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Abstract. CSIDH is an isogeny-based key exchange, which is a can-
didate for post quantum cryptography. It uses the action of an ideal
class group on Fp-isomorphic classes of supersingular elliptic curves. In
CSIDH, the ideal classes are represented by vectors with integer coef-
ficients. The number of ideal classes represented by these vectors de-
termines the security level of CSIDH. Therefore, it is important to in-
vestigate the correspondence between the vectors and the ideal classes.
Heuristics show that integer vectors in a certain range represent “almost”
uniformly all of the ideal classes. However, the precise correspondence
between the integer vectors and the ideal classes is still unclear. In this
paper, we investigate the correspondence between the ideal classes and
the integer vectors and show that the vector (1, . . . , 1) corresponds to an
ideal class of order 3. Consequently, the integer vectors in CSIDH have
collisions related to this ideal class. Here, we use the word “collision”
in the sense of distinct vectors belonging to the same ideal class, i.e.,
distinct secret keys that correspond to the same public key in CSIDH.
We further propose a new ideal representation in CSIDH that does not
include these collisions and give formulae for efficiently computing the
action of the new representation.

Keywords: CISDH · post-quantum cryptography · isogeny-based cryp-
tography · ideal class groups · supersingular elliptic curve isogenies.

1 Introduction

Once a large-scale quantum computer is built, many of the public-key cryptosys-
tems currently in use will no longer be secure. For this reason, research on post-
quantum cryptography (PQC) has been increasingly important. In 2017, the
National Institute of Standards and Technology (NIST) started the process of
PQC standardization [19]. Candidates for NIST’s PQC standardization include
supersingular isogeny key encapsulation (SIKE) [13], which is a cryptosystem
based on isogenies between elliptic curves.

Isogeny-based cryptography was first proposed by Couveignes [7] in 1997 and
independently rediscovered by Rostovtsev and Stolbunov [23, 26]. Their proposed
scheme is a Diffie-Hellman-style key exchange based on isogenies between ordi-
nary elliptic curves over a finite field and typically called CRS. In 2011, Jao and
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De Feo [12] proposed another isogeny-based key-exchange, supersingular isogeny
Diffie-Hellman (SIDH). In 2018, Castryck, Lange, Martindale, Panny, and Renes
[3] proposed commutative SIDH (CSIDH), which incorporates supersingular el-
liptic curves in the CRS scheme.

Diffie and Hellman [10] constructed their famous key-exchange scheme on
the multiplicative group of a finite field. Koblitz [14] and Miller [17] proposed
to use the group of points on an elliptic curve for the key-exchange scheme. The
structures of these groups can be easily determined. Let G be a cyclic subgroup
of one of these groups, g a generator of G, and N the order of G. Then, a
secret key is an integer x, and the corresponding public key is the group element
gx. If one takes x from the interval [0, N − 1], the correspondence x 7→ gx is
one-to-one. Buchmann and Williams [2] proposed a Diffie-Hellman-style key-
exchange using the ideal class group of an quadratic imaginary field with a large
discriminant. In their scheme, a secret key is an integer x, and the corresponding
public key is the ideal class ax, where a is a public ideal class. Unlike the former
two schemes, it is hard to determine the structure of the ideal class group,
and thus, the correspondence between the integer x and the ideal class ax is
unclear. However, Buchmann and Williams claimed that by using the heuristics
of Cohen and Lenstra [4], a randomly chosen ideal class has a large order with
high probability and it is unlikely that different integers generate the same ideal
class. CSIDH uses the free and transitive action of the ideal class group cl(O) of
an order O of an imaginary quadratic field on the set of Fp-isomorphism classes
of supersingular elliptic curves whose endomorphism ring is isomorphic to O. An
ideal class in CSIDH is represented by an ideal of the form le11 · · · lenn , where li
are prime ideals whose action can be efficiently computed and ei are integer. By
using this correspondence, a secret key in CSIDH is represented by an integer
vector (ei). The corresponding public key is the elliptic curve (le11 · · · lenn ) ∗ E,
where E is a public elliptic curve. By using the heuristics of Cohen and Lenstra
and the Gaussian heuristic, Castryck et al. claimed that if one takes ei from a
certain range, s/he can expect that all the ideal classes in cl(O) are uniformly
represented by these vectors. However, the precise correspondence between these
vectors and the ideal classes is still unclear. It is important to investigate the
correspondence between integer vectors and ideal classes, because the number
of ideal classes represented by the integer vectors determines the security level
of CSIDH.

