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Abstract

The main result of this note is a severe flaw in the description of the zk-SNARK in [BCTV14].
The flaw stems from including redundant elements in the CRS, as compared to that of the
original Pinocchio protocol [PHGR16], which are vital not to expose. The flaw enables creating
a proof of knowledge for any public input given a valid proof for some public input. We also
provide a proof of security for the [BCTV14] zk-SNARK in the generic group model, when these
elements are excluded from the CRS, provided a certain linear algebraic condition is satisfied
by the QAP polynomials.

1 Introduction

Parno et. al [PHGR16] presented a zk-SNARK construction based on the breakthrough work of
[GGPR13] that they called Pinocchio. Ben-Sasson et. al [BCTV14] presented a variant of Pinocchio
with the advantage of shorter verification time and verification key length, at the expense of an
arguably negligible increase in prover running time. However, [BCTV14] did not present a security
proof for this variant, and in fact Parno [Par15] found an attack against the [BCTV14] SNARK
and suggested to mitigate it by imposing a certain linear independence condition on some of the
public input polynomials – which [BCTV14] did in a revised version of the paper and corresponding
implementation [lib]. In this note, we show a more severe attack on [BCTV14] that takes advantage
of redundant elements in the proving key that should have been omitted.

1.1 Impacted work

The first proof of security for [BCTV14] was given in [BGG17]. However, the proof has an error
and in fact we discovered the attack while reviewing it. Other papers that leverage the [BCTV14]
construction inherit the flaw also; the ones we found are [BBFR15, Fuc18].

The (libsnark [lib]) implementation of the [BCTV14] prover distributed alongside the paper
expects that the elements of concern are removed from the CRS, apparently intended as one of
several optimizations that deviated from the construction as described in the paper. (The elements
are not used by the prover.) As a result, parameters constructed directly by libsnark are not
vulnerable to this specific attack.

However, the multi-party computation of [BGG17] follows the construction described in [BCTV14]
closely and so the elements are produced during the protocol’s execution, though they do not ap-
pear in the final parameters in order to be compatible with the libsnark prover. Unfortunately,
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the transcript of the protocol’s execution must be distributed so that the resulting parameters can
be verified, and so the elements are revealed.

We also discovered an independent implementation of [BCTV14] which appears to inherit the
flaw [sna], as unlike libsnark its key generation and proving routines match the paper closely.

Lastly, we emphasize that the mitigation of Parno [Par15] for the attack presented there, does
not mitigate the attack presented here.

1.2 Notation

We will be working over bilinear groups G1, G2, and Gt each of prime order p, together with respec-
tive generators g1, g2 and gT . These groups are equipped with a non-degenerate bilinear pairing
e : G1 × G2 → Gt, with e(g1, g2) = gT . We write G1 and G2 additively, and Gt multiplicatively.
We denote by F the field of the same order p. For a ∈ F, we denote [a]1 := a · g1, [a]2 := a · g2.

1.3 Description of [BCTV14] SNARK

We recall the zk-SNARK of [BCTV14] as described in that paper. We assume familiarity with
quadratic arithmetic programs. See e.g., Section 2.3 in [Gro16] for definitions. We use similar
notation to [BCTV14], denoting by m the size of the QAP, d the degree and n the number of

public inputs. More specifically, our QAP has the form
{
{Ai(X), Bi(X), Ci(X)}i∈[0..m] , Z(X)

}
where Ai, Bi, Ci ∈ F[X] have degree at most1 d, and Z ∈ F[X] has degree exactly d.

We proceed to describe the proving system of [BCTV14]. We assume we are already given a
description of the groups G1,G2,Gt, the pairing e, and uniformly chosen generators g1 ∈ G1, g2 ∈
G2, and these are all public.

BCTV key generation:

1. Sample random τ, ρA, ρB, αA, αB, αC , γ, β ∈ F∗

2. For i ∈ [0..d] output pkH,i :=
[
τ i
]
1

3. For i ∈ [0..m] output

(a) pkA,i := [ρAAi(τ)]1

(b) pk′A,i := [αAρAAi(τ)]1,

(c) pkB,i := [ρBBi(τ)]2,

(d) pk′B,i := [αBρBBi(τ)]1,

(e) pkC,i := [ρAρBCi(τ)]1,

(f) pk′C,i := [αCρAρBCi(τ)]1

(g) pkK,i := [β(ρAAi(τ) + ρBBi(τ) + ρAρBCi(τ))]1

4. Output the additional verification key elements ([αA]2 , [αB]1 , [αC ]2 , [γ]2 , [βγ]1 , [βγ]2 , [ρAρBZ(τ)]2)
1[BCTV14] define Ai, Bi, Ci to be of degree strictly less than d, however since Z needs to be later added to

