieved with known-data rates as low as 1%. We conclude that, for high-
selectivity keywords, there are practical attacks against leakage profiles that include rid and
vol.

• When querying high-selectivity keywords, the total volume pattern (which is leaked by OPQ
and FLL) seems resistant to our attacks for δ ≤ .8.

• The total volume pattern tvol can be successfully attacked with our injection attacks (though
in the case of the Binary Search attack only if the target query has a unique total volume).

• Structured and oblivious ESAs seem to provide the same level of security against both our
known-data (i.e., leakage abuse) and chosen-data (i.e., injection) attacks.

7 Countermeasures

Our study revealed two settings in which our attacks could be practical. The first is using our
Subgraph attacks to exploit the rid and vol patterns on high-selectivity keywords and the second is
using our volumetric injection attacks to exploit the total volume pattern. For all other settings,
we do not believe any countermeasures are required though they are certainly available.

High-selectivity keywords. For high-selectivity keywords, one should simply use a scheme that
does not leak rid or vol like the PBS construction of [45] (see Appendix A for a brief overview of
PBS) or the OPQ or FLL constructions described in Appendix A. These schemes have the following
leakage profiles

ΛPBS =
(
?, (qeq, svol)

)
and ΛOPQ =

(
?, (keq, tvol)

)
and,

ΛFLL =
(
?, (rlen, tvol)

)
,

where svol is the sequence volume pattern,

svol(D, w1, . . . , wt) =

t∑
i=1

∑
D∈D(w)

|D|w.

Our experiments suggest that for δ ≤ .8 either OPQ or FLL can be used but that for δ > .8 one
should use PBS. Note that the sequence volume pattern seems to be a very “low leakage” pattern
in the sense that even a “brute-force” attack that simply tries to match keywords to the sequence
volume leakage does not work on our dataset. We provide more details below.

Brute force. We assume the adversary has full knowledge of the client’s data, i.e., δ = 1. Given
the sequence volume pattern of a query sequence of length λ drawn uniformly at random from a set
of 500 either low- or high-selectivity keywords, the attack finds all possible sequences of λ keywords
that have sequence volume leakage equal to the given/observed leakage. If there is only a single
such sequence, the attack returns it as its output otherwise it fails.

Note that this is the best possible attack against the sequence volume pattern (not taking
efficiency into account). We define the attack’s success rate as the fraction of its output that is

30

correct; that is, the number of keywords in its output sequence (assuming it outputs a sequence)
that are indeed in the client sequence over the size of the sequence. We ran the attack for high-
and low-selectivity keywords, with λ ranging from 1 to 6 and found that when λ ≥ 4 the attack
stopped working. More precisely, in the case of low-selectivity keywords its success rate was 0 and
in the case of high-selectivity keywords it was 0.02. Figure 11 describes these results in detail.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

R
e

c
o

v
e

ry
 r

a
te

Query Sequence Length

high selectivity
low selectivity

Figure 11: PBS brute-force attack.

Note that the success rate of the brute-force attack does not capture partial knowledge since it
only accounts for the case where the attack finds a single “matching” sequence. For example, the
success rate could be 0 even though the attack found just 2 matching sequences. To address this,
we ran an additional experiment that computes the number of matching sequences found by the
attack. The results are described in Figure 12 which shows that the average number of matches
grows exponentially as a function of the sequence length (this holds independently of the selectivity
of the keywords in the sequence). For example, for λ = 5, there are 385 matching sequences even
when the keyword space space is as small as 100.8. Notice that increasing the number of keywords
will significantly increase the number of matches.

Volumetric attacks. Recently, Kamara and Moataz [44] proposed the first volume-hiding en-
crypted multi-maps that do not rely on náıve padding. The two constructions, VLH and AVLH,
achieve different trade-offs between storage efficiency, query efficiency and lossiness and can be used
to protect against volumetric attacks. We refer the reader to Appendix A.

Another approach to protecting against volumetric attacks is to use padding techniques. Naive
padding (adding dummy values to ensure the volume of every query response is of the same size)
will protect against volumetric attacks but incurs a large storage overhead. More efficient padding
techniques were proposed by Bost and Fouque [12]. While these techniques seem to make attacks
harder, it is not clear if they can completely mitigate them.

