
A New Secure and Efficient Ownership Transfer
Protocol based on Quadric Residue and

Homomorphic Encryption

Farokhlagha Moazami1 and Masoumeh Safkhani2

1 Cyberspace Research Institute, Shahid Beheshti University,Tehran, Iran
2 Computer Engineering Department, Shahid Rajaee Teacher Training University,

Tehran, Iran, Postal code: 16788-15811, Tel/fax:+98-21-22970117,
Safkhani@srttu.edu

Abstract. In systems equipped with radio frequency identification (RFID)
technology, several security concerns may arise when the ownership of
a tag should be transferred from one owner to another, e.g., the con-
fidentiality of information related to the old owner or the new owner.
Therefore, this transfer is usually done via a security protocol called the
ownership transfer protocol. If the ownership of several things together
transmitted from one owner to another during a single session, the pro-
tocol is referred to as the group ownership transfer protocol.
Lee et al. recently proposed a new group ownership transfer protocol by
using cloud server, as a trusted third-party, and based on homomorphic
encryption and quadratic residue. In this paper, at first, we explain some
important security attacks against this recently proposed RFID group
ownership transfer protocol. The success probability of any attack that
is presented in this paper is 1 and the complexity is just a run of the
protocol. Zhu et al. also in order to provide simultaneous transfer of group
of tags in multi-owner environment proposed a lightweight anonymous
group ownership transfer protocol. In this paper we show that it suffers
from desynchronization attack. The success probability of this attack
is ”1” and its complexity is only five runs of group ownership transfer
protocol.
In addition, to overcome the Lee et al. protocol security weaknesses,
we present a new group ownership transfer protocol which is resistant
against all known active and passive attacks, including the attacks pre-
sented in this paper. The provided security proof through informal meth-
ods and also formal methods such as Barrows-Abadi-Needham logic and
Scyther tool show the proposed protocol’s security correctness.

Keywords: RFID, Ownership Transfer Protocol, Quadratic Residue,
Secret Disclosure Attack, Traceability Attack, Scyther, Barrows-Abadi-
Needham

1 Introduction

Ownership transfer of an object form an owner to another could be a common
practice in many applications of RFID technology in the Internet of Things

(IoT), E-health and logistics for instants. However, it also has its own security
concerns. A general solution for this issue is the design and implementation of
ownership transfer protocols, or in a comprehensive manner, group ownership
transfer protocols. The most important features of a secure ownership transfer
protocol are the forward untraceability and backward untraceability properties,
which are defined as follows:

– Forward untraceability: means that the old owner should not be able to read
future data.

– Backward untraceability: means that the new owner should not be able to
read old data.

In this direction, recently in [23], in order to provide simultaneous transfer
of group of tags in multi-owner environment, a novel lightweight group owner-
ship transfer protocol was proposed according to EPC C1 G2 standard. Their
designers claimed, their proposed protocol can satisfy security properties in-
cluding forward/backward security, anonymity/untraceability and resistance to
replay and desynchronization attack. However, in this paper we show that their
protocol is not resistant against desynchronization attack.

Moreover, recently [14] proposed a novel group ownership transfer protocol.
They also claimed that their protocol provides data privacy, backward secrecy,
forward secrecy, ownership privacy, and group ownership integrity. They also
have shown the correctness of their scheme using Barrows-Abadi-Needham logic,
which is a manual formal method to evaluate the security of a protocol. They
used cloud computing in their scheme that leads their scheme to be ubiquitous
authentication and also used homomorphic encryption and quadratic residue
that made their protocol processes on encrypted data to be efficient. In this
paper, we investigate the Lee et al. protocol security pitfalls and prove its security
vulnerabilities. To overcome the security vulnerabilities of Lee et al. protocol,
we also propose a new secure group ownership transfer protocol and prove its
correctness by using Barrows-Abadi-Needham logic and Scyther tool, which are
manual and automatic security formal methods respectively.

1.1 Main Contribution

In this paper, we:

– prove that the Lee et al. group ownership transfer protocol is vulnerable
against secret disclosure attack;

– show vulnerability of the Lee et al. group ownership transfer protocol against
reader impersonation attack;

– present traceability attack against Lee et al. protocol;
– explain Lee et al. protocol does not have forward secrecy. It worth noting

that the success probability of any presented attack in this paper is 1 and
the complexity is just a run of the group ownership transfer protocol;

– present desynchronization attack against Zhu et al. group ownership transfer
protocol;

– propose a new secure group ownership transfer protocol;
– prove security correctness of proposed protocol informally and also using

Barrows-Abadi-Needham logic and Scyther tool as a manual and automatic
formal methods respectively.

1.2 Paper Organization

The rest of the paper is structured as below: Section 2, shows recent works which
are done in the field of group ownership transfer protocol design. We review all
required preliminaries and also the Lee et al. and Zhu et al. group ownership
transfer protocols in Section 3. Section 4 is dedicated to present several security
attacks against Lee et al. protocol, including secret disclosure attack, reader im-
personation attack, traceability attack and forward secrecy contradiction attack
and desynchronization attack against Zhu et al. protocol. Our proposed proto-
col is presented in Section 5. Section 6 shows the correctness of our proposed
protocol both informally and formally through Barrows-Abadi-Needham logic
and Scyther tool. The comparison between the proposed protocol with other
related protocols from security and computational complexity aspects of view is
explained in Section 7. Finally, the paper is concluded in Section 8.

2 Related Work

As stated above, ownership transfer protocols are referred to protocols, whereby
they transfer ownership of a tag-labeled object from one owner to another one.
There are many protocols in this area such as [2,3,7,9,8]. If during the process of
ownership transfer, the ownership of several tags is transferred to the new owner
at the same time, they are referred to as group ownership transfer protocols. In
this regard, efforts have been made in the literature [10,12,19,21,22]. However,
the security attacks against them [1,4,16,15,14] showed that none of them has
ever been able to meet all security needs. These security attacks, in addition to
helping to identify the weaknesses of these protocols, also helped designers to
avoid the known attacks and weaknesses in their designs of new protocols. In
detail, Yang in [21] proposed a novel group ownership transfer protocol and they
assumed the old owner cannot eavesdrop the new owner’s transferred massages,
which in fact is an unrealistic assumption. They also designed their protocol
based on tree structure which forces computational overhead problem and also
windowing problem [17]. In [5], it is presented that the Yang’s protocol is
vulnerable against tag impersonation attack, and back-end server compromis-
ing attack. Another lightweight group ownership transfer protocol was proposed
by Sundaresan et al. in [20] which uses 128-bit output length PRNGs and ex-
clusive or operations. Munilla et al. in [15] proved that Sundaresan et al.’s
protocol is vulnerable against forward secrecy contradiction attack, tag’s loca-
tion privacy contradiction attack, replay attack and desynchronization attack.
Recently [14] based on homomorphic encryption function and quadratic residue
problem designed a new group ownership transfer protocol for RFID tags and

claimed their protocol has suitable security to employment in any application.
The use of quadratic residue problem is not new in the design of ownership
transfer protocols and there are such protocols like [8], but the use of the ho-
momorphic encryption function is a new idea in the field of designing group
ownership transfer protocols that perform operations without the need for de-
cryption the ciphertext. However, the structure of protocol messages is not well
designed, resulting in serious vulnerabilities to security attacks. In this paper,
while describing these vulnerabilities, we try to resolve these vulnerabilities to
achieve a secure group ownership transfer protocol that uses quadratic residue
and homomorphic encryption function in its structure.

3 Preliminaries

In this section, we review notations used in the paper and also a brief description
of Lee et al. [14] and Zhu et al. [23] protocols.

3.1 Notations

The notations which are used in this paper are summarized in Table 1. The adver-
sary A used throughout the paper is passive which can eavesdrop all transferred
messages through an insecure channel and also can do offline computations. Lee
et al. in their protocol used homomorphic encryption which leads the computa-
tions on encrypted data to be efficient. Therefore, here we explain homomorphic
Encryption.

Definition 1 : Given m1 and m2 are plaintext and E is a Homomorphic
Encryption function, if we have EK(m1) ∗ EK(m2) = EK(m1 + m2) where ∗ is
addition or multiplication operation then E is homomorphic encryption. In the
first case, E is called an additive homomorphic encryption and in the latter is
called a multiplicative homomorphic encryption and if have both additive and
multiplicative properties is called fully homomorphic encryption.

Lee et al. in their protocol used the quadratic residue to protect the messages
that transmitted in their protocol. An integer R is called a quadratic residue
modulo n if it is congruent to a perfect square modulo n, i.e., if the congruence
x2 ≡ R modn has a solution. If n is the product of two prime numbers, using the
Chinese Remainder Theorem, the congruence x2 ≡ R modn has no solution or
exactly four incongruent solutions. However, one can be able to compute these
solutions, which have factorization of n. Due to the difficulty of factoring, it
is computationally infeasible to find numbers satisfying x2 ≡ R modn without
knowing p and q in which n = pq, [18]. Assume that x is replaced with x2, then
if a solution exists for (x2)2 ≡ R modn, it is clear that the solution is required
to be a perfect square. That, of the four possible solutions, only one of those
would be a quadratic residue modulo n satisfying x2 ≡ R modn [8].

