
Guess what?!
On the impossibility of unconditionally

secure public-key encryption

Lorenz Panny

Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, The Netherlands

lorenz@yx7.cc

Abstract. We (once again) refute recurring claims about a public-key
encryption scheme that allegedly provides unconditional security. This is
approached from two angles: We give an information-theoretic proof of
impossibility, as well as a concrete attack breaking the proposed scheme
in essentially no time.

Keywords: public-key cryptography · perfect secrecy · information theory ·
impossibility · cryptanalysis

1 Introduction

In 2017, GuessAgain, a public-key encryption scheme claiming unconditional
security against passive eavesdroppers, was submitted to NIST’s call for post-
quantum cryptography [1]. Although we publicly broke that scheme with a fast
attack script about three hours after the proposals were published by NIST [6],
the authors still have not acknowledged the attack nor withdrawn their pro-
posal (though NIST deselected it from advancing to the second round). About
seven months later, a paper by a subset of the GuessAgain authors describing
essentially the same system, with no mention of our earlier attack, appeared at
ICMS 2018 [2]. The abstract of that paper states:

We offer a public-key encryption protocol where decryption of a single
bit by a legitimate party is correct with probability p that is greater
than 1/2 but less than 1. At the same time, a computationally unbounded
(passive) adversary correctly recovers the transmitted bit with probability
exactly 1/2.

In this note, we show that this claim is false, and in fact impossible to achieve.

Acknowledgements. I thank Tanja Lange and Andreas Hülsing for their helpful
comments on an earlier draft.
∗ This work was supported in part by the Commission of the European Communities
through the Horizon 2020 program under project number 643161 (ECRYPT-NET).
Date of this document: 2019.10.19.

2 Theory

A typical course in cryptography analyzes the one-time pad early on, deemed a
helpful thing to study for multiple reasons: its tremendous historical significance,
as a first basic (but illuminating) example of formally provable security, and to
provide motivation and intuition for related concepts such as stream ciphers.
Later in the cryptographic curriculum, public-key cryptography is introduced,
and alas, it turns out that the absolute security guarantee of the one-time pad
is unachievable in that setting—computational hardness assumptions must be
made to separate honest users from attackers. This observation was pointed
out as early as 1976, in the very paper in which Diffie and Hellman invented
public-key cryptography [3]:

We note that neither public key cryptosystems nor one-way authentica-
tion systems can be unconditionally secure because the public information
always determines the secret information uniquely among the members
of a finite set. With unlimited computation, the problem could therefore
be solved by a straightforward search.

Notice that this well-known impossibility argument assumes a scheme in which
each public key comes from at most one private key. This is the apparent “gap” in
the impossibility proof that the construction of [1, 2] tries to exploit, by making
the scheme probabilistic and incorporating decryption errors (i.e., occasionally
decrypting correctly generated ciphertexts into messages different from the orig-
inal plaintext). Thus, indeed, the public information does not always uniquely
identify the secret information anymore and the reasoning above does not apply
immediately. However, a similar brute-force argument still works in the presence
of decryption errors: Instead of defining a single unique plaintext, a given cipher-
text now determines a likelihood distribution on the set of potential messages,
and the attacker can (using massive but finite computation) simply evaluate this
likelihood function and output the most likely messages as their guess for the
plaintext. Lemma 2 below shows that this attacker “never loses”.

Remark 1. Another viewpoint to approach the question of unconditional public-
key cryptography was pursued by Maurer in the nineties [4]: Using information-
theoretical bounds on conditional entropy and mutual information, he concludes
that two parties cannot possibly negotiate a shared secret over a public channel
in an unconditionally secure manner:

[...] if Alice and Bob do not share at least some partially secret information
initially, they cannot generate an information-theoretically secure secret
key S [...] if they can only communicate over a public channel accessible
to Eve, even if this channel is authenticated.
This fact can be rephrased as follows: There exists no unconditionally-secure
public-key cryptosystem or public-key distribution protocol. [Footnote]

While, indeed, the machinery from [4] is certainly much stronger than necessary
to imply Lemma 2, we will for simplicity present a more concrete and computa-
tional proof similar to the brute-force argument from [3] quoted above.

2.1 Proof of impossibility

Recall the protocol flow of a public-key encryption scheme:

– Bob generates a key pair (pk, sk) and publishes the public key pk.
– Alice encrypts a message m and sends the ciphertext c = Encpk(m) to Bob.
– Bob decrypts c to obtain a message m′ = Decsk(c).