8For this experiment we had to reduce the size of the keyword space from 500 to 100 keywords, because the former
results in an extremely large number of sequences to check, i.e.,

(
500
6

)
' 2 · 1013

31

 1

 4

 16

 64

 256

 1024

 4096

 16384

1 2 3 4 5 6

N
u

m
b

e
r

o
f

M
a

tc
h

e
s

Query Sequence Length

High selectivity
Low selectivity

Figure 12: Number of matches in PBS brute-force attack.

Acknowledgment. We would like to thank the authors of [13] for answering our questions about
the Count attack, for sharing the code of the Count attack with us, and for useful feedback on this
work.

References

[1] Apache lucene. http://lucene.apache.org, 1999.

[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving encryption for numeric data.
In ACM SIGMOD International Conference on Management of Data, pages 563–574, 2004.

[3] Ghous Amjad, Seny Kamara, and Tarik Moataz. Breach-resistant structured encryption. Pro-
ceedings on Privacy Enhancing Technologies, 2019(1):245–265, 2019.

[4] G. Asharov, M. Naor, G. Segev, and I. Shahaf. Searchable symmetric encryption: Optimal
locality in linear space via two-dimensional balanced allocations. In ACM Symposium on
Theory of Computing (STOC ’16), STOC ’16, pages 1101–1114, New York, NY, USA, 2016.
ACM.

[5] Gilad Asharov, TH Hubert Chan, Kartik Nayak, Rafael Pass, Ling Ren, and Elaine Shi.
Oblivious computation with data locality. ePrint IACR, 2017.

[6] Jean-Philippe Aumasson. Cryptanalysis vs. reality. In Black Hat (Abu Dhabi), 2011.

[7] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable encryption.
In A. Menezes, editor, Advances in Cryptology – CRYPTO ’07, Lecture Notes in Computer
Science, pages 535–552. Springer, 2007.

[8] A. Boldyreva, N. Chenette, Y. Lee, and A. O’neill. Order-preserving symmetric encryption.
In Advances in Cryptology - EUROCRYPT 2009, pages 224–241, 2009.

32

http://lucene.apache.org

[9] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges.
In Theory of Cryptography Conference (TCC ’11), volume 6597 of Lecture Notes in Computer
Science, pages 253–273. Springer, 2011.

[10] R. Bost. Sophos - forward secure searchable encryption. In ACM Conference on Computer
and Communications Security (CCS ’16), 20016.

[11] R. Bost, B. Minaud, and O. Ohrimenko. Forward and backward private searchable encryption
from constrained cryptographic primitives. In ACM Conference on Computer and Communi-
cations Security (CCS ’17), 2017.

[12] Raphael Bost and Pierre-Alain Fouque. Thwarting leakage abuse attacks against searchable
encryption – a formal approach and applicaitons to database padding. Technical Report
2017/1060, IACR Cryptology ePrint Archive, 2017.

[13] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-abuse attacks against searchable
encryption. In ACM Conference on Communications and Computer Security (CCS ’15), pages
668–679. ACM, 2015.

[14] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Highly-scalable search-
able symmetric encryption with support for boolean queries. In Advances in Cryptology -
CRYPTO ’13. Springer, 2013.

[15] D. Cash and S. Tessaro. The locality of searchable symmetric encryption. In Advances in
Cryptology - EUROCRYPT 2014, 2014.

[16] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse attacks against
searchable encryption. IACR Cryptology ePrint Archive, 2016:718, 2016.

[17] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel Rosu,
and Michael Steiner. Dynamic searchable encryption in very-large databases: Data structures
and implementation. In Network and Distributed System Security Symposium (NDSS ’14),
2014.

[18] M. Chase and S. Kamara. Structured encryption and controlled disclosure. In Advances in
Cryptology - ASIACRYPT ’10, volume 6477 of Lecture Notes in Computer Science, pages
577–594. Springer, 2010.

[19] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption:
Improved definitions and efficient constructions. In ACM Conference on Computer and Com-
munications Security (CCS ’06), pages 79–88. ACM, 2006.

