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Abstract. SPAKE2 is a balanced password-authenticated key exchange (PAKE) protocol, pro-
posed by Abdalla and Pointcheval at CTRSA 2005. Due to its simplicity and efficiency, SPAKE2
is one of the balanced PAKE candidates currently under consideration for standardization by
the CFRG, together with SPEKE, CPace, and J-PAKE. In this paper, we show that SPAKE2
achieves perfect forward security in the random-oracle model under the Gap Diffie-Hellman as-
sumption. Unlike prior results, which either did not consider forward security or only proved
a weak form of it, our results guarantee the security of the derived keys even for sessions that
were created with the active involvement of the attacker, as long as the parties involved in the
protocol are not corrupted when these sessions take place. Finally, our proofs also demonstrate
that SPAKE2 is flexible with respect to the generation of its global parameters M and N . This
includes the cases where M is a uniform group element and M = N or the case where M and
N are chosen as the output of a random oracle.
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1 Introduction

Password-authenticated key exchange (PAKE) allows users to establish session keys among themselves
with the help of a short secret, known as a password, which can be drawn from a small set of possible
values. Passwords can be represented in shorter human-readable formats and distributed/stored using
a wider range of mechanisms, which are important requirements in many applications. One important
use-case is when secrets must be memorized by humans.

Since the seminal work by Bellovin and Merritt [BM92], several PAKE protocols have appeared
in the literature, achieving different levels of security (such as indistinguishability-based security or
universal composability) under a variety of assumptions.

Recently, the Crypto Forum Research Group (CFRG)4, which is an IRTF (Internet Research Task
Force) research group focused on the discussion and review of uses of cryptographic mechanisms,
started a PAKE selection process with the goal of providing recommendations for password-based

4 https://irtf.org/cfrg
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authenticated key establishment in IETF protocols. Currently, 4 candidates are under consideration by
the CRFG under the balanced PAKE category: SPEKE [Jab97,Mac01,HS14], SPAKE2 [AP05,LK19],
J-PAKE [HR10,ABM15], and CPace [HL18,HL19].

Security analyses for SPAKE2. In the original security analysis [AP05], Abdalla and Pointcheval
proved that SPAKE2 achieves implicit authentication in the indistinguishability-based model by Bel-
lare, Pointcheval, and Rogaway [BPR00]. Their security analysis, however, did not take corruption
queries into account, which are needed for proving forward security. To address this shortcoming,
Becerra, Ostrev, and Skrobot [BOS18] recently provided a proof of weak forward security for SPAKE.
Unlike perfect forward security, weak forward security only guarantees the security of sessions created
without an active intervention by the attacker as long as the involved parties remain uncorrupted
during the execution of these sessions [Kra05].

In addition to proving weak forward security in [BOS18], the authors also provide a proof of perfect
forward security for a variant of SPAKE2 which includes explicit authentication and in which one of
the flows is not encrypted with the password. The latter result, however, seems to be a particular case
of the scheme proven secure by Abdalla et al. in [ABC+06].

Our contributions. In this work, we provide further security analyses for SPAKE2 [AP05,LK19].
More precisely, we demonstrate that SPAKE2 achieves perfect forward security. Our proof of security
is based on the Gap Diffie-Hellman assumption [OP01] in the random-oracle model [BR93]. Note
that this does not contradict the impossibility result about the perfect forward security of 2-message
key-exchange protocols in in the HMQV [Kra05] paper since the SPAKE2 protocol assumes the pre-
existence of secure shared state between parties which is the password itself.

Finally, our proofs also demonstrate that SPAKE2 is flexible with respect to the generation of its
global parameters M and N . This includes the cases where M is a uniform group element and M = N
or the case where M and N are chosen as the output of a random oracle.

2 Preliminaries

Notation. We write x ← y for the action of assigning the value y to the variable x. We write
x1, . . . , xn ←$X for sampling x1, . . . , xn from a finite set X uniformly at random. If A is a probabilistic
algorithm we write y1, . . . , yn ← $A(x1, . . . , xn) for the action of running A on inputs x1, . . . , xn
with independently chosen coins, and assigning the result to y1, . . . , yn. ppt as usual abbreviates
probabilistic polynomial-time. We use notation T [x] to denote access to a dictionary/table T at index
x, and { } to denote the empty table. We abuse notation and use T to also represent the set of assigned
indices in table T .

Games. We use the code-based game-playing language [BR04]. Each game has an Initialize and
a Finalize procedure. It also has specifications of procedures to respond to an adversary’s various
queries. A game is run with an adversary A as follows. First Initialize runs and its outputs are
passed to A. Then A runs and its oracle queries are answered by the procedures of the game. When
A terminates, its output is passed to Finalize which returns the outcome of the game.

3 SPAKE2

Fig. 1 shows a SPAKE2 protocol execution between a user U and a server S.

4 Security Model

Our proof of security uses the indistinguishability-based model by Bellare, Pointcheval, and Rog-
away [BPR00] and its extension to multiple Test queries proposed by Abdalla, Fouque, and Pointcheval
(AFP) [AFP05,AFP06]. In the latter, all Test queries are answered with the same challenge bit b.



Perfect Forward Security of SPAKE2 3

Client Server

accept← F accept← F

x←$Zq y ←$Zq

X ← gx Y ← gy

X? ← X ·Mpw X ← X? /Mpw

Y ← Y ? /Npw Y ? ← Y ·Npw

K ← H(U, S,X?, Y ?, pw, Y x) K ← H(U, S,X?, Y ?, pw, Xy)

accept← T accept← T

pw ∈ P,M,N ∈ G

U,X?

S, Y ?

Fig. 1. The SPAKE2 protocol [AP05].