Here, Encpk() and Decsk() are both probabilistic algorithms. Note that it is not
required that any of the involved procedures be efficient; in fact, in the following,
we only have to assume that Encpk will eventually halt almost surely, i.e., with
probability 1, for all messages.

Lemma 1. Consider a public-key encryption scheme with the interface above
and message space {0, 1}, and fix a key pair (pk, sk).

Let O be a (not necessarily deterministic or efficient) algorithm that takes as
input a ciphertext and outputs a single bit. Define the distinguishing advantage

Adv(O) := Pr[O(Encpk(1)) = 1]− Pr[O(Encpk(0)) = 1] ,1

where the probabilities are taken over the randomness consumed by O and Encpk.
For shorthand, write pm(c) := Pr[Encpk(m) = c]. Then it holds for all O that

Adv(O) ≤
∑
c

max
{
0, p1(c)− p0(c)} .

Proof. We first unroll the definition of Adv(O), using linearity of expectations
and the fact that Pr[X = 1] = E[X] when X is a random bit:

Adv(O) = Pr[O(Encpk(1)) = 1]− Pr[O(Encpk(0)) = 1]

= E
[
O(Encpk(1))

]
− E

[
O(Encpk(0))

]
= E

[
O(Encpk(1))−O(Encpk(0))

]
=
∑
c

(
Pr[Encpk(1) = c]− Pr[Encpk(0) = c]

)
· E[O(c)]

=
∑
c

(
p1(c)− p0(c)

)
· E[O(c)] . (∗)

There are positive and negative terms in the sum (∗), determined by the sign
of p1(c) − p0(c). To maximize the advantage, it is clearly optimal to maximize
1 Note that typical definitions of the advantage take an absolute value to symmetrize
the definition with respect to distinguishers which are worse than pure guessing—
and are thus in fact good at distinguishing. In our scenario, this would clutter the
notation and introduce unnecessary case distinctions, so we stick to the present
definition and point out that a negative advantage can easily be turned into a positive
one of equal magnitude by inverting the distinguisher’s output.

Also note that this definition of the advantage is equal to the “other” choice
Pr[O(Encpk(0)) = 0]− Pr[O(Encpk(1)) = 0].

E[O(c)] when p1(c) > p0(c) and minimize it when p0(c) > p1(c). Since O(c) is a
random variable on {0, 1}, its expectation E[O(c)] must lie in the interval [0;1];
therefore, the value of Adv(O) is upper bounded by the quantity∑

c

(
p1(c)− p0(c)

)
·

{
0 if p0(c) ≥ p1(c);
1 if p1(c) > p0(c).

This is the same thing as∑
c

max
{
0, p1(c)− p0(c)} . ut

Example. For a public-key encryption scheme on {0, 1} with guaranteed correct
decryption, Decsk has advantage one: Since Decsk(Encpk(m)) = m for all m, the
definition immediately simplifies to Adv(Decsk) = Pr[1 = 1]− Pr[0 = 1] = 1.

On the other hand, a distinguisher O that ignores its input and simply out-
puts a uniformly random bit has advantage zero, since both probabilities in the
definition of Adv(O) equal 1/2 in that case.

Lemma 2. As above, consider a public-key encryption scheme with message
space {0, 1},2 and fix a public key (pk, sk).

Using Encpk, one can construct a deterministic (but not necessarily efficient)
algorithm Apk that achieves the upper bound proved in Lemma 1. In particular,
it is at least as good as Decsk at distinguishing the two random variables Encpk(0)
and Encpk(1), despite not knowing the secret key.

Proof. The argument consists of two parts: Constructing a maximum-likelihood
estimator Apk for the message m from (a single sample of) the random variable
Encpk(m), and then showing that Apk achieves the upper bound from Lemma 1
to conclude that Decsk cannot possibly do better than Apk.

The adversary Apk is constructed as follows: Given a ciphertext c, compute
the two probabilities p0(c) = Pr[Encpk(0) = c] and p1(c) = Pr[Encpk(1) = c] by
iterating through all possible values of the randomness consumed by Encpk

3 and
counting how often the ciphertext c is observed for either message. Then simply
output the plaintext guess 0 if p0(c) ≥ p1(c) and the guess 1 if p1(c) > p0(c).
Notice that the adversary Apk indeed implements a maximum-likelihood estima-
tor for the messagem ∈ {0, 1} from a single encryption Encpk(m) ofm. Moreover,
the algorithm Apk achieves the upper bound from Lemma 1 (in fact, it is crafted
precisely to do so), hence no Decsk can ever do better than Apk. ut

The claims from [1, 2] amount to the assertion that knowledge of the secret
key permits honest users to succeed in decrypting with probability

Pr[Decsk(Encpk(m)) = m] > 1/2 ,
2 The restriction to one-bit messages does not sacrifice any generality: Any message
space of cardinality at least two can represent single bits, and conversely, bit strings
suffice to encode any other message space.