{Ai},{Bi},{Ci} for zero-knowledge, it is more convenient for us to allow degree at most d and assume Z is already
included. Note that in terms of the set of satisfiable instances x ∈ Fn every degree d QAP is equivalent to one where
{Ai, Bi, Ci} have degree smaller than d obtained by taking the original polynomials mod Z.
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BCTV prover:
The prover P has in his hand a QAP solution (x0 = 1, x1, . . . , xm) that coincides with the public

input x = (x1, . . . , xn) and satisfies the following: If we define A :=
∑m

i=0 xi ·Ai, B :=
∑m

i=0 xi ·Bi,
and C :=

∑m
i=0 xi ·Ci; then the polynomial P := A ·B−C will be divisble by the target polynomial

Z, and P can compute the polynomial H of degree at most d with P = H · Z. Let Amid :=
A−

∑n
i=0 xi ·Ai.

Given the proving key, P computes as linear combinations of the proving key elements

1. πA := [ρAAmid(τ)]1, π
′
A := [αAρAAmid(τ)]1.

2. πB := [ρBB(τ)]2, π
′
B := [αBρBB(τ)]1.

3. πC := [ρAρBC(τ)]1, π
′
C := [αCρAρBC(τ)]1.

4. πK := [β(ρAA(τ) + ρBB(τ) + ρAρBC(τ))]1.

5. πH := [H(τ)]1.

and outputs π = (πA, πB, πC , π
′
A, π

′
B, π

′
C , πH , πK),

BCTV verifier:
Denote the “public input component”

PI(x) := pkA,0 +
n∑

i=1

xipkA,i =

[
ρAA0(τ) +

n∑
i=1

xiρAAi(τ)

]
1

The verifier, using pairings and the verification key, checks the following.

1. e(π′A, g2) = e(πA, [αA]2).

2. e(π′B, g2) = e([αB]1 , πB).

3. e(π′C , g2) = e(πC , [αC ]2).

4. e(πK , [γ]2) = e(PI(x) + πA + πC , [βγ]2) · e([βγ]1 , πB).

5. e(PI(x) + πA, πB) = e(πC , g2) · e(πH , [Z(τ)ρAρB]2).

2 Attack Description

Note that the elements
{
pk′A,i

}
i∈[0..n] are not used at all by the verifier and honest prover, and thus

could have been omitted from the key. We show that these elements allow a malicious prover to
replace the public input arbitrarily when starting from a valid proof. Loosely speaking, we do this
by adding a factor to πA that “switches” the public input the proof is arguing about. The first
verifier check – the “knowledge check” for πA – should catch this, but the redundant elements allow
the malicious prover to add the analogous factor to π′A and pass the check. Details follow.

Suppose we are given a valid proof π = (πA, πB, πC , π
′
A, π

′
B, π

′
C , πH , πK) for a public input

x = (x1, . . . , xn) ∈ Fn. Choose any x′ = (x′1, . . . , x
′
n) ∈ Fn.
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Set

ηA := πA +
n∑

i=1

(xi − x′i)pkA,i

η′A := π′A +
n∑

i=1

(xi − x′i)pk′A,i

We claim that π∗ := (ηA, πB, πC , η
′
A, π

′
B, π

′
C , πK , πH) is a valid proof for public input x′.

The verifier checks with public input x′ and proof π∗ are

1. e(η′A, g2) = e(ηA, [αA]2).

2. e(π′B, g2) = e([αB]1 , πB).

3. e(π′C , g2) = e(πC , [αC ]2).

4. e(πK , [γ]2) = e(PI(x′) + ηA + πC , [βγ]2) · e([βγ]1 , πB).

5. e(PI(x′) + ηA, πB) = e(πC , g2) · e(πH , [Z(τ)ρAρB]2).

We show that the five equations all hold.