[20] Jonathan L Dautrich Jr, Emil Stefanov, and Elaine Shi. Burst oram: Minimizing oram response
times for bursty access patterns. In USENIX Security Symposium, pages 749–764, 2014.

[21] I. Demertzis and C. Papamanthou. Fast searchable encryption with tunable locality. In ACM
International Conference on Management of Data (SIGMOD ’17), SIGMOD ’17, pages 1053–
1067, New York, NY, USA, 2017. ACM.

33

[22] F. Betül Durak, Thomas M. DuBuisson, and David Cash. What else is revealed by order-
revealing encryption? In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, An-
drew C. Myers, and Shai Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, October 24-28, 2016, pages
1155–1166. ACM, 2016.

[23] Mohammad Etemad, Alptekin Küpçü, Charalampos Papamanthou, and David Evans. Effi-
cient dynamic searchable encryption with forward privacy. Proceedings on Privacy Enhancing
Technologies, 2018(1):5–20, 2018.

[24] Ben A. Fisch, Binh Vo, Fernando Krell, Abishek Kumarasubramanian, Vladimir Kolesnikov,
Tal Malkin, and Steven M. Bellovin. Malicious-client security in blind seer: A scalable private
DBMS. In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA,
May 17-21, 2015, pages 395–410. IEEE Computer Society, 2015.

[25] Christopher W Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, and Srinivas Devadas.
Freecursive oram:[nearly] free recursion and integrity verification for position-based oblivious
ram. In ACM SIGARCH Computer Architecture News, volume 43, pages 103–116. ACM, 2015.

[26] Christopher W Fletcher, Ling Ren, Albert Kwon, Marten Van Dijk, Emil Stefanov, Dimitrios
Serpanos, and Srinivas Devadas. A low-latency, low-area hardware oblivious ram controller.
In Field-Programmable Custom Computing Machines (FCCM), 2015 IEEE 23rd Annual In-
ternational Symposium on, pages 215–222. IEEE, 2015.

[27] S. Garg, P. Mohassel, and C. Papamanthou. TWORAM: efficient oblivious RAM in two rounds
with applications to searchable encryption. In Advances in Cryptology - CRYPTO 2016, pages
563–592, 2016.

[28] C. Gentry. Fully homomorphic encryption using ideal lattices. In ACM Symposium on Theory
of Computing (STOC ’09), pages 169–178. ACM Press, 2009.

[29] Craig Gentry, Shai Halevi, Charanjit Jutla, and Mariana Raykova. Private database access
with he-over-oram architecture. In International Conference on Applied Cryptography and
Network Security, pages 172–191. Springer, 2015.

[30] E-J. Goh. Secure indexes. Technical Report 2003/216, IACR ePrint Cryptography Archive,
2003. See http://eprint.iacr.org/2003/216.

[31] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs. Jour-
nal of the ACM, 43(3):431–473, 1996.

[32] P. Grubbs, T. Ristenpart, and V. Shmatikov. Why your encrypted database is not secure. In
Workshop on Hot Topics in Operating Systems (HotOS ’17), pages 162–168, New York, NY,
USA, 2017. ACM.

[33] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. Pump up the
volume: Practical database reconstruction from volume leakage on range queries. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pages
315–331. ACM, 2018.

34

http://eprint.iacr.org/2003/216

[34] Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler, Muhammad Naveed, and Thomas Ris-
tenpart. Leakage-abuse attacks against order-revealing encryption. In 2017 IEEE Symposium
on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pages 655–672.
IEEE Computer Society, 2017.

[35] Ariel Hamlin, Abhi Shelat, Mor Weiss, and Daniel Wichs. Multi-key searchable encryption,
revisited. In Public-Key Cryptography - PKC 2018 - 21st IACR International Conference on
Practice and Theory of Public-Key Cryptography, Rio de Janeiro, Brazil, March 25-29, 2018,
Proceedings, Part I, pages 95–124, 2018.

[36] Warren He, Devdatta Akhawe, Sumeet Jain, Elaine Shi, and Dawn Song. Shadowcrypt: En-
crypted web applications for everyone. In ACM Conference on Computer and Communications
Security (CCS ’14), 2014.