Table 1. Notations used in this paper

Notations Description
Ti The ith RFID tag
Rj The jth RFID reader(owner)

Rj+1 The j + 1th RFID reader(owner)
A The adversary
TIDi The identifier of the ith RFID tag
ri,j The secret value of the ith RFID tag, which is shared with

the reader Rj

ri,j+1 The secret value of the ith RFID tag, which is shared with
the reader Rj+1

KTIDi,j The secret value of the ith RFID tag, which is shared with
the reader Rj

niT , n
i
T2
, niT3

, nr, n
′
rThe random numbers

PRNG The pseudo random number generator
p, q The odd prime numbers
n The product of two odd prime numbers
‖ The concatenation operation
A← B Assigning A value to B
⊕ The bit wise exclusive-or operation
h,H The one-way hash functions
M(.) A simple homomorphic encryption such as M(x) =

gx modq
A ∼ B A mod B
si The secret key between tag and back-end server in Zhu et

al. protocol
CRC The cyclic redundancy check function
IDi, ID

′
i The current and old identifier of ith tag in Zhu et al. pro-

tocol
ki, k

′
i The current and old secret key between tag and reader in

Zhu et al. protocol
IDgroup The identifier of each group of tags in Zhu et al. protocol
si The shared secret between tag and back-end server in Zhu

et al. protocol
kMi The master key which is used in ownership recovery phase

of Zhu et al. protocol
ni1r, n

i
2r, n

i
s, nT The random numbers generated by reader, back-end server

and tag respectively in Zhu et al. protocol

3.2 Review of the Lee et al. protocol

In this section, we briefly introduce Lee et al. [14] protocol using notations repre-
sented in Table 1. As can be easily seen in Figures 1 and 2 [14] protocol includes
two phases. An initialization phase and a group ownership transfer phase. In the
initialization phase tags and readers registered with the cloud server. In their
protocol, the communication channels between reader and tag are insecure, while
the communication channels between reader and cloud server are secure.

Initialization phase In the tag initialization phase, tag Ti transmits Reg-
istration Request and its identity TIDi to cloud server via a secure channel.
Cloud server computes h(TIDi) and generates KTIDi,j

randomly as an own-
ership key. Also, generates ri,j and ri,j+1 as shared keys between current and
new owner of the tag Ti. Then it generates two random numbers nj and si that
nj is the product of two large primes pj and qj . Finally, cloud server transmits
{h(TIDi),KTIDi,j

, ri,j , ri,j+1, nj , si} to Ti.
In the reader registration phase, the reader Rj sends Registration Request

and its identity RIDj to cloud server via a secure channel. Cloud server upon
receiving request and identity, computes hash values of tags that Rj is its owner
{h(TIDi)} and corresponding ownership keys {KTIDi,j}, shared keys {ri,j}, and
set of pairs of large primes {pj , qj} that nj = pjqj .Then Cloud server transmits
{{h(TIDi)}, {KTIDi,j

}, {ri,j}, {pj , qj}} to Rj . Cloud server stores these secret
parameters in the form of an encrypted hash table.

Ownership transfer protocol phase The ownership transfer phase of [14]
protocol includes 3 parts. Part 1 refers to the mutual authentication between Ti
and Rj and part 2 refers to the mutual authentication between Ti and Rj+1. Part
3 is intended to transfer group ownership from Rj to Rj+1. In this paper, we are
concerned with Part 1 and 2, since our analysis will focus on the vulnerabilities
of these two parts. The details of these parts are described in the sequel.

When an ownership transfer protocol is started, Cloud Server sends Group
OT Request (GOTR) to Current Mobile Reader Rj through a secure channel
then Rj broadcasts OT Request (OTR) to each tag Ti in the group through
an insecure channel. Details of part 1 of the proposed protocol is explained as
follows:

– Tag Ti −→ Current Mobile Reader Rj

Tag Ti upon receiving GOTR, generates a random number niT and computes
following values:
Ri

T = h(TIDi)⊕ ri,j ⊕ niT ,
R′iT = (Ri

T)4modnj ,
Ai

1 = ri,j ⊕ niT .
Then tag Ti sends R′iT and Ai

1 to the current mobile reader Rj .
– Current Mobile Reader Rj −→ Tag Ti

Reader Rj upon receiving R′iT and Ai
1, computes niT = ri,j ⊕Ai

1. Then given
pj and qj , it obtains Ri

T from R′iT using Chinese Remainder Theorem(CRT).

Tagi

i , ji TID i, j

i, j 1 j i

h(TID),K , r

r , n ,s

i i, j

i

T

i i

T T

i i

T T

i

1 i

j

j T

4

,

3.Generates n

R h(TID) r n

R ' R

A r

mod n

 n

Current Reader Cloud

Server

1.GOTR

i i5.Retrieves n r A
T i, j 1

i iObtains R from R '
T T

by using CRT.

i iIf R n
T T

h TID r
i i, j

authenticates the tag

computes

iACK h TID
i i T

produces gk

iA gk PRNG
2

in || AC

n

Ks
T

j 1R

New Reader

i , ji TID i, j

j

{h(TID)},{K },{r }

RID }

jR

2. OTR

i i4 '
T

.R ,A
1

i6.ACK ,A
i 2

i7.If h TID n
i T

ACKi,

authenticates the

 reader.

iretrieves gk A
2

PRNG n ACK
r i

K K h
OT TID

i, j i, j

TID r gk
i i, j

i in ' PRNG n

|

T

|

1
T

8.K , n '
OT

i, j

i
T

11.Saves K
GOT

iPr oduces n
T
1

Computes

iB PRNG
1

iGOTR n gk
T
1

GOT10.K ,gk

9.Checks

?i iPRNG n 1 n '
T T

if it is ok, then

computes K K
TID OT

i, j i, j

h TID r gk
i i, j

n
K M K

GOT TID
i 1 i, j

i , j 1i TID i, j 1

j 1

{h(TID)},{K },{r }

RID }

T
i

iMAR1 . , B
2

7

i19.R'''i ,B
3T

21.ACK'
i

GOTR

i in

1

T
1

.

, B
1

2

i , jOT14.K'

13.If

iPRNG(GOTR || n || gk)
T
1

iB
1

computes

K
TID

i, j
K ' g ~ q

OT
i, j

18.Re trieves

in B r
j 1 2 i, j 1

iproduces n
T

2

computes

iR '' h TID
T i

ir n
i, j 1 T

2

i i 4R"' R '' mod n
T T j 1

i iB r n
3 i, j 1 T

2

n
j 1

16.Computes

n p q
j 1 j 1 j 1

iB n r
2 j 1 i, j 1

20.Re trieves

Obtains R" from R"'
t t

by u sin g CRT.

i in B r n
T 3 i, j 1 j 1

2

i iIf R" n
T T

2

h TID r
i i, j 1

authenticates the tag.

computes

iACK ' h TID n
i i T

2

n15.Computes K '
i 1 OT

i, j

checks whether

?
n K ' K
i 1 OT GOT

i, j

If it is ok,

verification succeeds

and goes to mutual

authentication phase.

Fig. 1. The part 1 and part 2 of Lee et al. group ownership transfer protocol.
From step 12 onward is the part 2 of Lee et al. protocol [14].

Tagi

i , ji TID i, j

i, j 1 j i

h(TID),K , r

r , n ,s

Cloud Server

2

3

i , j 3

i

i T i

j 1

i

T

i

i TID T

2

i i j 1

2

i i j 1

i

4 i i, j 1 i

22.If h TID n ACK '

authenticates R

produces n

x K n

x ' x ~ n

x" x ' ~ n

B PRNG x" r x

j 1R

New Reader

i , j 1

j 1 i

TID i, j 1

25.RID H(h(TID)

|| K || r)

i

4 i23.B , x"

i , j 1

i i

2

i i j 1

i

i i, j 1 i 4

i TID j 1 i

i

24.Retrieves x from x"

using CRT.

computes

x ' x ~ n

If PRNG x" r x B

calculates

E K RID x|| '

x

i , j

i , j 1

i, j 1 TID i, j 1 i, j 2 i

i, j 1 j 1 i

TID i, j 1

26.Finds

C H K r r s

by using

I RID H h TID

K

(

)

||

r

i, j 127.C

i , j 1i TID

i, j 1 j 1

{h(TID)},{K }

,{r }, RID }

2

i i

5 T i i i, j 1

i, j 1 i i

28.Computes

B PRNG n x ' E C

r ' PRNG h TID x '

()

i , j 1

i ,n

i , j 1

j 1 i

TID i, j 1

TID i, j 1

TID i, j 1

31.RID H(h(TID)

|| K || r '),

H(K || r)

H(K || r ')

i

5 i i, j 1B ,E ,C29.

2

i , j 1

i , j i , j 1

i , j 1

i

T i i i, j 1

i

5

TID j 1

i i i

TID TID

i, j 1 i i

i, j 2 i, j 1 TID i, j 1

i

30.If PRNG n x ' E C

B

retrieves K RID

E x ' x

updates

K K

r PRNG h TID x '

r C H K r

s

||

||

i , j 1

i , j 1

i , j 1

i, j 1 j 1 i

TID i, j 1

i, j 1 TID i, j 1

TID i, j 1 i, j 1

32.U pdates

I ' RID H h TID

K r '

(

||

|

)

C ' H K r

H K r ' C|

iT

Fig. 2. The part 3 of Lee et al. group ownership transfer protocol [14]

If Ri
T⊕niT = h(TIDi)⊕ri,j , then it authenticates the tag Tiand Rj computes

ACKi = h(TIDi) ⊕ niT . Reader Rj generates randomly gk and computes
Ai

2 = gk⊕PRNG(niT ‖ACKi) and finally sends ACKi and Ai
2 to the tag Ti.

– Tag Ti −→ Current Mobile Reader Rj

Tag Ti checks whether h(TIDi) ⊕ niT
?
= ACKi, if equality holds then it

authenticates Rj .

Tag Ti computes gk = Ai
2⊕PRNG(niT ‖ACKi),KOTi,j = KTIDi,j⊕h(TIDi)⊕

ri,j⊕gk, and n′iT = PRNG(niT + 1).Then it sends n′iT and KOTi,j
to Current

Mobile Reader Rj .

– Current Mobile Reader Rj −→ Cloud Server

Rj once receipts the message, computes PRNG(niT +1) and compares it with
received n′iT . If they are equal, computes KTIDi,j

= KOTi,j
⊕h(TIDi)⊕ri,j⊕

gk and KGOT = M(
∑n

i=1KTIDi,j
).

Finally Rj transmits KGOT and gk to the cloud server via a secure chan-
nel and cloud server sends aggregated ownership key KGOT and gk to the
new mobile reader Rj+1 via a secure channel. New mobile reader Rj+1

stores KGOT and generates another random number niT1
then computes

Bi
1 = PRNG(GOTR‖niT1

‖gk).

After above steps, part 2 of the protocol starts as below:

– New Mobile Reader Rj+1 −→ Tag Ti
New mobile reader Rj+1 transmits Group OT Request(GOTR), niT1

and Bi
1

to the tag Ti.

