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1 Introduction

We introduce an independent research project on symmetric cryptography with a focus on foreseeable industrial
needs and higher post-quantum security compared to currently used symmetric algorithms. It was initiated by
the independent IT-Security experts Kovac and Underhill. The result is the new symmetric cryptographic algo-
rithm EAES, which is intended to be a stronger brother of the widely used AES algorithm (Advanced Encryption
Standard), the standardized version of the RIJNDAEL algorithm. In this analysis we show, that EAES offers an
enhanced complexity by a factor≥ 2126 regarding the quantum cryptanalysis Grover’s search algorithm compared
to AES. Furthermore we outline the basic facts and open questions regarding quantum algebraic attacks on EAES.

It is known since 1995 that the security of currently used asymmetric cryptographic algorithms relying on the
hardness of integer factorization and finding discrete logarithms (DLOG systems) will expire with the availability
of potent enough quantum computers. By then, all private keys will be computable within reasonable time from
the corresponding public keys. With the knowledge of those private keys, all encrypted data, which was collected
and assigned to the relevant key exchanges, will no longer remain secret.

With the advent of 49 qubit processors quantum supremacy, the ability of quantum computing devices to solve
problems that classical computers practically cannot solve, lies within reach. IBM’s 14th quantum computer is its
most powerful so far, a model with 53 of the qubits that form the fundamental data-processing element at the heart
of the system [1]. Google participates in the race with their 72-qubit quantum processor Bristlecone [2]. Further-
more, successful discoveries through research for topological quantum computation [3] might create a verbatim
"quantum leap" in quantum computation evolvement.

For this reason, the NIST launched a standardization process on asymmetric post-quantum cryptography, by def-
inition, cryptography which is resisting quantum computer attacks. The evaluated algorithms rely on hardness of
mathematical problems other than integer factorization and DLOG. They run effectively on currently used binary
devices and also offer security against current and evolving threats performed on potent binary devices.

2 The importance of symmetric post-quantum secure algorithms

Hybrid encryption systems are used in all major crypto protocols: TLS, SSH and PGP. They combine the advan-
tages of both cryptography classes. Symmetric protocols allow securely sharing a key via digital connections, and
symmetric protocols are about 105× faster than asymmetric ones. The secret session key SK, which is limited in
time, is shared via asymmetric cryptography, and the message itself is symmetrically encrypted with the securely
shared session key.

No asymmetric encryption within hybrid encryption systems can outbalance weaknesses of the symmetric part.
ISO currently makes it possible to standardize new symmetric cryptography algorithms and to amend existing
ones. Therefore, we strive to establish EAES as an ISO-Standard. Its predecessor AES has been standardized by
both organizations.
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Figure 1: Hybrid encryption.

The algorithm EAES is designed by Kovac and Underhill. They published the e-print Towards post-quantum sym-
metric cryptography [4] on the motivation for their research as well as the design and implementation of EAES.
Underhill had previously started the implementation in his CEX-NET project, within which he created the crypto-
graphic C + + library CEX [5]. The library is open source and published under the GPL-license. Bogomolec is
responsible for the mathematical analysis of the algorithm. All of us are independent IT-Security experts.

EAES mitigates threats by formerly published attacks on AES from binary devices [6, 7, 8] and additionally offers
enhanced security against attacks performed by moderate quantum computers [9, 10].

3 Published attacks on AES

There are various types of attacks on cryptographic algorithms, amongst which side-channel attacks, implementa-
tion attacks, brute-force attacks and cryptanalysis attacks on AES are of importance in our context. In some cases,
those attack types can be combined to achieve a more efficient decryption of a ciphertext.

Side-channel attacks use unintended side effects of cryptographic operations to glean information about the
plaintext and/or secret key being processed. Implementation attacks use weaknesses in implementation of an
encryption scheme, e.g. weak key generation. Brute force attacks attempt every possible combination for a key.
Cryptanalysis attacks rely on alternative algorithms for finding a secret key of an encrypted text. The latter can
be applied to stationary data. Therefore it is interesting for data collectors who are patient enough to wait for the
availability of potent enough machines to perform such an attack.

3.1 Mathematical structure of AES

All RIJNDAEL functions are linear. Only the basic encryption function SubBytes (see section Basic RIJNDAEL
encryption functions) is often referred as the non-linear part of AES, but in fact it is linear as well. Well chosen
linear layers with very strong diffusion properties protect against conventional attacks using statistical properties
of a cryptosystem. In the case of the quantum algebraic attack [10], this effect is limited.