[37] Thang Hoang, Attila Altay Yavuz, and Jorge Guajardo. Practical and secure dynamic search-
able encryption via oblivious access on distributed data structure. In Proceedings of the 32nd
Annual Conference on Computer Security Applications, pages 302–313. ACM, 2016.

[38] M. Saiful Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on searchable
encryption: Ramification, attack and mitigation. In Network and Distributed System Security
Symposium (NDSS ’12), 2012.

[39] S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Outsourced symmetric private
information retrieval. In ACM Conference on Computer and Communications Security (CCS
’13), pages 875–888, 2013.

[40] S. Kamara and T. Moataz. Boolean searchable symmetric encryption with worst-case sub-
linear complexity. In Advances in Cryptology - EUROCRYPT ’17, 2017.

[41] S. Kamara and C. Papamanthou. Parallel and dynamic searchable symmetric encryption. In
Financial Cryptography and Data Security (FC ’13), 2013.

[42] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable symmetric encryption. In
ACM Conference on Computer and Communications Security (CCS ’12). ACM Press, 2012.

[43] Seny Kamara and Tarik Moataz. SQL on structurally-encrypted databases. In Advances in
Cryptology - ASIACRYPT 2018 - 24th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Brisbane, QLD, Australia, December 2-6, 2018,
Proceedings, Part I, pages 149–180, 2018.

[44] Seny Kamara and Tarik Moataz. Encrypted multi-maps with computationally-secure leakage.
In EUROCRYPT ’19, 2019.

[45] Seny Kamara, Tarik Moataz, and Olya Ohrimenko. Structured encryption and leakae suppres-
sion. In Advances in Cryptology - CRYPTO ’18, 2018.

[46] G. Kellaris, G. Kollios, K. Nissim, and A. O’ Neill. Generic attacks on secure outsourced
databases. In ACM Conference on Computer and Communications Security (CCS ’16), 2016.

35

[47] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in) security of hash-based oblivious ram
and a new balancing scheme. In ACM-SIAM Symposium on Discrete Algorithms (SODA ’12),
pages 143–156, 2012.

[48] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. Improved reconstruction
attacks on encrypted data using range query leakage. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 297–314. IEEE, 2018.

[49] Billy Lau, Simon Chung, Chengyu Song, Yeongjin Jang, Wenke Lee, and Alexandra Boldyreva.
Mimesis aegis: A mimicry privacy shield–a system’s approach to data privacy on public cloud.
In USENIX Security Symposium (USENIX Security 14), pages 33–48, 2014.

[50] K. Lewi and D. Wu. Order-revealing encryption: New constructions, applications, and lower
bounds. In ACM Conference on Computer and Communications Security (CCS ’16), 2016.

[51] Jacob R Lorch, James W Mickens, Bryan Parno, Mariana Raykova, and Joshua Schiffman.
Toward practical private access to data centers via parallel oram. IACR Cryptology ePrint
Archive, 2012:133, 2012.

[52] Jacob R Lorch, Bryan Parno, James W Mickens, Mariana Raykova, and Joshua Schiffman.
Shroud: ensuring private access to large-scale data in the data center. In FAST, volume 2013,
pages 199–213, 2013.

[53] Matteo Maffei, Giulio Malavolta, Manuel Reinert, and Dominique Schröder. Privacy and access
control for outsourced personal records. In Security and Privacy (SP), 2015 IEEE Symposium
on, pages 341–358. IEEE, 2015.

[54] X. Meng, S. Kamara, K. Nissim, and G. Kollios. Grecs: Graph encryption for approximate
shortest distance queries. In ACM Conference on Computer and Communications Security
(CCS 15), 2015.

[55] Ian Miers and Payman Mohassel. IO-DSSE: scaling dynamic searchable encryption to millions
of indexes by improving locality. In 24th Annual Network and Distributed System Security
Symposium, NDSS 2017, San Diego, California, USA, February 26 - March 1, 2017. The
Internet Society, 2017.

[56] M. Naveed, S. Kamara, and C. V. Wright. Inference attacks on property-preserving encrypted
databases. In ACM Conference on Computer and Communications Security (CCS), CCS ’15,
pages 644–655. ACM, 2015.

[57] NIST. Trec 2007 public corpus. https://plg.uwaterloo.ca/~gvcormac/treccorpus07/,
2018.