– Tag Ti −→ New Mobile Reader Rj+1

Tag Ti checks whether PRNG(GOTR‖niT1
‖gk)

?
= Bi

1, if the equality holds

then it computes K ′OTi,j
= gKTIDi,j modq and transmits K ′OTi,j

to Rj+1.

– New Mobile Reader Rj+1 −→ Tag Ti

New mobile reader first checks whether
∏n

i=1K
′
OTi,j

?
= KGOT . If they are

equal, then it computes Bi
2 = nj+1 ⊕ ri,j+1 and broadcasts Mutual Authen-

tication Request (MAR) and Bi
2 to each tag in the tag group.

– Tag Ti −→ New Mobile Reader Rj+1

Tag, first, computes nj+1 = Bi
2⊕ri,j+1 then generates niT2

and also computes

R′′iT = h(TIDi) ⊕ ri,j+1 ⊕ niT2
, R′′′iT = (R′′iT)4 modnj+1and Bi

3 = ri,j+1 ⊕
niT2
⊕ nj+1 and transmits R′′′iT and Bi

3 to Rj+1.

– New Mobile Reader Rj+1 −→ Tag Ti

Reader Rj+1 when receiving R′′′iT and Bi
3, computes niT2

= Bi
3⊕ri,j+1⊕nj+1

and solves quadratic congruence R′′′iT = (R′′iT)4 modnj+1 and derives R′′iT .
Now if R′′iT ⊕ niT2

= h(TIDi) ⊕ ri,j+1 then authenticates the tag and Rj+1

computes ACK ′i = h(TIDi)⊕ niT2
and sends ACK ′i to the tag Ti.

The part 3 of Lee et al. protocol proceeds as follows:

– Tag Ti −→ New Mobile Reader Rj+1

Once receives the message, the tag Ti checks whether h(TIDi) ⊕ niT2

?
=

ACK ′i is or not. If it is not, it finishes the protocol otherwise authenticates
Rj+1 and in order to begin the process of ownership transfer, generates a
random number niT3

and computes xi = KTIDi,j
⊕ niT3

, x′i = x2i modnj+1

,x′′i = x4i modnj+1 and Bi
4 = PRNG(x′′i ‖ri,j+1‖xi) and sends Bi

4 and x′′i to
the Rj+1.

– New Mobile Reader Rj+1 −→ Cloud Server
When Rj+1 receives the message, retrieves xi from x′′i using Chinese Re-

minder Theorem (CRT)and then checks whether PRNG(x′′i ‖ri,j+1‖xi)
?
= Bi

4

is or not. If it is not, Rj+1 terminates the protocol otherwise, generates a
new ownership key KTIDi,j+1

, computes E = (KTIDi,j+1
‖RIDj+1)⊕x′i⊕xi

and sends RIDj+1 ⊕H(h(TIDi)‖KTIDi,j+1
‖ri,j+1) to the cloud server.

– Cloud Server Ti −→ New Mobile Reader Rj+1

Once the cloud server receives the message, by using index Ii,j+1 = RIDj+1⊕
H(h(TIDi)‖KTIDi,j+1‖ri,j+1) in its encrypted hash table finds the content
Ci,j+1 = H(KTIDi,n‖ri,j+1

)⊕ri,j+2⊕si and sends Ci,j+1 to the reader Rj+1.
– New Mobile Reader Rj+1 −→ Tag Ti

Upon receipt of the message,Rj+1 computesBi
5 = PRNG(niT2

‖x′i‖E‖Ci,j+1)
and updates its secret values as r′i,j+1 ← PRNG(h(TIDi) ⊕ x′i) and sends

Bi
5, E and Ci,j+1 to the tag Ti and RIDj+1⊕H(h(TIDi)‖KTIDi,j+1‖r′i,j+1)

and H(KTIDi,n‖ri,j+1
)⊕H(KTIDi,j+1‖r′i,j+1

) to the cloud server.
– Tag Ti

when Ti receives the message, checks whether PRNG(niT2
‖x′i‖E‖Ci,j+1)

?
=

Bi
5, if it is not, Ti stops the protocol, otherwise performs ownership update

process by computing (KTIDi,j+1‖RIDj+1) = E⊕x′i⊕xi and then updating
secret values as KTIDi,j

← KTIDi,j+1
, ri,j+1 ← PRNG(h(TIDi) ⊕ x′i) and

ri,j+2 ← Ci,j+1 ⊕H(KTIDi,j+1
‖ri,j+1)⊕ si.

– Cloud server
Once cloud server receives the message, updates its hash table index and
content as I ′i,j+1 = RIDj+1 ⊕ H(h(TIDi)‖KTIDi,n‖r′i,j+1) and C ′i,j+1 =
H(KTIDi,n‖ri,j+1)⊕H(KTIDi,n‖r′i,j+1)⊕ Ci,j+1.

3.3 Review of the Zhu et al. protocol

In this section, we briefly introduce Zhu et al. protocol [23] which includes
four phases: initialization phase, mutual authentication phase, ownership trans-
fer phase and ownership recovery phase.

Initialization phase In initialization phase, secret parameters of each entity
are assigned via a secure channel. Back-end sever generates IDgroup for each
group and CRC(si) for every tag in which si is secret key between tag and back-
end server. Back-end server holds tuple {IDgroup, si, kMi , (ki, IDi), (k

′
i, ID

′
i)}, in

which (ki, IDi) are the current secret parameters and (k′i, ID
′
i) are the previous

secret parameters. Also, each tag saves the set {IDgroup, CRC(si), kMi
, (ki, IDi), (k

′
i, ID

′
i)}.

In this protocol, the owner that can execute ownership recovery phase saves
the set {IDgroup, kMi , (ki, IDi), (k

′
i, ID

′
i)} and another owner holds only the set

{IDgroup, (ki, IDi), (k
′
i, ID

′
i)}.

Mutual authentication phase Mutual authentication phase of the Zhu et al.
protocol as depicted in Figure 3 runs as below:

Tagi

i

1r

?

i

1r i

Retrieves CRC(n)from

A,

computes B’ and checks

whether B’ B

If it is ok, computes

C PRNG(CRC(n) |

3

)

.

| ID

Current Reader Back-end

Server

i

1r

group i

i

i 1r

i

1r i

1. Generates n

A PRNG((ID ID)

|| k) CRC(n)

B PRNG(CRC(n) || k)

j 1R

New Reader

jR

2. A,B

4.C

6.D,E

i8.F,P

10.P

iT

i i group12.G,H,k , ID ,ID

14.G,H

?

i

1r

i

i group 1r

i

1r i

omputes C’ and checks

whether C’ C

If it is ok, computes

D PRNG(CRC(n)

|| ID || ID) n

E PRNG(

5.C

n || k)

i

1r

?

i i i i

i

i i 1r

i

i i 1r

i

1r i

i group

i i i

Retrieves n from

D,

computes E’ and checks

whether E’ E

If it is ok,

k ' k , ID ' ID

k PRNG(k n)

ID PRNG(ID n)

F PRNG(n || ID ')

P PRNG(ID ||

ID || k |

7.

| CRC(s))

?

i i

1

group 1 1 1 1r

1

1 1 1 mr

Computes F ' and checks

whether F’ F

If it is ok, updates k , ID

P (ID ,(P , ID ,k ,n)

....(P , ID ,k ,n)

9

)

.

i

s

i i

i i

i

i i s

i

i i s

i

i

i i s

i

i

i s

11. If P is ok,

generates n

k ' k ,

ID ' ID

k PRNG(k n)

ID PRNG(ID n)

G PRNG(CRC(s)

ID ' || k ') n

H PRNG(CRC(s)

|| P || n)

i i group13.Stores k , ID , ID

i

s

?

i i

i i

i

i i s

i

i i s

T

i i T

T i

Retrieves n from

G,

computes H’ and checks

whether H’ H

If it is ok,

k ' k ,

ID ' ID

k PRNG(k n)

ID PRNG(ID n)

generates n

I PRNG(k || ID) n

15

J PRNG(CRC(n) k)

.

T

?

i i T

Retrieves n from

I,

computes J’ and checks

whether J’ J

If it is ok

1

,

K PRNG(k || ID || n)

7.

16.I, J

18.K

Computes K '

and verifies whether

19.

K ' K

group i i

i i Mi i

{ID , (ID , k),

(ID' , k'),k ,CRC(s)}

group i i

i i Mi i

{ID , (ID , k),

(ID' , k'),k ,s }

group i i i i Mi

group i i i i

{ID , (ID , k), (ID' , k'),k ,}

or

{ID , (ID , k),(ID' , k')}

group i i i i Mi

group i i i i

{ID , (ID , k), (ID' , k'),k ,}

or

{ID , (ID , k),(ID' , k')}

Fig. 3. Mutual authentication and ownership transfer phases of Zhu et al. pro-
tocol [23]

– Current owner Rj −→ Tag Ti
Current owner generates a random number nj1r and computes the values:
A = PRNG((IDgroup⊕ IDi)‖ki)⊕CRC(ni1r), B = PRNG(CRC(ni1r)‖ki).
Then Rj sends A and B to Ti.

– Tag Ti −→ Current owner Rj

When tag Ti receives A and B then retrieves CRC(ni1r) from message
A ⊕ PRNG((IDgroup ⊕ IDi)‖ki) and using ki computes the value B′ =

PRNG(CRC(ni1r)‖ki). Tag Ti checks whether B′
?
= B is or not, if equality

holds computes C = PRNG(CRC(ni1r)‖IDi) and sends it to the current
owner.

– Current owner Rj −→ Tag Ti
Current owner authenticates tag by computing C ′ = PRNG(CRC(ni1r)‖IDi)
and comparing it with C that has received from tag. After verification, it
computesD = PRNG(CRC(ni1r)‖IDi‖IDgroup)⊕ni1r, E = PRNG(ni1r‖ki),
and sends D and E to the tag Ti.

– Tag Ti −→ Current owner Rj

Tag retrieves ni1r from D and computes E′ and compares it with E to au-
thenticate the current owner. After successful current owner authentication,
the tag updates (ki, IDi) with (PRNG(ki ⊕ ni1r), PRNG(IDi ⊕ ni1r)) and
replaces (k′i, ID

′
i) with (ki, IDi). Then it computes F = PRNG(ni1r‖ID′i)

and Pi = PRNG(IDgroup‖IDi‖ki‖CRC(si)) and sends them to the current
owner.

– Current owner Rj −→ Tag Ti

Current owner calculates F ′ and verifies whether F ′
?
= F is or not, if equality

holds, Rj updates (ki, IDi) and calculates
P = ((IDgroup, (P1, ID1, k1, n

1
1r) · · · (Pm, IDm, km, n

1
mr))).

Then transfers it to the back-end server.

Ownership transfer phase Back-end server after receiving ownership transfer
request from new owner, verifies the request and transfers it to the old owner. The
old owner after receiving request executes the mutual authentication. Then back-
end server verifies P and si (secret key between server and tag), after that P was
verified, the server updates (ki, IDi) using ni1r that generated by the old owner
and compares updated parameters with the received ones. Then as depicted in
Figure 3, the server produces a random number nis to update (ki, IDi) that is
k′i ← ki, ID

′
i ← IDi and ki ← PRNG(ki ⊕ nis), IDi ← PRNG(IDi ⊕ nis) and

computes G = PRNG(CRC(si)⊕ ID′i‖k′i)⊕nis, H = PRNG(CRC(si)‖Pi‖nis).
Then the server transfers G,H, ki, IDi and IDgroup to the new owner.

– New owner −→ Tag Ti
New owner keeps ki, IDi and IDgroup and transfers G and H to the tag Ti.

– Tag Ti −→ New owner
Ti upon receiving G and H, retrieves nis from G and computes PRNG(CRC(
si)‖Pi‖nis). If H = PRNG(CRC(si)‖Pi‖nis) then Ti updates ki and IDi.
Tag Ti generates a random number nT and computes I = PRNG(ki‖IDi)⊕

nT and J = PRNG(CRC(nT)⊕ ki). Then, the tag transfers I and J to the
new owner.

– New owner −→ Tag Ti
The new owner, first, retrieves nT from I and calculates PRNG(CRC(nT)⊕
ki) if it is equal to J then computes K = PRNG(ki‖IDi‖nT) and sends K
to the tag.

– Tag Ti −→ New owner
Tag Ti computes PRNG(ki‖IDi‖nT) and checks equality with K. If equality
in this step holds for all tags in the group then tags accept the new owner
as their owner.

Ownership recovery phase

– Old owner −→ Tag Ti
Old owner generates a random number ni2r and computes A = PRNG((
IDgroup⊕ IDi)‖ki‖kMi)⊕CRC(ni2r) and B = PRNG(CRC(ni2r)‖ki‖kMi).
Then it sends A, B and recovery request to the tag.

– Tag Ti −→ Old owner
Tag Ti finds previous ki, IDi and kMi

to retrieve CRC(ni2r) from A. Then
it computes PRNG(CRC(ni2r)‖ki‖kMi) and compares it with received B.
If equality holds, the tag authenticates the old owner and calculates C =
PRNG(CRC(ni2r)‖IDi‖kMi

). The tag transfers C to the old owner.
– Old owner −→ Tag Ti

The old owner verifies C and computesD = PRNG(CRC(ni2r)‖IDi‖IDgroup)
and E = PRNG(ni2r‖ki‖kMi) and sends them to the tag.

– Tag Ti −→ Old owner
Tag Ti retrieves ni2r from D and verifies received E if verification is true
updates ki and IDi as ki ← PRNG(ki⊕ni2r) and IDi ← PRNG(IDi⊕ni2r).
Then it calculates F = PRNG(k′i‖ID′i‖ni2r) and sends it to the old owner.

– Old owner −→ Tag Ti
The old owner after receiving F verifies it and if verification is true then
updates ki and IDi.

4 Security Vulnerabilities of Previous Protocols

Here, we show how some of security claims of Lee et al. for their proposed
protocol can be violated.

Its weaknesses include secret disclosure or tag data privacy and ownership
privacy contradiction attack, forward secrecy contradiction attack and reader
impersonation attack. Details of these attacks are explained as below:

4.1 Secret Disclosure Attack

The secret disclosure attack is an attack in which the adversary attempts to
use transferred messages in the protocol to obtain secret protocol values. As can

be seen in Algorithm 1, for this attack which done in order to contradict data
privacy and ownership privacy, it is enough the adversary A does as below in
two phases:

– Learning Phase: Eavesdrops part 1 and 2 of the protocol.
– Secret Disclosure Phase:
• Retrieves niT2

as Bi
2 ⊕Bi

3.

• Obtains h(TIDi) as h(TIDi) = ACK ′i ⊕ niT2
.

• Retrieves niT as ACKi ⊕ h(TIDi).
• Then obtains ri,j = as Ai

1 ⊕ niT .
• Finally, with eavesdroppingKOTi,j

can obtainKTIDi,j
asKOTi,j

⊕h(TIDi)⊕
ri,j ⊕ gk.

So, the adversary can obtain secret parameters of the tag and the old owner i.e.
Rj , hence Lee et al. protocol cannot preserve data privacy and is vulnerable to
secret disclosure attack. The success probability of this attack is 1 and it only
needs one run of protocol. It worth noting that by obtaining KTIDi,j

, Lee et al.
protocol cannot preserve ownership privacy.

Algorithm 1: The algorithm of proposed secret disclosure attack against
the Lee et al. protocol

Data: Ai
1, n

i
T , A

i
2, B

i
2, B

i
3, ACKi, ACK

′
i,KOTi,j

, gk
Result: Obtains niT2

, h(TIDi) ,ri,j , KTIDi,j

1 1. niT2
= Bi

2 ⊕Bi
3

2 2. h(TIDi) = ACK ′i ⊕ niT2

3 3. niT = ACKi ⊕ h(TIDi)
4 4. ri,j = Ai

1 ⊕ niT
5 5. KTIDi,j

= KOTi,j
⊕ h(TIDi)⊕ ri,j ⊕ gk

4.2 Forward Secrecy Contradiction

Forward secrecy is a security feature that points out that if the secret values of
a protocol in the current session go down, the adversary should not be able to
retrieve all of the secret values used in previous sessions. In order to provide this
feature, most security protocols update their secret values used at the session
after each run.

Since, during the time that the reader Rj owns the tag Ti, its secret values
including TIDi, h(TIDi), ri,j and KTIDi,j are not updated, by obtaining these
values, we can say that all the secret values of tag and reader that have in the
past are also retrieved. Therefore, the above protocol does not meet the forward
secrecy feature. For, forward secrecy contradiction, it is enough the adversary
follows the steps described in Section 4.1.

4.3 Reader Impersonation Attack

An impersonation attack is an attack in which the adversary attempts to forge
a legitimate protocol’s party, gain information about the other party to the
protocol or gain access to the service. For such example, reader impersonation is
an attack in which the adversary places himself behind a legitimate reader and
can force the tag to respond to its messages. Here, we show that [14] protocol is
also, vulnerable to the reader impersonation attack. The scenario of the attack
is as follows:

– Learning Phase: In this phase, the adversary eavesdrops a session of pro-
tocol and obtains h(TIDi) by using a method described in Section 4.1 and
since it has h(TIDi) can obtain gk. Hence it can compute Bi

1.
– Reader Impersonation Phase: In this phase, the adversary:
• intends it is a legal new mobile reader.
• Then it sends Bi

1, niT1
and Group OT Request (GOTR) to the tag Ti

instead of the new mobile reader.
• Obtains KTIDi,j

, so it can check whether
∏n

i=1K
′
OTi,j

?
= KGOT .

• Generates Bi
2 randomly and broadcasts it to the group of tags.

• Each tag computes R′′′iT and Bi
3 and sends them to the adversary instead

of the legal new mobile reader.
• Then the adversary obtains the real niT2

as Bi
2 ⊕ Bi

3 and computes

ACK ′i = h(TIDi) ⊕ niT2
that can be verified by the tag and tag ac-

cepts the adversary as the legal mobile reader Rj+1.

It worth noting that the complexity of reader impersonation attack is only eaves-
dropping one run of protocol and its success probability is 1.

4.4 Traceability Attack

A traceability attack is an attack in which an adversary attempts to access fixed
information associated with tag’s or reader’s identity using the transferred mes-
sages in the protocol and then uses this fixed information to trace it. Here we
show that the Lee et al. ownership transfer protocol is also vulnerable against
traceability attack. The traceability attack presented in this section is based on
the traceability model provided by [11]. In this traceability model, there is a
hypothesis that the adversary has the constant h(TIDi) of two tags, namely
h(TID0) and h(TID1) and is faced with a game that only contains one of these
two tags. Now, if the adversary can correctly guess which tag is in the game,
he/she is the winner of the game and it is said that the protocol is vulnerable
to the traceability attack. The adversary succeeds in distinguishing between two
tags if his chance of guessing is correct from the possibility of random proba-
bility (i.e., 0.5) has a significant deviation. In other words, assuming a constant
h(TIDi) and the adversary’s advantage Advadv is calculated in the application
of traceability attack on the protocol as follows:

Advadv(h(TID0), (h(TID1)) = |PrCorrectGuess − PrRandomGuess| > ε,

where PrCorrectGuess, PrRandomGuess are the probability of a correct guess
and random guess, respectively and ε is a negligible function. Our proposed
traceability attack as depicted in Algorithm 2 accomplishes as below:

– Learning Phase: In this phase, the adversary eavesdrops one run of the
protocol.

– Traceability Attack Phase: In this phase, the adversary does as below:

• Retrieves niT2
as Bi

2 ⊕Bi
3.

• Obtains h(TIDi) as h(TIDi) = ACK ′i ⊕ niT2
.

Algorithm 2: The algorithm of proposed traceability attack against the
Lee et al. protocol

Data: h(TID0), h(TID1), Bi
2, B

i
3, ACK

′
i

Result: Obtains h(TIDi)
1 1. niT2

= Bi
2 ⊕Bi

3

2 2. h(TIDi) = ACK ′i ⊕ niT2

3 3. Compares h(TIDi) with h(TID0) and h(TID1)
4 4. Decides that faces with which tag T0 or T1 with the success probability

of ”1”

On the other hand, assuming that the adversary knows the actual value of
the h(TID0) and h(TID1) which are receptively related to tag T0 and T1, then
with the probability of 1, by comparing the obtained h(TIDi) with h(TID0)
and h(TID1), it will know which tag is encountered.

4.5 Desynchronization attack on the Zhu et al. Protocol

In this section we show that group ownership protocol proposed by Zhu et al. [23]
is vulnerable to desynchronization attack.

– Session j
To simplicity in notations assume that the tag and the reader save (kji , ID

j
i)

and (kj−1i , IDj−1
i) as the current and previous parameters in the j-th session

in the mutual authentication phase.
– Session j + 1

Assume that a successful session is executed and the tag and the reader
update their parameters as (kj+1

i , IDj+1
i) and (kji , ID

j
i) as the current and

previous parameters. In this session, the adversary eavesdrops the transferred
messages of this session over the insecure channel, i.e. Aj+1, Bj+1, Cj+1,
Dj+1 and Ej+1, and saves them.

– Session j + 2
In this session, the adversary eavesdrops messages Aj+2, Bj+2, Cj+2, Dj+2

and Ej+2, saves them and blocks messages Dj+2 and Ej+2. So the authen-
tication is failed and the tag and reader do not update their parameters. If
the adversary did not intercept the protocol, the tag and the reader update
their shared values to (kj+2

i , IDj+2
i) and (kj+1

i , IDj+1
i). However, following

the interception, their shared values remain as (kj+1
i , IDj+1

i) and (kji , ID
j
i),

but the tag knows that it has not been authenticated based on (kj+1
i , IDj+1

i).
– Session j + 3

Since previous authentication is failed, the tag/reader executes the session
with (kji , ID

j
i), and this time the adversary does not interfere with the pro-

tocol. So the protocol successfully runs. After this successful run of the pro-
tocol, the tag and the reader update their parameters with (kj+3

i , IDj+3
i)

and (kji , ID
j
i).

– Session j + 4
In the next step of the attack, the adversary impersonates the reader and
sends Aj+1 and Bj+1 that eavesdropped from the previous sessions, i.e.
session j + 1. So the adversary can successfully impersonate the reader and
cause the tag updates its parameters with (kj+1

i , IDj+1
i) and (kji , ID

j
i) while

the reader dose not update its parameters and still has (kj+3
i , IDj+3

i) and

(kji , ID
j
i).

– Session j + 5
In this session, once again the adversary impersonates the reader and sends
Aj+2 and Bj+2 that eavesdropped from the previous sessions, i.e. session
j + 2. So the adversary can successfully impersonate the reader and cause
the tag updates its parameters with (kj+2

i , IDj+2
i) and (kj+1

i , IDj+1
i) while

the reader dose not update its parameters and still has (kj+3
i , IDj+3

i) and

(kji , ID
j
i). As it can be seen, none of the values stored in the tag and the

reader are identical. Hence, the tag and the reader will be desynchronized
after the above attack.

The success probability of above attack is almost ”1” and its complexity is
only five runs of the protocol.

5 Proposed Protocol

In this section, to overcome security vulnerabilities of [14] protocol, we propose
a new secure one. As can be easily seen in Figures 4 our protocol same as its pre-
decessor i.e. Lee et al. includes two phases. An initialization phase and a group
ownership transfer phase. In the initialization phase tags and readers registered
with the cloud server. In our proposed protocol, the communication channels be-
tween readers and tags are insecure, while the communication channels between
readers and cloud server are secure.

5.1 Initialization phase

In the tag initialization phase, the tag Ti transmits Registration Request and
its identity TIDi to cloud server via a secure channel. Cloud server computes

h(TIDi) and generates KTIDi,j
randomly as an ownership key, also, generates

ri,j and ri,j+1 as shared keys between current and new owner of the tag Ti. Then
it generates two random number nj and si that nj is the product of two large
primes pj and qj . Cloud server transmits {h(TIDi),KTIDi,j , ri,j , ri,j+1, nj} to
Ti.

In the reader registration phase, the reader Rj sends Registration Request
and its identity RIDj to cloud server via a secure channel. Cloud server upon re-
ceiving request and identity, computes hash values of tags that Rj is their owner
{h(TIDi)} and corresponding ownership keys {KTIDi,j}, shared keys {ri,j}, and
set of pairs of large primes {pj , qj} that nj = pj×qj .Then cloud server transmits
{{h(TIDi)}, {KTIDi,j

}, {ri,j}, {pj , qj}} to Rj . Cloud server stores these secret
parameters in the form of an encrypted hash table.

5.2 Ownership transfer protocol phase

The ownership transfer phase of our proposed protocol includes 3 parts. Part
1 refers to the mutual authentication between Ti and Rj and part 2 refers to
the mutual authentication between Ti and Rj+1. Part 3 is intended to transfer
group ownership from Rj to Rj+1. The details of these parts are described in
the sequel.

When an ownership transfer protocol is started, Cloud Server sends Group
OT Request (GOTR) to Current Mobile Reader Rj through a secure channel
then Rj broadcasts OT Request(OTR) to each tag Ti in the group through an
insecure channel. Details of part 1 of the proposed protocol are explained as
follows:

– Tag Ti −→ Current Mobile Reader Rj

Ti upon receiving OT Request, generates a random number niT and computes
Ri

T = h(TIDi)⊕ ri,j ⊕niT and R′iT = (Ri
T)4 mod nj . Then tag Ti sends R′iT

and niT to the current mobile reader Rj .
– Current Mobile Reader Rj −→ Tag Ti

Reader Rj upon receiving R′iT and niT , given pj and qj , obtains Ri
T from R′iT

by using Chinese Reminder Theorem (CRT) and verifies its correctness based
on the received niT and its records of the tags. Next, if the previous step was
successful, the reader authenticates the tag Ti. Rj then generates a random
number nr and, to response Ti, computes Ri

r = PRNG(niT ‖(h(TIDi)
⊕ nr)) and finally sends Ri

r and nr to the tag Ti.
– Tag Ti −→ Current Mobile Reader Rj

Tag Ti verifies the correctness of Ri
r based on its local data and also the

received nr to authenticate the reader. Then, the tag Ti computes KOTi,j
=

KTIDi,j ⊕ nr ⊕ niT ⊕ h(TIDi)⊕ ri,j , K ′OTi,j
= (KOTi,j)2 mod nj and Ci =

PRGN(KTIDi,j ⊕ri,j⊕nr). Then it sends Ci and K ′OTi,j
to Current Mobile

Reader Rj .
– Current Mobile Reader Rj −→ Cloud Server
Rj once receipts the message, obtains KTIDi,j from K ′OTi,j

by using Chinese

Reminder Theorem (CRT) and verifies its correctness, also cross checks with

Tagi

i , ji TID i, j

i, j 1 j

h(TID),K , r

r , n

i

T

i i

T i i, j T

i i 4

T T j

3.Generates n

R h(TID) r n

R ' R ~ n

Current Reader Cloud

Server

1. GOTR

i i

T T

i i

T T

i

T

i i, j

r

i

r

i r

5. Obtains R from R '

by using CRT.

If R n

h TID r

authenticates the tag;

generates n ;

computes

R

PRNG n || h TID n

j 1R

New Reader

i , ji TID i, j

j

{h(TID)},{K },{r }

RID }

jR

2. OTR

i i

T T4.R ', n

i

r r6.n ,R

i , j i , j

i , j i , j

i , j

i

r

OT TID r

i i, j

4

OT OT j

i

TID i

i

T

, j r

7.Verifies R to

authenticates the reader;

K K n n

h TID r ;

Computes

K K ~ n and

C PRNG K r n

i , j

i

OT8.K ,C

GOT

r

i

1

r r

11.Saves K ;

Produces n ;

Computes B PRNG

GOTR n n

GOT r10.K ,n

i , j

i , j

i , j

TID

OT

i

n

GOT TID

i 1

9. Obtaines K

from K and

verifies C .

If it is ok, then

K M K

i , j 1i TID i, j 1

j 1

{h(TID)},{K },{r }

RID }

iT

2

2

2

i

j 1 2 i, j 1

i

T

i i

t i i, j 1 T

i i 4

t t j 1

i i

3 i, j 1 T r

i i 4

3 3 j 1

18. n B r ;

Produces n ;

computes

R h TID r n

R R ~ n

B r n n '

B B ~ n

i i

t 319. R B,

j 1 j 1 j 1

i

2 j 1 i, j 1

16.Computes

n p q

B n r

i21.ACK'

2

i i

t 3

i

i i T

20. Verifies the received

R and B

authenticates the tag.

computes

ACK ' h T

to

ID n .

TIDi , j

i , j

i

1

K

OT

13. Verifies B

tocompute

K ' g ~ q

i , jOT14.K'

i , j

i , j

n

OTi 1

?
n

OT GOTi 1

15.Computes K '

Checks whether

K ' K

If it is ok,

verification succeeds

and goes to mutual

authentication phase.

i

r 1

GOTR,

n'

1

, B

2.

i

2MAR1 , B7.

Fig. 4. The part 1 and part 2 of proposed ownership transfer protocol, where
G/OTR and MAR respectively denote ”group/ownership transfer request” and
”mutual authentication request”. From step 16 onward is the mutual authenti-
cation phase of the proposed protocol between the tag and the new owner

the received Ci. Finally, Rj transmits KGOT and nr to the cloud server via
a secure channel and cloud server sends aggregated ownership key KGOT , nr
and niT of each tag Ti to the new mobile reader Rj+1 via a secure channel
(please note that in Figure 4 for simplicity we just mentioned messages go
from Rj to Rj+1 but in reality it happens through the cloud server). New
mobile reader Rj+1 stores KGOT and generates another random number n′r
then computes Bi

1 = PRNG(GOTR‖nr‖n′r).

After the above steps, part 2 of the proposed protocol is started.

– New Mobile Reader Rj+1 −→ any Tag Ti in the group
New mobile reader Rj+1 transmits Group OT Request (GOTR), n′r and Bi

1

to the tags.
– Tag Ti −→ New Mobile Reader Rj+1

Tag Ti checks whether PRNG(GOTR‖nr‖n′r)
?
= Bi

1, if the equality holds
then it computes K ′OTi,j

= gKTIDi,j mod q and transmits K ′OTi,j
to Rj+1.

– New Mobile Reader Rj+1 −→ Tag Ti

Once the new mobile reader received the answers of all tags in the group,

it first checks whether
∏n

i=1K
′
OTi,j

?
= KGOT . If they are equal, then it

computes Bi
2 = nj+1 ⊕ niT and broadcasts Mutual Authentication Request

(MAR) and Bi
2 to each tag in the tag group.

– Tag Ti −→ New Mobile Reader Rj+1

Ti, first, computes nj+1 = Bi
2 ⊕ niT then generates niT2

and also computes

R′′iT = h(TIDi)⊕ri,j+1⊕niT2
, R′′′iT = (R′′IT)4 mod nj+1, Bi

3 = ri,j+1⊕niT2
⊕

n′r and B′i3 = Bi
3
4

mod nj+1 and transmits R′′′iT and B′i3 to Rj+1.
– New Mobile Reader Rj+1 −→ Tag Ti

Reader Rj+1 when receiving R′′′iT and B′i3 from a tag, retrieves Bi
3 from B′i3

and then it computes niT2
= Bi

3⊕ri,j+1⊕n′r and solves quadratic congruence

R′′′iT = (R′′iT)4 mod nj+1 and derives R′′iT . Now if R′′iT ⊕ niT2
= h(TIDi) ⊕

ri,j+1 then it authenticates the tag and Rj+1 computes ACK ′i = h(TIDi)⊕
niT2

and sends ACK ′i to the tag Ti. The tag also verifies the received ACK ′i
to do the final authentication of Rj+1.
Part 3 of the proposed protocol proceeds the same as part 3 of Lee et al. pro-
tocol, exclude that the ri,j+2 is calculated asH(Ci,j+1⊕KTIDi,j+1

‖ri,j+1⊕si)
while in Lee et al. protocol it was computed as Ci,j+1⊕H(KTIDi,j+1

‖ri,j+1)
⊕ si. So we won’t repeat the details of this phase.

6 Security Proof of Proposed Protocol

In this section, we prove the security of proposed group ownership protocol using
informal method and also manual formal method and automatic formal method.
It should be noted we consider the security of whole the group and consider the
compromising a single tag as the compromising of whole the group of the tags.

6.1 Informal Security Proof

In this section, we informally prove the proposed protocol has a high level of
security and can resist against attacks presented in this paper and also all other
active and passive attacks.

Secret Disclosure Attack The adversary can obtain the messages {R′iT , niT , nr, Ri
r,K

′
OTi,j

, Ci}
from eavesdropping of the communication between Tag Ti and reader Rj and
the messages {n′r, Bi

1,K
′
OTi,j

, Bi
2, R

′′′i
t , B′i3 , ACK

′
i} from the communication be-

tween Tag Ti and reader Rj+1. The messages R′iT , R′′′it and B′i3 are protected by
quadratic residue. Hence, the adversary cannot obtain any sensitive information
from these messages. On the other hand the transmitted messages that contain
h(TIDi) are R′iT , Ri

r, K ′OTi,j
, R′′′it and ACK ′i. Messages R′iT , K ′OTi,j

and R′′′it are

protected by quadratic residue, Ri
r is protected by 128-length output PRNG and

ACK ′i is xor of h(TIDi) and the random number niT2
. The random number niT2

is used only in the R′′′iT and B′3 that both are protected by quadratic residue. So
the adversary cannot obtain h(TIDi) and niT2

. By the above discussion since the
adversary cannot obtain h(TIDi), he/she cannot obtain any information from
the message KOTi,j

. Also since the adversary cannot obtain the random number
niT2, hence ACK ′i dose not leak any information. Also, no information can leak
from the message Bi

2, since it is XOR of ri,j+1 and nj+1, that only used in this
message and are updated in part 3 and in the initialization phase of the proposed
protocol respectively.

Reader/Tag Impersonation Attack Resistance Reader impersonation at-
tack occurs when the adversary can play the role of the reader in the authenti-
cation phase to convince tag that accepts it as a legal reader. So the adversary
must pass the authentication phase. To do this he/she needs to produce ACK ′i,
but by discussion in the subsection 6.1 the adversary could not obtain h(TIDi).
So the proposed protocol is resistance against reader impersonation attack.

Tag impersonation attack occurs when the adversary can play the role of tag
in the authentication phase to convince the reader that accepts it as a legal tag.
So the adversary must pass the authentication phase. To do this he/she needs
to produce {R′iT , Ci} or {B′i3 , R′′′it } that by discussion in the subsection 6.1 the
proposed protocol is resistance against tag impersonation attack.

Traceability Attack Resistance Traceability attack resistance or tag location
privacy means that the attacker cannot trace the location of the tag. To do this a
scheme should design in which the transmitted messages makes looks irrelevant
to the eavesdropper and also an attacker cannot obtain any information from the
identity of tag. Since the protocol is designed so that any transmitted messages
from the tag has new random numbers so the adversary cannot find any relation
between transmitted messages and identity of the tag that transmits it. Also,
by discussion in subsection 6.1 one can see that h(TIDi) and any information
about it is protected in the protocol.

Forward/Backward Secrecy Forward secrecy is achieved when the adver-
sary cannot obtain any sensitive parameters in the past communication sessions
even if the secret key or ownership key of the tag in the current communication
session are revealed. By discussion in the subsection 6.1, the adversary could
not obtain any sensitive information by eavesdropping. Given that the adver-
sary has ownership key KTIDi,j+1

of tag Ti and reader Rj+1 and secret keys
{ri,j+1, ri,j+2, nj+1} and its goal is to obtain at least one of the secret parame-
ters {h(TIDi),KTIDi,j

, ri,j , nj}. In part 3, KTIDi,j
, h(TIDi) and ri,j+1 is used

as the seed of the PRNG or hash function. So the adversary cannot use the infor-
mation of ri,j+1, nj+1 at all. A similar discussion shows that information about
ri,j+2 cannot be useful for the adversary. Hence the proposed protocol achieves
forward secrecy. Likewise, the proposed protocol achieves backward secrecy.

Preventing Plaintext Miscalculation Lee et al. in their protocol in some-
where used equations in the form of R = x2 mod n where n is the product of
two odd prime numbers which according to Chinese Reminder Theorem has four
solutions [18]. Since in the proposed protocol we use the equations in the form of
R = x4 mod n everywhere except one in the third part of the protocol and as
described in [8], the equations in the form of R = x4 mod n has only one solu-
tion, therefore our proposed protocol is secure against plaintext miscalculation
attack which at first published in [13]. In the third part of proposed proto-
col same as it predecessor on the tag’s side, it computes x′i = x2i mod nj+1,
x′′i = x4i mod nj+1 and Bi

4 = PRNG(x′′i ‖ri,j+1‖xi) and sends Bi
4 and x′′i to

the Rj+1. New reader retrieves only one answer for xi and then it computes x′i
as x2i mod nj+1. Equation x′i = x2i mod nj+1 not going to solve where in the
protocol there are going to be four answers. So our proposed protocol same as
it predecessor is resistant against plaintext miscalculation.

Desynchronization Attack Resistance To achieve desynchronization attack,
the tag and the readers need to update their secret parameters when authen-
ticate each other and also believe that the messages that use to authenticate
each other are fresh and belong to the current session. In the proposed proto-
col tag and readers generate random numbers niT ,niT2, niT3, nr and n′r to avoid
desynchronization attack.

6.2 Formal security proof

Lee et al. protocol based on Borrows-Abadi-Needham (BAN) logic showed their
protocol is logically correct and can provide high-level security and privacy pro-
tection [14]. In this section, we first argue why the BAN logic in their verification
showed their protocol security correctness while in reality, it is not such a secure
protocol. Then we prove the proposed protocol’s security correctness based on
BAN logic. We also use Scyther [6] tool which is an automatic security protocol
verifier to assist the results which are retrieved from BAN logic.

On BAN Logic proof of Lee et al. protocol

Lee et al. in their BAN logic proof of the security of their protocol [14], to
describe the transferred messages of protocol in BAN logic notations, have shown
messages such as Ai

1 which is computed only from XORing some secret values in
the form of one message which is encrypted with secret values and based on it the
results have arrived, while such messages should not be assumed as encrypted
messages. Hence, we did not show messages that do not have sufficient security
to be encrypted messages in our BAN logic proof of the proposed protocol.

BAN logic proof of the proposed protocol
BAN logic security correctness proof of protocols includes four steps:

– explaining the protocol messages in BAN logic notation: in this step, the
protocol messages, using BAN logic notations introduced in Table 2, are
written as depicted in Table 3: It worth noting since the channels between
readers and cloud server are secure we use K(CS,Rj) and K(CS,Rj+1) to show
that the messages between Rj and CS and also between Rj+1 and CS are
encrypted with those symmetric secret keys respectively.

Table 2. Notations used in this paper

Notations Description
](X) The message X is fresh
{X}K The encrypted of X by using K as the

key
P C X P sees the message X

P
K←→ Q K is secretly shared between P and Q

P |
K−1

=> K−1 is the private key of P and its pub-
lic key is K

R1 :
P |

K−1

=>,P C {X}K
P C X

That means if P believes the message
K−1 is its secret key and K is its pub-
lic key and received the message {X}K
then it entitled that he sees X

R2 :
P | ≡ P K←→ Q,P C {X}K

P | ≡ Q| ∼]X
That means if P believes the K is se-
curely shared between itself and Q and
also sees the {X}K , then it entitled that
he believes Q sends message X

– Idealization of protocol messages: in this step, the message which do not
increase the confidence are omitted as depicted in Table 4.

Table 3. Expressing the messages of proposed protocol in BAN logic

No. of mes-
sages

Description

M1 Rj C {GOTR}K(CS,Rj)

M2 Ti C OTR
M3 Rj C {h(TIDi), n

i
T }ri,j ,nj

, niT
M4 Ti C nr, R

i
r

M5 Rj C Ci, {h(TIDi), nr, n
i
T }KTIDi,j

,ri,j ,nj

M6 Rj+1 C nr,KGOT

M7 Ti C GOTR, n′r, B
i
1

M8 Rj+1 C K ′OTi,j

M9 Ti CMAR, {nj+1}ri,j+1

M10 Rj+1 C {h(TIDi), n
i
T2
}ri,j+1,nj+1 , {niT2

, n′r}ri,j+1

M11 Ti C ACK ′i
M12 Rj+1 C {KTIDi,j

, niT3
}ri,j+1,nj+1

, {KTIDi,j
, niT3
}nj+1

M13 CS C {Ii,j+1}K(CS,Rj+1)

M14 Rj+1 C {Ci,j+1}K(CS,Rj+1)

M15 Ti C {niT2
,KTIDi,j

, niT3
, {KTIDi,j+1

,KTIDi,j
, RIDj+1, n

i
T3
}nj+1

, Ci,j+1}nj+1
, {KTIDi,j+1

,KTIDi,j
, RIDj+1, n

i
T3
}nj+1

, Ci,j+1

M16 CS C {C ′i,j+1, I
′
i,j+1}K(CS,Rj+1)

Table 4. Idealization of the messages of proposed protocol in BAN logic

No. of Description
idealized
messages
IM3 Rj C {h(TIDi), n

i
T }ri,j ,nj

IM4 Ti C nr, R
i
r

IM5 Rj C Ci, {h(TIDi), nr, n
i
T }KTIDi,j

,ri,j ,nj

IM6 Rj+1 C nr,KGOT

IM7 Ti C n′r, B
i
1

IM8 Rj+1 C K ′OTi,j

IM9 Ti C {nj+1}ri,j+1

IM10 Rj+1 C {h(TIDi), n
i
T2
}ri,j+1,nj+1 , {niT2

, n′r}ri,j+1,nj+1

IM11 Ti C Ack′i
IM12 Rj+1 C {KTIDi,j

, niT3
}ri,j+1,nj+1

, {KTIDi,j
, niT3
}nj+1

IM15 Ti C {niT2
,KTIDi,j

, niT3
, {KTIDi,j+1

,KTIDi,j
, RIDj+1

, niT3
}nj+1 , Ci,j+1}nj+1 , {KTIDi,j+1 ,KTIDi,j , RIDj+1,

niT3
}nj+1 , Ci,j+1

– expressing the protocol security assumptions and goals: the proposed proto-
col’s assumptions and goals are respectively as depicted in Table 5.

Table 5. Assumption and security goals of proposed protocol

No. of Description No. of Description
Assumption Assumption
/Goal /Goal

A1 Ti| ≡]niT A14 Rj | ≡ Rj
ri,j←→ Ti

A2 Ti| ≡]niT2
A15 Ti| ≡ Ti

ri,j+1←→ Rj+1

A3 Ti| ≡]niT3
A16 Rj+1| ≡ Rj+1

ri,j+1←→ Ti

A4 Rj | ≡]nr A17 Rj |
n−1
j

=>

A5 Rj+1| ≡]n′r A18 Rj+1|
n−1
j+1

=>

A6 Rj+1| ≡]KTIDi,j+1
A19 Rj | ≡ Rj

K(CS,Rj)←→ CS

A7 Ti| ≡ Ti
KTIDi,j←→ Rj A20 CS| ≡ CS

K(CS,Rj)←→ Rj

A8 Rj | ≡ Rj

KTIDi,j←→ Ti A21 Rj+1| ≡ Rj+1

K(CS,Rj+1)

←→
CS

A9 Ti| ≡ Ti
h(TIDi)←→ Rj A21 CS| ≡ CS

K(CS,Rj+1)

←→
Rj+1

A10 Rj | ≡ Rj
h(TIDi)←→ Ti G1 Rj | ≡ Ti| ∼]niT

A11 Ti| ≡ Ti
h(TIDi)←→ Rj+1 G2 Rj+1| ≡ Ti| ∼]{niT2

, niT3
}

A12 Rj+1| ≡ Rj+1
h(TIDi)←→ Ti G3 Ti| ≡ Rj | ∼]nj+1

A13 Ti| ≡ Ti
ri,j←→ Rj - -

– Deducing security goals:

Using IM3 and A17 based on R1, we deduce D1 : Rj C {h(TIDi), n
i
T }ri,j

After that using D1 and A14 based on R2, we deduce D2 : Rj | ≡ Ti| ∼]niT
which is the G1 security goal. Using IM10 and A18 based on R1, we deduce
D3 : Rj+1 C {niT2

, n′r}ri,j+1
After that using D3 and A16 based on R2, we

deduce D4 : Rj+1| ≡ Ti| ∼]niT2
which is the G2 security goal. Using IM12

and A18 based on R1, we deduce D5 : Rj+1 C {KTIDi,j
, niT3
}ri,j+1

After

that using D5 and A16 based on R2, we deduce D6 : Rj+1| ≡ Ti| ∼]niT3

which is the G2 security goal. Using IM9 and A15 based on R2, we deduce
D7 : Ti| ≡ Rj | ∼]nj+1 which is the G3 security goal.

Scyther proof of the proposed protocol
Scyther [6] is an automatic security protocol verification tool which receives the
protocol implementation in Security Protocol Description Language (i.e. spdl)
and based on its verification setting which is depicted in Figure 5, analyses the
protocol. If the targeted protocol is not secure it is this ability to show the
attack scenario. Our proposed protocol implementation code in spdl are shown
in Appendix A and its verification result through Scyther is depicted in Figure 6.

Fig. 5. The setting parameters of the Scyther tool

It is easily seen in Figure 6 that the Scyther tool could not find any security
attacks against the protocol. So the proposed protocol provides a high level of
security for secure group ownership goals.

7 Evaluation of Proposed Protocol

In this section, we compare the improved protocol with several recent group
ownership transfer protocols, in terms of security properties and also in terms
of computational and communication costs. As shown in Tables 6 and 7 the
proposed protocol has been able to achieve a high level of security with little
change over its predecessor i.e. [14].

Fig. 6. The Scyther security verification of our proposed group ownership trans-
fer protocol

Table 6. Security Comparison

Protocol A1 A2 A3 A4 A5 A6
[21] × [5] × [5] X X X X
[20] X × [15] × [15] × [15] × [15] X
[2] X × [14] × [14] × [14] X × [2]
[23] X X ×(Sec. 4.5)X X X
[14] ×(Sec. 4) ×(Sec. 4) ×(Sec. 4) × (Sec. 4) ×(Sec. 4) X

Ours X X X X X X
A1: Secret Disclosure attack; A2:Impersonation and Replay attack;
A3: Desynchronization attack; A4: Traceability attack and Anonymity;
A5: Backward/Forward Secrecy Contradiction ;
A6: Group Ownership Transfer Property;
X: Resistant × : Vulnerable

Table 7. Complexity Comparison

Protocol F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
[21] 3 - - - - - 14 - 6 12L
[20] - - - - - 90 2 34 - 16L
[2] 18 1 3 - 2 32 34 6 - 28L
[23] - - - - - 20 29 29 - 18L
[14] 10 1 2 1 3 46 32 12 - 28L

Ours 10 3 6 1 3 43 29 11 - 28L
F1: Number of h(.); F2: Number of two modular exponentiation
F3: Number of four modular exponentiation; F4: Solving square modular
F5: Solving four modular; F6: Number of⊕
F7: Number of‖; F8: Number of PRNG
F9: Number of E(.)/D(.) F10:Number of transferred bits

As can be seen in the Table 7, the proposed protocol differs slightly from
the Lee et al. protocol in terms of the number of operations used, but in turn
has been able to provide important security features same as resistance against
secret disclosure, forward/backward secrecy, resistance against all kinds of im-
personation and replay attacks, untraceability and anonymity property.

8 Conclusion

In this paper we considered security pitfalls of two group ownership transfer pro-
tocols i.e. Lee et al. and Zhu et al. . Precisely, we presented desynchronization
attack against Zhu et al. protocol with success probability of ”1”and the com-
plexity of five runs of protocol. Moreover, we outlined the security breaches of the
Lee et al. protocol and their revision to the secure ownership transfer protocol,
and proved its security in three ways: informal method, manual formal method
and automatic formal method. More precisely, we implemented three strong
attacks against Lee et al. protocol including secret disclosure attack, reader im-
personation attack, forward secrecy contradiction attack and traceability attack
with the success probability of ”1” and the complexity of only one run of the
protocol.
The attacks presented in this paper, showed that the Lee et al. group ownership
protocol was by no means an appropriate protocol for security purposes. It is
hoped that such security analysis will lead to further development of the science
of security protocol design so that we can see more secure protocols in the future.

References

1. S. Cai, Y. Li, T. Li, and R. H. Deng. Attacks and improvements to an RIFD
mutual authentication protocol and its extensions. In Proceedings of the second
ACM conference on Wireless network security, pages 51–58. ACM, 2009.

2. T. Cao, X. Chen, R. Doss, J. Zhai, L. J. Wise, and Q. Zhao. RFID ownership
transfer protocol based on cloud. Computer Networks, 105:47–59, 2016.

3. Y. Chen and J.-S. Chou. ECC-based untraceable authentication for large-scale
active-tag RFID systems. Electronic Commerce Research, 15(1):97–120, 2015.

4. H.-Y. Chien. De-synchronization attack on quadratic residues-based RFID owner-
ship transfer. In 2015 10th Asia Joint Conference on Information Security, pages
42–47. IEEE, 2015.

5. G. Cong, Z.-j. ZHANG, L.-h. ZHU, Y.-a. TAN, and Y. Zhen. A novel secure group
RFID authentication protocol. The Journal of China Universities of Posts and
Telecommunications, 21(1):94–103, 2014.

6. C. J. F. Cremers. The Scyther tool: Verification, falsification, and analysis of
security protocols. In A. Gupta and S. Malik, editors, Computer Aided Verification,
pages 414–418, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

7. T. Dimitriou. Key evolving RFID systems: Forward/backward privacy and own-
ership transfer of RFID tags. Ad Hoc Networks, 37:195–208, 2016.