In this paper, we investigate this correspondence and show that the ideal
representation in CSIDH has collisions related to an ideal class of order 3. In
particular, the vectors (e1, e2, . . . , en) and (e1 + 3, e2 + 3, . . . , en + 3) represent
the same ideal class. The order of the ideal class group cl(O) is three times the
class number of Q(

√
−p). Therefore, cl(O) always contains ideal classes of order

3. We show that the ideal class represented by (1, . . . , 1) has order 3; thus, the
action of the ideal class represented by (3, . . . , 3) is trivial. Furthermore, we pro-
pose a new ideal representation in CSIDH that does not include these collisions
and give formulae for computing the actions of the ideal classes represented by
(1, . . . , 1) and (−1, . . . ,−1). In particular, the actions of these ideal classes can
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be computed by isogenies of degree 4, and thus, they can be efficiently computed.
By using these formulae, our representation can be computed more efficiently
than the representation proposed by [3]. As an additional result, we give formu-
lae for odd-degree isogenies between Montgomery curves using 4-torsion points.
The computation of our formulae is faster than that of the previous formulae if
the degree is less than 9.

Organization. The rest of this paper is organized as follows. In Section 2, we
give a preliminaries on isogenies, ideal class groups, and CSIDH. In Section 3,
we describe our theoretical results. In particular, we show that the ideal class
represented by the vector (1, . . . , 1) has order 3 and its action can be computed
by using an isogeny of degree 4. Section 4 gives formulae for the action on Mont-
gomery curves of this ideal class and its inverse. We conclude the paper in Sec-
tion 5. Appendix gives formulae for odd-degree isogenies between Montgomery
curves.

Related work. Beullens, Kleinjung, and Vercauteren [1] computed the ideal
class group structure of CSIDH-512, which is a parameter set of CSIDH proposed
in [3], and they proposed a method to uniformly sample ideal classes from this
group. However, to obtain the structure of the ideal class group of CSIDH-512,
they used an algorithm that has subexponential time in the ideal class group
size. Therefore, their method may not be applicable to a larger CSIDH.

2 Preliminaries

We denote multiplication by m ∈ Z on an elliptic curve by [m]. For a group
element g, we denote the group generated by g by ⟨g⟩.

In this section, we briefly introduce isogenies between elliptic curves, ideal
class groups in number fields, the action of ideal classes on elliptic curves, and
CSIDH. We refer the reader to the textbook of Silverman [25, 24] for an exposi-
tion on elliptic curves and Neukirch [20] for a description of ideal class groups.
For details on CSIDH, the reader can consult Castryck et al. [3].

2.1 Isogenies

Since we use only elliptic curves defined over a finite prime field Fp with p > 3,
we describe definitions and properties related isogenies between these curves.

An isogeny is a rational map between elliptic curves that is a group homo-
morphism. Let E and E′ be elliptic curves defined over Fp, and φ : E → E′ an
isogeny defined over Fp. If φ is a nonzero isogeny, then φ induces an injection
between function fields φ∗ : F̄p(E

′) → F̄p(E), where F̄p is an algebraic closure
of Fp. In this case, we define the degree of φ by the degree of a field extension
F̄p(E)/φ∗(F̄p(E

′)) and say that φ is separable or inseparable if this field exten-
sion has the corresponding property. If φ is the zero map, we define the degree of
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φ to be 0. We denote the degree of φ by degφ. For a nonzero separable isogeny
φ : E → E′, the degree of φ is finite and the cardinality of the kernel of φ is
equal to degφ. Thus, a nonzero separable isogeny has a finite kernel. Conversely,
a finite subgroup of an elliptic curve E determines a separable isogeny from E.

Proposition 1 (Lemma 6 of [3]). Let E be an elliptic curve defined over Fp

and Φ a finite subgroup of E that is stable under the action of the p-th power
Frobenius map. Then there exists an elliptic curve E′ defined over Fp and a
separable isogeny φ : E → E′ defined over Fp with kernel Φ. The codomain E′

and the isogeny φ are unique up to Fp-isomorphism.

In the rest of this paper, we regard two elliptic curves as being the same if
they are Fp-isomorphic and denote the codomain of an isogeny φ : E → E′ with
kernel Φ by E/Φ.

For a nonzero separable isogeny φ : E → E′, there exists a unique isogeny
φ̂ : E′ → E such that φ̂ ◦ φ = [degφ]. We call the isogeny φ̂ the dual isogeny
of φ. We have deg φ̂ = degφ. For a given elliptic curve E and subgroup Φ, one
can explicitly calculate the curve E′ and isogeny φ : E → E′ by using Vélu’s
formula [27].

2.2 Ideal class groups

Let K be a number field of degree n. An order in K is a subring of K whose
rank as a Z-module is n. It is known that the integral closure of Z in K is the
unique maximal order in K. We denote the maximal order by OK . Let O be an
order of K. A fractional ideal of O is a finitely generated O-submodule of K. A
fractional ideal a is invertible if there exists a fractional ideal b such that ab = O,
integral if a ⊆ O, and principal if there exists α ∈ K such that a = αO. The
set of invertible ideals of O forms an abelian group. We denote this group by
I(O). The subgroup of I(O) consisting of principal ideals is denoted by P (O).
The ideal class group of O is the quotient group

cl(O) = I(O)/P (O).

We denote the equivalent class of a by {a}. It is known that cl(O) is a finite
group. The order of cl(OK) is called the class number of K and denoted by hK .

The conductor of O is the set {α ∈ OK | αOK ⊆ O}. Note that the conductor
of O is contained in O and can be regarded as an integral ideal of both OK and
O. We need the following theorem, which provides a relation between the ideal
class group of the maximal order and of an order.

Theorem 1. Let K be a number field, O an order of K, and f the conductor of
O. Then there is an exact sequence

1 → O×
K/O× → (OK/f)×/(O/f)× → cl(O) → cl(OK) → 1. (1)

Proof. See [20, Theorem 12.12 in Chapter 1].
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2.3 The class group action

Let p > 3 be a prime number and E an elliptic curve defined over Fp. We de-
note the Fp-rational endomorphism ring of E by EndFp(E). The ring EndFp(E)
contains the p-th power Frobenius endomorphism ϕ, which satisfies the charac-
teristic equation

ϕ2 − tϕ+ p = 0, (2)

where t ∈ Z is called the trace of Frobenius. The curve E is supersingular if
and only if t = 0. The Fp-rational endomorphism ring EndFp

(E) is isomorphic
to an order in an imaginary quadratic field. For an order O in an imaginary
quadratic field and π ∈ O, we define Eℓℓp(O, π) to be the set of Fp-isomorphism
classes of elliptic curves E defined over Fp such that there is an isomorphism
O → EndFp(E), α 7→ [α] that maps π to the Frobenius endomorphism.

Let E ∈ Eℓℓp(O, π) and a be an integral ideal of O. We define the a-torsion
subgroup E[a] of E by

E[a] := {P ∈ E | [α]P = ∞, for all α ∈ a}.

The subgroup E[a] is finite, since E[a] ⊆ E[N(a)], where N is the absolute norm.
Therefore, by Proposition 1, there exists a unique elliptic curve E/E[a] and an
isogeny φa : E → E/E[a] with kernel E[a]. We denote the elliptic curve E/E[a]
by a ∗ E. If a is a principal ideal generated by α ∈ O, then φa is a composition
of the endomorphism [α] and an Fp-automorphism of E, and a ∗ E = E. This
correspondence induces an action of cl(O) on Eℓℓp(O, π). The following theorem
describe the details.

Theorem 2 (Theorem 7 of [3]). Let O be an order in an imaginary quadratic
field and π ∈ O such that Eℓℓp(O, π) is non-empty. Then the ideal class group
cl(O) acts freely and transitively on the set Eℓℓp(O, π) via the map

cl(O)× Eℓℓp(O, π) → Eℓℓp(O, π)

({a}, E) 7→ a ∗ E,

in which a is chosen as an integral representative.

2.4 CSIDH

Let p > 3 be a prime of the form 4ℓ1 · · · ℓn − 1, where ℓ1, . . . , ℓn are distinct odd
primes. Let π =

√
−p and O = Z[π]. The primes ℓi split in O as ℓiO = līli,

where li = ℓiO + (π − 1)O and l̄i = ℓiO + (π + 1)O. The isogeny defined by
li has degree ℓi, and its dual isogeny is the isogeny defined by l̄i. The action of
cl(O) on Eℓℓp(O, π) is used in CSIDH. Note that Eℓℓp(O, π) is not empty, since
the elliptic curve defined by y2 = x3 +x is contained in this set (see §4 in [3] for
details). Therefore, by Theorem 2, the cardinality of Eℓℓp(O, π) is equal to that
of cl(O).
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Figure 1. Correspondence of keys in CSIDH

For an elliptic curve E ∈ Eℓℓp(O, π), the torsion subgroups of the above
ideals can be written as

E[li] = E[ℓi] ∩ E(Fp), (3)

E [̄li] = E[ℓi] ∩ {Q ∈ E | [π]Q = −Q}. (4)

Since the actions of li and l̄i on Eℓℓp(O, π) can be efficiently computed (see §8
in [3]), Castryck et al. [3] represented an ideal class in cl(O) by the product of
these ideals; i.e., they represented it by an ideal of the form

le11 · · · lenn for −m ≤ ei ≤ m, (5)

where m is an integer such that (2m + 1)n ≥ √
p. This representation induces

a correspondence between integer vectors and ideal classes. Castryck et al. [3]
showed that one can expect that this correspondence is “almost” surjective and
uniform. (See §7.1 in [3] for details.) A secret key in CSIDH is expressed by an
integer vector (e1, . . . , en), and we call this vector “secret exponents.” A public
key in CSIDH is an elliptic curve in Eℓℓp(O, π). By Theorem 2, there is a one-
to-one correspondence between cl(O) and Eℓℓp(O, π). Figure 1 illustrates this
situation.

The protocol of CSIDH is as follows: Alice and Bob share an elliptic curve E ∈
Eℓℓp(O, π) as a public parameter. Alice chooses her secret exponents (e1, . . . , en)
and computes the curve a ∗ E, where a =

∏
i l

ei
i . She sends the curve to Bob

as her public key. Bob proceeds in the same way by choosing his secret ideal

b =
∏

i l
e′i
i . Then, both parties can compute the shared secret ab ∗ E = ba ∗ E.

Note that cl(O) is commutative.
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3 Collisions related to an ideal class of order 3

First, we describe the notation that will be used in the rest of this paper. We
will consider a slightly more general setting than that of CSIDH. Let p > 3 be
a prime such that p ≡ 3 (mod 8). Then (p + 1)/4 is an odd integer, so it can
be factorized as ℓr11 · · · ℓrnn , where ℓi are distinct odd primes and ri are positive
integers. Let π =

√
−p, K = Q(π), and O = Z[π]. As in CSIDH, the primes ℓi

split in O as ℓiO = līli, where li = ℓiO + (π − 1)O, l̄i = ℓiO + (π + 1)O.

3.1 An ideal class of order 3

We prove two main theorems of this paper. The first theorem implies that there
are two distinct secret exponents that represent the same ideal class.

Theorem 3. The ideal classes {lr11 · · · lrnn } has order 3 in cl(O).

Proof. The unit groups O×
K and O× are {±1}. Therefore, by Theorem 1, we

obtain the exact sequence

1 → (OK/f)×/(O/f)× → cl(O) → cl(OK) → 1, (6)

where f is the conductor f of O. Note that the maximal order OK = Z[ 1+π
2 ]. Since

f = 2OK = 2O+(π−1)O, it can be easily checked that OK/f ∼= F4 and O/f ∼= F2.
Therefore, the group (OK/f)×/(O/f)× is of order 3. The ideal lr11 · · · lrnn OK is
a principal ideal of OK because π−1

2 generates this ideal in OK . Therefore,
the exact sequence (6) indicates that the ideal class {lr11 · · · lrnn } comes from
(OK/f)×/(O/f)×, so its order divides 3. We assume that the order of {lr11 · · · lrnn }
is 1; i.e., lr11 · · · lrnn is principal in O. Then, there exist α ∈ O such that lr11 · · · lrnn =
αO. As we stated above, lr11 · · · lrnn OK = π−1

2 OK , so we have α = ±π−1
2 . This

contradicts α ∈ O. Consequently, the ideal class {lr11 · · · lrnn } has order 3 in cl(O).
⊓⊔

The following corollary directly follows from this theorem and shows that
there are collisions in the ideal representation in CSIDH if m ≥ 2. Figure 2
illustrates the assertion in the corollary.

Corollary 1. In CSIDH, the secret exponents

(e1, e2 . . . , en) and (e1 + 3, e2 + 3, . . . , en + 3)

represent the same ideal class.

The second main theorem claims that the ideal class of lr11 · · · lrnn has a simple
representative. We define the ideals of O as follows:

c = 4O + (π − 1)O, (7)

c̄ = 4O + (π + 1)O. (8)

It can be easily checked that cc̄ = 4O.



8 H. Onuki, T. Takagi

Figure 2. Collision in the ideal representation

Theorem 4. The ideals c and c̄ are invertible and

clr11 · · · lrnn = (π − 1)O, (9)

c̄̄lr11 · · · l̄rnn = (π + 1)O. (10)

Proof. It can be easily shown that

c

(
O +

π + 1

4
O
)

= O, c̄

(
O +

π − 1

4
O
)

= O. (11)

Therefore, c and c̄ are invertible.
By definition, the ideal clr11 · · · lrnn is generated by 4

∏
i ℓ

ri
i and multiple by

π − 1. Since 4
∏

i ℓ
ri
i = p + 1 = −(π − 1)(π + 1), the ideal (π − 1)O contains

clr11 · · · lrnn .
Next, we show the inclusion clr11 · · · lrnn ⊇ (π − 1)O. There exists an integer

N > 0 such that (π − 1)N ∈ clr11 · · · lrnn , since the ideals c and li contain π − 1.
By the congruence

(π − 1)N ≡ (−2)N (mod π + 1), (12)

there exists α ∈ O such that (π − 1)N − α(π + 1) = (−2)N . Since (π − 1)N and
−(π − 1)(π + 1) = 4

∏
i ℓ

ri
i are contained in clr11 · · · lrnn , we have

(−2)N (π − 1) = (π − 1)N+1 − α(π − 1)(π + 1) ∈ clr11 · · · lrnn .

On the other hand, we have (
∏

i ℓ
ri
i )(π − 1) ∈ clr11 · · · lrnn . Since 2 and

∏
i ℓ

ri
i are

relatively prime, it follows that π−1 ∈ clr11 · · · lrnn . This proves equation (9). The
second equation is the complex conjugate of the first. ⊓⊔

In terms of the ideal class group, Theorem 4 says that

{lr11 · · · lrnn } = {c̄}, (13)

{̄lr11 · · · l̄rnn } = {c}. (14)
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Note that {lr11 · · · lrnn }−1 = {̄lr11 · · · l̄rnn } and {c}−1 = {c̄}. An application of this
theorem to CSIDH is that the action of {lr11 · · · lrnn } on Eℓℓp(O, π) can be com-
puted via an isogeny of degree 4.

Corollary 2. Let E ∈ Eℓℓp(O, π). Then, the torsion subgroups E[c] and E [̄c]
are cyclic groups of order 4 and

(lr11 · · · lrnn ) ∗ E = c̄ ∗ E, (15)

(̄lr11 · · · l̄rnn ) ∗ E = c ∗ E. (16)

Proof. Since E[c] = E[4]∩E[π−1] = E[4]∩E(Fp) and #E(Fp) = p+1 = 4
∏

i ℓ
ri
i ,

we have #E[c] = 4. Therefore, the isogeny defined by c has degree 4. It can be
easily checked that cc̄ = 4O; i.e., the composition of isogenies defined by c and c̄
is multiplication by 4. Therefore, the isogeny defined by c̄ is the dual isogeny of
the isogeny defined by c, so it has degree 4. Thus, we have #E [̄c] = 4.

Consequently, we have that E[c] and E [̄c] are cyclic of order 4 or isomorphic to
Z/2Z⊕Z/2Z. We assume E[c] ∼= Z/2Z⊕Z/2Z. This means that E[c] = E[2]; i.e.,
the action of the ideal class of c on Eℓℓp(O, π) is trivial. Therefore, by Theorem
2, c is principal. Furthermore, by Theorem 4, lr11 · · · lrnn is also principal. This
contradicts Theorem 3 that says the order of {lr11 · · · lrnn } is 3. Thus, E[c] is
cyclic of order 4. The statement for E [̄c] can be proven similarly.

Equations (15) and (16) directly follow from equations (13) and (14). ⊓⊔

3.2 Ideal representation without the collisions stated in Section 3.1

For simplicity, we use the setting in CSIDH in this subsection; i.e., we assume
r1 = · · · = rn = 1.

Corollary 1 says that if one uses the secret exponents (e1, . . . , en) in the
intervals [−m,m]n with m ≥ 2 in CSIDH, then there are collisions in the ideal
representation. For example, CSIDH-512, which is a parameter set of CSIDH
with a prime p about 512 bits proposed by Castryck et al. [3], uses the intervals
[−5, 5]74, so it contains collisions.

On the other hand, for CSIDH-512, Beullens, Kleinjung, and Vercauteren
[1] proposed a method to choose ideal classes uniformly. However, their method
relies on knowledge of the structure of the ideal class group; in particular, it needs
a list of secret exponents which represent the identity element of the ideal class
group. To obtain the structure of the ideal class group, they used the algorithm
due to Hafner and McCurley [11]. Since that algorithm is subexponential time
in the discriminant of the target number field, their method can not be applied
to a CSIDH when a large base field is used. Therefore, the ideal representation
proposed in [3] is still important.

For the general case, one way to avoid the collisions stated in Section 3.1 is
to use different intervals for each ei in which there is at least one interval of the
form [−1, 1]. De Feo, Kieffer, and Smith [9] and Meyer, Campos, and Reith [15]
proposed using different intervals for each ei for speeding up the computation
of the action of the ideal classes. One can expect that this representation is
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“almost” surjective and uniform, from a similar argument to the one in §7.1 in
[3] (for the case of using different intervals, see §5.4 in [21]).

We propose another representation that is more efficiently computable than
the method described in the above paragraph. Our representation uses c instead
of ln and is of the form

le11 · · · len−1

n−1 c
f for −mi ≤ ei ≤ mi, f ∈ {−1, 0, 1}, (17)

where m1, . . . ,mn−1 are positive integers such that
∏

i(2mi + 1) ≥ √
p. By

Corollary 2, the action of c can be efficiently computed by an isogeny of degree
4. We give the formulae for computing this isogeny between Montgomery curves
in Section 4.2. The reason for choosing ln as a replacement is that the cost of
the isogeny associated with ln is the highest in the prime ideals l1, . . . , ln.

To show the validity of our representation, recall the exact sequence (6)

1 → (OK/f)×/(O/f)× → cl(O) → cl(OK) → 1.

We denote the image of (OK/f)×/(O/f)× in cl(O) by G. As we stated in the
proof of the Theorem 3, G is a group of order 3 generated by {̄lr11 · · · l̄rnn } = {c}.
We define a set

M =

n−1⊕
i=1

([−mi,mi] ∩ Z). (18)

Then, we want to show the map

M → cl(O)/G, (ei) 7→ the image of le11 . . . l
en−1

n−1 (19)

is “almost” uniform and surjective. We can do so by using the same discussion
as in §7.1 in [3]. Therefore, the map

M × {−1, 0, 1} → cl(O), (e1, . . . , en−1; f) 7→ {le11 . . . l
en−1

n−1 c
f} (20)

is also “almost” uniform and surjective.

4 Formulae for Montgomery curves

Here, we give formulae for computing the action of our new representation on
Montgomery curves [18]. A Montgomery curve defined over Fp is an elliptic curve
defined by

By2 = x3 +Ax2 + x, (21)

where A,B ∈ Fp. We denote this curve by EA,B or EA if B = 1. Castryck et al.
[3] showed that all curves in Eℓℓp(O, π) can be defined as unique Montgomery
curves and proposed an implementation of CSIDH on Montgomery curves.
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4.1 Existing formulae

First, let us recall the formulae for computing an isogeny between Montgomery
curves presented by De Feo, Jao, and Plût [8] and Costello and Hisil [5]. We will
use these formulae for proving our new formulae.

Theorem 5. Let EA,B be a Montgomery curve over Fp. Let P+, P− ∈ EA,B

such that the x-coordinate of P+ is 1 and the x-coordinate of P− is −1. Then
the points P+ and P− have order 4, and the elliptic curve EA,B/⟨P+⟩ is defined
by

B

2−A
y2 = x3 + 2

A+ 6

A− 2
x2 + x, (22)

and the elliptic curve EA,B/⟨P−⟩ is defined by

B

2 +A
y2 = x3 − 2

A− 6

A+ 2
x2 + x. (23)

Proof. The first assertion can be easily checked by using the duplication formula
for Montgomery curves [18]. For the second, see equation (20) in [8].

For the third, we use an isomorphism between a Montgomery curve and its
twist. Let i be a square root of −1 in F̄p. For a, b ∈ Fp, we define the isomorphism

ta,b : Ea,b → E−a,b, (x, y) 7→ (−x, iy). (24)

Then, tA,B(P−) is a point of E−A,B whose x-coordinate is 1. Let φ be the isogeny
E−A,B → E−A,B/⟨tA,B(P−)⟩. By the second assertion of this theorem, we have
E−A,B/⟨tA,B(P−)⟩ = EA′,B′ , where

A′ = 2
A− 6

A+ 2
, B′ =

B

2 +A
. (25)

Then the composition

tA′,B′ ◦ φ ◦ tA,B : EA,B → E−A′,B′ (26)

is the isogeny defined over Fp with kernel ⟨P−⟩. This proves the third assertion.
⊓⊔

Theorem 6. Let EA,B be a Montgomery curve defined over Fp, P ∈ EA,B a
point of order ℓ = 2d + 1, and φ the isogeny from EA,B with kernel ⟨P ⟩. For
i ∈ N, we denote the x-coordinate of [i]P by xi. Then, the codomain of φ is
EA′,B′ , where

A′ =

(
6

d∑
i=1

1

xi
− 6

d∑
i=1

xi +A

)(
d∏

i=1

xi

)2

and B′ = B

(
d∏

i=1

xi

)2

, (27)

and φ maps
(x, y) 7→ (f(x), yf ′(x)), (28)
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where

f(x) = x

d∏
i=1

(
xxi − 1

x− xi

)2

, (29)

and f ′(x) is its derivative.

Proof. This is a special case of Theorem 1 of [5]. ⊓⊔

4.2 New formulae

Here, we give formulae for isogenies corresponding to the ideals lr11 · · · lrnn and
l̄r11 · · · l̄rnn between Montgomery curves. By Corollary 2, these isogenies can be
computed by the actions of the ideals c and c̄. First, we give generators of the
torsion subgroups E[c] and E [̄c].

Lemma 1. Let A ∈ Fp such that EA ∈ Eℓℓp(O, π), P+ be a point of EA of
x-coordinate 1, and P− be a point of EA of x-coordinate −1. Then

EA[c] = ⟨P−⟩, (30)

EA [̄c] = ⟨P+⟩. (31)

Proof. By definition, we have

EA[c] = EA[4] ∩ EA(Fp), (32)

EA [̄c] = EA[4] ∩ {Q ∈ EA | [π]Q = −Q}. (33)

Furthermore, by Theorem 5, the points P− and P+ have order 4. Therefore, it
suffices to show that P− ∈ Fp and [π]P+ = −P+.

By Corollary 2, EA[c] is cyclic of order 4. Therefore, the 2-torsion subgroup
EA[2] is not contained in EA(Fp). This means the equation

x3 +Ax2 + x = 0 (34)

has only one solution x = 0 in Fp. Thus, the discriminant A2 − 4 of x2 +Ax+1
is not a square in Fp. Therefore, one of A− 2 or A+2 is a square in Fp, and the
other is not. Since the y-coordinate of P− is a square root of A − 2, while that
of P+ is a square root of A + 2, one of P− or P+ is in EA(Fp) and the other is
not. Since the x-coordinate of P+ is in Fp, if P+ ̸∈ EA(Fp), then [π]P+ = −P+.
Therefore, it suffices to prove P− ∈ EA(Fp).

Since p ≡ 3 (mod 8), −2 is a square in Fp. Therefore, the lemma holds in
the case A = 0. For the general case, we consider an isogeny from E0 to EA. Let
P ′
− be a point of E0 whose x-coordinate is −1. By Theorem 2, there exists an

integral invertible ideal a such that EA = a ∗ E0. By changing a representative
of the ideal class if necessary, we may assume that the absolute norm of a is
odd; i.e., the isogeny defined by a has odd degree. By substituting x = −1 into
equation (29) in Theorem 6, it follows that this isogeny maps P ′

− to P−. (Note
that for b ∈ F×

p , EA,b2 is isomorphic over Fp to EA by (x, y) 7→ (x, by).) Since
P ′
− is defined over Fp, P− is also defined over Fp. ⊓⊔
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Next, we give formulae for the isogenies corresponding to the ideals lr11 · · · lrnn
and l̄r11 · · · l̄rnn .

Theorem 7. Let A ∈ Fp such that EA ∈ Eℓℓp(O, π). We define

A′ = −2
A+ 6

A− 2
, A′′ = 2

A− 6

A+ 2
. (35)

Then
(lr11 · · · lrnn ) ∗ EA = EA′ , (̄lr11 · · · l̄rnn ) ∗ EA = EA′′ . (36)

Proof. By Corollary 2, we have lr11 · · · lrnn ∗ EA = c̄ ∗ EA. The above lemma says
that c ∗EA = EA/⟨P+⟩. Therefore, by Theorem 5, lr11 · · · lrnn ∗EA can be defined
by

1

2−A
y2 = x3 + 2

A+ 6

A− 2
x2 + x. (37)

For a, b ∈ Fp, the Montgomery curve Ea,−b2 is Fp-isomorphic to E−a by (x, y) 7→
(−x, by). Since P− ∈ EA(Fp), the element A−2 is a square in Fp. Therefore, the
curve defined by equation (37) is Fp-isomorphic to the curve defined by

y2 = x3 − 2
A+ 6

A− 2
x2 + x. (38)

This proves the first assertion of the theorem. One can prove the second similarly.
⊓⊔

By using Corollary 2 and Theorem 7, we can compute the action of the
ideal representation proposed in Section 3.2. The action of le11 · · · len−1

n−1 c
f on a

Montgomery curve EA ∈ Eℓℓp(O, π) can be computed as follows:

(i) Set A′ = 2
A− 6

A+ 2
if f = 1, A′ = A if f = 0, and A′ = −2

A+ 6

A− 2
if f = −1.

(ii) Compute (le11 · · · len−1

n−1 ) ∗ EA′ by using Algorithm 2 in [3].

5 Conclusion

We showed that the ideal class of lr11 · · · lrnn has order 3 in the ideal class group
and the same class of the ideal c̄. In CSIDH, the former means that the secret
exponents (e1, e2 . . . , en) and (e1+3, e2+3, . . . , en+3) generate the same public
key. The latter means that the action of the secret exponents (1, . . . , 1) can be
computed by an isogeny of degree 4. We gave formulae for computing this action
on Montgomery curves. Furthermore, we proposed a new ideal representation
for CSIDH that does not contain the collisions we found. Our new ideal repre-
sentation can be computed efficiently by using the formula for computing the
action of the secret exponents (1, . . . , 1).
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Appendix Odd-degree isogenies using 4-torsion points

We give new formulae for computing odd-degree isogenies between Montgomery
curves by calculating the images of P+ and P−.

Theorem 8. We use the same notation as in Theorem 6 and assume B = 1.
Further, we assume that the group ⟨P ⟩ is stable under the action of the p-th power
Frobenius endomorphism. Then, there exists A′ ∈ Fp such that EA′ = EA/⟨P ⟩.
Furthermore, A′ satisfies the equations

A′ + 2 = (A+ 2)

((
1 + 2

d∑
i=1

xi + 1

xi − 1

)
d∏

i=1

xi

)2

, (39)

A′ − 2 = (A− 2)

((
1 + 2

d∑
i=1

xi − 1

xi + 1

)
d∏

i=1

xi

)2

. (40)

Proof. Let b =
∏d

i=1 xi. Then we have b ∈ Fp, because the group ⟨P ⟩ is stable
under the action of the p-th power Frobenius map. Theorem 6 says that the
isogeny with kernel ⟨P ⟩ is given by

EA → EA′,b2 , (x, y) 7→ (f(x), yf ′(x)), (41)

where A′ is defined in Theorem 6. We have EA′,b2 = EA′ because EA′,b2 →
EA′ , (x, y) 7→ (x, by) is a Fp-isomorphism. This proves the first assertion.

Let P+, P− ∈ EA be the same as in Lemma 1. We denote the y-coordinate of
P+ by y+. Note that y2+ = A+2. The image of P+ under the isogeny EA → EA′

is (1, by+f
′(1)). One can easily check that

f ′(1) = 1 + 2

d∑
i=1

xi + 1

xi − 1
. (42)

Substituting (1, by+f
′(1)) into equation of EA′ yields equation (39). By consid-

ering the image of P−, we obtain equation (40). ⊓⊔

As same as the other formulae for isogenies between Montgomery curves [8, 6,
5, 22, 16], our formulae can avoid inversions by using a projective coordinate of A.
For x ∈ Fp, we call a pair X,Z ∈ Fp such that x = X/Z a projective coordinate
of x and denote it by (X : Z). The following corollary gives a projectivized
variant of equation (40) in the above theorem. Note that a projectivized variant
of equation (39) can be obtained in the same way.

Corollary 3. We use the same notation as in Theorem 8. Let (a : c) be a
projective coordinate of A and (Xi : Zi) a projective coordinate of xi. We define

c′ = c(

d∏
i=1

Si

d∏
i=1

Zi)
2), (43)

a′ = (a− 2c)((

d∏
i=1

Si + 2

d∑
i=0

Di

∏
j ̸=i

Sj)

d∏
i=1

Xi)
2 + 2c′, (44)
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where Si = Xi + Zi, Di = Xi − Zi. Then (a′ : c′) is a projective coordinate of
A′.

Proof. This follows immediately from equation (40). ⊓⊔

By Corollary 2, we obtain an algorithm (Algorithm 1) for computing the co-
efficient of the codomain of an odd-degree isogeny. We assume that the elements
Xi, Zi, Si and Di are precomputed. These elements are used in the computation
for the image of a point under an isogeny. In CSIDH, one needs to compute not
only the coefficient of the codomain of an isogeny, but also the image of a point
under that isogeny. Therefore, it is natural to separate the computation of these
elements from that of an isogeny.

Algorithm 1 Odd-degree isogeny

Require: A projective coordinate (a : c) of the coefficient of a Montgomery curve,
projective coordinates (Xi : Zi) of the x-coordinate of [i]P , where P ∈ Ea/c has
odd order ℓ = 2d+ 1, Si = Xi + Zi, and Di = Xi − Zi for i = 1, . . . , d.

Ensure: a projective coordinate (a′ : c′) such that Ea′/c′ = Ea/c/⟨P ⟩.
1: X ← X1, Z ← Zi, F ← D1, G← S1

2: for i = 2 to d do
3: X ← XXi.
4: Z ← ZZi.
5: F ← FSi +GDi.
6: G← GSi.
7: end for
8: c′ ← c(GZ)2.
9: return ((a− 2c)((G+ 2F )X)2 + 2c′ : c′).

The cost of Algorithm 1 is

(5d− 1)M+ 2S+ (d+ 5)a, (45)

where M, S, and a mean multiplication, squaring, and addition or subtraction
on the field Fp, respectively.

On the other hand, the costs of the similar algorithms in the previous studies
are as follows. Castryck et al. [3] used the formula from Costello and Hisil [5]
and Renes [22]. The cost is

(6d− 2)M+ 3S+ 4a. (46)

Meyer and Reith [16] proposed an algorithm that exploits the correspondence
between Montgomery curves and twisted Edwards curves. The cost is

2dM+ 6S+ 6a+ 2w(ℓ), (47)

where w(ℓ) is the cost of the ℓ-th power on Fp. If we use the binary algorithm
for exponentiation, we obtain w(ℓ) = (h− 1)M+(t− 1)S, where h and t are the
Hamming weight and the bit length of ℓ, respectively.
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For comparing the above costs, we assume that S = 0.8M and a = 0.05M as
in [16]. We conclude that Algorithm 1 is the fastest if ℓ ≤ 7 and the algorithm in
[16] is the fastest if ℓ > 7. Table 1 shows the costs of these algorithms for small
degrees.

Table 1. Costs of odd-degree isogeny computations

degree Algorithm 1 Algorithm in [3] Algorithm in [16]

3 5.90M 6.70M 10.70M
5 10.95M 12.80M 14.30M
7 16.00M 18.90M 18.30M
9 21.05M 25.00M 19.90M
11 26.10M 31.00M 23.90M
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