3.2 Attacks performed on binary devices

Various published attacks on AES [6, 7, 8] take advantage of the invertibility of the original RIJNDAEL key
schedule besides other properties such as the relatively low number of rounds, implementation weaknesses and the
same block size for standardized all key sizes.

3.3 Grover’s search

AES was generally still considered post-quantum secure for key sizes larger than 192. Even Grover’s search
algorithm [11] is not regarded a threat for AES-256 in the near future. It can be used to extract the key from a
small number of AES plaintext-ciphertext pairs (5 for AES-256). Grover’s search is a alternative algorithm for an
exhaustive key search (brute force attack).
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3.4 Quantum algebraic attack

A harder impact on the security of AES-256 is posed by the quantum algebraic attack on cryptosystems which can
be reduced to Boolean equation solving [10]. this attack reduces security level of AES-256 from 256 to 78.53.
The quantum algebraic attack is a classical cryptanalysis attack.

3.5 Consequences

Both Grover’s search algorithm and the quantum algebraic attack can be applied to collected data without the corre-
sponding key exchanges as soon as potent enough quantum computers are available. Therefore we propose EAES
as a symmetric alternative for AES, with higher security against all previously mentioned attacks [6, 7, 8, 9, 10].

4 RIJNDAEL, the base of EAES

Here we only give a high level overview of RIJNDAEL in order to classify our modifications. For a detailed
description of its standardized version AES, we refer to the Federal Information Processing Standards Publication
197 [12].

4.1 Computation grounds

RIJNDAEL is an iterative rounds-based block cipher. It relies on a substitution-permutation network. In AES,
the network is operating on a 4 × 4 column-major order array of the 128 bits (block size), called the „state“.
Each input data block is intially transformed into a „state“. The term „state“ refers to the digital representation
as well as to the fact of the continuous transformation during the encryption. So each array entry consists of 8
bits. Columns of the matrix are also called „words“. All operations are performed in the Galois field GF (28) ∼=
F2[x]/(x

8 + x4 + x3 + x+ 1).

4.2 RIJNDAEL algorithm architecture

RIJNDAEL is a block cipher. That means that the basic encryption functions are iterated a certain number of rounds
with dedicated round keys over the state. With r = number of rounds, the encryption process is:

(1) Derive round keys
Call ExpandKey (key) to derive r + 1 round keys from the secret key. The +1 stands for the fact that
AddRoundKey is called additionally before each block encryption.

(2) Encryption
Perform on each block of data represented by the „state“:

a) Initial round:
Add the plaintext to the state
AddRoundKey (state, 1st round key)

b) For (i = 2; i ≤ r − 1, i++):
SubBytes (state)
ShiftRows (state)
MixColumns (state)
AddRoundKey (state, i-th round key)

(4 basic RIJNDAEL encryption functions)
c) The final round:

SubBytes (state)
ShiftRows (state)
AddRoundKey (state, last round key)

The decryption process is composed by the inversed chain of the encryption functions. A symmetric encryp-
tion algorithm needs to be composed by invertible functions, but this property wouldn’t be necessary for the key
expansion. In fact, the invertibility of ExpandKey opened the door for various side-channel attacks.
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4.3 Basic RIJNDAEL encryption functions

The 4 basic functions of the RIJNDAEL encryption are:

1) AddRoundKey - addition in (F2)
128:

Bitwise addition of the state and the correspondent round key.
2) SubBytes - non-linear substitution:

Each byte is replaced by another according to the specified substitution table (S-Box). A more resource
friendly option is to treat a state byte as an element α ∈ F2[x]/(x

8+x4+x3+x+1), where the multiplicative
inverse of α needs to be found.

3) ShiftRows - transposition for diffusion:
The second, third and fourth row of the state are shifted to the left, by 1, 2 and 3 steps.

4) MixColumns - mixing for diffusion:
Multiplication of each column of the state with the following matrix M :

M =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


As a chain of invertible algebraic functions, RIJNDAEL and AES can be represented as a polynomial system [13].
This polynomial system can re reduced to a Boolean equation system. We will look at this property in the context
of the quantum algebraic attack [10].

5 Modifications for EAES

Our modifications affect the key schedule ExpandKey and the number of rounds per version. Furthermore we
implemented a version for a 512-bit key, which is no outlier amongst post-quantum secure algorithm key sizes.

5.1 RIJNDAEL inheritance

The original RIJNDAEL algorithm includes a block size option of 256 bits, which was not admitted for the AES
standard. We decided to keep the 128 bits for EAES inorder to ensure compatibility with existing hardware
implementations 1. Several mentioned attacks take advantage of the fact that AES-256 runs with the same block
size as AES-128. Those vulnerabilities are at least mitigated in our algorithm by the higher number of rounds. We
also kept the 4 basic RIJNDAEL encryption functions and the RIJNDAEL algorithm architecture.

5.2 More rounds and a 512-bit key version

We increased the number of rounds taking in account recommendations of renowned cryptographers and crypt-
analysts such as Bruce Schneier. The 256-bit key variant EAES-256 runs 22 rounds of the original RIJNDAEL
transformation function, which is 8 more rounds than AES-256, and twice the best known attack which breaks 11
rounds [7]. Based on the same considerations, we fixed the number of 30 rounds for EAES-512 .

5.3 Say goodbye to 128- and 192-bit keys

Organizations such as the NIST and the EU quantum flagship [14] recommend to use the maximal key lengths of
currently used cryptographic algorithms whenever possible. But for operational staff in IT, the options very often
simply come down to the question about what choices they have for establishing a confidential communication
with a business or cooperation partner. EAES doesn’t offer the 128- and 192-bit key options anymore.

5.4 Replacing ExpandKey

The invertibility of the original RIJNDAEL key schedule ExpandKey opened the door for various published attack
schemes. Furthermore the output of the original RIJNDAEL key schedule does not offer cryptographic quality. In

1We have also implemented an authenticated stream cipher (RCS) using the 256-bit block transform along with a cryptographically
strong key-schedule, and an increase in transformation rounds that parallels eAES.
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the simple cases, round keys could be extracted within encryption or decryption processes, and the original key
computed by applying the inverted key schedule function. For cryptanalysis attacks, this is just another convenient
property for finding a replacement of the chain of RIJNDAEL functions.
Therefore we replace ExpandKey by cryptographically secure Pseudo Random Number Generators (PRNGs) with
strong diffusion properties in EAES.

5.5 Pseudo Random Number Generators

PRNGs are built for deriving keys of a fixed size for further cryptographic operations by using an underlying
pseudo random function. In our case those pseudo random functions are hashing algorithms. They are not even
injective, but produce a well defined and collision resistant output.

Figure 2: High level comparison of AES and eAES.

Furthermore, it is very cost intensive under foreseeable technical developments to perform brute force attacks on
the chosen PRNGs. So they are also hardly reversible apart from the non-existant mathematical invertibility.

6 Key schedule variants

Our first choice is HKDF, a HMAC-based extract-and-expand key derivation function, with SHA-2 as the un-
derlying hash function. As a second option, we implemented the KECCAK-derived and customizable CSHAKE-
function. KECCAK, the SHA-3 competition finalist, was chosen by the NIST for its algorithmic unrelatedness
from SHA-2, while offering flexibility and a comparable speed in computation.

6.1 Common features

Both HKDF and CSHAKE produce arrays of bytes which are converted to big-endian ordered 32-bit integers for
the round subkeys. Each round key has the same size as the cipher’s block size, namely 128 bits. So the output
of our key derivation functions needs to be of the size (r + 1) · 128 bit, where r represents the number of rounds.
We renounce on the usage of a salt due to the fact that within our algorithm, the input is cryptographically strong
already.

6.2 HKDF

We consider the HMAC-based HKDF as a sensible intermediary solution for the derivation of the round keys, be-
cause it is already widely available. We use HKDF(SHA-256) for EAES-256 and HKDF(SHA-512) for EAES-
512 to align with expected security strengths.

SHA-256 and SHA-512 are members of the SHA-2 function family. They use the Merkle-Damgard construction,
a method of building collision-resistant cryptographic hash functions from collision-resistant one-way compression
functions. The compression function for SHA-2 uses the Davies–Meyer structure from a (classified) specialized
block cipher.

HKDF generates cryptographically strong output of any desired length by repeatedly generating hash-blocks, con-
catenating them, and finally truncating the result to the desired length. Each call to HMAC involves two calls to
the SHA-2 hash function to generate a pseudo-random 256-bit or 512-bit output block.

So if the number of rounds is r and the SHA-2 output length is n, SHA-2 has to be called d (r+1)·128
n e times. This

results in 12 times with SHA-256 for EAES-256 and 8 times with SHA-512 for EAES-512.
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Figure 3: Rijndael HKDF eXtension.

6.3 CSHAKE

We implemented the SHA-3-derived SHAKE-function as a second option for the key schedule. The SHA-3
competition finalist KECCAK is a so called sponge function. Those are functions with finite internal state, tak-
ing an input bit stream of any length and producing an output bit stream of any desired length. CSHAKE is the
customizable version of SHAKE. It is originally designed for 128- and 256-bit security strength [15]. Underhill
has additionally created a 512-bit security implementation, which mirrors the internal block-size, squeeze and per-
mutation settings of SHA3-512. CSHAKE-256 is used for EAES-256, and CSHAKE-512 is used for EAES-512.

The initial state of SHAKE is a 5 × 5 array of 64-bit unsigned integers, 1600 zero bits it total. The first call is to
initialize the custom state. Then the original EAES-key is absorbed into the previously intialized state, and with
each call to the inner permutation function of KECCAK, rates of (1600− 2 · n, n ∈ {256, 512}) bits are returned.
So CSHAKE-256 returns 136, and CSHAKE-512 returns 72 pseudo-random bytes per call.

So if the number of EAES-rounds is r and the number of returned bytes per rate are n, we have d (r+1)·128
n·8 e calls

to the inner permutation functions of CSHAKE.For EAES-256 we have 3 and for EAES-512 we have 7 calls to
the inner permutation function, +1 call for the initial state.

Figure 4: Rijndael SHAKE eXtension.

Note that here we are talking about calls to the inner permutation function of KECCAK, while we are talking about
calls to SHA-2 itself in the previous section. Fewer calls of the permutation function lead to higher efficiency of
CSHAKE compared to the one of HKDF. On the other hand, KECCAK is prone to quantum algebraic attacks [10].
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7 Impact of Grover’s Search Algorithm

Grover’s algorithm offers a
√
k speed-up [11] over a classical exhaustive search (brute force attack) on the set of

keys of size k. It seems to be one of the most relevant quantum cryptanalytic impact for the study of block ci-
phers. The authors of [9] present quantum circuits to implement the key search for AES and analyze the quantum
resources required to carry out such an attack for key sizes of 128, 192 and 256 bits.

The number of required logical qubits is relatively low, 6, 681 for AES-256. On the other hand, the large circuit
depth of enrolling the entire Grover iteration poses a challenge to an implementation on an actual physical quantum
computer, even if the gates (basic quantum circuit operating on qubits) are not error corrected. The key schedule
ExpandKey causes much of the circuit cost within each Grover iteration. Replacing it by our chosen PRNGs will
even be considerably more cost intensive.

Here we only summarize the basic prerequisites of the involved procedures described in [9] for AES-256 and
compare them to EAES for k ∈ {256, 512}.

7.1 Algorithm architecture

A quantum circuit implementing a Boolean function f is the input of the Grover’s search algorithm:

f : {0, 1}k → {0, 1}

The basic algorithm finds an element x0 such that f(x0) = 1. This is realized by repeatedly applying the operation
G to measure an element x0 such that f(x0) = 1 with constant probability.

G = Uf

(
(H⊗k(2|0〉〈0| − 12k)H

⊗k)⊗ 12

)
H denotes the 2 × 2 Hadamard transform and Uf involves the computation of the cipher functions. To ensure
uniqueness of the solution (the found key), a small number of plaintext-ciphertext pairs are needed. This number
is 5 for a 256-bit key and 9 for 512-bit key.

7.2 Quantum resources and graph theory

Quantum resources are represented by logical qubits, gates and circuit depth. In the model of a Boolean circuit as
a directed acyclic graph, the circuit depth is the maximal length of a path from an input gate to the output gate.
The sum of required gates represent the complexity of an algorithm.

Reversible circuits are needed for the application of Grover on AES to provide invertibilty of the operations.
Therefore the proposed solution in [9] relies on a set of fault-tolerant reversible logical gates. It consists of called
Toffoli gates, controlled NOT gates and NOT gates. A Toffoli gate is a universal reversible logic gate, i.e. any
reversible circuit can be constructed from Toffoli gates.

Figure 5: Toffoli gate (controlled-controlled-not gate).

For our key schedule replacements, we will base our comparisons on the results of „Estimating the cost of eneric
quantum pre-image attacks on SHA-2 and SHA-3s“ [16]. The authors present an implementation including
Grover’s algorithm on reversible circuits on on a surface code based fault-tolerant quantum computer.
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7.3 Quantum resources for the search

H represents the Hadamard operation on a single qubit. A single solution to the equality function f can be found
by applying H⊗k+1 to the initial state, where k is the size of the key. The next step is applying

Gd
π
4

√
2ke,

followed by a measurement of the entire quantum register which will yield a solution x0 with high probability.

The exact decomposition of the search is outlined in [9], section 2. For our comparison we only look at the cost
for the operation (2|0〉〈0| − 12k)), which is determined by the reduction to the implementation of a k-fold NOT
gate, where k ∈ {256, 512} is the key size. In terms of Toffoli gates we have the formula 8k − 24 [17] and if we
count only T-gates, we have the formula 32k − 84 as an upper bound for a k-fold controlled NOT gate [18]. This
results in:

Table 1: Cost for the operation (2|0〉〈0| − 12k)):

key size Toffoli gates T-gates

256 2,024 8,108
512 4,072 16,300

Grover’s search will have to be performed on the small number n of plaintext-ciphertext pairs. The equality
function f can be implemented by a multiple controlled NOT gate that has 128 · n controls. With above formulas,
the needed number of Toffoli counts and T-counts to compute the equality function f come down to:

Table 2: ost for the equality function f :
key size Toffoli counts T-counts

256 5,096 20,396
512 9,192 36,780

The search resources only depend on the key sizes and not on the ciphers and their options. In this regard we don’t
have to include further differing considerations.

7.4 Quantum resources for the ciphers

The number of rounds depends on the specific key length k, while the four basic RIJNDAEL functions are inde-
pendent of the key length k for both AES and EAES. The realization of all RIJNDAEL functions is analyzed in
dedicated sections in [9]. Here we only present the results and comparisons per function.

Table 3: Cost for SHA-2 and -3 functions (256 bit):
function gates depth qubits

SHA-256 1.42 · 2146 1.69 · 2144 212.6

SHA3-256 1.52 · 2147 1.33 · 2137 220

The values for SHA-256 and SHA3-256 are results from the resource estimates done in [16], converted to a rep-
resentation in powers of 2 instead of 10. For both functions, the total cost comes down to approximately 2166 basic
operations. The estimation of the resources for the according 512-bit versions will be done in a further step of our
research.

For our EAES-options we have to multiply the gate values by the number of calls to the hash and inner permutation
functions.

Table 4: Cost for AES and EAES key expansion (256 bit):
function gates depth qubits

ExpandKey 54,331 23,896 512
HKDF 1.07 · 2150 1.26 · 2148 212.6 + 3072
CSHAKE 1.52 · 2149 1.33 · 2139 220 + 1024
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The numbers of gates and depths take the number of calls to the according hash and permutation functions into
account. Additional qubits are needed to store the output of all calls to the hash functions.

As mention before, we cannot refer to values for 512-bit keys at this time. But we can see that the 256-bit versions
already offer considerable advantages over the original RIJNDAEL key schedule ExpandKey.

Table 5: Cost for holding the state and initial round:
function gates depth qubits

state 0 0 128
initial round v1 64 NOT 0 128
initial round v2 128 CNOT 1 256

Initial round v1 represents the realization with flipping bits. These values are the same for all ciphers and options.

Table 6: Cost for basic functions
function gates depth qubits

SubBytes 22,326 1 9
ShiftRows 0 0 0
MixColumns 277 CNOT 39 0
AddRoundKey 128 CNOT 1 0

The current round key is available on 128 dedicated wires. SubBytes is realized by finding the inverse of the byte
in GF (28), seen as permutation in F256. No extra gates are necessary to implement ShiftRows, as it corresponds
to a permutation of the qubits. The position of the subsequent gates is simply adjusted to the correct input wire.

Cost for RIJNDAEL rounds

To compute all rounds of RIJNDAEL, 536 qubits are needed for 10 rounds in the 128 bit key version and 664 qubits
are required for any round number r ≥ 12. In this regard, the higher number of rounds in EAES does not add
complexity to the algorithm. But the number of rounds do add complexity to the number of gates and to the depth.

Cipher output for 256 bit keys

The number of gates and depth for EAES is derived as follows:

Values from the rounds row in table 4, AES-256 in [9] :

g14 = sum of number of gates in [9]
d14 = sum of depths in [9]

Values from the key expansion cost table in this article:

ghkdf = number of gates for HKDF-256
dhkdf = depths for HKDF-256
qhkdf = number of qubits for HKDF-256
gshake = number of gates for CSHAKE-256
dshake = depths for CSHAKE-256
qshake = number of qubits for CSHAKE-256

Then we compute the values for EAES(HKDF) from the formulas:
gates = ghkdf +

22
14 · g14 depth = dhkdf +

22
14 · d14

The values for EAES(CSHAKE) from the formulas:
gates = gshake +

22
14 · g14, depth = dshake +

22
14 · d14
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And the number of qubits for is the simple addition 664 + qsha , 664 + qsha3 respectively.

Table 7: Cost for each cipher output (256 bit)
cipher gates depth qubits

AES-256 1.65 · 221 1.46 · 217 1,336
EAES(HKDF) 1.07 · 2150 1.26 · 2148 1.21 · 213
EAES(CSHAKE) 1.52 · 2149 1.33 · 2139 1.002 · 220

Note that the gates and depth values for EAES equal the values in the key expansion cost table. This comes from
the fact that the contribution of the gates and and depth from the rounds is in much lower power of 2 than the
cost for the key expansions HKDF and CSHAKE. So we see that this replacements are the essential change and
contribution to a higher algorithm complexity.

Grover algorithm

For the overall T-count for Grover on RIJNDAEL we have an estimate of bπ4 2
k/2c · (6tk + fk), where k is the key

size, tk is the number of T-gates and fk is the cost for the equality function. For the overall circuit depth we obtain
with r = number of rounds: 2 · r· total T-depth. Here we are ignoring some of the gates which do not contribute
significantly to the bottom line. Both formulas are from [9], section 3.4.. So by a moderate estimation we get the
following complexities for Grover’s search on the compared ciphers:

Table 8: Grover’s search on ciphers
cipher gates depth qubits

AES-256 3.24 · 2151 1.71 · 2145 6,681
EAES(HKDF) > 2278 > 2274 > 214

EAES(CSHAKE) > 2277 > 2257 > 221

Both HKDF and CSHAKE have a considerable impact on the increased cost of Grover’s search. The higher num-
ber of rounds for EAES-256 and the 512-bit key version additionally contibute to the complexity of the rounds by
factors of at least r

14 . The authors of [9] recommended in 2015 to move away from AES-128 when expecting the
availability of at least a moderate size quantum computer. Our implementation excludes that option and offers an
increased complexity of at least 2126 compared to AES-256.

8 Impact of Quantum Algebraic Attacks

The authors of [10] present an algorithm which leads to new considerations of the security of systems which can be
reduced to solving Boolean equations. A solution a for the equation F ·a = 0 with a set of polynomials F ⊂ C[X]
is called Boolean if each coordinate of a is either 0 or 1.

The resulting quantum algebraic attack algorithm includes quantum-monomial solving of polynomial systems over
C by applying a Macauly linear system. Like this they constructed a Boolean equation solving algorithm, with the
following properties:

1) It decides if there exists a Boolean solution.
2) It returns a Boolean solution with a given probability if there are such solutions to the system.
3) It returns ∅ if no Boolean solution exists.

The runtime complexity of the resulting quantum algebraic attack is considerably lower than the one of Grover’s
Search, but it depends on two factors: a constant c and a condition number κ. The complexity of 278.53cκ2 for
AES-256 is not much higher than the complexity of 273.30cκ2 for AES-128 due to the same block size of 128
bit. Therefore we can assume that the complexity won’t be much higher for 512-bit key sizes, and it will also not
considerably increased by the higher number of rounds in EAES.
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The conclusion of [10] is, that systems which can be solved by Boolean equation solving, are only secure under
quantum algebraic attack, if the condition number κ is large. The construction of such systems is a topic for further
research. Besides AES and KECCAK, stream ciphers such as TRIVIUM an the multivariate public key cryptosys-
tem MPKC are affected by the attack.

9 Conclusion

Considering the lower exponent of the highest power of 2 in the total algorithm complexity, EAES offers a higher
complexity of a factor ≥ 2277−151 = 2126 regarding Grover’s search algorithm compared to AES, even if only
the 256-bit version is used. Regarding the quantum algebraic attacks, we can say that there is no attack outlined
yet for the version with HKDF. Regarding the version with CSHAKE, the quantum algebraic attack has to be
adapted to two phases: KECCAK and then on the rounds functions. The complexity of such a solution remains to
be investigated.

We consider EAES a sensible candidate for a first generation post-quantum secure symmetric encryption. It runs
effectively on currently used devices and is compatible with existing hardware implementations. We hope to be
able to contribute to a smooth transition into the new post-quantum cryptographical era.
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