8. R. Doss, W. Zhou, and S. Yu. Secure RFID tag ownership transfer based on
quadratic residues. IEEE Transactions on Information Forensics and Security,
8(2):390–401, 2012.

9. S. Edelev, S. Taheri, and D. Hogrefe. A secure minimalist RFID authentication
and an ownership transfer protocol compliant to EPC C1G2. In 2015 IEEE In-
ternational Conference on RFID Technology and Applications (RFID-TA), pages
126–133. IEEE, 2015.

10. H. Jannati and A. Falahati. Cryptanalysis and enhancement of a secure group
ownership transfer protocol for RFID tags. In Global Security, Safety and Sustain-
ability & e-Democracy, pages 186–193. Springer, 2011.

11. A. Juels and S. A. Weis. Defining strong privacy for RFID. ACM Transactions on
Information and System Security (TISSEC), 13(1):7, 2009.

12. G. Kapoor, W. Zhou, and S. Piramuthu. Multi-tag and multi-owner RFID owner-
ship transfer in supply chains. Decision Support Systems, 52(1):258–270, 2011.

13. C.-C. Lee, S.-D. Chen, C.-T. Li, C.-L. Cheng, and Y.-M. Lai. Security enhance-
ment on anRFID ownership transfer protocol based on cloud. Future Generation
Computer Systems, 93:266–277, 2019.

14. C.-C. Lee, C.-T. Li, C.-L. Cheng, and Y.-M. Lai. A novel group ownership transfer
protocol for RFID systems. Ad Hoc Networks, 91, 2019.

15. J. Munilla, M. Burmester, and A. Peinado. Attacks on ownership transfer scheme
for multi-tag multi-owner passive RFID environments. Computer Communications,
88:84–88, 2016.

16. S. Qi, Y. Zheng, M. Li, L. Lu, and Y. Liu. Secure and private RFID-enabled third-
party supply chain systems. IEEE Transactions on Computers, 65(11):3413–3426,
2016.

17. B. R. Ray, J. Abawajy, M. Chowdhury, and A. Alelaiwi. Universal and secure
object ownership transfer protocol for the Internet of Things. Future Generation
Computer Systems, 78:838–849, 2018.

18. K. H. Rosen. Elementary number theory. Pearson Education, 2011.
19. S. Sundaresan, R. Doss, W. Zhou, and S. Piramuthu. Secure ownership transfer for

multi-tag multi-owner passive RFID environment with individual-owner-privacy.
Computer Communications, 55:112–124, 2015.

20. S. Sundaresan, R. Doss, W. Zhou, and S. Piramuthu. Secure ownership transfer for
multi-tag multi-owner passive RFID environment with individual-owner-privacy.
Computer Communications, 55:112–124, 2015.

21. M. H. Yang. Secure multiple group ownership transfer protocol for mobile RFID.
Electronic Commerce Research and Applications, 11(4):361–373, 2012.

22. R. Zhang, L. Zhu, C. Xu, and Y. Yi. An efficient and secure RFID batch authenti-
cation protocol with group tags ownership transfer. In 2015 IEEE Conference on
Collaboration and Internet Computing (CIC), pages 168–175. IEEE, 2015.

23. D. Zhu, W. Rong, D. Wu, and N. Pang. Lightweight anonymous RFID group
ownership transfer protocol in multi-owner environment. volume 2018-January,
pages 404–411, 2018.

A The Scyther Code of the Proposed Protocol

hashfunction h;

hashfunction H;

const xor:Function;

const con:Function;

const inc:Function;

const PRNG:Function;

const MUL:Function;

const MUL2:Function;

const MUL4:Function;

const MULg:Function;

const HM:Function;

const GOTR;

const OTR;

const MAR;

secret TIDi;

secret hTIDi;

secret nj;

secret qj;

secret pj;

secret KTIDij;

secret KTIDnj;

secret rij;

secret RIDj;

secret q;

secret qjp1;

secret pjp1;

secret njp1;

secret rijp1;

secret KTIDijp1;

secret Cijp1;

macro nj=MUL(pj,qj);

macro hTIDi=h(TIDi);

macro Rit=xor(hTIDi,rij,niT);

macro Ritprim=MUL4(Rit,nj);

macro Rir=PRNG(con(niT,xor(hTIDi,nr)));

macro Ci=PRNG(xor(KTIDij,rij,nr));

macro KOTij=xor(KTIDij,hTIDi,rij,nr,niT);

macro KOTijprim=MUL4(KOTij,nj);

macro nTprim=PRNG(inc(nT));

macro KGOT=HM(KTIDij,KTIDnj);

macro Bi1=PRNG(con(GOTR,nr,nrprim));

macro KOTijprim=MULg(KTIDij,q);

macro Bi2=xor(njp1,rijp1);

macro Rtizegond=xor(hTIDi,rijp1,niT2);

macro Rti3zegond=MUL4(Rtizegond,njp1);

macro Bi3=xor(rijp1,niT2,nrprim);

macro Bi3prim=MUL4(Bi3,njp1);

macro ACKiprim=xor(hTIDi,niT2);

macro x=xor(KTIDij,niT3);

macro xprim=MUL2(x,njp1);

macro xzegond=MUL4(x,njp1);

macro Bi4=PRNG(con(xzegond,rijp1,x));

macro Iijp1=xor(RIDjp1,H(con(hTIDi, KTIDijp1,rijp1)));

macro E=xor(con(KTIDijp1,RIDjp1),xprim,x);

macro Bi5=PRNG(con(niT2,xprim,E,Cijp1));

macro rijp1prim=PRNG(xor(hTIDi,xprim));

macro Iijp1prim=xor(RIDjp1, H(con(hTIDi,KTIDijp1,rijp1prim)));

macro Cijp1prim=xor(H(con(KTIDnj,rijp1)),H(con(KTIDijp1,rijp1prim)));

protocol proposed(CS,Rj,Ti, Rjp1){

role CS{

secret KTIDijp1;

secret TIDi;

secret hTIDi;

secret rijp1;

secret RIDjp1;

secret Cijp1;

secret KTIDij;

var niT3;

secret njp1;

secret KTIDnj;

send_1(CS,Rj,{GOTR}k(CS,Rj));

recv_13(Rjp1,CS, {Iijp1}k(CS,Rjp1));

send_14(CS,Rjp1,{Cijp1}k(CS,Rjp1));

recv_16(Rjp1,CS, {Iijp1prim, Cijp1prim}k(CS,Rjp1));

claim(CS, Secret, KTIDij);

claim(CS, Secret, KTIDijp1);

claim(CS, Secret, rij);

claim(CS, Secret, rijp1);

claim(CS, Secret, TIDi);

claim(CS, Secret, RIDj);

claim(CS, Secret, RIDjp1);

claim(CS,Nisynch);

claim(CS,Alive);

}

role Rj{

var niT;

fresh nr;

secret TIDi;

secret hTIDi;

secret KTIDij;

secret KTIDnj;

secret rij;

secret RIDj;

secret qj;

secret pj;

secret q;

recv_1(CS,Rj,{GOTR}k(CS,Rj));

send_2(Rj,Ti,OTR);

recv_3(Ti,Rj,Ritprim,niT);

send_4(Rj,Ti,nr,Rir);

recv_5(Ti,Rj,Ci,KOTijprim);

send_6(Rj,Rjp1,KGOT,nr);

claim(Rj,Secret,k(CS,Rjp1));

claim(Rj,Secret, rijp1);

claim(Rj,Secret, KTIDijp1);

claim(Rj,Nisynch);

claim(Rj,Alive);

}

role Ti{

fresh niT;

fresh niT2;

fresh niT3;

var nrprim;

secret TIDi;

secret rij;

secret nj;

secret hTIDi;

secret KTIDij;

secret qj;

secret pj;

var nr;

secret q;

secret rijp1;

secret njp1;

secret qjp1;

secret pjp1;

secret KTIDijp1;

secret RIDjp1;

secret Cijp1;

recv_2(Rj,Ti,OTR);

send_3(Ti,Rj, Ritprim,niT);

recv_4(Rj,Ti,nr,Rir);

send_5(Ti,Rj,Ci,KOTijprim);

recv_7(Rjp1,Ti, GOTR ,nrprim,Bi1);

send_8(Ti,Rjp1, KOTijprim);

recv_9(Rjp1,Ti, MAR ,Bi2);

send_10(Ti, Rjp1,Rti3zegond,Bi3prim);

recv_11(Rjp1,Ti,ACKiprim);

send_12(Ti,Rjp1,Bi4,xzegond);

recv_15(Rjp1,Ti,Cijp1,E,Bi5);

claim(Ti,Secret,k(CS,Rjp1));

claim(Ti,Secret,k(CS,Rj));

claim(Ti,Niagree);

claim(Ti,Nisynch);

claim(Ti,Alive);

}

role Rjp1{

var nr;

secret KTIDij;

secret KTIDnj;

fresh nrprim;

secret q;

secret rijp1;

secret njp1;

secret qjp1;

secret pjp1;

var niT2;

var niT3;

secret TIDi;

secret hTIDi;

secret KTIDijp1;

secret RIDjp1;

secret Cijp1;

recv_6(Rj,Rjp1,KGOT,nr);

send_7(Rjp1,Ti, GOTR ,nr,Bi1);

recv_8(Ti,Rjp1, KOTijprim);

send_9(Rjp1,Ti, MAR ,Bi2);

recv_10(Ti, Rjp1,Rti3zegond,Bi3prim);

send_11(Rjp1,Ti,ACKiprim);

recv_12(Ti,Rjp1,Bi4,xzegond);

send_13(Rjp1,CS, {Iijp1}k(CS,Rjp1));

recv_14(CS,Rjp1,{Cijp1}k(CS,Rjp1));

send_15(Rjp1,Ti,Cijp1,E,Bi5);

send_16(Rjp1,CS, {Iijp1prim, Cijp1prim}k(CS,Rjp1));

claim(Rjp1,Secret, rij);

claim(Rjp1,Niagree);

claim(Rjp1,Secret, KTIDij);

claim(Rjp1,Nisynch);

claim(Rjp1,Alive);

}

}

	A New Secure and Efficient Ownership Transfer Protocol based on Quadric Residue and Homomorphic Encryption