The security game already instantiated with SPAKE2 can be seen as G1 in Fig. 2. The name spaces
for servers S and users U are assumed to be disjoint; oracles reject queries inconsistent with these
name spaces.

In the following, we describe more precisely the state of a party instance, the notion of partnering,
and the freshness condition used in the proof.

Definition 4.1 (Instance state). The state of an instance i at party P , denoted πi
P is a tuple of

the form (e, tr,K, ac) where

– e is the secret exponent (x or y) chosen by the party in that instance
– tr is a session trace of the form (U, S,X?, Y ?)
– K is the accepted session key
– ac is a boolean flag that indicates whether the instance accepted (ac = T) or is expecting a response

(ac = F)

We will use πi
P .e, π

i
P .tr, π

i
P .K, πi

P .ac to denote the individual components of the state.

Definition 4.2 (Partnering). A server instance πi
S and a user instance πj

U are partnered iff

πi
S .ac = T ∧ πj

U .ac = T ∧ πi
S .tr = πj

U .tr

Two user instances are never partnered. Two server instances are never partnered.

This is a definition in the style of matching-conversations. Note that partnering together with cor-
rectness implies that the the associated keys are the same.

Definition 4.3 (Freshness). Instance i at party P is fresh, written Fresh(P, i) if and only if all the
following conditions hold:

1. the instance accepted;
2. the instance was not queried to Test or Reveal before;
3. At least one of the following conditions holds:

(a) The instance accepted during a query to Execute;
(b) There exists more than one partner instance;
(c) No partner instance exists and Corrupt(U, S) was not called prior to acceptance;
(d) A unique fresh partner instance exists.
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5 Assumptions

The perfect forward security of SPAKE2 is based on the difficulty of solving the Computational Diffie-
Hellman (CDH) problem by attackers that have access to a Decisional Diffie-Hellman (DDH) oracle.
This is usually known as the Gap Diffie-Hellman problem (GCDH) [OP01]. The proof is carried out
in the Random-Oracle (RO) model. Note that the CDH problem has been shown to be equivalent to
the standard discrete logarithm problem (DL) in the Algebraic and Generic group models [Los19] so,
our proof implies reductions to the DL problem in these idealized models of computation.

Our proof is structured to highlight which problem an attacker would need to solve to break the
protocol. On the one hand, we give tight reductions to well-known computational assumptions. On
the other hand, it follows sequence of hops that clarifies how the assumptions map to the generation
of SPAKE2 global parameters and runtime operation. We show that, as expected, passive behavior by
the attacker implies that it needs to solve the standard Gap CDH problem to break the established
session. Active attackers that may try to take advantage of leaked passwords must compute the CDH
of the global parameters M and N with the help of a DDH oracle. Indeed, we show that the protocol
is flexible with respect to the generation procedure, provided that the previous problem is hard to
solve. This includes, in particular, the case where M is a uniform group element and M = N .

To this end, we formalize a family of assumptions parametrized by a distribution D that outputs
a pair of elements in Zq, where q is a large prime. The assumptions are stated with respect to a group
G of order q and generator g.

Definition 5.1 (Gap Computational Diffie-Hellman (D-GCDH)). The D-GCDH assumption
states that, for any ppt adversary A, the following probability is small.

AdvGCDH := Pr
[
Z = gxy : Z ←$ADDH(·,·,·)(gx, gy); (x, y)←$D

]
The standard GCDH assumption is a particular case when D is the uniform distribution over

Z2
q. We denote this by U-GCDH. The Gap Squared Diffie-Hellman assumption is another particular

case, when we restrict the previous case to x = y. For simplicity, in our analysis, we will restrict our
attention to distributions D? where we exclude the possibility that x = 0 or y = 0. This means that
the bound for our proof includes an extra statistical term of the form (qs + qe)/q when we remove this
restriction.

Finally, we will also rely on the weaker Gap Discrete Logarithm assumption.

Definition 5.2 (Gap Discrete Logarithm (GDL)). The GDL in assumption states that, for any
ppt adversary A, the following probability is small.

AdvGDL := Pr
[
x′ = x : x′ ←$ADDH(·,·,·)(gx); x←$Zq

]
6 Perfect Forward Security Proof

Theorem 6.1. SPAKE2 is tightly PFS-secure in the random-oracle model under the Gap Diffie-
Hellman assumption. More precisely, for every attacker A against SPAKE2, there exist attackers B1
and B3 against the Gap Diffie-Hellman problem and attacker B2 against the Gap Discrete Logarithm
problem such that

Advspake2A ( ) ≤ qs
|P|

+ AdvU-GCDH
B1

( ) + AdvGDL
B2

( ) + AdvD
?-GCDH
B3

( ) +
(qs + qe)

2

2q

Proof. We prove the security of SPAKE2 using a sequence of games shown in Fig. 2 and Fig. 3.

Game G1. This is the initial security game, so we have:

Advspake2A ( ) = |Pr[G1 ⇒ T ]− 1/2 |

Game G2. From game G1 to game G2 we introduce a bad flag bad2. The bad2 flag is set whenever
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– a session is about to be accepted on the server side that collides on (U, S,X?, Y ?) with any
previously accepted session;

– a session is about to be accepted on the user side that collides on (U, S,X?, Y ?) with any previously
accepted user session.

If bad2 is set, then the oracle call is ignored and the session is not accepted.
Note that this implies that all accepted sessions on the server (resp. client) side are unique and

that no session can have more than one partner. The two games are identical until bad occurs, and
this event can be bound by a statistical term. More precisely, for an attacker placing at most qe queries
to Execute and qs queries to the Send oracles, we have for large q denoting the order of the group:

|Pr[G1 ⇒ T ]− Pr[G2 ⇒ T ] | ≤ (qe + qs)
2

2q

Here, qe+qs denotes the maximum number of accepted sessions (we count passively partnered sessions
as one here) and this is a birthday bound computed pessimistically for an attacker that makes accepted
sessions collide by fixing the user, server and one of the transmitted group elements in all accepted
sessions.

Game G3. In this game we take advantage of the fact that accepted sessions have unique traces
(modulo partnering) to make the freshness condition explicit in the game (we extend the state of
sessions to keep track of freshness with a new field fr). We also remove the code that refers to bad2.
Since nothing changes, we have

Pr[G3 ⇒ T ] = Pr[G2 ⇒ T ]

Game G4. In this game we make the keys of sessions accepted as a result of calls to Execute
independent from the random oracle accessible to the attacker. These sessions obtain keys from a new
random oracle Te that is indexed by the session trace (U, S,X?, Y ?). Note that, due to the guarantee
of session uniqueness on server and client side, there is no room for ambiguity. We set a bad flag bad4
if ever the answers given to the attacker could be inconsistent with the previous game: either because
a new accepted session in Execute collides with a previous call to H, or because a new call to H
collides with a previously accepted session in Execute. The games are identical until bad occurs, so
we have:

|Pr[G3 ⇒ T ]− Pr[G4 ⇒ T ] | ≤ Pr[G4 ⇒ bad4 ]

The probability of bad4 occurring in G4 can be tightly reduced to the standard Gap CDH prob-
lem,which means that:

Pr[G4 ⇒ bad4 ] ≤ AdvU-GCDH
B1

( )

The reduction to Gap CDH is given in Lemma 6.2.

Game G5. In game G5 we again rearrange code in preparation for the next hop. We remove the code
that deals with bad events, and we change Execute so that nothing depends on passwords. We can
do this because the random oracle that generates these keys only depend on the trace, which can be
sampled independently of passwords.

Game G6. In this game we change the way in which we generate keys for Send queries. We treat
corrupt sessions, for which the attacker may trivially compute the key, as before. The remaining keys
are derived using an independent random oracle Ts. We set a bad flag bad6 if ever there could be an
inconsistency with the main random oracle. As before, this means that:

|Pr[G5 ⇒ T ]− Pr[G6 ⇒ T ] | ≤ Pr[G6 ⇒ bad6 ]

We also observe that, since all fresh sessions that can be tested now have keys derived using random
oracles independent from H, accepted keys of fresh sessions are independently distributed from any-
thing else in the game. This means that the attacker has no information on bit b and has therefore 0
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advantage in this game. From the previous equations we can derive that:

Advspake2A ( ) ≤ (qs + qe)
2

2q
+ AdvU-GCDH

B1
( ) + Pr[G6 ⇒ bad6 ]

To bound the probability of bad6 we perform a final hop.

Game G7. We perform a global change in the game that aims to ensure that the passwords for fresh
sessions are only generated after the sessions are accepted. We first modify the way in which X?

and Y ? are generated, removing the component that depends on the password. The distribution of
the values does not change, but we need to adapt the way in which the Diffie-Hellman tuples are
computed, to make sure we obtain the same values as in the previous game. After we do this change,
honest passwords are now only used to check for the bad event bad6, so we remove the check that
passwords are consistent and delay this check until the end of the game: we store all problematic H
tuples in a list.

We can now move password generation to occur after fresh session acceptance: for corrupt queries
we generate the password at the time of corruption; all other passwords are generated at the end of the
game. Finally, we check if bad6 might have occurred by going through the log of problematic entries,
to complete the pw = pwus test a posteriori. The probability of bad6 occurring would be exactly the
same, but we would not be able to bound it since the size of the problematic list could be as large
as qh. For this reason, we add two additional bad flags bad17 and bad27. We check for these bad events
if in the log of problematic H calls there is an entry in Ts that is consistent with two entries in H
with different passwords; in this case we no longer set bad6. We set bad17 if one of these passwords
collides with the hidden x or y exponent associated with that session trace, and bad27 otherwise. The
probability of bad17 occurring in G7 can be tightly reduced to the GDL problem. The probability of
bad27 occurring in G7 can be tightly reduced to Gap CDH, where we use here the generalized version
for any parameter distribution D where the CDH problem is hard to compute with the help of a DDH
oracle.5 Putting these results together, we obtain:

Pr[G6 ⇒ bad6 ] ≤ Pr[G7 ⇒ bad6 ] + Pr[G7 ⇒ bad17 ] + Pr[G7 ⇒ bad27 ]

≤ Pr[G7 ⇒ bad6 ] + AdvGDL
B2

( ) + AdvD
?-GCDH
B3

( )

The reduction to GDL is given in Lemma 6.3. The reduction to Gap CDH is given in Lemma 6.4.
To conclude the proof, we observe that the probability of bad6 happening in game G7 is now easy to
bound. Indeed, the size of the log in which bad6 is checked has size at most qs, and all entries are
added to this set before the corresponding password is sampled. We therefore have

Pr[G6 ⇒ bad7 ] ≤ qs
|P|

This completes the proof, as we can derive

Advspake2A ( ) ≤ qs
|P|

+ AdvU-GCDH
B1

( ) + AdvGDL
B2

( ) + AdvD
?-GCDH
B3

( ) +
(qs + qe)

2

2q

ut

Lemma 6.2. For every attacker A, there exists an attacker B1, such that

Pr[G4 ⇒ bad4 ] ≤ AdvU-GCDH
B1

( )

Proof. Let us consider a GDL attacker B1 in Fig. 4. It gets a generalized challenge of the form
(X1, . . . , Xqe , Y1, . . . , Yqe) and finds CDH(Xi, Yj), for some 1 ≤ i, j ≤ qe. This problem is tightly

5 Note that this does not weaken our result, as one can take D to be the uniform distribution. On the other
hand, it makes it clear that different parameter generation procures can be used and our proof stil applies.
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equivalent to U-GCDH by random self-reducibility. The attacker embeds Xi and Yj in traces for
protocol executions that result from calls to Execute. For all calls to Send oracles, the attacker runs
everything as in G4. The DDH oracle is used to check for the bad event, in which case a solution to
the GCDH problem was found. It uses the DDH oracle whenever the rules of the game require it, and
it can also use it to check if bad4 occurred, in which case it can solve the Gap CDH challenge.6 ut

Lemma 6.3. For every attacker A, there exists an attacker B2, such that

Pr[G7 ⇒ bad17 ] ≤ AdvGDL
B2

( )

Proof. Let us consider a GDL attacker B2 in Fig. 4. It gets a challenge of the form A and finds
DL(A). The attacker uses A in Send queries to compute X? = A · gx and Y ? = A · gy. Note that
the distribution of these values is correct. The checking of CDH tuples, which is needed for correctly
maintaining random-oracle consistency and detecting bad events, is carried out using the DDH oracle.

Once the game terminates, the attacker checks for the occurrence of bad17 and if offending entries
exist, it recovers the discrete logarithm of A offset by a known quantity. ut

Lemma 6.4. For every attacker A, there exists an attacker B3, such that

Pr[G7 ⇒ bad27 ] ≤ AdvD
?-GCDH
B3

( )

Proof. Let us consider a D?-GCDH attacker B3 in Fig. 4. It gets a challenge of the form (M,N) and
finds CDH(M,N). The attacker uses (M,N) as the variables of the same name in game G7, but it
further uses these values in Send queries to compute X? = Mx and Y ? = Ny. The checking of CDH
tuples, which is needed for correctly maintaining random-oracle consistency and detecting bad events,
is carried out using the DDH oracle.

Once the game terminates, the attacker checks for the occurrence of bad27 and if offending entries
exist, it recovers (X?, Y ?, pw, Z) and (X?, Y ?, pw′, Z ′) such that pw 6= pw′ and the following holds for
known x or known y, and known pw and pw′:

CDH(gmx/Mpw, gny/Npw) = Z ∧ CDH(gmx/Mpw′ , gny/Npw′) = Z ′

Letting Z = gz, Z ′ = gz
′
, we can rewrite these equations as{

m(x− pw) · (ny − npw) = z
m(x− pw′) · (ny − npw′) = z′

Let us assume that the attacker knows x (the other case is symmetric). We scale the equations and
rearrange the formula as follows:{

m(x− pw)(x− pw′) · (ny − npw) · xpw′ = z · (x− pw′)
m(x− pw′)(x− pw) · (ny − npw′) · (x− pw) = z′ · (x− pw)

Subtracting the two equations, we get

z(x− pw′)− z′(x− pw) = mn(x− pw)(x− pw′)(pw′ − pw)

And we can derive a formula for the desired CDH:

gmn =
(
Zx−pw′ · Z ′pw−x

) 1
(x−pw)(x−pw′)(pw′−pw)

This formula can be computed by the attacker, provided that x 6= pw and x 6= pw′, which we know to
be the case as otherwise the bad event would not have occurred. ut

6 Note that it actually suffices to have a restricted DDH oracle in which one of the inputs is fixed as in the
Strong Diffie-Hellman (SDH) problem [ABR01], so a tight reduction to SDH is also possible. Furthermore,
storing all possible values that cause the bad event and returning one at random gives a reduction to CDH
that loses a linear factor in the maximum size of the random-oracle table.
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proc Initialize( ) G1, G2
b ←$ {0, 1}; C ← {}; T ← {}; bad2 ← F
(m,n) ←$D?; M ← gm; N ← gn

For U ∈ U, S ∈ S do pwus ←$P
Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← gx ·Mpwus

πiU ← (x, (U, S,X?,⊥),⊥, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

bad2 = T; Return ⊥
X ← X? /Mpwus

K ← H(U, S,X?, Y ?, pwus, X
y)

πiS ← (y, (U, S,X?, Y ?), K, T)

Return (S, Y ?)

proc SendTerm(U, i, S, Y ?)

If πiU 6= (x, (U, S,X?,⊥),⊥, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr

bad2 = T; Return ⊥
Y ← Y ? /Npwus

K ← H(U, S,X?, Y ?, pwus, Y
x)

πiU ← (x, (U, S,X?, Y ?), K, T)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

x ←$ Zq ; X? ← gx ·Mpwus

y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

bad2 = T; Return ⊥
K ← H(U, S,X?, Y ?, pwus, X

y)

πiU ← (x, (U, S,X?, Y ?), K, T)

πiS ← (y, (U, S,X?, Y ?), K, T)

Return (U,X?, S, Y ?)

proc H(U, S,X?, Y ?, pw, Z)

If T [U, S,X?, Y ?, pw, Z] =⊥
T [U, S,X?, Y ?, pw, Z] ←$K

Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}
Return pwus

proc Reveal(P, i)

If Fresh(πiP ) = F Return ⊥

Return πiP .K

proc Test(P, i)

If Fresh(πiP ) = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Return Kb

proc Finalize(b′)
Return b = b′

proc Initialize( ) G3
b ←$ {0, 1}; C ← {}; T ← {}
(m,n) ←$D?; M ← gm; N ← gn

For U ∈ U, S ∈ S do pwus ←$P
Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← gx ·Mpwus

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
X ← X? /Mpwus

K ← H(U, S,X?, Y ?, pwus, X
y)

fr ← (U, S) /∈ C
πiS ← (y, (U, S,X?, Y ?), K, T, fr)

Return (S, Y ?)

proc SendTerm(U, i, S, Y ?)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr

Return ⊥
Y ← Y ? /Npwus

K ← H(U, S,X?, Y ?, pwus, Y
x)

fr ← ∃j, (U, S,X?, Y ?) = π
j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
πiU ← (x, (U, S,X?, Y ?), K, T, fr)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

x ←$ Zq ; X? ← gx ·Mpwus

y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
K ← H(U, S,X?, Y ?, pwus, X

y)

πiU ← (x, (U, S,X?, Y ?), K, T, T)

πiS ← (y, (U, S,X?, Y ?), K, T, T)

Return (U,X?, S, Y ?)

proc H(U, S,X?, Y ?, pw, Z)

If T [U, S,X?, Y ?, pw, Z] =⊥
T [U, S,X?, Y ?, pw, Z] ←$K

Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}
Return pwus

proc Reveal(P, i)

If πiP .fr = F Return ⊥
∀(j, Q) s.t. π

j
Q
.tr = πiP .tr do π

j
Q
.fr = F

Return πiP .K

proc Test(P, i)

If πiP .fr = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Return Kb

proc Finalize(b′)
Return b = b′

proc Initialize( ) G4
b ←$ {0, 1}; C ← {}; T ← {}; Te ← {}
(m,n) ←$D?; M ← gm; N ← gn; bad4 ← F
For U ∈ U, S ∈ S do pwus ←$P
Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← gx ·Mpwus

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
X ← X? /Mpwus

K ← H(U, S,X?, Y ?, pwus, X
y)

fr ← (U, S) /∈ C
πiS ← (y, (U, S,X?, Y ?), K, T, fr)

Return (S, Y ?)

proc SendTerm(U, i, S, Y ?)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr

Return ⊥
Y ← Y ? /Npwus

K ← H(U, S,X?, Y ?, pwus, Y
x)

fr ← ∃j, (U, S,X?, Y ?) = π
j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
πiU ← (x, (U, S,X?, Y ?), K, T, fr)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

x ←$ Zq ; X? ← gx ·Mpwus

y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
If (U, S,X?, Y ?, pwus, Y

x) ∈ T do bad4 ← T
Te ← Te ∪ {(U, S,X?, Y ?, pwus, Y

x)}
K ←←$K
πiU ← (x, (U, S,X?, Y ?), K, T, T)

πiS ← (y, (U, S,X?, Y ?), K, T, T)

Return (U,X?, S, Y ?)

proc H(U, S,X?, Y ?, pw, Z)

If ∃(U, S,X?, Y ?, pwus, Z) ∈ Te do bad4 ← T
If T [U, S,X?, Y ?, pw, Z] =⊥
T [U, S,X?, Y ?, pw, Z] ←$K

Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}
Return pwus

proc Reveal(P, i)

If πiP .fr = F Return ⊥
∀(j, Q) s.t. π

j
Q
.tr = πiP .tr do π

j
Q
.fr = F

Return πiP .K

proc Test(P, i)

If πiP .fr = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Return Kb

proc Finalize(b′)
Return b = b′

Fig. 2. Security proof for SPAKE2. Games 1 to 4.
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proc Initialize( ) G5
b ←$ {0, 1}; C ← {}; T ← {}
(m,n) ←$D?; M ← gm; N ← gn

For U ∈ U, S ∈ S do pwus ←$P
Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← gx ·Mpwus

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥

X ← X? /Mpwus

K ← H(U, S,X?, Y ?, pwus, X
y)

fr ← (U, S) /∈ C
πiS ← (y, (U, S,X?, Y ?), K, T, fr)

Return (S, Y ?)

proc SendTerm(U, i, S, Y ?)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr

Return ⊥

Y ← Y ? /Npwus

K ← H(U, S,X?, Y ?, pwus, Y
x)

fr ← ∃j, (U, S,X?, Y ?) = π
j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
πiU ← (x, (U, S,X?, Y ?), K, T, fr)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

x ←$ Zq ; X? ← gx

y ←$ Zq ; Y ? ← gy

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
K ←←$K
πiU ← (x, (U, S,X?, Y ?), K, T, T)

πiS ← (y, (U, S,X?, Y ?), K, T, T)

Return (U,X?, S, Y ?)

proc H(U, S,X?, Y ?, pw, Z)

If T [U, S,X?, Y ?, pw, Z] =⊥
T [U, S,X?, Y ?, pw, Z] ←$K

Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}
Return pwus

proc Reveal(P, i)

If πiP .fr = F Return ⊥
∀(j, Q) s.t. π

j
Q
.tr = πiP .tr do π

j
Q
.fr = F

Return πiP .K

proc Test(P, i)

If πiP .fr = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Return Kb

proc Finalize(b′)

Return b = b′

proc Initialize( ) G6
b ←$ {0, 1}; C ← {}; T ← {}; Ts ← {}
(m,n) ←$D?; M ← gm; N ← gn; bad6 ← F
For U ∈ U, S ∈ S do pwus ←$P
Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← gx ·Mpwus

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
If (U, S) ∈ C
X ← X? /Mpwus

K ← H(U, S,X?, Y ?, pwus, X
y)

Else
If ∃(U, S,X?, Y ?, pw, Z) ∈ T ∧ pw = pwus
X ← X? /Mpw

If Z = Xy do bad6 ← T
K ←$K
Ts[U, S,X

?, Y ?] ← (S, y,K)
fr ← (U, S) /∈ C
πiS ← (y, (U, S,X?, Y ?), K, T, fr)

Return (S, Y ?)

proc SendTerm(U, i, S, Y ?)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr

Return ⊥
If (U, S) ∈ C ∧ (U, S,X?, Y ?) /∈ Ts
Y ← Y ? /Npwus

K ← H(U, S,X?, Y ?, pwus, Y
x)

Else
If ∃(U, S,X?, Y ?, pw, Z) ∈ T ∧ pw = pwus
Y ← Y ? /Npw

If Z = Y x do bad6 ← T
If Ts[U, S,X

?, Y ?] 6= (S, y,K)
K ←$K
Ts[U, S,X

?, Y ?] ← (U, x,K)

fr ← ∃j, (U, S,X?, Y ?) = π
j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
πiU ← (x, (U, S,X?, Y ?), K, T, fr)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

x ←$ Zq ; X? ← gx

y ←$ Zq ; Y ? ← gy

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
K ←←$K
πiU ← (x, (U, S,X?, Y ?), K, T, T)

πiS ← (y, (U, S,X?, Y ?), K, T, T)

Return (U,X?, S, Y ?)

proc H(U, S,X?, Y ?, pw, Z)

If (U, S,X?, Y ?) ∈ Ts ∧ pw = pwus
If Ts[U, S,X

?, Y ?] = (P, x,K)

Y ← Y ? /Npw; Z′ ← Y x

If Ts[U, S,X
?, Y ?] = (S, y,K)

X ← X? /Mpw; Z′ ← Xy

If Z′ = Z do bad6 ← T
If T [U, S,X?, Y ?, pw, Z] =⊥
T [U, S,X?, Y ?, pw, Z] ←$K

Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}
Return pwus

proc Reveal(P, i)

If πiP .fr = F Return ⊥
∀(j, Q) s.t. π

j
Q
.tr = πiP .tr do π

j
Q
.fr = F

Return πiP .K

proc Test(P, i)

If πiP .fr = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Return Kb

proc Finalize(b′)

Return b = b′

proc Initialize( ) G7
b ←$ {0, 1}; C ← {}; T ← {}; Ts ← {}
bad6 ← F; Tbad ← {}; bad17 ← F; bad27 ← F

(m,n) ←$D?; M ← gm; N ← gn

Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← Mx

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← Ny

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
If (U, S) ∈ C
X ← X? /Mpwus ; ŷ ← ny − npwus
K ← H(U, S,X?, Y ?, pwus, X

ŷ)
Else

If ∃(U, S,X?, Y ?, pw, Z) ∈ T
X ← X? /Mpw; ŷ ← ny − npw

If Z = Xŷ do Tbad ← Tbad ∪ {U, S,X
?, Y ?, pw, Z}

K ←$K
Ts[U, S,X

?, Y ?] ← (S, y,K)
fr ← (U, S) /∈ C
πiS ← (y, (U, S,X?, Y ?), K, T, fr)

Return (S, Y ?)

proc SendTerm(U, i, S, Y ?)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr

Return ⊥
If (U, S) ∈ C ∧ (U, S,X?, Y ?) /∈ Ts
Y ← Y ? /Npwus ; x̂ ← mx −mpwus
K ← H(U, S,X?, Y ?, pwus, Y

x̂)
Else

If ∃(U, S,X?, Y ?, pw, Z) ∈ T
Y ← Y ? /Npw; x̂ ← mx −mpw

If Z = Y x̂ do Tbad ← Tbad ∪ {U, S,X
?, Y ?, pw, Z}

If Ts[U, S,X
?, Y ?] 6= (S, y,K)

K ←$K
Ts[U, S,X

?, Y ?] ← (U, x,K)

fr ← ∃j, (U, S,X?, Y ?) = π
j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
πiU ← (x, (U, S,X?, Y ?), K, T, fr)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

x ←$ Zq ; X? ← gx

y ←$ Zq ; Y ? ← gy

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
K ←←$K
πiU ← (x, (U, S,X?, Y ?), K, T, T)

πiS ← (y, (U, S,X?, Y ?), K, T, T)

Return (U,X?, S, Y ?)

proc H(U, S,X?, Y ?, pw, Z)

If (U, S,X?, Y ?) ∈ Ts
If Ts[U, S,X

?, Y ?] = (P, x,K)

Y ← Y ? /Npw; x̂ ← mx −mpw; Z′ ← Y x̂

If Ts[U, S,X
?, Y ?] = (S, y,K)

X ← X? /Mpw; ŷ ← my − npw; Z′ ← Xŷ

If Z′ = Z do Tbad ← Tbad ∪ {U, S,X
?, Y ?, pw, Z}

If T [U, S,X?, Y ?, pw, Z] =⊥
T [U, S,X?, Y ?, pw, Z] ←$K

Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}; pwus ←$P
Return pwus

proc Reveal(P, i)

If πiP .fr = F Return ⊥
∀(j, Q) s.t. π

j
Q
.tr = πiP .tr do π

j
Q
.fr = F

Return πiP .K

proc Test(P, i)

If πiP .fr = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Return Kb

proc Finalize(b′)
For (U, S) ∈ (U × S) \ C do pwus ←$P
If ∃pw 6= pw′,

(U, S,X?, Y ?, pw, Z) ∈ Tbad ∧
(U, S,X?, Y ?, pw′, Z′) ∈ Tbad

If Ts[U, S,X
?, Y ?] = (?, pw, ?)∨

Ts[U, S,X
?, Y ?] = (?, pw′, ?)

Then bad17 ← T Else bad27 ← T

Else
If (U, S, ?, ?, pwus, ?) ∈ Tbad do bad6 ← T

Return b = b′

Fig. 3. Security proof for SPAKE2. Games 5 to 7.
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Adversary B1

proc Initialize(X1, . . . , Xqe , Y1, . . . , Yqe )

b ←$ {0, 1}; C ← {}; T ← {}; Te ← {}; k ← 0
(m,n) ←$D?; M ← gm; N ← gn

For U ∈ U, S ∈ S do pwus ←$P
Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← gx ·Mpwus

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
X ← X? /Mpwus

K ← H(U, S,X?, Y ?, pwus, X
y)

fr ← (U, S) /∈ C
πiS ← (y, (U, S,X?, Y ?), K, T, fr)

Return (S, Y ?)

proc SendTerm(U, i, S, Y ?)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr

Return ⊥
Y ← Y ? /Npwus

K ← H(U, S,X?, Y ?, pwus, Y
x)

fr ← ∃j, (U, S,X?, Y ?) = π
j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
πiU ← (x, (U, S,X?, Y ?), K, T, fr)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

k ← k + 1
X? ← Xk ·M

pwus

Y ? ← Yk · N
pwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
If (U, S,X?, Y ?, pwus, Z) ∈ T

If DDH(Xk, Yk, Z) = T
call Terminate(Z); stop

Te ← Te ∪ {(U, S,X?, Y ?, pwus, k)}
K ←←$K
πiU ← (x, (U, S,X?, Y ?), K, T, T)

πiS ← (y, (U, S,X?, Y ?), K, T, T)

Return (U,X?, S, Y ?)

proc H(U, S,X?, Y ?, pw, Z)

If ∃(U, S,X?, Y ?, pwus, k) ∈ Te
If DDH(Xk, Yk, Z) = T

call Terminate(Z); stop
If T [U, S,X?, Y ?, pw, Z] =⊥
T [U, S,X?, Y ?, pw, Z] ←$K

Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}
Return pwus

proc Reveal(P, i)

If πiP .fr = F Return ⊥
∀(j, Q) s.t. π

j
Q
.tr = πiP .tr do π

j
Q
.fr = F

Return πiP .K

proc Test(P, i)

If πiP .fr = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Return Kb

proc Finalize(b′)
Abort.

Adversary B2

proc Initialize(A)

b ←$ {0, 1}; C ← {}; T ← {}; Ts ← {}; Tbad ← {}
(m,n) ←$D?; M ← gm; N ← gn

Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← A · gx

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← A · gy

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
If (U, S) ∈ C
X ← X? /Mpwus ; Y ← Y ? /Npwus

If ∃(U, S,X?, Y ?, pwus, Z) ∈ T s.t. DDH(X, Y, Z) = T
K ← T [U, S,X?, Y ?, pwus, Z]

Else K ←$K; T [U, S,X?, Y ?, pwus, (X, Y )] ← K
Else
X ← X? /Mpwus ; Y ← Y ? /Npwus

If ∃(U, S,X?, Y ?, pwus, Z) ∈ T s.t. DDH(X, Y, Z) = T
Tbad ← Tbad ∪ {U, S,X

?, Y ?, pw, Z}
K ←$K
Ts[U, S,X

?, Y ?] ← (S, y,K)
fr ← (U, S) /∈ C
πiS ← (y, (U, S,X?, Y ?), K, T, fr)

Return (S, Y ?)

proc SendTerm(U, i, S, Y ?)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr

Return ⊥
If (U, S) ∈ C ∧ (U, S,X?, Y ?) /∈ Ts
X ← X? /Mpwus ; Y ← Y ? /Npwus

If ∃(U, S,X?, Y ?, pwus, Z) ∈ T s.t. DDH(X, Y, Z) = T
K ← T [U, S,X?, Y ?, pwus, Z]

Else K ←$K; T [U, S,X?, Y ?, pwus, (X, Y )] ← K
Else
X ← X? /Mpwus ; Y ← Y ? /Npwus

If ∃(U, S,X?, Y ?, pwus, Z) ∈ T s.t. DDH(X, Y, Z) = T
Tbad ← Tbad ∪ {U, S,X

?, Y ?, pw, Z}
If Ts[U, S,X

?, Y ?] 6= (S, y,K)
K ←$K
Ts[U, S,X

?, Y ?] ← (U, x,K)

fr ← ∃j, (U, S,X?, Y ?) = π
j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
πiU ← (x, (U, S,X?, Y ?), K, T, fr)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

x ←$ Zq ; X? ← gx

y ←$ Zq ; Y ? ← gy

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
K ←←$K
πiU ← (x, (U, S,X?, Y ?), K, T, T)

πiS ← (y, (U, S,X?, Y ?), K, T, T)

Return (U,X?, S, Y ?)

proc H(U, S,X?, Y ?, pw, Z)

If (U, S,X?, Y ?) ∈ Ts
X ← X? /Mpw; Y ← Y ? /Npw

If DDH(X, Y, Z) = T
Tbad ← Tbad ∪ {U, S,X

?, Y ?, pw, Z}
If ∃(U, S,X?, Y ?, pw, (X, Y ) ∈ T s.t. DDH(X, Y, Z) = T

Return T [U, S,X?, Y ?, pw, Z]
If T [U, S,X?, Y ?, pw, Z] =⊥
T [U, S,X?, Y ?, pw, Z] ←$K

Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}; pwus ←$P
Return pwus

proc Reveal(P, i)

If πiP .fr = F Return ⊥
∀(j, Q) s.t. π

j
Q
.tr = πiP .tr do π

j
Q
.fr = F

Return πiP .K

proc Test(P, i)

If πiP .fr = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Return Kb

proc Finalize(b′)
For (U, S) ∈ (U × S) \ C do pwus ←$P
If ∃pw 6= pw′,

(U, S,X?, Y ?, pw, Z) ∈ Tbad ∧
(U, S,X?, Y ?, pw′, Z′) ∈ Tbad

If Ts[U, S,X
?, Y ?] = (?, r, ?) s.t.