[58] Olga Ohrimenko, Michael T Goodrich, Roberto Tamassia, and Eli Upfal. The melbourne
shuffle: Improving oblivious storage in the cloud. In International Colloquium on Automata,
Languages, and Programming, pages 556–567. Springer, 2014.

[59] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S.-G. Choi, W. George, A. Keromytis,
and S. Bellovin. Blind seer: A scalable private dbms. In Security and Privacy (SP), 2014
IEEE Symposium on, pages 359–374. IEEE, 2014.

36

https://plg.uwaterloo.ca/~gvcormac/treccorpus07/

[60] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Symmetric searchable encryption with shar-
ing and unsharing. IACR Cryptology ePrint Archive, 2017:973, 2017.

[61] Martin Porter. Stop word - snowball. http://snowball.tartarus.org/, 2018.

[62] CALO Project. Enron email dataset. https://www.cs.cmu.edu/~enron, 2018.

[63] Ling Ren, Christopher W Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten Van Dijk,
and Srinivas Devadas. Constants count: Practical improvements to oblivious ram. In USENIX
Security Symposium, pages 415–430, 2015.

[64] Ling Ren, Christopher W Fletcher, Xiangyao Yu, Marten Van Dijk, and Srinivas Devadas.
Integrity verification for path oblivious-ram. In High Performance Extreme Computing Con-
ference (HPEC), 2013 IEEE, pages 1–6. IEEE, 2013.

[65] Daniel S Roche, Adam Aviv, and Seung Geol Choi. A practical oblivious map data structure
with secure deletion and history independence. In Security and Privacy (SP), 2016 IEEE
Symposium on, pages 178–197. IEEE, 2016.

[66] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Lin, and Stefano Tessaro. Taostore:
Overcoming asynchronicity in oblivious data storage. In Security and Privacy (SP), 2016
IEEE Symposium on, pages 198–217. IEEE, 2016.

[67] E. Shi, T.-H. Chan, E. Stefanov, and M. Li. Oblivious ram with o((logn)¡sup¿3¡/sup¿) worst-
case cost. In Advances in Cryptology - ASIACRYPT ’11, pages 197–214. Springer-Verlag,
2011.

[68] D. Song, D. Wagner, and A. Perrig. Practical techniques for searching on encrypted data. In
IEEE Symposium on Research in Security and Privacy, pages 44–55. IEEE Computer Society,
2000.

[69] E. Stefanov, C. Papamanthou, and E. Shi. Practical dynamic searchable encryption with small
leakage. In Network and Distributed System Security Symposium (NDSS ’14), 2014.

[70] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas. Path oram: An
extremely simple oblivious ram protocol. In ACM Conference on Computer and Communica-
tions Security (CCS ’13), 2013.

[71] Emil Stefanov and Elaine Shi. Multi-cloud oblivious storage. In Ahmad-Reza Sadeghi, Vir-
gil D. Gligor, and Moti Yung, editors, 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages 247–258.
ACM, 2013.

[72] Emil Stefanov and Elaine Shi. Oblivistore: High performance oblivious distributed cloud data
store. In NDSS, 2013.

[73] Xiao Shaun Wang, Kartik Nayak, Chang Liu, TH Chan, Elaine Shi, Emil Stefanov, and Yan
Huang. Oblivious data structures. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 215–226. ACM, 2014.

[74] Y. Zhang, J. Katz, and C. Papamanthou. All your queries are belong to us: The power of
file-injection attacks on searchable encryption. In USENIX Security Symposium, 2016.

37

http://snowball.tartarus.org/
https://www.cs.cmu.edu/~enron

A Overview of ESA Constructions

We recall some common ESA constructions based on both STE and ORAM.

Baseline (BSL). Let Σmm = (Setup,Get) be a response-revealing multi-map encryption scheme
and SKE = (Gen,Enc,Dec) be a symmetric-key encryption scheme. Consider the ESA scheme
BSL = (Setup,Search) where each algorithm works as follows:

• BSL.Setup(1k,D): it builds a multi-map MM that maps each keyword w ∈ W to the tu-
ple D(w). It then computes (K1,EMM) ← Σmm.Setup(1k,MM) and, for all i ∈ [n], cti ←
Enc(K2,Di), where K2 ← SKE.Gen(1k). It outputs (K,ED), where K = (K1,K2) and
ED = (EMM, ct1, . . . , ctn).