3 By the assumption that Encpk halts almost surely, it consumes only a finite amount
of randomness, hence Apk halts after finitely many steps as well.

while at the same time, for all adversaries Apk given only the public key,

Pr[Apk(Encpk(m)) = m] = 1/2 .

These statements imply Adv(Decsk) > 0 and Adv(Apk) = 0, which is impossible
due to Lemma 2. Essentially, the only way to make sure Apk cannot do better
than guessing is to transmit no information whatsoever about the plaintext
in the ciphertext, but then Decsk must also resort to plainly guessing what the
encrypted message was supposed to be, which is utterly useless; in fact, it entirely
defeats the purpose of communication as defined by Shannon in his seminal
paper [7]: “The fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message selected at another point.”

3 Practice

We now show how the concrete proposal GuessAgain works, how it is broken in
practice, and where exactly the flaw in the authors’ security argument lies.4

3.1 Description of GuessAgain

The GuessAgain scheme makes use of random walks. For each x ∈ Z and k ≥ 0,
we thus define the random variable walk(x, k) as the end point of a random walk
of k steps, each adding either +1 or −1 with probability 1/2, starting from x.
Write s← S for sampling s uniformly at random from a finite set S.

– Parameters: Positive integer constants n, f, g, h. [2] recommends n = 256,
g = h = 2000, and f = 100000. Note [1] suggested f = 120000 instead.

– Key generation: Bob picks a private key b← {0, ..., n−1} and computes the
public key B := walk(b, h). If B ≥ n− 1, Bob starts over with a new b.

– Encryption: Alice samples values (a, t, δ) ← {B, ..., n−1} × {f, g} × {± 1
2}

and computes A := walk(a, t) + δ. She repeats this step “sufficiently often”
and groups the resulting pairs (a,A) into four lists L<

f , L
<
g , L

>
f , and L>

g ,
according to the condition A ≶ B and the value of t.
She then selects r ← {<,>} and s ← {f, g}, and a pair (a0, A0) ← Lr

s.
Her ciphertext equals (m, a0) if (r, s) ∈ {(<, f), (>, g)} and (1⊕m, a0) else.5
Upon receiving such a ciphertext (c, a0), Bob outputs either the bit m′ = c
when b < a0, or m′ = 1⊕ c when b ≥ a0.

It is stated in [2, Section 6] that (for the example parameters above) this protocol
has a ≈ 0.55 chance of transmitting a bit correctly, i.e., achieving m′ = m.

4 The newer paper [2] does not use the name “Guess Again”, nor does it mention the
NIST process [5]. Since the proposals in [1] and [2] are essentially identical, we shall
use the name GuessAgain to refer to both, and point out differences where relevant.

5 The bit-flipping description deviates from [1, 2], which uses the equivalent viewpoint
of labelling intervals instead.

3.2 Biases in the ciphertexts

The security argument in [2, Section 4.2] states that the bit m is flipped with
probability 1/2 during the encryption procedure, hence c contains no information
whatsoever about the plaintext bit m. Moreover, the additional component a0
of the ciphertext is uniform in a public range {B, ..., n−1}, hence also does not
leak information about m. Probabilistically speaking, these observations can be
phrased as the (indeed true) fact that the distributions of the values c and a0
are both independent of the plaintext m.

However, the crucial flaw in the security argument of GuessAgain is that the
joint distribution of (c, a0) is not independent of m. To see this, notice that
those values of a← {B, ..., n−1} that lead to A < B must, on average, be closer
to B than those that lead to A > B. Moreover, this tendency clearly depends
on the chosen number of steps of the random walk: Shorter walks lead to closer
nodes; in fact, the expected (absolute) distance travelled by a simple random
walk of k steps is Θ(

√
k). Therefore, there is a probabilistic dependency between

the choice of t ∈ {f, g} and the condition A ≶ B. Working out the distribution of
a conditioned on the choice of A ≶ B and t← {f, g} is not particularly difficult,
but rather tedious, hence we only give qualitative simulation results showing the
distribution of a relative to each of the four choices. See Figure 1 and Table 1.
The bottom line is that “flipped” ciphertexts are smaller on average, which is
precisely the leakage exploited by the (simple) attack script in Section 3.3.

Table 1. