
Adaptive Security of Practical Garbling Schemes

Zahra Jafargholi∗ Sabine Oechsner†

Abstract

A garbling scheme enables one to garble a circuit C and an input x in a way that C(x) can be evaluated,
but nothing else is revealed. Since the first construction by Yao, there have been tremendous practical
efficiency improvements for selectively secure garbling schemes, where the adversary is forced to choose
both input and circuit to be garbled at the same time. However, in the more realistic setting of adaptive
security –where an adversary can choose the input adaptively based on the garbled circuit– not much is
known about practical efficiency improvements.

In this work, we initiate the study of practical garbling schemes that are both more efficient than
Yao’s construction and adaptively secure. We provide insights into characteristics of these schemes and
highlight the limitations of current techniques for proving adaptive security in this regime. Furthermore,
we present an adaptively secure garbling scheme that garbles XOR gates with 2 and AND gates with 3
ciphertexts per gate, thus providing the first practical garbling scheme with adaptive security based on
PRFs whose garbled circuit size is smaller than that of Yao’s construction.

1 Introduction

Garbled circuits (GC) were introduced in 1982 by Yao [26, 27] and have in the past four decades since turned
into a fundamental corner stone of cryptography, with applications such as secure multi-party computation,
functional encryption and zero-knowledge protocols. A garbling scheme provides a way to garble a circuit
C and an input x (into C̃, x̃), such that the output C(x) can be computed from C̃ and x̃, but nothing else
is revealed about the circuit or its input. This property of concealing all other information about C and x
can be formalized in two different ways. The first flavor is selective security, where the adversary picks C
and x at the same time and sends them to the challenger and gets back C̃, x̃. The second and more realistic
flavor is adaptive security where the adversary first chooses and sends C and gets back C̃, and then gets
to adaptively chose x. In both cases, there must be a simulator that only gets C(x) (once x is known) and
produces a simulated garbled circuit and input such that the adversary cannot tell the difference between
the real and simulated results. In general, the topology of the graph is assumed to be public knowledge. In
case of some optimized schemes, the circuit function is not private either, since the garbling and evaluation
of XOR and AND gates are different.

We refer to the time it takes to garble the circuit as off-line complexity of the garbling scheme and the
time it takes to garble the input (which is lower bounded by |x̃|) as on-line complexity of the scheme. The
importance of efficient on-line complexity is more apparent in adaptive settings. Say a client (with dismal
computational power) needs to compute a large circuit on a small (as yet unknown) input as quickly as
possible. This client can take their time computing a garbled version of that large circuit and send it to a
much more powerful server, and once the client knows x, can quickly garble and send it to the server and
get back the output. In this case, clearly the on-line complexity must be much smaller than the time it takes
to compute C(x).

From a theoretical point of view, there exists already a range of adaptively secure garbling schemes ([7], [6],
[15], [11], [17]) as well as generic transformation from selective to adaptive security ([7], [23]). Unfortunately,

∗Sepior. Email: zahra@sepior.com. This work was done while at Aarhus University, Denmark. This work was supported by
the European Research Council (ERC) under the European Unions’s Horizon 2020 research and innovation programme under
grant agreement No 669255 (MPCPRO).
†Concordium Blockchain Research Center, Aarhus University, Denmark. Email: oechsner@cs.au.dk. This work was sup-

ported by the European Research Council (ERC) under the European Unions’s Horizon 2020 research and innovation programme
under grant agreement No 669255 (MPCPRO) and the Danish Independent Research Council under Grant-ID DFF-8021-00366B
(BETHE).

most of them are prohibitively inefficient for practical applications and/or are based on strong non-standard
assumptions. The only exception so far is Yao’s garbled circuits (YaoGC) which was shown to be selectively
secure based on the existence of one-way functions by Lindell and Pinkas [20], and adaptively secure for
NC1 circuits by Jafargholi and Wichs [17] based on the same assumption. For the rest of this work, we will
refer to the technique used in [17] as the JW technique. A considerable body of work has been dedicated
to creating garbling schemes that improve in off-line complexity over Yao’s construction (without sacrificing
on-line complexity efficiency) by reducing the garbled circuit size ([24], [25], [19], [18], [28], [14]), and we
will refer to this class of garbling schemes as optimized garbling schemes. All of these construction are
proven selectively secure (based on different assumptions of various strength), yet their adaptive security
remained unexamined. This is not surprising since proving adaptive security is notoriously difficult for many
cryptographic primitives.

Given the importance of efficient garbling schemes in modern cryptographic protocols, it is natural
to ask about the adaptive security of optimized garbling schemes. The challenge is the inherent need
for equivocation of the circuit garbling to the real input. Indeed, there exist generic transformation from
garbling schemes with selective security to adaptive security. As a drawback, none of the transformations are
preserving both efficiency and assumptions. Existing transformations either increase the offline complexity
to be proportional to the circuit size by using equivocal encryption [7], assume universal computational
extractors [6], or shift the equivocation into the assumption of a programmable random oracle [7], resulting
in the number of queries that need to programmed to be linear in the circuit size. That means that all
approaches either drastically increase the concrete on-line efficiency or rely on assumptions that are believed
to be widely unrealistic. It remains therefore a challenge to find or construct a garbling scheme that can be
proved to be adaptively secure based on standard assumptions, with on-line complexity similar to YaoGC
and off-line complexity smaller than YaoGC.

1.1 Our contributions

In this work, we present the following contributions:

1. We initiate the study of adaptively secure practical garbling schemes. To this extent, we examine the
adaptive security of existing optimized garbling schemes and provide insights into characteristics of
practical garbling schemes which can be proven adaptively secure – using currently known techniques.
These characteristics provide a shortcut for analyzing adaptive security of future optimized garbling
schemes constructions.

2. We construct the first adaptively secure optimized garbling scheme for NC1 circuits with garbled circuit
size that is 25% to 50% smaller than that of YaoGC and same on-line complexity, assuming only the
existence of PRFs.

3. We successfully use the JW technique for the first time on a garbling scheme built on hash functions
(along with the point-and-permute optimization) instead of an encryption scheme (where permutation
bits are not needed) and hence show that point-and-permute does not interfere with an adaptive
security proof under standard assumptions. Moreover, our construction uses the three-row reduction
optimization, proving that this technique is compatible with adaptive security.

We will give a brief overview over our findings here.

1.1.1 Adaptive Security of Existing Optimized Garbling Schemes

Since we are interested in optimized garbling schemes with adaptive security that improve over Yao’s garbling
scheme, we start by examining the adaptive security of existing optimized garbling schemes constructions.
Our starting point will be YaoGC as the only known practical garbling scheme with adaptive security based
on standard assumption.

YaoGC: From selective to adaptive security. We briefly revisit YaoGC and the main challenge in
proving it adaptively secure. Recall that to garble a Boolean circuit in Yao’s scheme, each wire is assigned
two random keys encoding zero and one, respectively. In the next step, four ciphertexts are computed

2

for each gate according to the gate function: each output wire key is encrypted under all combinations of
input wire keys which evaluate to that output wire key. The selective security proof consists of a simulator
and a series of hybrid arguments. In order to create this series of hybrid garbled circuits, it is crucial to
know the input x, to make sure that the half-real-half-simulated garbled circuits indeed output correct and
indistinguishable distributions. Even though the final simulation must succeed without knowledge of x, the
hybrids will depend on this knowledge and will only gradually remove the dependency. The challenge for
proving adaptive security thus is the inconvenient absence of x in the adaptive setting when the garbled
circuit is supposed to be created. In fact, this lack of knowledge is the crux in any attempt of lifting the
selective security proof of a garbling scheme to a proof of adaptive security. For the adaptive security proof
of YaoGC, Jafargholi and Wichs [17] define a larger set of hybrid games wherein a few wire values in the
circuit are guessed (since they are not known) at the beginning of the game, and the game is terminated if
the guesses are not correct. For example if the selective security proof requires O(n) hybrids arguments for
a NC1 circuit with n gates, the adaptive security might require O(n2) hybrid arguments.

Optimized garbling schemes with selective security. The existing optimized garbling schemes with
selective security achieve their efficiency improvements by correlating wire keys (within a gate and/or across
gates) and thereby removing the need to communicate every wire key separately. Furthermore, this corre-
lation creates opportunities to reduce the number of ciphertexts per gate. Various works proposed different
wire key correlations such as row-reduction techniques [24],[25], FreeXOR [19], half gates [28] and the work
by Gueron et al. [14] which we will refer to as the fast garbling approach. Note that the FreeXOR and half
gates constructions, that is the most efficient constructions in terms of on-line complexity, assume primitives
much stronger than PRFs (circular correlation-robust hash functions) and as a result have ”simpler” selective
security proofs where indistinguishability of real and simulated garbling can be shown without intermediate
hybrids. Nevertheless, their selective security proof relies crucially on knowledge of the input x.

From selective to adaptive security. Turning now to adaptive security of existing optimized garbling
schemes, we stumble over the same challenge as the one we were facing with YaoGC: The absence of the
input x at the beginning of our security game. Since the challenge is the same as before, one might wonder
if the same solution is applicable here. Furthermore, since some optimized garbling schemes are based
on stronger assumptions and their selective security proofs are somewhat simpler, there is hope that this
simplicity translates into simpler adaptive security proofs. However, once studied more closely, the stronger
assumptions (e.g. encryption schemes with stronger security) prove to be of no help at all. Remember that
the main challenge in proving adaptive security is the absence of x and since these stronger assumptions are
still selective in nature (requiring the adversary to commit to a choice in advance), they do not simplify this
particular challenge. Moreover, the solution from [17] (JW technique) is in most cases not applicable either.
In fact, we argue that in order to prove an optimized garbling schemes adaptively secure using the existing
techniques, the scheme needs to have the right balance of wire key correlation. On the one hand, more wire
key correlation can yield an efficiency gain. On the other hand, too much correlation and the JW technique
is not applicable anymore.

To see this, on a very high level, consider the distribution of wire keys in Yao’s construction: independent
and uniformly random. Or rather, they start as such, but as soon as the garbled circuit is created and the
gate garblings published, all wire keys are correlated with the garbled circuit (except for the input wire keys
to the circuit), because they appear as part of the garbled circuit inside ciphertexts. To prove (adaptive or
selective) security, for every wire in the circuit, all occurrences of one of the wire keys (call it k1) have to be
removed from the garbled circuit through a sequence of hybrids. These occurrences are replaced by the other
wire key (k0). This sequence of hybrids should be defined such that each two consecutive hybrids can be
shown to be indistinguishable via a reduction from the underlying assumption. If the sequence starts from
using two keys on each wire and ends in using only one key in all wires, then real and simulated garbling
are indistinguishable.

In [17], a pebbling game is defined to capture the requirements of a valid sequence of hybrids in order to
prove adaptive security. In this game, hybrid garbling gate modes are defined as nodes without a pebble/with
black pebbles/with gray pebbles. The graph state representing the real garbling is the graph of the circuit
with no pebbles and the graph state representing the simulated garbling is the circuit graph with a gray
pebble on each node. The rules of the pebbling game ensure that if in between two hybrid garbled circuits,

3

an encryption of key k′1 under key k1 is replaced with an encryption of key k′0 under k1, then k1 has to be
both random and cannot appear anywhere in the hybrid garbled circuit, not even in encrypted form. This is
crucial, because to be able to invoke the security of the underlying encryption scheme –to argue the change of
the message cannot be detected– we have to make sure the key k1 of the encryption follows the distribution
of the security game, i.e. is independent and uniformly random.

It is now discernible that if we add more dependency between the wire keys by not only creating ci-
phertexts of them, but also by correlating them to each other from the beginning, the pebbling rules might
have to be changed to make sure that during reduction, k1 is completely independent of the garbled circuit.
Indeed this revision of rules might not even be possible if the keys are actually derived directly from other
keys in the circuit. Even if this revision is possible, the resulting pebbling game might be so costly that
makes this approach to proving security futile. If we can find a way to correlate wire keys that preserve
the JW pebbling rules (or at least does not make them too involved), then we can use the JW technique to
prove adaptive security for the new garbling scheme.