A = gmpw−r ∨ A = gnpw−r ∨

A = gmpw′−r ∨ A = gnpw′−r
Then call Terminate(DL(A))

Stop.

Adversary B3

proc Initialize(M,N)

b ←$ {0, 1}; C ← {}; T ← {}; Ts ← {}; Tbad ← {}
Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← Mx

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← Ny

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
If (U, S) ∈ C
X ← X? /Mpwus ; Y ← Y ? /Npwus

If ∃(U, S,X?, Y ?, pwus, Z) ∈ T s.t. DDH(X, Y, Z) = T
K ← T [U, S,X?, Y ?, pwus, Z]

Else K ←$K; T [U, S,X?, Y ?, pwus, (X, Y )] ← K
Else
X ← X? /Mpwus ; Y ← Y ? /Npwus

If ∃(U, S,X?, Y ?, pwus, Z) ∈ T s.t. DDH(X, Y, Z) = T
Tbad ← Tbad ∪ {U, S,X

?, Y ?, pw, Z}
K ←$K
Ts[U, S,X

?, Y ?] ← (S, y,K)
fr ← (U, S) /∈ C
πiS ← (y, (U, S,X?, Y ?), K, T, fr)

Return (S, Y ?)

proc SendTerm(U, i, S, Y ?)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr

Return ⊥
If (U, S) ∈ C ∧ (U, S,X?, Y ?) /∈ Ts
X ← X? /Mpwus ; Y ← Y ? /Npwus

If ∃(U, S,X?, Y ?, pwus, Z) ∈ T s.t. DDH(X, Y, Z) = T
K ← T [U, S,X?, Y ?, pwus, Z]

Else K ←$K; T [U, S,X?, Y ?, pwus, (X, Y )] ← K
Else
X ← X? /Mpwus ; Y ← Y ? /Npwus

If ∃(U, S,X?, Y ?, pwus, Z) ∈ T s.t. DDH(X, Y, Z) = T
Tbad ← Tbad ∪ {U, S,X

?, Y ?, pw, Z}
If Ts[U, S,X

?, Y ?] 6= (S, y,K)
K ←$K
Ts[U, S,X

?, Y ?] ← (U, x,K)

fr ← ∃j, (U, S,X?, Y ?) = π
j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
πiU ← (x, (U, S,X?, Y ?), K, T, fr)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

x ←$ Zq ; X? ← gx

y ←$ Zq ; Y ? ← gy

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
K ←←$K
πiU ← (x, (U, S,X?, Y ?), K, T, T)

πiS ← (y, (U, S,X?, Y ?), K, T, T)

Return (U,X?, S, Y ?)

proc H(U, S,X?, Y ?, pw, Z)

If (U, S,X?, Y ?) ∈ Ts
X ← X? /Mpw; Y ← Y ? /Npw

If DDH(X, Y, Z) = T
Tbad ← Tbad ∪ {U, S,X

?, Y ?, pw, Z}
If ∃(U, S,X?, Y ?, pw, (X, Y ) ∈ T s.t. DDH(X, Y, Z) = T

Return T [U, S,X?, Y ?, pw, (X, Y )]
If T [U, S,X?, Y ?, pw, Z] =⊥
T [U, S,X?, Y ?, pw, Z] ←$K

Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}; pwus ←$P
Return pwus

proc Reveal(P, i)

If πiP .fr = F Return ⊥
∀(j, Q) s.t. π

j
Q
.tr = πiP .tr do π

j
Q
.fr = F

Return πiP .K

proc Test(P, i)

If πiP .fr = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Return Kb

proc Finalize(b′)
For (U, S) ∈ (U × S) \ C do pwus ←$P
If ∃pw 6= pw′,

(U, S,X?, Y ?, pw, Z) ∈ Tbad ∧
(U, S,X?, Y ?, pw′, Z′) ∈ Tbad

If Ts[U, S,X
?, Y ?] = (?, r, ?) s.t. r = pw ∨ r = pw′

Then Stop
Else

u ← ((x − pw)(x − pw′)(pw′ − pw))−1

call Terminate((Zx−pw′ · Z′pw−x)u)
Stop.

Fig. 4. Security proof for SPAKE2. GCDH and GDL attackers.
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7 Implications

Nothing-up-your-sleeve global parameters. Our security proof applies without change to any
distribution of the global parameters (M,N) under which computing the CDH between the two with
the help of a DDH oracle is assumed to be hard. This means that simply sampling (M,N) uniformly
at random is a good choice when the GCDH assumption holds, and so is choosing M = H(K) and
N = H(K ′) when H is modeled as a random oracle. Here the choice of K 6= K ′ means one is relying
on the standard GCDH assumption, whereas K = K ′ leads to M = N , which means relying on the
squared GCDH problem.

Removing the global parameters. Our proof extends to a variant of SPAKE2 where (M,N)
are not generated in a global setup. Instead one can use (M,N) = H(U, S) and N = H(S,U), where
different values of these parameters are precomputed for each user-server pair. The online efficiency
of the protocol is not affected. Modeling H as a random oracle, this means that each (U, S) pair now
poses an independent GCDH challenge to the active attacker. Our proof can be easily modified to
cover this case with the same bound by observing that bad events that involve multiple sessions are
always defined between sessions established for the same user-server (U, S).

Reusing passwords. Our model assumes that user passwords are sampled independently for each
pair (U, S). The simple case of password reuse, where passwords are either repeats or they are sampled
independently can be easily addressed by extending the corrupt oracle to exclude additional trivial
attacks: it should declare as corrupt all (U ′, S′) pairs that use the same password. The same proof
applies and the bound is not affected in this case, as the entropy of non-repeat passwords is assumed
to be unnafected.

The treatment of cases where more complex correlations between passwords may exist is the subject
of ongoing work.
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