• BSL.Search
(
K,w; ED

)
: the parties execute (⊥; I) ← Σmm.Get(K1, w;EMM) after which the

server returns (cti)i∈I to the client. For all i ∈ I, the client computes Di := SKE.Dec(K2, cti).

If the multi-map encryption scheme Σmm is instantiated with any of the standard constructions
[19, 18, 17, 10, 11, 3], the SSE scheme will have leakage profile

ΛBSL =
(
?,
(
qeq, rid, vol

))
.

Its storage complexity will be

O

(∑
w∈W

#D(w) +

n∑
i=1

|Di|w
)
,

and its search and communication complexity will be

O

(
#D(w) +

∑
D∈D(w)

|D|w
)
,

which is optimal.

Opaque (OPQ). As far as we know, the construction we now describe has not appeared in prior
work. It has a relatively low leakage profile and optimal search and communication complexity at
the cost of additional storage. Let Σmm = (Setup,Get) be a response-hiding multi-map encryp-
tion scheme and let SKE = (Gen,Enc,Dec) be a symmetric-key encryption scheme. Consider the
structured ESA scheme OPQ = (Setup, Search where each algorithm works as follows:

• OPQ.Setup(1k,D): it builds a multi-map MM that maps each keyword w ∈ W to a tuple
t = (t1, · · · , ta/B) composed of B-sized blocks, where ti is the ith block of the concatenation of
the documents (not identifiers) that contain w, and where

a =
∑

D̃∈D(w)

|D|w.

The algorithm then computes (K,EMM) ← Σmm.Setup(1k,MM) and outputs (K,ED) where
ED = EMM.

38

• OPQ.Search
(
K,w; ED

)
: the parties execute

(t;⊥)← Σmm.Get(K,w;EMM)

and the client parses t as (D)D∈D(w).

If the multi-map encryption scheme Σmm is instantiated with a standard response-hiding en-
crypted multi-map [19, 18, 17, 10, 11]9 the ESA will have leakage profile

ΛOPQ = (LS,LQ) =
(
?,
(
qeq, tvol

))
.

Its storage complexity will be

O

(∑
w∈W

∑
D∈D(w)

|D|w
)
,

and the search and communication complexity will be

O

(
#D(w) +

∑
D∈D(w)

|D|w
)
,

which is optimal.

Semi-ORAM (SMI). Let ORAM = (Setup,Read) be an ORAM scheme and SKE = (Gen,Enc,Dec)
be a symmetric-key encryption scheme. Consider the scheme SMI = (Setup,Search) where each al-
gorithm works as follows:

• SMI.Setup(1k,D): it builds a multi-map MM that maps each keyword w ∈ W to the tuple
D(w). It then computes (K1,OMM) ← ORAM.Setup(1k,MM) and, for all i ∈ [n], cti ←
Enc(K2,Di), where K2 ← SKE.Gen(1k). It outputs (K,ED), where K = (K1,K2) and OD =
(OMM, ct1, . . . , ctn).

• SMI.Search
(
K,w; OD

)
: the client uses ORAM to simulate an execution of Get(MM, w); that is,

it runs Get(MM, w) locally but replaces every read operation to location i with an execution
of ORAM.Read(K1, i;OMM). At the end of this simulation, the client holds a set of indices I
which it sends to the server. The server returns (cti)i∈I which the client decrypts.

If the ORAM scheme is instantiated with any standard construction [31, 47, 70], the search
scheme will have leakage profile

ΛSMI =
(
?,
(
rlen, rid, vol

))
.

Using Path ORAM [70], the storage complexity is

O

(∑
w∈W

#D(w) +

n∑
i=1

|Di|w
)
,

and the search and communication complexity are

O

(
#D(w)

B
· log2

(∑
w∈W

#D(w)

B

)
+

∑
D∈D(w)

|D|w
)
,

where B is the block size in bits.
9We note that while most of these constructions are described as response-revealing constructions it is trivial to

convert them to response-hiding schemes.

39

Full ORAM (FLL). Let ORAM = (Setup,Read) be an ORAM scheme and consider the scheme
FLL = (Setup, Search) where each algorithm works as follows:

• FLL.Setup(1k,D): it builds an array RAM that stores all the documents in D. It then builds
a multi-map MM that maps each keyword w ∈ W to the locations of the blocks in RAM
that store the documents in D(w). It then computes (K1,OMM) ← ORAM.Setup(1k,MM)
and (K2,ORAM) ← ORAM.Setup(1k,RAM). It outputs (K,OD), where K = (K1,K2) and
OD = (OMM,ORAM).

• FLL.Search
(
K,w; OD

)
: the client uses ORAM to simulate an execution of Get(MM, w). At the

end of this simulation, the client holds a set of indices I. It then uses ORAM again to simulate,
for all i ∈ I, an execution of Read(RAM, i) to recover the documents.

If the ORAM scheme is instantiated with any standard construction [31, 47, 70], the search
scheme will have leakage profile

ΛFLL =
(
?,
(
rlen, tvol

))
.

The storage complexity is

O

(∑
w∈W

#D(w) +
∑

D∈D(w)

|D|w
)
,

and the search and communication complexity are

O

(
#D(w)

B1
· log2

(∑
w∈W

#D(w)

B1

)
+

∑
i∈D(w)

|Di|w
B2

· log2
(n∑
i=1

|Di|w
B2

))

where B1 and B2 are the block sizes in bits of the first and second ORAM, respectively. Note that
this construction has leakage profile ΛFLL only if the client retrieves all of the matching documents
from the second ORAM at once. If, on the other hand, the client retrieves them one by one then
it will have leakage profile

(
?,
(
rlen, vol

))
.

Additional ORAM-based constructions. We note that there are alternative ORAM-based
designs in addition to the ones we described above. One could, for example, merge the two ORAMs
used in the full ORAM simulation into a single ORAM with the same block size. This would have
leakage pattern

(
?, tvol

)
.

The Piggyback scheme (PBS). PBS is an STE scheme recently introduced in [45] that par-
tially hides the volume pattern. It comes in two variants. The first reveals only the sequence
volume pattern (i.e., the sum of the volume associated to a query sequence) on non-repeating
query sequences. The second variant reveals nothing (beyond a public parameter independent of
the volume) on non-repeating query sequences. At a high level, the scheme leverages a new trade-off
in STE design; specifically, it trades latency for an improved leakage profile. At a high level, the
scheme processes the input data structure such that the query responses are divided into smaller
chunks of equal size. These chunks are then stored and encrypted so that, on each query, the client
only retrieves a fixed number of chunks. If the whole response is not retrieved at that moment,

40

then the query is added to a queue and the remaining chunks are retrieved on the next query. The
responses can therefore be delayed but the authors show that the delay can be minimal for standard
query distributions.

Volume-hiding constructions. VLH and AVLH are volume-hiding encrypted multi-map con-
structions recently introduced by Kamara and Moataz [44]. These schemes are the first volume-
hiding STE constructions that do not rely on näıve padding. VLH makes use of a pseudo-random
function F and an optimal multi-map encryption scheme. It is parameterized with a public param-
eter λ ≥ 1 that affects correctness. Given a multi-map MM, the scheme determines a new response
length for each label ` in MM which is computed by evaluating F on `’s original response length
and adding λ. If the new response length is larger than the original, then `’s tuple is padded. If
the new response length is smaller than the original, then `’s tuple is truncated. AVLH is a more
advanced construction based on a new design paradigm based on bi-partite graphs. More precisely,
AVLH transforms its input multi-map as a bi-partite graph where top vertices correspond to the
multi-map’s labels and the bottom vertices correspond to bins. Each label’s tuple values are then
stored in its associated bin in a specific way. The bins are then padded to have the same size. At
query time, the user always retrieves the same number of bins. AVLH does not improve on the
query complexity of encrypted multi-map schemes but does improve on the storage efficiency of
naive padding. In [44] it is then shown that the storage can be further reduced by relying on the
conjectured hardness of the planted densest subgraph problem.