1. The check e(η′A, g2) = e(ηA, [αA]2); this is where the redundant elements crucially come into
play.

We have

η′A = π′A +
n∑

i=1

(xi − x′i)pk′A,i

So

e(η′A, g2) = e(π′A, g2) · e

(
n∑

i=1

(xi − x′i)pk′A,i, g2

)
Since π is a valid proof, this is:

= e(πA, [αA]2) · e

(
n∑

i=1

(xi − x′i)pk′A,i, g2

)

Using pk′A,i = αA · pkA,i for every i,

= e(πA, [αA]2) · e

(
αA ·

(
n∑

i=1

(xi − x′i)pkA,i

)
, g2

)

Using bi-linearity of the pairing:

= e(πA, [αA]2) · e

(
n∑

i=1

(xi − x′i)pkA,i, [αA]2

)

= e

(
πA +

n∑
i=1

(xi − x′i)pkA,i, [αA]2

)
= e(ηA, [αA]2).
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2. The second and third checks involve the unchanged πB, π
′
B, πC , π

′
C and thus pass since π was

valid.

3. The fourth and fifth equations are also identical in π and π∗. The only difference is that the
latter replaces the term PI(x) + πA with PI(x′) + ηA. And

PI(x)+πA = pkA,0+
n∑

i=1

xipkA,i+πA = pkA,0+
n∑

i=1

x′ipkA,i+
n∑

i=1

(xi−x′i)pkA,i+πA = PI(x′)+ηA.

3 Security Proof in the Generic Group Model

Let us denote by BCTV′ the scheme identical to the one in [BCTV14] described in Subsection 1.3,
with two modifications:

• The elements
{
pkA′,i

}
i∈[0..n] are excluded from the proving key.

• The scheme is only defined for QAPs where the polynomials {Ai} satisfy

1. The polynomials {Ai}i∈[0..n] are linearly independent (this condition already appears in
[BCTV14] at [Par15]’s suggestion).

2. SpanF

(
{Ai}i∈[0..n]

)
∩ SpanF

(
{Ai}i∈[n+1..m]

)
= {0}. 2

• We also assume, mainly as a convenience, that Z ∈ {Ci}i∈[n+1..m]. This is always the case if
we want zero-knowledge, and the BCTV construction adds Z to {Ai} , {Bi} , {Ci}.

Remark 3.1. We emphasize that the linear disjointness condition above is not just an artefact of
the proof: The attack of the previous section can be carried out also without the redundant proving

key elements, for public inputs x, x′ such that PI(x)− PI(x′) ∈ SpanF

(
{Ai}i∈[n+1..m]

)
.

We show BCTV′ is knowledge sound in the generic group model. We will use the following
simple linear algebra claim.

Claim 3.2. Fix positive integers n < m. Let v0, . . . , vm be vectors in a vector space over F such
that

1. v0, . . . , vn are linearly independent.

2. Defining V = SpanF (v0, . . . , vn) and U = SpanF (vn+1, . . . , vm), we have V ∩ U = {0}.

Suppose we are given (x0, . . . , xm), (a0, . . . , am) ∈ Fm such that
∑m

i=0 xi · vi =
∑m

i=0 ai · vi. Then
(x0, . . . , xn) = (a0, . . . , an).

Proof. Since
∑m

i=0 xi · vi =
∑m

i=0 ai · vi, we have

n∑
i=0

(xi − ai)vi =

m∑
i=n+1

(ai − xi)vi

2In conversation with Alessandro Chiesa and Madars Virza, we learned that they were aware of the necessity of
this condition, and it is satisfied by any QAP constructed in libsnark[lib]. It also already appears in [BGG17].
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The zero-intersection condition implies
∑n

i=0(xi−ai)vi = 0 and the linear independence of v0, . . . , vn
now implies xi − ai = 0 for i ∈ [0..n].

We proceed to prove knowledge soundness of BCTV′ in the generic group model. Following
[Gro16] (see also Section 2 of [BG18] for formal details, and [BCI+12] for a more general treatment
of this framework), it suffices to show knowledge soundness of BCTV′ as a Non-Interactive Linear
Proof (NILP). That is,

• The CRS elements are the field elements encoded in the SNARK CRS group elements, rather
than the group elements.

• The malicious prover must output, given only the public input x ∈ Fn, π = (πA, πB, πC , π
′
A, π

′
B, π

′
C , πH , πK)

as linear combinations of the CRS elements, such that the verifier equations hold as a poly-
nomial identity in τ, ρA, ρB, αA, αB, αC , γ, β as formal variables.

• To prove knowledge soundness, it then suffices to efficiently derive from the coefficients of
these linear combinations a QAP witness for x.