Unfortunately, it turns out that the pebbling rules cannot be adapted for FreeXOR and garbling schemes
using the FreeXOR technique. For Two-Row Reduction and the garbling scheme by Gueron et al., the
pebbling game could in principle be modified, but the resulting proof strategy would be prohibitively ex-
pensive. The only existing optimized garbling scheme that can be proven secure using the JW technique is
YaoGC combined with Three-Row Reduction.

1.1.2 Our New Construction

With these insights, we move on to constructing a new garbling scheme that can in fact be proven adaptively
secure. The scheme is similar in spirit to that of Gueron et al. [14] and adaptive security relies only on
the existence of PRFs. XOR gates can be garbled with two ciphertexts and AND gates with three. The
key insight is that the garbling of XOR gates in Gueron et al.’s garbling scheme almost achieves adaptive
security. Consider therefore the garbling of XOR gates. As observed by Kolesnikov and Schneider [19], an
XOR gate can be evaluated without any ciphertext if both the input wire key pairs as well as the output
wire key pair are correlated by the same offset. As a consequence, the output wire keys are determined
deterministically by the input wire keys. This approach requires however to either prove selective security
in the random oracle model or assume the existence of circular-correlation robust hash functions [10] or the
corresponding notion of related-key key-dependent message security for encryption schemes [4]. In order to
enable a reduction to PRFs, the garbling scheme by Gueron et al. first “translates” the input wire keys
(evaluates a PRF on them) to hide the dependency on the predecessor gates and enable a reduction to PRFs.
The construction manages to still keep the number of ciphertexts for a garbled XOR gate at just one by
computing the gate offset deterministically from the input wire keys on one gate and forcing the output wire
key pair to have the same offset. The remaining ciphertext encrypts the gate-specific offset. However, the
input wire keys still determine the output wire keys uniquely.

By choosing the offset in XOR gates uniformly at random and using the strongest known row reduction
technique compatible with adaptive security proofs, that is three-row reduction, for AND gates, we achieve
the first garbling scheme that improves in off-line complexity over Yao’s construction and has adaptive
security based on weak standard assumptions. Our construction uses the point-and-permute technique [24]
and is therefore also the first efficient adaptively secure garbling scheme using point-and-permute, proving
that point-and-permute is compatible with adaptive security from standard assumptions.

1.2 Applications of Adaptively Secure Garbling Schemes

A garbling scheme needs to provide adaptive security in all settings where the input is not yet determined
at the time of circuit garbling. Examples include one-time programs [13], verifiable computation [12] and
succinct adaptively secure functional encryption [1], [3].

On the more practical side, one of the main applications of garbling schemes are secure two-party com-
putation (2PC) protocols. This requires the garbling scheme to be projective, that is the circuit garbling
produces two tokens for each bit position of the input as input encoding information. The input is then
garbled by choosing one of the tokens per input bit. The two parties in the 2PC protocol each take on a
role: One party acts as garbler and the other one as evaluator. The garbling party garbles the circuit C to

4

obtain circuit garbling C̃ as well as some input encoding information. The garbler then encodes their own
input x2 directly and sends the input garbling x̃2 together with the circuit garbling C̃ to the evaluator. To
garble the evaluator’s input x1, the parties run an oblivious transfer protocol. The garbler inputs the input
encoding information and the evaluator their input. The evaluator will then learn the corresponding input
garbling x̃1. Together with C̃ and x̃2, the evaluator can now evaluate the garbled circuit on the garbled
inputs to learn the result y of the computation. Finally, the evaluator sends y to the garbler.

In many cases, garbling the circuit C is actually expensive, and therefore various works studied secure
computation in the preprocessing model. In the context of two-party computation, this approach was first
considered by Lindell and Riva [22], [23]. Protocols in the preprocessing model are split into two phases: An
input-independent offline phase that can be executed in advance and an on-line phase where the parties have
inputs. If all expensive operations can be performed in the offline phase, then the on-line phase is extremely
efficient. This division of protocols is only possible if the garbling scheme has adaptive security.

1.3 Related Work

Garbling schemes as an abstraction of the cryptographic technique underlying the garbled circuits approach
were introduced by Bellare, Hoang and Rogaway [8]. The subsequent work by the same authors [7] comple-
mented the static security definitions of [8] with adaptive notions and provided the first garbling schemes
satisfying these adaptive notions.

The work of Bellare, Hoang and Rogaway [7] presented a general transformation from a selectively secure
garbling scheme to an adaptively secure one (in their terminology from prv to prv1). The transformation adds
a layer of one-time pad encryption to the circuit garbling and reveals the key as part of the input garbling,
thus yielding an on-line complexity that is proportional to the circuit size. The alternative transformation
from the same work avoids sending the one-time pad key by resorting to the programmable random oracle
and instead programs all queries needed to evaluate the circuit to match the desired input. Subsequently,
Bellare, Hoang and Keelveedhi [6] presented a transformation from selective to adaptive security in the same
spirit that replaces the random oracle by a universal computational extractor. These results are applicable
to any selectively secure garbling scheme, but either incur an overhead to the on-line complexity that is
proportional to the circuit size or are based on strong non-standard assumptions.

Another line of work tries to reduce the overhead and assumptions associated with adaptive security
proofs of specific garbling schemes from the literature, starting with the work of Hemenway et al. [15]. They
showed adaptive security for a modified version of YaoGC where a layer of somewhere equivocal encryption
is added to the circuit garbling. Intuitively, somewhere equivocal encryption allows to specify positions in
the message that can later be equivocated. The proof proceeds by carefully crafting a sequence of hybrid
games. Only a small number of gates needs to be equivocated in each hybrid game which the somewhere
equivocal encryption layer enables. The sequence of hybrids and hence the security loss is determined by
the pebble complexity of a pebbling game on the circuit topology. As a result, Hemenway et al. could show
that the modified Yao scheme has on-line complexity proportional to the width of the circuit or alternatively
proportional to the sum of depth, input size and output size of the circuit. As Hemenway et al. [15] showed,
somewhere equivocal encryption can be constructed from one-way functions. However, the construction is far
from practically efficient even though it provides nice asymptotic guarantees. The approach by Hemenway
et al. was refined by Garg and Srinivasan [11] who modify Yao’s construction with an updatable laconic
OT [9] to achieve better asymptotic on-line complexity. Ananth and Lombardi [2] generalized some of the
results from the two previously mentioned works by presenting a transformation relying on an underlying
local simulation property, meaning that the garbling scheme admits local simulation for the gates where
the adversary can see the input-independent components of the garbled circuit before choosing the input.
Any garbling scheme exhibiting the local simulation property can be transformed into an adaptively secure
by adding a layer of somewhere equivocal encryption. However, Ananth and Lombardi do not provide any
additional instantiations of their result.

Apart from equivocation, adaptive security can be proved using complexity leveraging by simply guessing
the input, resulting in a security loss that is exponential in the input size, and assuming that the security
parameter is even larger to cope with the security loss. In fact, Jafargholi and Wichs [17] showed that the
approach of Hemenway et al. can be combined with guessing parts of the input (instead of equivocation).
As a result, they could show adaptive security of the unmodified Yao construction for NC1 circuits or under

5

the assumption of exponentially secure one-way function.

1.4 Outline

We start by providing the necessary notation and background on garbling schemes in Section 2. Then, we
revisit the JW technique in Section 3. We also derive characteristics of adaptively secure garbling schemes
and examine the applicability of the JW technique to existing optimized garbling schemes. Section 4 presents
our new garbling scheme which is proven to be adaptively secure in Section 5.

2 Preliminaries

2.1 General Notation

We will use [q] as a shorthand for the set {1, . . . , q}. For a bitstring s = s1 . . . sk of arbitrary length k, we
will denote by sabl the substring s1 . . . sk−1 and by slsb the last bit sk.

Definition 1 ([17]). Two distributions X and Y are (T, ε)-indistinguishable, denoted DT [X,Y] = ε, if for
any probabilistic algorithm A running in time T ,

|Pr[A(X) = 1]− Pr[A(Y) = 1]| ≤ ε.

For two games Game and Game′, we say that they are (T (λ), ε(λ))-indistinguishable, DT (λ)

[
Game,Game′

]
=

ε(λ), if for any adversary A running in time T (λ),

|Pr[GameA = 1]− Pr[Game′A = 1]| ≤ ε(λ).

Let games Game(λ) and Game′(λ) be games parameterized by the security parameter λ. If for any polyno-
mial function T (λ), there exists a negligible function ε(λ) such that for all λ, DT (λ)

[
Game(λ),Game′(λ)

]
≤

ε(λ), we say that the two games are computationally indistinguishable, denoted Game(λ)
comp
≈ Game′(λ).

2.2 Garbling Schemes

The bulk of this section defining what garbled circuits are and presenting Yao’s construction, is taken
verbatim from [15]. There are many variants of such definitions in the literature, and we refer the reader to
[8] for a comprehensive treatment.

Definition 2. A garbling scheme is a tuple of PPT algorithms GC = (GCircuit, GInput,Eval) such that:

• (C̃, k)
$← GCircuit(1λ, C): takes as input a security parameter λ, a circuit C : {0, 1}n → {0, 1}m, and

outputs the garbled circuit C̃, and key k.

• x̃← GInput(k, x): takes as input, x ∈ {0, 1}n, and key k and outputs x̃.

• y = Eval(C̃, x̃): given a garbled circuit C̃ and a garbled input x̃ output y ∈ {0, 1}m.

Correctness There is a negligible function ν such that for any λ ∈ N, any circuit C and input x it holds
that Pr[C(x) = Eval(C̃, x̃)] = 1− ν(λ), where (C̃, k)← GCircuit(1λ, C), x̃← GInput(k, x).

Adaptive Security. There exists a PPT simulator Sim = (SimC,SimIn) such that, for any PPT adversary
A, there exists a negligible function ε such that:∣∣∣Pr[ExpadaptiveA,GC,Sim(λ, 0) = 1]− Pr[ExpadaptiveA,GC,Sim(λ, 1) = 1]

∣∣∣ ≤ ε(λ)

where the experiment ExpadaptiveA,GC,Sim(λ, b) is defined as follows:

1. The adversary A specifies C and gets C̃ where C̃ is created as follows:

6

• if b = 0: (C̃, k)← GCircuit(1λ, C),

• if b = 1: (C̃, state)← SimC(1λ,Φ(C)),

2. The adversary A specifies x and gets x̃ created as follows:

• if b = 0, x̃← GInput(k, x),

• if b = 1, x̃← SimIn(C(x), state).

3. Finally, the adversary outputs a bit b′, which is the output of the experiment.

In other words, we say GC is adaptively secure if

DT (λ)

[
ExpadaptiveGC,Sim (λ, 0),ExpadaptiveGC,Sim (λ, 1)

]
= ε(λ).

Online complexity. The time it takes to garble an input x (i.e. time complexity of GInput) is the online
complexity of the scheme. Clearly the online complexity of the scheme gives a bound on the size of the
garbled input x̃.

Projective Scheme. We say a garbling scheme is projective if each bit of the garbled input x̃ only depends
on one bit of the actual input x. In other words, each bit of the input, is garbled independently of other
bits of the input. Projective schemes are essential for two-party computation where the garbled input is
transmitted using an oblivious transfer (OT) protocol. Our constructions will be projective.

Leakage functions. In the optimized garbling schemes we consider in this work (including the one we
propose), the way a single gate is garbled differs significantly depending on the gate type. Hence, we cannot
hope to hide anything about the circuit C to be garbled from an outsider, and therefore, the leakage function
applied to C to compute SimC’s input is the identity function in this case.

2.2.1 Yao’s Scheme

For each wire w in the circuit, we pick two keys k0
w, k

1
w for a symmetric-key encryption scheme. For each

gate in the circuit computing a function g : {0, 1}2 → {0, 1} and having input wires a, b and output wire c
we create a garbled gate consisting of 4 randomly ordered ciphertexts created as:

c0,0 = Enck0
a
(Enck0

b
(k
g(0,0)
c)) c1,0 = Enck1

a
(Enck0

b
(k
g(1,0)
c)),

c0,1 = Enck0
a
(Enck1

b
(k
g(0,1)
c)) c1,1 = Enck1

a
(Enck1

b
(k
g(1,1)
c))

(1)

where (Enc,Dec) is a CPA-secure encryption scheme. The garbled circuit C̃ consists of all of the gabled
gates, along with an output map

{k0
w → 0, k1

w → 1}

which maps the keys to the bits they represent for each output wire w. To garble an n-bit value x =
x1x2 · · ·xn, the garbled input x̃ consists of the keys kxiwi for the n input wires wi.

To evaluate the garbled circuit on the garbled input, it’s possible to decrypt exactly one ciphertext in

each garbled gate and get the key k
v(w)
w corresponding to the bit v(w) going over the wire w during the

computation C(x). Once the keys for the output wires are computed, it’s possible to recover the actual
output bits by looking them up in the output map.

2.3 Pseudorandom Functions

Definition 3. A pseudorandom function (PRF) is an efficiently computable family of functions F = {Fn}n∈N
such that for every function Fn : {0, 1}n × {0, 1}m → {0, 1}m, no efficient PPT algorithm D can distinguish
the outputs of a randomly chosen function from those of a function that outputs uniformly random values.

We will write Fk(x) where k ∈ {0, 1}n is the key and x ∈ {0, 1}m is the input of the function.

7

Experiment Exp2PRFF,A (n, σ)

1. Choose random keys k1, k2 ← {0, 1}n for the pseudorandom function, and choose two truly random functions

f1, f2.

If σ = 0, set (O(1),O(2),O(3),O(4)) = (Fk1
,Fk1

,Fk2
,Fk2

).

Else, set (O(1),O(2),O(3),O(4)) = (f1,Fk1
, f2,Fk2

).

2. The adversary A is invoked upon input 1n.

3. When A makes a query (j, x) to its oracles with j ∈ {1, 2, 3, 4} and x ∈ {0, 1}n+1, answer as follows:

• If j ∈ {1, 2} and x was already queried to {1, 2}\{j}, return ⊥.

• If j ∈ {3, 4} and x was already queried to {3, 4}\{j}, return ⊥.

• Otherwise, return O(j)(x).

4. A outputs a bit σ′, and this is the output of the experiment.

Figure 1: The 2PRF experiment from [14].

Definition 4. Let F = {Fn}n∈N be an efficient family of functions where for every n, Fn : {0, 1}n ×
{0, 1}n+1 → {0, 1}n+1. Family F is a (T (λ), ε(λ))-secure 2PRF if for every n and every probabilistic
adversary A, running in time T

DT (λ)

[
Exp2PRF
F,A (n, 1),Exp2PRF

F,A (n, 0)
]
≤ ε(n).

Lemma 1 ([14]). If F is a family of pseudorandom functions, then it is a 2PRF.

3 Adaptive and Practical Garbling Schemes: Background and A
Way Forward

This section revisits the only adaptive security proof of a practical garbling scheme currently known based
on standard assumptions. We start by a brief overview of YaoGC and the challenges in proving it adaptively
secure. Section 3.2 then revisits the JW technique which is due to Jafargholi and Wichs [17], with a focus on
how adaptive security is achieved. Following this, in Section 3.3 we identify properties of a garbling scheme
that can be proven adaptively secure using the JW technique and examine well-known optimized garbling
schemes with respect to these findings (Section 3.4).

3.1 Yao’s Scheme and The Challenge of Adaptive Security ([17])

To understand the difficulty with analyzing the adaptive security of optimized garbling schemes, we need
to start from selective security of Yao’s scheme (see Section 2.2.1). This subsection captures the basic
information on the construction of YaoGC, the selective security proof and the difficulty proving adaptive
security quite succinctly, and for this reason appears in multiple works on this topic ([15], [17], [16]) and we
gratefully make use of it in this work as well.

Selective Security Simulator. To prove the selective security of Yao’s scheme, we need to define a
simulator that gets the output y = y1y2 · · · ym = C(x) and must produce C̃, x̃. The simulator picks random
keys k0

w, k
1
w for each wire w just like the real scheme, but it creates the garbled gates as follows:

c0,0 = Enck0
a
(Enck0

b
(k0
c)) c1,0 = Enck1

a
(Enck0

b
(k0
c)),

c0,1 = Enck0
a
(Enck1

b
(k0
c)) c1,1 = Enck1

a
(Enck1

b
(k0
c))

(2)

8

where all four ciphertexts encrypt the same key k0
c . It creates the output mapping {k0

w → yw, k
1
w → 1− yw}

by “programming it” so that the key k0
w corresponds to the correct output bit yw for each output wire w.

This defines the simulated garbled circuit C̃. To create the simulated garbled input x̃ the simulator simply
gives out the keys k0

w for each input wire w. Note that, when evaluating the simulated garbled circuit on
the simulated garbled input, the adversary only sees the keys k0

w for every wire w.

Selective Security Hybrids. To prove indistinguishability between the real world and the simulation,
there is a series of carefully defined hybrid games that switch the distribution of one garbled gate at a time.
Unfortunately, we cannot directly switch a gate from the real distribution (1) to the simulated one (2) and
therefore must introduce an intermediate distribution (3) as below:

c0,0 = Enck0
a
(Enck0

b
(k
v(c)
c)) c1,0 = Enck1

a
(Enck0

b
(k
v(c)
c)),

c0,1 = Enck0
a
(Enck1

b
(k
v(c)
c)) c1,1 = Enck1

a
(Enck1

b
(k
v(c)
c))

(3)

where v(c) is the correct value of the bit going over the wire c during the computation of C(x).
Let us give names to the three modes for creating garbled gates that we defined above: (1) is called

RealGate mode, (2) is called SimGate mode, and (3) is called InputDepSimGate mode, since the way that it
is defined depends adaptively on the choice of the input x.

We can switch a gate from RealGate to InputDepSimGate mode if we are in the input level or the predecessor
gates are in InputDepSimGate mode. The latter follows by CPA security of encryption. In particular, we

are not changing the value contained in ciphertext cv(a),v(b) encrypted under the keys k
v(a)
a , k

v(b)
b that the

adversary obtains during evaluation, but we can change the values contained in all of the other ciphertexts

since the keys k
1−v(a)
a , k

1−v(b)
b do not appear anywhere inside the predecessor garbled gates as long as they

are already in InputDepSimGate mode.
We can also switch a gate from InputDepSimGate to SimGate mode if we are at the output level or the

successor gates are in InputDepSimGate or SimGate mode. This is actually an information theoretic step;
since the keys k0

c , k
1
c are used completely symmetrically in the successor gates there is no difference between

always encrypting k
v(c)
c as in InputDepSimGate mode or encrypting k0

c as in SimGate. This allows us to
first switch every gate from RealGate to InputDepSimGate mode and then from InputDepSimGate to SimGate,
proving the selective security of Yao’s construction.

Challenges in Achieving Adaptive Security. There are two issues in using the above strategy in the
adaptive setting: an immediate but easy to fix problem and a more subtle but difficult to overcome problem.

The first immediate issue is that the selective simulator needs to know the output y = C(x) to create the

garbled circuit C̃ and in particular to program the output mapping {k0
w → yw, k

1
w → 1− yw} for the output

wires w. However, the adaptive simulator does not get the output y until after it creates the garbled circuit
C̃. Therefore, we cannot (even syntactically) use the selective security simulator in the adaptive setting.
This issue turns out to be easy to fix by modifying the construction to send the output-mapping as part of
the garbled input x̃ in the on-line phase1, rather than as part of the garbled circuit C̃ in the off-line phase.
This modification raises on-line complexity to also being linear in the output size of the circuit, which we
know to be necessary by the lower bound of [5] 2. We refer to this modification as YaoGC construction in
the adaptive setting. With this modification, the adaptive simulator can program the output mapping after
it learns the output y = C(x) in the on-line phase and therefore we get a syntactically meaningful simulation
strategy in the adaptive setting.

The second problem is where the true difficulty lies. Although we have a syntactically meaningful
simulation strategy, the previous proof of indistinguishability of the real world and the simulation completely
breaks down in the adaptive setting. In particular InputDepSimGate mode as specified in equation (3) is
syntactically undefined in the adaptive setting. Recall that in this mode the garbled gate is created in a

1In considering the adaptive security of any selectively secure garbling scheme, we in fact consider a slightly modified variation
of that scheme, where the output map is part of the garbled input.

2[16] shows how to circumvent this lower-bound by considering indistinguishability-based security instead of simulation based
security. However since the size of the garbled circuit increases by a factor of 2 (compared to YaoGC), it is not in the scope of
this current work

9

way that depends on the input x, but in the adaptive setting the input x is chosen adaptively after the
garbled circuit is created! Therefore, although we have a syntactically meaningful simulation strategy for
the adaptive setting, we do not have any syntactically meaningful sequence of intermediate hybrids to prove
indistinguishability between the real world and the simulated world.

3.2 A Tool and a Trick: Adaptive Security from the JW Technique

To understand how Jafargholi and Wichs overcome the challenges in proving adaptive security of YaoGC, we
revisit their strategy here. The first part of their strategy is to introduce a tool: pebbling games. Think of the
circuit as a graph where the gates are nodes and the input and output wires of each gate are (directed) ingoing
and outgoing edges of that node. Then let predecessor and successors of a node be naturally nodes with
edges outgoing to and ingoing from that node. Finally translate ”gate in RealGate/InputDepSimGate/SimGate
mode” to ”node with no pebble/a black pebble/a gray pebble”. This way, we can describe the sequence of
hybrids in the selective security proof as series of pebbling steps that start with a graph with no pebbles and
end up with a graph with a gray pebble on each node, following the 2 rules below:

1. A black pebble can be added to or removed from a node if its predecessors already have a black pebble,
or if it has no predecessor.

2. A black pebble on a node can replaced with gray pebble, if its successors already have a pebble, or it
has no successors, and vice versa.

Using pebbling games as a way to describe – and maybe more importantly, to think about the sequence
of hybrids, simplifies matters greatly. However this may not be apparent looking at the selective security,
since there, first every node gets a black pebble starting from the roots (nodes with no ingoing edges) and
moving toward the leaves. And then every black pebble is replace with a gray pebble (say, in the reverse
order). After all there was no restriction on the number of pebbles used and no incentive to minimize
them. Now let us move to the adaptive security proof, here the objective is the same, except that the
InputDepSimGate mode is not well-defined because the value on the output wire of the gate is not known
when the garbled circuit is produced. That brings us to the trick: guess the unknown output wire value of
the gates that are in InputDepSimGate mode. By adding this guessing step at the beginning of the hybrid
games and aborting if any of the guesses are wrong (once the input is fixed) it is possible to once more
define gates in InputDepSimGate mode. This almost solves our problem, except now we need to make sure
the probability of guessing correctly is reasonably high, in other words the number of guessed values are as
small as possible, and this in turn means the number of gates in InputDepSimGate mode should be as small
as possible. [17] shows that if there is a pebbling strategy to pebble the graph of circuit C in γ steps and
using t black pebbles then YaoGC is 2tγε adaptively secure if encryption used in the construction of the
garbled circuit is ε IND-CPA secure.

3.3 Characteristics of Adaptively Secure Garbling Schemes

We are now ready to explain our observations about the adaptive security proof of YaoGC by Jafargholi and
Wichs [17] and derive necessary characteristics of optimized garbling schemes with adaptive security.

Jafargholi and Wichs manage to reduce the security loss by limiting the number of gates in InputDepSimGate
mode and hence the guessing needed in each hybrid. To this extent, the proof needs to be able to change
the gate mode of any gate g from InputDepSimGate back to RealGate i.e. from input-dependent to input-
independent garbling, leading to the case of gate g′ in InputDepSimGate mode with predecessor g in RealGate
mode. (For ease of explanation, assume g is a gate at the input layer.) To argue indistinguishability of
two garbled circuits that only differ in gate g, one now has to reduce to a computational assumption by
embedding the challenger’s key as one of the input wire keys of g. Note that this case does not need to be
considered in a proof of selective security, as limiting the number of gates in InputDepSimGate mode is not an
issue. Conveniently, YaoGC has the property that each input wire key is chosen uniformly at random which
happens to be the challenger’s key distribution in the IND-CPA security game. The key point here is that
changes to the distribution of gate g do not automatically change the garbling distribution of its successor
g′.

10

More generally, if a selectively secure garbling scheme that is a variant of Yao’s construction has either
of the following properties the JW technique cannot be used to prove adaptive security:

Undesirable Property 1: The selective security proof is a global argument reasoning about all
gates at once.

If the selective security proof is a global argument, (usually comprising of a constant number of hybrid
arguments) it is not possible to gradually introduce and remove input dependencies during the security
proof. Instead, the whole argument requires knowledge of the entire input. This might be rather counter-
intuitive at first glance, since these constructions are often based on much stronger assumptions and might
give one the impression that the stronger assumption might help with proof of adaptive security. However
since these stronger assumptions remain selective in flavor, they do not help with proving adaptive security.
This is typically the case when wire key pairs are correlated across all gates.

Undesirable Property 2: The input wire keys uniquely determine both output wire keys.

When both output wire keys are uniquely determined from the input wire keys, the pebbling game must be
changed to reflect this additional dependency, because the pebbling rules are designed to make sure when
a gate g is changed from one mode to another, the necessary underlying reduction (from a computational
assumption) is possible. And this is possible if one wire key of each input to the gate g is completely
independent and random, i.e. they do not appear inside any ciphertext in the garbled circuit. But now if
we do not update the pebbling rules to reflect the additional dependency, the following situation can occur:
Even though key k (an input wire to g′) is not encrypted in any gate, the keys that compute k are encrypted
in some other gate (say predecessor g which is now in RealGate mode). This makes it impossible to use k for
the reduction (to replace a challenger’s key), since its distribution is no longer independent of the garbled
circuit. However changing the pebbling rules to solve this problem will prove to be futile too. The new
rule would require a black pebble to be removed as soon as one of its predecessors does not have a pebble.
Therefore the savings gained by the JW technique are lost.

3.4 How the Existing Schemes Do with Regards to These Characteristics

We will now examine existing selectively secure constructions and optimizations that are practically efficient
with respect to the findings from Section 3.3.

3.4.1 Row Reduction Techniques

The Three-Row Reduction technique (also referred to as 4-3 GRR) by Naor, Pinkas and Sumner [24] sets
the first ciphertext in a garbled gate to be the all-zero string (which in turn determines one of the output
wire keys), and therefore it is not necessary to include that ciphertext in the garbled gate. This means that
one of the output wire keys is determined by the input wire keys while the other output wire key is chosen
uniformly at random. Indeed, our new construction presented in Section 4 makes use of this idea.

Pinkas et al.’s Two-Row Reduction technique [25] (or 4-2 GRR) uses polynomial interpolation to further
reduce the number of ciphertexts for a gate garbling to just two. In particular, both output wire keys are
uniquely determined by the input wire keys. Therefore, a garbling scheme that uses the 4-2 GRR reduction
cannot be proven adaptively secure using the JW technique.

Gueron et al. [14] propose another method for garbling AND gate with two ciphertexts only (referred to as
Fast 4-2 GRR). The idea is to employ simple XOR operations in a clever way to stretch two ciphertext masks
to be used in three different ways, and to combine this with 4-3 GRR to get a new two-row reduction. Once
more, the input wire keys determine both output wire keys uniquely and hence the JW adaptive security
proof fails.

3.4.2 FreeXOR, FleXor and Half gates

The FreeXOR optimization by Kolesnikov and Schneider [19] is one of the most successful optimization
techniques for garbling schemes. It allows to garble XOR gates “for free”, i.e. without sending any ciphertext,

11

while AND gates require three ciphertexts using 4-3 GRR. The idea for garbling XOR gates is to correlate
wire keys by a global shift or offset ∆ that is only known to the circuit garbler. For each wire a, the two
keys are some random k0

a and the derived k1
a = k0

a ⊕∆. When garbling an XOR gate, the garbler uses the 4
input wire keys k0

a, k
1
a, k

0
b , k

1
b to (implicitly) define output wire keys

k0
c = k0

a ⊕ k0
b = k1

a ⊕ k1
b and k1

c = k0
a ⊕ k0

b ⊕∆ = k0
a ⊕ k1

b = k1
a ⊕ k0

b

This way, the garbled XOR gate can be evaluated without any ciphertext by computing the output wire key
as

kba⊕bbc = kbaa ⊕ k
bb
b = k0

c ⊕ (ba ⊕ bb)∆

In summary, all wire key pairs in the garbled circuit are correlated by the same offset. The selective security of
FreeXOR is based on strong assumptions such as circular-correlation robust hash functions [10] or RK-KDM
encryption scheme [4] and fall into the category of proofs that satisfy Undesirable Property 1. Moreover, in
XOR gates the input wire keys uniquely determine both output wire keys (satisfying Undesirable Property
2). Thus the FreeXOR construction cannot be proven adaptively secure using the JW technique.

Since the FreeXOR allows to garble XOR gate for free but is incompatible with 4-2 GRR, the FleXor
technique by Kolesnikov et al. [18] gives a compromise between them, i.e. using FreeXOR for as many XOR
gates as possible and likewise two-row reduction for AND. Assume for a start that each gate has its own
gate offset. The challenge is then to minimize the garbled circuit size with respect to all gates and hence to
find out which offset to use for which wire. This is important because two-row reduction requires that two of
the ciphertexts can be chosen freely. To this extent, Kolesnikov et al. group wires according to equivalence
classes, i.e. wires that can use the same offset without violating circularity restrictions.

The number of ciphertexts per AND gate was further reduced to two in the Half Gates scheme by Zahur
et al. [28]. The scheme retains the FreeXOR procedure for XOR gate garbling and in fact crucially relies on
it for garbling AND gates with two ciphertexts. The half gates construction observes that each AND gate
can be split into two “half” AND gates where in each half gate, one of the parties knows one of the inputs in
the clear. Moreover, each half gate can be garbled with one ciphertext, and the two half gates are combined
using a (free) XOR operation. As both FleXor and half gates rely on the FreeXOR approach, they cannot
be proven to be adaptively secure using the JW technique.

3.4.3 Fast Garbling

Gueron et al. [14] propose another approach to reducing garbled circuit size using shared wire offsets. The
work is motivated by the question of reducing the assumptions required to prove security (and by the wish
to leverage special-purpose hardware for AES). Instead of ensuring that subsequent gates share common
offsets, their work shows a garbling method that correlates the keys of all wires within an XOR gate by the
same offset, but in a way that makes this offset independent of the offsets in the surrounding gates. This
way they circumvent both the “circularity” difficulties present in FreeXOR and the “correlation-robustness”
requirement of FleXor.

For simplicity, consider the case where the permutation bits of both input wires are 0. AND gates are
garbled with three ciphertexts using 4-3 GRR, or with two ciphertexts following Fast 4-2 GRR. To garble an
XOR gate g with input wires a and b and output wire c, the garbler computes the keys to be used in the
gate as follows:

1. Randomize (“translate”) wire keys k0
a, k1

a to k̃0
a, k̃1

a using the PRF to ensure that keys are independent
from those of other gates.

2. Compute the gate offset ∆ = k̃0
a ⊕ k̃1

a.

3. Translate k0
b to k̃0

b using the PRF and set the corresponding translated input wire key k̃1
b = k̃0

b ⊕∆.

4. Compute output wire keys as k0
c = k̃0

a ⊕ k̃0
b and k1

c = k0
c ⊕∆.

12

Finally, the only ciphertext of the XOR gate contains k̃1
b . However, the offset of a gate and therefore also the

two output wire keys are still computed from the input wire keys (Undesirable Property 2) and so again, we
cannot use the JW technique to prove adaptive security.

4 Construction

In this section, we are going to present our construction of a garbling scheme with adaptive security based
on the existence of pseudorandom functions. It allows to garble XOR gates with 2 ciphertexts and AND
gates with 3. The garbling scheme is similar in spirit to [14] for XOR gates. The main difference is that in
XOR gates, a fresh gate offset is chosen at random instead of being derived deterministically from the input
wire keys. As a consequence, XOR gates are garbled using 2 ciphertexts (instead of one). While this seems
like a step back at first, we will demonstrate in the Section 5 how this modification facilitates the proof of
adaptive security. AND gates are garbled following the three-row reduction technique by Naor, Pinkas and
Sumner [24], demonstrating for the first time that three-row reduction is compatible with adaptive security.

We start by giving some prerequisites, followed by a description of how to garble an XOR gate, and will
then provide a full specification of our garbling scheme. For simplicity, we assume that the circuit to be
garbled consists solely of AND and XOR gates.

Point-and-permute. While not resulting in a reduction of garbled circuit size, this optimization is crucial
for the following constructions. In the original construction of Yao’s garbled circuits, each garbled gate
consists of four ciphertexts. In order to hide to which input wire bit each ciphertext corresponds, the
ciphertexts are randomly permuted. Evaluating the gate requires now attempting to decrypt all four, while
only one of them can be successfully decrypted. To reduce the evaluation time, Naor et al. [24] proposed
the point-and-permute technique. It assigns a random permutation bit to each wire. The permutation bits
on the two input wires of a gate allow the evaluator to determine which ciphertext to decrypt, thus reducing
the number of ciphertexts to be decrypted per gate to 1. We will follow the convention of [14] and refer to
this bit as permutation bit during the garbling and as signal bit when evaluating.

Primitives. Our garbling scheme uses on a pseudorandom function F as defined in Def. 3 to compute and
evaluate garbled gates. More specifically, the scheme uses the method of [21] as a form of double encryption:
For message m and two keys k1, k2, the ciphertext is computed as Fk1

(r1) ⊕ Fk2
(r2) ⊕m for fresh nonces

r1, r2.

PAGXor
(
g, {kσa , kσb }σ∈{0,1}, πa, πb

)
//HybXor0

1. Set πc := πa ⊕ πb.

2. ∆← {0, 1}λ.

3. Compute the translated wire keys:
k̃πaa := Fkπaa (g‖0)

abl
, k̃π̄aa := k̃πaa ⊕∆

k̃πbb := Fkπbb (g‖0)
abl
, k̃π̄bb := k̃πbb ⊕∆

4. Set output wire keys: k0
c := k̃0

a ⊕ k̃0
b , k1

c := k0
c ⊕∆.

5. Compute the ciphertexts:
Ta := Fkπ̄aa (g‖1)

abl
⊕ k̃π̄aa , Tb := F

k
π̄b
b

(g‖1)
abl
⊕ k̃π̄bb .

6. Output
(
k0
c , k

1
c , πc, g̃ = (Ta, Tb)

)
.

Figure 2: Garbling procedure PAGXor for an XOR gate.

13

4.1 Garbling XOR Gates

We will now describe how to garble an XOR gate. The full description can be found in Fig. 2. To garble
an XOR gate g with input wires a, b and output wire c given four input wire keys {kσa , kσb }σ∈{0,1} and
permutation bits πa, πb, do the following:

1. Compute the permutation bit πc of the output wire as πa ⊕ πb.

2. Sample a uniformly random gate offset ∆.

3. Rerandomize each input wire key by computing a translated input wire key. We are going to denote
by k̃ the translated key of k. For each input wire, one of the translated keys is derived from F using
the input wire key as PRF key. The other translated input wire key is set to be correlated by the gate
offset ∆:

k̃πaa := Fkπaa (g‖0)
abl
, k̃π̄aa := k̃πaa ⊕∆

k̃πbb := Fkπbb (g‖0)
abl
, k̃π̄bb := k̃πbb ⊕∆

Observe that since F is a pseudorandom function, the translated input wire keys are independent of
the original ones.

4. Compute the output wire keys as k0
c := k̃0

a ⊕ k̃0
b and k1

c := k0
c ⊕ ∆, i.e. the output wire keys are

correlated by the same offset as the translated input wire keys. Now the evaluator can XOR two
translated input wire keys to compute the corresponding output wire key.

5. For each input wire i ∈ {a, b}, the evaluator can only derive at most one translated input wire key k̃πii
since they do not know the offset ∆. For the case that the evaluator needs the other translated input
wire key k̃π̄ii , we are going to provide an encryption Ti := Fkπ̄ii (g‖1)

abl
⊕ k̃π̄ii of it, using the input wire

key as encryption key.

In order to evaluate an XOR gate, the evaluator computes the translated input wire keys where they can,
and decrypt the ciphertexts corresponding to the remaining ones. The XOR of the translated input wire
keys yields the output wire key.

PAGAnd
(
g, {kσa , kσb }σ∈{0,1}, πa, πb

)
//HybAnd0

1. Set K0 := Fkπaa (g‖00)⊕Fkπbb (g‖00), K1 := Fkπaa (g‖01)⊕F
k
π̄b
b

(g‖01)

K2 := Fkπ̄aa (g‖10)⊕Fkπbb (g‖10), K3 := Fkπ̄aa (g‖11)⊕F
k
π̄b
b

(g‖11)

2. Set output wire keys:

If πa = πb = 1 then k1
c := K0abl, k0

c ← {0, 1}λ, πc := K0lsb.
else k1

c ← {0, 1}λ, k0
c := K0abl, πc := K0lsb.

3. let t0 := k0
c‖πc and t1 := k1

c‖π̄c. //auxiliary variables

4. Compute the ciphertexts:
T1 := K1 ⊕ tπa∧π̄b , T2 := K2 ⊕ tπ̄a∧πb , T3 := K3 ⊕ tπ̄a∧π̄b .

5. Output
(
k0
c , k

1
c , πc, g̃ = (T1, T2, T3)

)
.

Figure 3: Garbling procedure PAGAnd for an AND gate.

4.2 Our Garbling Scheme

We can now provide a full description of our garbling scheme.

14

Garbling single gates. Full descriptions of garbling AND and XOR gates can be found in Fig. 3 and 2.
The garbling of AND gates follows the three-row reduction technique from [14] based on [24]. XOR gates are
garbled as in the modification described above. Each gate garbling procedure takes as input a gate index g,
two input wire keys {kσ}σ∈{0,1} per input wire, and a permutation bit π per input wire. The output consists
of two output wire keys {kσc }σ∈{0,1}, a permutation bit π for the output wire, and the actual garbled gate g̃.

PAGGCircuit(λ,C)

1. Garble Circuit:

◦ (Input wires) For i ∈ [n], σ ∈ {0, 1},
kσini ← {0, 1}

λ, πini ← {0, 1}
K := (k0

ini
, k1

ini
, πini)i∈[n].

◦ (Gates) For gi = (Gate, a, b, c) ,Gate ∈ {AND,XOR}:
(k0
c , k

1
c , πc, g̃i)← PAGGate

(
i, {kσa , kσb }σ∈{0,1}, πa, πb

)
.

2. Output C̃ = (g̃i)i∈[p], k =
(
K, (πj)j∈[m]

)
.

GInput(x, k)

1. Parse k into (k0
ini
, k1

ini
, πini)i∈[n] and (πj)j∈[m]

2. Select input keys Kx =
(
kx1

in1
‖(πin1 ⊕ x1), . . . , kxninn‖(πinn ⊕ xn)

)
.

3. Output x̃ =
(
Kx, (πj)j∈[m]

)
.

Figure 4: PAG Garbling Scheme: GCircuit and GInput functions. See Figure 5 for function Eval.

Garbling circuit and input. Fig. 4 presents the procedures for circuit and input garbling. PAGGCircuit
takes the security parameter λ and a circuit C to be garbled as input, and outputs a garbled circuit C̃ as
well as some state k. To garble the circuit, PAGGCircuit first chooses two uniformly random input wire
keys and a permutation bit for each input wire, and then traverses C and garbles each gate according to
PAGGate for gate type Gate ∈ {AND,XOR}. The garbled circuit C̃ then consists of garblings g̃i of all gates
gi in the circuit. The procedure also outputs the keys assigned to the input wires of the circuits as well
as their permutation bits, for later use when garbling the input. GInput takes input x and the state from
PAGGCircuit and outputs the input garbling x̃. Note that x̃ contains the output map which is known to be
necessary in the adaptive setting by the lower bound of Applebaum et al. [5].

Evaluation. Fig. 5 shows the evaluation procedure given a garbled circuit C̃ and a garbled input x̃.
PAGEval parses the garbled input x̃ into K containing input wire keys as well as permutation bits for the
input wires, and the output map consisting of signal bits φj for each output wire j. The procedure then
traverses the circuit and evaluates each gate. Finally, the output map is applied to learn the output of the
circuit evaluation.

Correctness and Security. Correctness and selective security of the scheme follow from an argument
similar to that for correctness of the fast garbling technique. We therefore omit the proofs and refer the
reader to their work. Security holds under the assumption that F is a pseudorandom function. In the
next section, we are going to show that unlike fast garbling, our new garbling scheme additionally provides
adaptive security under the same assumption.

15

PAGEval(C̃, x̃)

1. Parse x̃ = (K, (πj)j∈[m]).

2. Evaluate Circuit:

• Parse K = (kin1‖φin1 , . . . , kinn‖φinn).

• For each level j = 1, . . . , d, and each gi = (Gate, a, b, c) at level j:

– if Gate = AND:
Let g̃i = (T1, T2, T3), α := 2φa + φb, and T0 := 0.
Set kc‖φc := Tα⊕ Fka(g‖φaφb)⊕ Fkb(g‖φaφb).

– if g = XOR
Let g̃i = [Ta,1, Tb,1], and Ta,0 = Tb,0 = 0.
Set kc := (Ta,φa ⊕ Fka(g‖φa)abl)⊕

(
Tb,φb ⊕ Fkb(g‖φb)abl

)
.

φc := φa ⊕ φb.

3. Unmask output: For j ∈ [m],

• Set yj := πj ⊕ φj .

4. Output y1, . . . , ym.

Figure 5: PAG Garbling Scheme: Eval function.

5 Security Proof

Our goal is to show indistinguishability of real and simulated garbling towards an adaptive adversary. To
this extent, we follow [17]. We will first define a template for hybrid games and then establish rules for
transitioning between them.

5.1 Setting up hybrid games

Each gate will be assigned a gate mode from {RealGate, InputDepSimGate,SimGate} which indicates the way
it is garbled. For Gate ∈ {AND,XOR}, the gate is garbled according to PAGGate and SimPAGGate,
respectively (cf. Fig. 3 and 6 for AND gates and Fig. 2 and 7 for XOR gates). A circuit configuration
consists of two sets (modei)i∈[q] and I. The first one specifies the gate mode modei of each gate gi. The
second set is a set of guessed wires. We will let ((modei)i∈[q], I) denote a circuit configuration and sometimes
use mode as a shorthand for (modei)i∈[q]. A circuit configuration is called valid if the outgoing wire of every
gate that is in InputDepSimGate mode is contained in I.

The hybrid game HybA(mode, I) corresponding to valid circuit configuration (modei, I) and interacting
with adversary A is described in Fig. 9. When the adversary A is clear from the context, we will simply
write Hyb(mode, I) instead. The hybrid game consists of two phases, a guessing phase and a garbling phase.
The game starts by setting up a set of guesses Guess that contains a guessed bit for each wire wi ∈ I. Those
guesses are necessary to garble gates in InputDepSimGate as their garbling procedure requires knowledge of
the value on the outgoing wire. The game then receives the circuit C and garbles it. Here, each gate is
garbled according to its gate mode, possibly using guesses whenever necessary. When the adversary has
received C̃ and returns an input x, the game checks the guesses, and aborts with fixed output 0 if any of
them were incorrect. Otherwise, it proceeds by garbling the input and creating the output map. Finally,
the game outputs the garbled input x̃ and the output map to the adversary and outputs its output.

We can now relate the hybrid games to the definition of adaptive security for garbling schemes (cf. Def.

2). The real game ExpadaptiveA,GC,Sim(λ, 0) is equivalent to HybA(mode, ∅) where each modei = RealGate. We

will compare the real game to the simulated game ExpadaptiveA,GC,Sim(λ, 1) for simulator Sim = SimPAGGCircuit
described in Fig. 8, which is equivalent to HybA(mode, ∅) with modei = SimGate for all i ∈ [q].

16

HybAnd1 (g, {ka, kb}, φa, φb, vc)

1. If φa = φb = 0 set
kvcc ‖φc := Fka (g‖00)⊕ Fkb (g‖00) and Tα ← {0, 1}λ+1, α ∈ {1, 2, 3}.

2. else set kvcc ‖φc ← {0, 1}λ+1

T2φa+φb := Fka (g‖φaφb)⊕ Fkb (g‖φaφb)⊕ (kc‖φc)
Tα ← {0, 1}λ+1 for α ∈ {1, 2, 3} \ 2φa + φb.

3. Set πc := φc ⊕ vc, and kv̄cc ← {0, 1}λ.

4. Output
(
k0
c , k

1
c , πc, g̃ = (T1, T2, T3)

)
.

SimPAGAnd
(
g, {kσa , kσb }σ∈{0,1}, πa, πb, vc

)
//HybAnd2

1. Set: K0 := Fkπaa (g‖00)⊕Fkπbb (g‖00) , K1 := Fkπaa (g‖01)⊕F
k
π̄b
b

(g‖01)

K2 := Fkπ̄aa (g‖10)⊕Fkπbb (g‖10) , K3 := Fkπ̄aa (g‖11)⊕F
k
π̄b
b

(g‖11) .

2. Set output wire keys kvcc ‖φc := K0, πc = φc ⊕ vc and kv̄cc ← {0, 1}λ.

3. Compute the ciphertexts, Tα := Kα ⊕ K0, for α ∈ {1, 2, 3}.

4. Output
(
k0
c , k

1
c , πc, g̃ = (T1, T2, T3)

)
.

Figure 6: Distributions HybAnd1 and SimPAGAnd for AND gate, defined for adaptive security proof.

5.2 Indistinguishability of hybrid games

In this section, we will provide rules for moving from one circuit configuration to another and prove that the
corresponding hybrid games are indistinguishable.

Define TimeGC(q) to be the time it takes to garble a circuit of size q using our garbling scheme.

Definition 5 (Neighboring hybrids, target gate [17]). We say two valid hybrids or configurations ((modei)i∈[q],
I), ((mode′i)i∈[q], I) are neighboring if the set of guessed wires I is the same in both of them and the garbling
modes of all gates except one are the same; i.e. there exists some j ∈ [q] such that for all i 6= j we have
modei = mode′i. We call gj the target gate of the two hybrids or configurations.

Definition 6 (Predecessor/Successor/Sibling gates [17]). Given a circuit C and a gate j ∈ [q] of the form
gj = (g, wa, wb, wc) with incoming wires wa, wb and outgoing wire wc:

• We define the predecessors of j, denoted by Pred(j), to be the set of gates whose outgoing wires are
either wa or wb. If wa, wb are input wires, then Pred(j) = ∅, else |Pred(j)| = 2.

• We define the successors of j, denoted by Succ(j), to be the set of gates that contain wc as an incoming
wire. If wc is an output wire, then Succ(j) = ∅ .

We define the siblings of j, denoted by Siblings(j), to be the set of gates that contain either wa or wb as an
incoming wire.

5.2.1 Rule 1: RealGate↔ InputDepSimGate

The following rule allows changing a gate’s mode from RealGate to InputDepSimGate if all of its predecessors
are in InputDepSimGate mode. That means that if a circuit configurations has a target gate with gate mode
RealGate, then it is allowed to move to the neighboring configuration with target gate in InputDepSimGate
mode (and vice versa).

17

HybXor1 (g, {ka, kb}, φa, φb, vc)

1. Compute the translated keys and the ciphertexts for α ∈ {b, a}:
If φα = 0 then k̃α := Fkα (g‖0)abl and Tα ← {0, 1}λ

else k̃α ← {0, 1}λ and Tα := Fkα (g‖1)abl ⊕ k̃α.

2. Set output wire keys kvcc = k̃a ⊕ k̃b, πc = φa ⊕ φb ⊕ vc and kv̄cc ← {0, 1}λ.

3. Output
(
k0
c , k

1
c , πc, g̃ = (Ta, Tb)

)
.

SimPAGXor
(
g, {kσa , kσb }σ∈{0,1}, φa, φb, vc

)
//HybXor2

1. Compute the translated keys and the ciphertexts for α ∈ {a, b}:
If φα = 0 then k̃α := Fkvαα (g‖0)

abl
and Tα := Fkv̄αα (g‖1)

abl
⊕ k̃α.

else k̃α := Fkv̄αα (g‖0)
abl

and Tα := Fkvαα (g‖1)
abl
⊕ k̃α.

2. Set output wire keys kvcc = k̃a ⊕ k̃b, πc = φa ⊕ φb ⊕ vc and kv̄cc ← {0, 1}λ.

3. Output (kc, φc, g̃ = (Ta, Tb)).

Figure 7: Distributions HybXor1 and SimPAGXor for XOR gates, defined for the proof of adaptive security.

Lemma 2. Let Hyb(mode, I) and Hyb(mode′, I) be two neighboring hybrids that differ in target gate gj ,
i.e. modej = RealGate in mode and mode′j = InputDepSimGate in mode′. Furthermore, all i ∈ Pred(j) satisfy

modei = InputDepSimGate. Then for any adversary A, the hybrids HybA(mode, I) and HybA(mode′, I) are
(T (λ), 2ε(λ))-indistinguishable if F is a (T (λ) + TimeGC(|C|), ε)-secure 2PRF.

Due to space constraints, the proof of Lemma 2 is deferred to Appendix A.

5.2.2 Rule 2: InputDepSimGate↔ SimGate

This rule allows changing a gate mode from InputDepSimGate to SimGate if all of its successors are in
InputDepSimGate or SimGate mode.

Lemma 3. Let Hyb(mode, I) and Hyb(mode′, I) be two neighboring hybrids that differ in target gate gj ,
i.e. modej = InputDepSimGate in mode and mode′j = SimGate in mode′. Furthermore, all i ∈ Succ(j)
satisfy modei ∈ {SimGate, InputDepSimGate}. Then for any adversary A, the hybrids HybA(mode, I) and
HybA(mode′, I) are identically distributed.

Proof. Let A be an arbitrary but fixed adversary. Then the two hybrids H0 := HybA(mode, I) and H1 =
HybA(mode′, I) differ only in how the target gate gj = (Gate, a, b, c), Gate ∈ {AND,XOR} is garbled: In the
hybrid H0, gate garbling g̃j is computed as g̃j ← SimPAGGate

(
j, {kσa , kσb }σ∈{0,1}, πa, πb,Guess(c)

)
, whereas

in H1, g̃j ← SimPAGGate
(
j, {kσa , kσb }σ∈{0,1}, πa, πb, 0

)
. Now there are the following cases to distinguish,

depending on where gj is located in the circuit.
If gj is not an output gate and all successors are in {SimGate, InputDepSimGate}, then the gate’s output

keys k0
c and k1

c are treated symmetrically within the gate, i.e. their roles are interchangeable. Moreover, the
permutation bit πc is independent of the output keys. This holds for both AND and XOR gates.

If gj is an output gate, then the output keys are only used in the output map and the gate itself. As
argued above, the output keys are treated symmetrically within the gate, and the output permutation bit is
independent of the output keys. Hence, in the output map, there is no difference between setting d̃j := πj
in H0 and d̃j := yj ⊕ πj in H1.

Finally, in the case that all successors of an input gate gi are in SimGate mode, the input gate is garbled
in a slightly different way: Instead of setting K[i] := kxiini‖ (πini ⊕ xi), it is set to K[i] := k0

ini
‖πini . However,

both cases are identically distributed as the keys kxiini and k0
ini

are treated symmetrically everywhere in the
game and the permutation bit πini is uniformly random.

18

SimPAGGCircuit(λ,C)

1. Garble Circuit:

• (Input wires) For i ∈ [n], σ ∈ {0, 1},
kσini ← {0, 1}

λ, πini ← {0, 1}
K = (k0

ini
, k1

ini
, πini)i∈[n].

• (Gates) For gi = (Gate, a, b, c) ,Gate ∈ {AND,XOR} in C:
(k0
c , k

1
c , πc, g̃i)← SimPAGGate

(
i, {kσa , kσb }σ∈{0,1}, πa, πb, 0

)
.

• (Decoding info) For j ∈ [m]: Set s̃dj = πj .

2. Output C̃ = (g̃i)i∈[p], k =
(
K, (s̃dj)j∈[m]

)
.

SimGInput(y,
(
K, (s̃dj)j∈[m]

)
)

1. Set the output permutation bits πj := s̃dj ⊕ yj .

2. Select output keys, Kx =
(
k0
in1
‖πini , . . . , k

x0

inn
‖πini

)
.

3. Output x̃ =
(
Kx, (πj)j∈[m]

)
.

Figure 8: Simulation for PAG Garbling Scheme.

Finally, we will use the following lemma that allows to scale the number of guesses up and down to allow
for comparison of hybrids that differ in the wires corresponding to their guesses.

Lemma 4. If DT (λ)

[
Hyb(mode, I),Hyb(mode′, I)

]
= ε(λ) and J is a set of wires disjoint from I, then

DT (λ)

[
Hyb(mode, I ∪ J),Hyb(mode′, I ∪ J)

]
= 2−|J| · ε(λ).

The proof is analogous to that of [17, Lemma 3]. The idea is that adding J places the additional burden
of guessing the wire values corresponding to J correctly on the adversary.

5.3 Sequences of Hybrid Games

So far, we have established that certain hybrid games with valid neighboring configurations are indistin-
guishable. What remains to find is a sequence of indistinguishable hybrid games for an arbitrary circuit that
goes from the real game HybA(mode, ∅) where each modei = RealGate to the simulated game HybA(mode, ∅)
with modei = SimGate for all i ∈ [q]. The pebbling strategy for the graph will then imply a sequence of
indistinguishable hybrid games from the real game to the simulation.

5.3.1 Pebbling Game

Consider the following pebble game:

Graph of circuit C: Given a circuit C, the corresponding graph consists of a node for each gate, and a
directed edge from node i to node j if the outgoing wire from gate i is an ingoing wire for gate j.
Furthermore, we think of each input wire as outgoing wire of a dummy input gate.

Pebbles: Each node can have either no pebble, a black pebble, or a gray pebble on it, corresponding to the
gate being in RealGate, InputDepSimGate, and SimGate mode, respectively.

Pebbling rules: The game consists of the following rules:
Pebbling rule A: We can place or remove a black pebble on a node as long as both predecessors of it
have black pebbles on them, or it corresponds to an input gate.

19

Game HybλA((modei)i∈[q], I)

1. (Guesses) For all wi ∈ I,

• Let Guess(wi)← {0, 1}.

2. Receive C from A.
Garble circuit C:

3. (Input wires) For i ∈ [n], σ ∈ {0, 1} : kσini ← Gen(1λ), πini ← {0, 1}.

4. (Gates) For each gi = (Gate, a, b, c), Gate ∈ {AND,XOR}, in C :
If modei = RealGate,(

k0
c , k

1
c , πc, g̃i

)
← PAGGate

(
i, {kσa , kσb }σ∈{0,1}, πa, πb

)
.

else I. If modei = SimGate, let µ := 0 else µ := Guess(c).
II.
(
k0
c , k

1
c , πc, g̃i

)
← SimPAGGate

(
i, {kσa , kσb }σ∈{0,1}, πa, πb, µ

)
.

5. Send C̃ to A and get back x.
Garble Input x:

6. (Check the guesses) For each i ∈ I,

– Let v(wi) be the bit on the wire wi during the computation C(x).

– If v(wi) 6= Guess(wi) Output 0 and abort.

7. (Choose the color-bits) Let y = C(x). For ` = 1, . . . ,m:

– If mode` 6= SimGate, set d̃` = π`

– else, set d̃` := y` ⊕ π`.

8. (Select input keys) For ` = 1, . . . , n:

– If all gates i having in` as an input wire satisfy modei = SimGate, then
set K[`] := k0

in`
‖πin` ,

– else set K[`] := kx`in`‖ (πin` ⊕ x`).

9. Send x̃ := (K, {d̃`}`∈[m]) to A and output whatever A outputs.

Figure 9: The Hybrid Game.

Pebbling rule B: We can replace a black pebble by a gray pebble on a node as long as all successors of
it have black or gray pebbles on them, or it corresponds to an output gate.

Pebble configuration: A pebble configuration specifies for each node if it contains no pebble, a black
pebble or a gray pebble.

Pebbling: A pebbling of a graph corresponding to circuit C is a sequence of γ moves that starts with no
pebbles on the graph and follows the pebbling rules until it reaches a pebble configuration where all
nodes have gray pebbles on them. A pebbling is said to use t black pebbles if t is the maximal number
of black pebbles used at any point during the pebble game.

5.3.2 From Pebbling to Sequence of Hybrids

Each pebble configuration specifies a circuit configuration and hence a hybrid game in the following way.
For each gate i ∈ [q], set its gate mode modei according to the pebble on its corresponding node:

• modei = RealGate if it has no pebble,

20

Reduction from PAGAnd to HybAnd1
ReducOneOa,ObAND,A (g, {kvaa , k

va
b }, φa, φb, va, vb)

1. Set: K2φa+φb := Fkvaa (g‖φaφb) ⊕ Fkvbb (g‖φaφb) ,
K2φa+φ̄b := Fkvaa

(
g‖φaφ̄b

)
⊕ Ob

(
g‖φaφ̄b

)
,

K2φ̄a+φb := Oa
(
g‖φ̄aφb

)
⊕ Fkvbb

(
g‖φ̄aφb

)
,

K2φ̄a+φ̄b := Oa
(
g‖φ̄aφ̄b

)
⊕ Ob

(
g‖φ̄aφ̄b

)
.

2. Compute πa = va ⊕ φa and πb = vb ⊕ φb.

3. Set output wire keys:

If πa = πb = 1 then k1
c := K0abl, k0

c ← {0, 1}λ, πc := K0lsb.
else k1

c ← {0, 1}λ, k0
c := K0abl, πc := K0lsb.

4. let t0 := k0
c‖πc and t1 := k1

c‖π̄c.

5. Compute the ciphertexts:
T1 := K1 ⊕ tπa∧π̄b , T2 := K2 ⊕ tπ̄a∧πb , T3 := K3 ⊕ tπ̄a∧π̄b .

6. Output
(
k0
c , k

1
c , πc, g̃ = (T1, T2, T3)

)
.

Reduction from HybAnd1 to SimPAGAnd
ReducTwoOa,ObAND,A (g, {kvaa , k

va
b }, φa, φb, vc)

1. Set: K2φa+φb := Fkvaa (g‖φaφb) ⊕ Fkvbb (g‖φaφb) ,
K2φa+φ̄b := Fkvaa

(
g‖φaφ̄b

)
⊕ Ob

(
g‖φaφ̄b

)
,

K2φ̄a+φb := Oa
(
g‖φ̄aφb

)
⊕ Fkvbb

(
g‖φ̄aφb

)
,

K2φ̄a+φ̄b := Oa
(
g‖φ̄aφ̄b

)
⊕ Ob

(
g‖φ̄aφ̄b

)
.

2. Set output wire key kvcc ‖φc := K0, πc := φc ⊕ vc, and kv̄cc ← {0, 1}λ.

3. Compute the ciphertexts, Tα := Kα ⊕ K0, for α ∈ {1, 2, 3}.

4. Output
(
k0
c , k

1
c , πc, g̃ = (T1, T2, T3)

)
.

Figure 10: Reductions between AND hybrid distributions. We use ReducOa,ObAND,A, to refer to the two reductions
combined, which shows PAGAnd and SimPAGAnd are indistinguishable, based on PRFs.

• modei = InputDepSimGate if it has a black pebble,

• modei = SimGate if it has a gray pebble,

The set I is the set of output wires of those gates that have black pebbles on them. By definition, this is
a valid circuit configuration. A pebbling in γ moves consists of a sequence of γ + 1 pebble configurations,
starting with no pebbles and ending with a gray pebble on each node, where each pebble configuration is
obtained following rule A or B. Each pebbling defines a sequence of hybrid games Hα = Hyb(modeα, Iα) for
α = 0, . . . , γ, starting from the real game H0 (circuit configuration Hyb(mode, ∅) with modei = RealGate)
and ending in the ideal game Hγ (circuit configuration Hyb(mode, ∅) with modei = SimGate).

What remains to show is that the hybrids in the sequence are indeed indistinguishable, i.e. a connection
between rules 1 and 2 and pebbling rules A and B.

Theorem 1. Assume that F is a (T + TimeGC(|C|), ε(λ))-secure 2PRF. If there is a pebbling of circuit C

in γ moves, using t pebbles, then ExpadaptiveA,GC,Sim(λ, 0) and ExpadaptiveA,GC,Sim(λ, 1) are (T ′(λ), ε′(λ))-indistinguishable
with

• ε′(λ) ≤
∑γ
i=1 2ri+1 · ε(λ) ≤ γ · 2t+1 · ε(λ) and

21

Reduction from PAGXor to HybXor1
ReducOneOa,ObXOR,A (g, {kvaa , k

vb
b }, φa, φb, va, vb)

1. ∆← {0, 1}λ.

2. Compute the translated keys and the ciphertexts for α ∈ {a, b}:
If φα = 0 then k̃α = Fkvαα (g‖0)

abl
, and Tα = Oα (g‖1)abl ⊕ k̃α ⊕∆

else k̃α = Oα (g‖0)abl ⊕∆, and Tα = Fkvαα (g‖1)
abl
⊕ k̃α.

3. Set output wire keys: kvcc = k̃a ⊕ k̃b, πc = φa ⊕ φb ⊕ vc and kv̄cc := kvcc ⊕∆.

4. Output
(
k0
c , k

1
c , πc, g̃ = (Ta, Tb)

)
.

Reduction from HybXor1 to SimPAGXor
ReducTwoOa,ObXOR,A (g, {kvaa , k

vb
b }, φa, φb, vc)

1. Compute the translated keys and the ciphertexts for α ∈ {a, b}:
If φα = 0 then k̃α = Fkvαα (g‖0)

abl
, and Tα = Oα (g‖1)abl ⊕ k̃α

else k̃α = Oα (g‖0)abl, and Tα = Fkvαα (g‖1)
abl
⊕ k̃α.

2. Set output wire keys: kvcc = k̃a ⊕ k̃b, πc = φa ⊕ φb ⊕ vc and kv̄cc ← {0, 1}λ.

3. Output
(
k0
c , k

1
c , πc, g̃ = (Ta, Tb)

)
.

Figure 11: Reductions for XOR hybrid distributions. We use ReducOa,ObXOR,A, to refer to the two reductions
combined, which shows PAGXor and SimPAGXor are indistinguishable, based on PRFs.

• T ′(λ) = T (λ)− TimeGC(|C|),

where ri = max (si−1, si) and si is the number of black pebbles used in the ith pebbling step.

The complete proof can be found in Supplementary material A.
Finally, we are going to instantiate Theorem 1 with a result of Hemenway et al. [15] stating that for any

circuit with q gates and depth d, there exists a pebbling in at most γ = q · 22d moves using t = 2d black
pebbles.

Corollary 1. The PAG garbling scheme is adaptively secure for all circuits of depth d = O(log λ) assuming
that pseudorandom functions exist.

References

[1] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From selective to adap-
tive security in functional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 657–677. Springer, Heidelberg, August 2015.

[2] Prabhanjan Ananth and Alex Lombardi. Succinct garbling schemes from functional encryption through
a local simulation paradigm. In TCC 2018, Part II, LNCS, pages 455–472. Springer, Heidelberg, March
2018.

[3] Prabhanjan Vijendra Ananth and Amit Sahai. Functional encryption for turing machines. In Eyal
Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I, volume 9562 of LNCS, pages 125–153.
Springer, Heidelberg, January 2016.

[4] Benny Applebaum. Garbling XOR gates “for free” in the standard model. In Amit Sahai, editor,
TCC 2013, volume 7785 of LNCS, pages 162–181. Springer, Heidelberg, March 2013.

22

[5] Benny Applebaum, Yuval Ishai, Eyal Kushilevitz, and Brent Waters. Encoding functions with constant
online rate or how to compress garbled circuits keys. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 166–184. Springer, Heidelberg, August 2013.

[6] Mihir Bellare, Viet Tung Hoang, and Sriram Keelveedhi. Instantiating random oracles via UCEs. In
Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 398–415.
Springer, Heidelberg, August 2013.

[7] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling with applications
to one-time programs and secure outsourcing. In Xiaoyun Wang and Kazue Sako, editors, ASI-
ACRYPT 2012, volume 7658 of LNCS, pages 134–153. Springer, Heidelberg, December 2012.

[8] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Ting Yu,
George Danezis, and Virgil D. Gligor, editors, ACM CCS 12, pages 784–796. ACM Press, October 2012.

[9] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni Polychroni-
adou. Laconic oblivious transfer and its applications. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part II, volume 10402 of LNCS, pages 33–65. Springer, Heidelberg, August 2017.

[10] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. On the security of the
“free-XOR” technique. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 39–53.
Springer, Heidelberg, March 2012.

[11] Sanjam Garg and Akshayaram Srinivasan. Adaptively secure garbling with near optimal online com-
plexity. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume
10821 of LNCS, pages 535–565. Springer, Heidelberg, April / May 2018.

[12] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: Outsourcing
computation to untrusted workers. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages
465–482. Springer, Heidelberg, August 2010.

[13] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs. In David Wagner,
editor, CRYPTO 2008, volume 5157 of LNCS, pages 39–56. Springer, Heidelberg, August 2008.

[14] Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast garbling of circuits under standard
assumptions. In Indrajit Ray, Ninghui Li, and Christopher Kruegel:, editors, ACM CCS 15, pages
567–578. ACM Press, October 2015.

[15] Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro, and Daniel Wichs. Adaptively
secure garbled circuits from one-way functions. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part III, volume 9816 of LNCS, pages 149–178. Springer, Heidelberg, August 2016.

[16] Zahra Jafargholi, Alessandra Scafuro, and Daniel Wichs. Adaptively indistinguishable garbled circuits.
In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part II, volume 10678 of LNCS, pages 40–71.
Springer, Heidelberg, November 2017.

[17] Zahra Jafargholi and Daniel Wichs. Adaptive security of Yao’s garbled circuits. In Martin Hirt and
Adam D. Smith, editors, TCC 2016-B, Part I, volume 9985 of LNCS, pages 433–458. Springer, Heidel-
berg, October / November 2016.

[18] Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. FleXOR: Flexible garbling for XOR gates
that beats free-XOR. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume
8617 of LNCS, pages 440–457. Springer, Heidelberg, August 2014.

[19] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and applica-
tions. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir,
and Igor Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of LNCS, pages 486–498. Springer,
Heidelberg, July 2008.

23

[20] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party computation.
Journal of Cryptology, 22(2):161–188, April 2009.

[21] Yehuda Lindell, Benny Pinkas, and Nigel P. Smart. Implementing two-party computation efficiently
with security against malicious adversaries. In Rafail Ostrovsky, Roberto De Prisco, and Ivan Visconti,
editors, SCN 08, volume 5229 of LNCS, pages 2–20. Springer, Heidelberg, September 2008.

[22] Yehuda Lindell and Ben Riva. Cut-and-choose Yao-based secure computation in the online/offline and
batch settings. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617
of LNCS, pages 476–494. Springer, Heidelberg, August 2014.

[23] Yehuda Lindell and Ben Riva. Blazing fast 2PC in the offline/online setting with security for malicious
adversaries. In Indrajit Ray, Ninghui Li, and Christopher Kruegel:, editors, ACM CCS 15, pages 579–
590. ACM Press, October 2015.

[24] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions and mechanism design. In
EC, pages 129–139, 1999.

[25] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure two-party com-
putation is practical. In Advances in Cryptology - ASIACRYPT 2009, 15th International Conference
on the Theory and Application of Cryptology and Information Security, Tokyo, Japan, December 6-10,
2009. Proceedings, pages 250–267, 2009.

[26] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd FOCS, pages
160–164. IEEE Computer Society Press, November 1982.

[27] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS, pages
162–167. IEEE Computer Society Press, October 1986.

[28] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data transfer in
garbled circuits using half gates. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015,
Part II, volume 9057 of LNCS, pages 220–250. Springer, Heidelberg, April 2015.

24

Supplementary material

A Adaptive Security Proof (continued)

Lemma 2. Let A be an arbitrary but fixed adversary. The two hybrids H0 := HybA(mode, I) and H1 =
HybA(mode′, I) differ only in how the target gate gj = (Gate, a, b, c), Gate ∈ {AND,XOR} is garbled: In the
hybrid H0, the garbled gate g̃j is computed as g̃j ← PAGGate

(
i, {kσa , kσb }σ∈{0,1}, πa, πb

)
, whereas in H1,

g̃j ← SimPAGGate
(
j, {kσa , kσb }σ∈{0,1}, πa, πb,Guess(c)

)
.

Intermediate hybrid game: Intuitively, we would like to argue that an adversary A cannot distinguish
whether the garbling of the target gate contains a single output key or two different ones. However,
the 2PRF assumption provides only guarantees about indistinguishability of PRF evaluations from ran-
dom. In order to show indistinguishability of H0 and H1, we will therefore define another hybrid game
HybIntermλ

A((modei)i∈[q], I) as intermediate step that replaces those PRF evaluations that correspond to ci-
phertexts that will not be openend by random strings. The game is almost the same as H0 and H1 except for
the target gate gj which is garbled according to HybGate1 as described in Fig. 6 and 7, and its surrounding
gates.

HybAnd1: If the color bits φa, φb are both 0, i.e. if the ciphertext the evaluator can open is the omitted
one, then it computes the active output wire key and color bit using F and sets the three ciphertexts to be
random strings. Otherwise, a fresh random active output wire key and color bit are chosen, the ciphertext
corresponding to the color bits is computed using F , and the remaining ciphertexts are chosen as random
strings. Finally, the permutation bit is computed and a fresh random string is sampled as inactive output
wire key.

HybXor1: If the color bit is 0, then compute the translated key using F and set the ciphertext to be
random. Otherwise, choose a random translated key and compute the corresponding ciphertext using F .
Finally, compute the active output wire key as XOR of the translated active input wire keys, set the inactive
one to be a random string, and compute the permutation bit of the output wire. Note that the gate garbling
procedure does not choose a wire offset ∆.

We will first show indistinguishability between H0 and HybIntermλ
A, and then between HybIntermλ

A and
H1. In each case, we reduce distinguishing the hybrids to breaking the 2PRF assumption. To this extent,
we provide an adversary B in Fig. 12 that uses a distinguisher A between two hybrids as subroutine.
The adversary B garbles a circuit while embedding oracle evaluations into the garbling of the target gate.
Note that the description of the adversary in Fig. 12 actually contains two adversaries, one for each case.
Therefore, the adversary B is parameterized by the case step it is in that specifies which gate garbling
procedure to use for the target gate. Furthermore, the target gate garbling depends on the gate type. The
gate garbling procedures can be found in Fig. 10 for AND gates and Fig. ?? for XOR gates.

From H0 to HybIntermλ
A: Consider the adversary B (Fig. 12) on input mode, I, target gate index j, step1,

and 2PRF oracles (O(1),O(2),O(3),O(4)) that breaks the 2PRF assumption for F if A can distinguish H0

and HybIntermλ
A. The garbling that B outputs is exactly the same as in H0, except for the target gate gj as

well as those gates gi that share an input wire with it. For the latter, it is easy to see that garbling gate gi
using the oracles O(2),O(4) is indistinguishable from garbling gi according to either of the three other gate
modes RealGate, InputDepSimGate,SimGate as the oracles provide PRF evaluations and the key they define
implicitly is never revealed as it is not the active input wire key. For the target gate, consider the two gate
types separately:

Case 1 - target gate is AND gate: As all predecessors of the target gate are in InputDepSimGate mode,
the input wires to the target gate were generated using SimPAGGate and hence B holds one wire key on
each input wire. Denote these keys by ka and kb. It is easy to see that when the oracle outputs evaluations
of F , then the result is exactly the same as in the real garbling H0. On the other hand, if the oracle outputs
random strings, then the result will contain three ciphertexts out of which all but the one that the color
bits are pointing to are random. The last ciphertext (which may be implicitly defined) is computed using
F . Hence, the result is exactly the same as in HybIntermλ

A.

25

Case 2 - target gate is XOR gate: Again, all predecessors of the target gate are in InputDepSimGate mode
and B holds one wire key on each input wire. If the oracles’ output is according to F , then it is easy to see
that the result is exactly the same as in the real garbling H0. Otherwise, the oracles output random strings
and the result is exactly the same as in HybIntermλ

A.
In both cases, H0 and HybIntermλ

A are (T (λ), ε(λ))-indistinguishable.
From HybIntermλ

A to H1: This step is very similar to the previous one. We will use adversary B (Fig.

12) on input mode, I, target gate index j, step2, and 2PRF oracles (O(1),O(2),O(3),O(4)) that breaks the
2PRF assumption for F if A can distinguish H0 and HybIntermλ

A.
The garbling that B outputs is exactly the same as in H1, except for the target gate gj as well as

those gates gi that share an input wire with it. For the latter, it is easy to see that garbling gate gi
using the oracles O(2),O(4) is indistinguishable from garbling gi according to either of the three other gate
modes RealGate, InputDepSimGate,SimGate as the oracles provide PRF evaluations and the key they define
implicitly is never revealed as it is not the active input wire key. For the target gate, consider the two gate
types separately:

Case 1 - target gate is AND gate: As all predecessors of the target gate are in InputDepSimGate mode,
the input wires to the target gate were generated using SimPAGGate and hence B holds one wire key on
each input wire. Denote these keys by ka and kb. It is easy to see that when the oracle outputs evaluations
of F , then the result is exactly the same as in the simulated garbling H1. On the other hand, if the oracle
outputs random strings, then the result will contain three ciphertexts out of which all but the one that the
color bits are pointing to are random. The last ciphertext (which may be implicitly defined) is computed
using F . Hence, the result is exactly the same as in HybIntermλ

A.
Case 2 - target gate is XOR gate: Again, all predecessors of the target gate are in InputDepSimGate mode

and B holds one wire key on each input wire. If the oracles’ output is according to F , then it is easy to see
that the result is exactly the same as in the simulated garbling H1. Otherwise, the oracles output random
strings and the result is exactly the same as in HybIntermλ

A.
In both cases, H1 and HybIntermλ

A are (T (λ), ε(λ))-indistinguishable. Combining the two steps yields
that H0 and H1 are (T (λ), 2ε(λ))-indistinguishable.

Theorem 1. We are going to show that for any α ∈ {0, . . . , γ},

DT ′(λ)

[
Hyb(mode0, Iα),Hyb(modeα, Iα)

]
≤

α∑
i=1

2ri−sα+1 · ε ≤ α · 2t−sα+1 · ε.

where sα = |Iα|. Observe that Iγ = ∅, and that ExpadaptiveA,GC,Sim(λ, 0) = Hyb(mode0, ∅) and ExpadaptiveA,GC,Sim(λ, 1) =
Hyb(modeγ , ∅). The statement then follows immediately by letting α = γ.

The proof proceeds by induction on the number α ∈ {0, . . . , γ} of pebbling steps taken so far. Denote
by Hα the hybrid game Hyb(modeα, Iα) induced by the pebble configuration in step α. Note that we set up
the index set Iα such that in each move, rule A (B) applies to the graph of the circuit if and only if rule 1
(2) can be applied to the circuit.
Base case: Let α = 0. Then DT ′(λ) [H0, H0] = 0.
Induction hypothesis: Assume that

DT ′(λ)

[
Hyb(mode0, Iα),Hyb(modeα, Iα)

]
≤

α∑
i=1

2ri−sα+1 · ε ≤ α · 2t−sα+1 · ε.

holds for some arbitrary but fixed α ∈ {0, . . . , γ − 1}.
Inductive step: We show that the claim holds for α+1. In each move following rule A or B, a black pebble
is either added or removed.

26

Adversary B (Reduction)
Input mode, I, target gate index j, step, and oracles (O1,O2,O3,O4).

1. (Guesses) For all wi ∈ I, let Guess(wi)← {0, 1}.

2. Receive C from A
Garble circuit C:

3. (Input Wires) For i ∈ [n], σ ∈ {0, 1}, kσini ← Gen(1λ) and πini ← {0, 1}.

4. Let gj = (Gate, a∗, b∗, c∗), α = Guess(a∗), φa∗ = α⊕ πa∗ ,
β = Guess(b∗), φb∗ = β ⊕ πb∗ , µ∗ = Guess(c∗)

5. (Gates) For each gi = (Gate, a, b, c), Gate ∈ {AND,XOR}, in C, except for gj , starting from the input layer

moving toward the output, do the following:

(a) If gi has a∗ or b∗ as input

run step 5b but use O2 (and O4) instead of running the PRF on k1−αa∗ (and k1−βb∗), otherwise:

(b) If modei = RealGate,(
k0c , k

1
c , πc, g̃i

)
← PAGGate

(
i, {kσa , kσb }σ∈{0,1}, πa, πb

)
.

else I. If modei = SimGate, let µ := 0 else µ := Guess(c)

II.
(
k0c , k

1
c , πc, g̃i

)
← SimPAGGate

(
i, {kσa , kσb }σ∈{0,1}, πa, πb, µ

)
.

6.
(
k0c∗ , k

1
c∗ , πc∗ , g̃j

)
←

ReducOneO1,O3
Gate,B

(
j, {kαa∗ , k

β
b∗}, φa∗ , φb∗ , α, β

)
if step = step1

ReducTwoO1,O3
Gate,B

(
j, {kαa∗ , k

β
b∗}, φa∗ , φb∗ , µ

∗
)

if step = step2
.

7. Send C̃ to A. Obtain x from A.
Garble Input x:

8. (Check the guesses) For ∀ i ∈ I,

– Let v(wi) be the bit on the wire wi during the computation C(x).

– if v(wi) 6= Guess(wi) Output 0 and abort.

9. (Choose the colorbits) Let y = C(x). For ` = 1, . . . ,m:

Let i be the index of the gate with output wire `,

– If modei 6= SimGate, set d̃` = π`

– else, set d̃` := y` ⊕ π`.

10. (Select input keys) For ` = 1, . . . , n:

– If all gates i having in` as an input wire satisfy modei = SimGate, then set K[`] := k0in`
‖πin` ,

– else set K[`] := k
x`
in`
‖(πin` ⊕ x`).

11. Send x̃ := (K, {d̃`}`∈[m]) to A and output whatever A outputs.

Figure 12: Adversary B for the 2PRF experiment Exp2PRF
F,B with black-box access to distinguisher A.

27

Case 1: Move α+ 1 adds a black pebble. In this case, sα+1 = sα + 1 and rα+1 = sα+1.

DT ′(λ)

[
Hyb(mode0, Iα+1),Hyb(modeα+1, Iα+1)

]
≤ DT ′(λ)

[
Hyb(mode0, Iα+1),Hyb(modeα, Iα+1)

]
+ DT ′(λ)

[
Hyb(modeα, Iα+1),Hyb(modeα+1, Iα+1)

]
(4)

≤ 1

2

α∑
i=1

2ri−sα+1 · ε+ 2ε (5)

≤ 1

2
·DT ′(λ)

[
Hyb(mode0, Iα),Hyb(modeα, Iα)

]
+ 2ε (6)

=

α∑
i=1

2ri−sα+1+1 · ε+ 2rα+1−sα+1+1 · ε

=

α+1∑
i=1

2ri−sα+1+1 · ε

Line 4 follows from the triangle inequality. To get to line 6, use Lemma 4 for

DT ′(λ)

[
Hyb(mode0, Iα+1),Hyb(modeα, Iα+1)

]
≤ ε′

for some ε′ and |J | = 1, as well as Lemma 2 or 3. Applying the induction hypothesis yields line 5. Finally,
substitute sα, rearrange the equation and use that rα+1 = sα+1 to conclude the case.

Case 2: Move α+ 1 removes a black pebble. In this case, sα+1 = sα − 1 and rα+1 = sα.

DT ′(λ)

[
Hyb(mode0, Iα+1),Hyb(modeα+1, Iα+1)

]
≤ 2 ·DT ′(λ)

[
Hyb(mode0, Iα),Hyb(modeα+1, Iα)

]
(7)

≤ 2 ·DT ′(λ)

[
Hyb(mode0, Iα),Hyb(modeα, Iα)

]
+ 2 ·DT ′(λ)

[
Hyb(modeα, Iα),Hyb(modeα+1, Iα)

]
(8)

≤ 2 ·
α∑
i=1

2ri−sα+1 · ε+ 2 · 2ε (9)

=

α∑
i=1

2ri−sα+1+1 · ε+ 2rα+1−sα+1+1 · ε

=

α+1∑
i=1

2ri−sα+1+1 · ε

Line 6 follows from the previous line by Lemma 4. Line 8 follows from the triangle inequality. Applying the
induction hypothesis and Lemma 2 or 3 yields line 9. Finally, substituting sα, rearranging the equation and
using that rα+1 = sα+1 concludes the case and the proof.

28

	Introduction
	Our contributions
	Adaptive Security of Existing Optimized Garbling Schemes
	Our New Construction

	Applications of Adaptively Secure Garbling Schemes
	Related Work
	Outline

	Preliminaries
	General Notation
	Garbling Schemes
	Yao's Scheme

	Pseudorandom Functions

	Adaptive and Practical Garbling Schemes: Background and A Way Forward
	Yao's Scheme and The Challenge of Adaptive Security (TCC:JafWic16)
	A Tool and a Trick: Adaptive Security from the JW Technique
	Characteristics of Adaptively Secure Garbling Schemes
	How the Existing Schemes Do with Regards to These Characteristics
	Row Reduction Techniques
	FreeXOR, FleXor and Half gates
	Fast Garbling

	Construction
	Garbling XOR Gates
	Our Garbling Scheme

	Security Proof
	Setting up hybrid games
	Indistinguishability of hybrid games
	Rule 1: RealGateInputDepSimGate
	Rule 2: InputDepSimGateSimGate

	Sequences of Hybrid Games
	Pebbling Game
	From Pebbling to Sequence of Hybrids

	Adaptive Security Proof (continued)