B Count v.1 with δ < 1

The Count v.1 attack was shown in [13] to have high recovery rate when δ = 1; that is, when the
adversary has full knowledge of the data. For δ < 1, however, the attack seems to only work if
δ ≤ .8. We found that the experimental results for δ < 1 that are reported in [13], however, are
for an unpublished variant of the count attack that relies on knowledge of client queries. To better
understand how known queries impact the recovery rate of Count v.1, we evaluated the attack with
a varying fraction of known queries. The results are shown in Figure 13.10 When the adversary
knows 5% of the queries, recovery rates are similar to the ones reported in [13]. When the adversary
knows 2% known queries, however, the attack ceases to work even with δ = .9.

C Keyword Selectivity

Our empirical evaluation (see Section 5) clearly shows that the selectivity of the queries is by far
the most important factor on the recovery rate of all the attacks. Understanding the selectivity of
keywords in our dataset is therefore important. In Figures 14 (a) and (b) we plot the selectivity of
1000 and 10, 000 most selective keywords, respectively, in our datasets after stemming and removing
stop words. We can see in these Figures that keyword selectivity in Enron is power law distributed.
In other words, only a few keywords have high and unique selectivities whereas the overwhelming
majority of keywords have low and common selectivities (at most 3).

10This experiment was performed using the implementation and dataset of [13]. We thank the authors for promptly
sharing their implementation and data with us.

41

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

R
e

c
o

v
e

ry
 r

a
te

Partial Knowledge in %

2% known queries
5% known queries

Figure 13: Count v.1 with varying fractions of known queries (on 150 queries out of a keywords space of

size 500).

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 200 400 600 800 1000

S
e
le

c
ti
v
it
y

Keywords rank

SU dataset
M-MU dataset
L-MU dataset

(a) Distribution of the most selective 1000 key-
words.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 2000 4000 6000 8000 10000

S
e
le

c
ti
v
it
y

Keywords rank

SU dataset
M-MU dataset
L-MU dataset

(b) Distribution of the most selective 10, 000 key-
words.

Figure 14: Keyword selectivity.

D Quantifying the Offset for Injection

The total number of files injected by both the Decoding and Binary Search attacks depend on an
offset γ which is determined by characteristics of the data collection. Here, we study the values
of these offsets on three different collections: SU, S-MU and M-MU as defined in Section 5. Our
results are described in Figure 15. We found that querying on high- or low-selectivity keywords did
not have any impact on the Binary Search attack. However, as can be seen from its description,
the size of the keyword space did have an impact. For the Decoding attack, the amount of injected
data did depend on the selectivity of the queries: the amount for high-selectivity queries was about
twice as much as for low-selectivity queries. This held for both the SU and S-MU datasets. We
believe that this is inherent to the way the offset is computed. In fact, on high-selectivity queries,
we noticed that the total volumes tend to have a higher gap between them. This is not the case
for low-selectivity queries.

42

 1

 2

 4

 8

 16

 32

 64

 128

M-SU S-MU M-MU

S
iz

e
 i
n
 K

B
y
te

s

Datasets

Decoding w/ low selectivity
Binary w/ low selectivity

Decoding w/ high selectivity
Binary w/ high selectivity

(a) Amount of injected data to recover one key-
word.

 1

 4

 16

 64

 256

 1024

 4096

 16384

M-SU S-MU M-MU

S
iz

e
 i
n
 M

B
y
te

s

Datasets

Decoding w/ low selectivity
Decoding w/ high selectivity

(b) Amount of injected data to recover 500 key-
words.

Figure 15: Amount of injected data for both the Decoding and Binary Search attacks (with #W = 500).

43

	Introduction
	Theory vs. Practice of Known-Data Attacks
	Our Attacks
	Countermeasures
	Related Work

	Preliminaries
	Volumetric Known-Data Attacks
	Volume Analysis
	Selective Volume Analysis
	Subgraph Attacks

	Volumetric Injection Attacks
	The Decoding Attack
	The Binary Search Attack

	Empirical Evaluation
	Detailed Results
	C1: Single Keyword Queries
	C2: Size of the Query Space
	C3: Varying the Datasets

	Takeaways
	Countermeasures
	Overview of ESA Constructions
	Count v.1 with < 1
	Keyword Selectivity
	Quantifying the Offset for Injection