For BCTV′, the NILP CRS is now the set of field elements

1. For i ∈ [0..d], τ i.

2. For i ∈ [0..m]

(a) ρAAi(τ)

(b) ρBBi(τ)

(c) αBρBBi(τ)

(d) ρAρBCi(τ)

(e) αCρAρBCi(τ)

(f) β(ρAAi(τ) + ρBBi(τ) + ρAρBCi(τ))

3. For i ∈ [n+ 1..m], αAρAAi(τ).

4. αA, αB, αC , γ, βγ, ρaρbZ(τ).

and our verification equations are now:

1. π′A = αA · πA.

2. π′B = αB · πB.

3. π′C = αC · πC .

4. γ · πK = βγ · (PI(x) + πA + πB + πC).

5. (PI(x) + πA) · πB = πC + πH · Z(τ)ρAρB,
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where

PI(x) := ρAA0(τ) +
n∑

i=1

xi · ρAAi(τ).

Suppose now a prover has indeed output a valid proof π = (πA, πB, πC , π
′
A, π

′
B, π

′
C , πH , πK)

as linear combinations of the CRS elements, such that the verifier equations hold as polynomial
identities. We show how to derive a QAP witness for x from the coefficients of these linear
combinations. It will be convenient here to think of the proof elements as polynomials only in
ρA, ρB, αA, αB, αC , β, γ over the ring F[τ ]; i.e. think of the coefficients of these polynomials (not to
be confused with the coefficients of the linear combinations of CRS elements) as polynomials in τ .

The first equation implies that the linear combination for π′A only has non-zero coefficients for
elements with an αA component, i.e.

π′A =
m∑

i=n+1

ai · αAρAAi(τ) + a∗ · αA

for some an+1, . . . , am, a
∗ ∈ F. Which implies

πA =

m∑
i=n+1

ai · ρAAi(τ) + a∗

From the second and third checks, we can similarly conclude:

πB =

m∑
i=0

bi · ρBBi(τ) + b∗

πC =

m∑
i=0

ci · ρAρBCi(τ) + c∗

Similarly, the fourth equation tells us that πK must only use with non-zero coefficient elements

with a β factor, i.e. the elements
{
γβ, {β(ρAAi(τ) + ρBBi(τ) + ρAρBCi(τ))}i∈[0..m]

}
. Hence we

can write

πK =

m∑
i=0

ki · β(ρAAi(τ) + ρBBi(τ) + ρAρBCi(τ)) + k∗ · γβ

and therefore

PI(x) + πA + πB + πC =
m∑
i=0

ki · (ρAAi(τ) + ρBBi(τ) + ρAρBCi(τ)) + k∗ · γ. (1)

Looking at the ρA coefficient on both sides of (1), we have

n∑
i=0

xi · ρAAi(τ) +
m∑

i=n+1

ai · ρAAi(τ) =
m∑
i=0

ki · ρAAi(τ),

and so
n∑

i=0

xi ·Ai(τ) +
m∑

i=n+1

ai ·Ai(τ) =
m∑
i=0

ki ·Ai(τ).
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Invoking Claim 3.2, this implies ki = xi for i ∈ [0..n]. Since the coefficients of ρB, ρAρB must
also match, we have

m∑
i=0

bi · ρBBi(τ) =

m∑
i=0

ki · ρBBi(τ),

m∑
i=0

ci · ρAρBCi(τ) =

m∑
i=0

ki · ρAρBCi(τ)

So

PI(x) + πA =
m∑
i=0

ki · ρAAi(τ) + a∗, πB =
m∑
i=0

ki · ρBBi(τ) + b∗, πC =
m∑
i=0

ki · ρAρBCi(τ) + c∗

Now invoking the fifth equation we have

(PI(x) + πA) · πB = πC + πH · Z(τ)ρAρB. (2)

Denote by H(τ) the degree at most d polynomial which is the part of πH involving the terms{
τ i
}
i∈[0..d] (inspection shows in fact πH = H(τ), but this is not crucial for us). The ρAρB coefficient

of each side in (2), giving(
m∑
i=0

ki ·Ai(τ)

)(
m∑
i=0

ki ·Bi(τ)

)
=

m∑
i=0

ki · Ci(τ) +H(τ)Z(τ)

Since ki = xi for i ∈ [0..n], this means kn+1, . . . , km is a QAP witness for public input x.
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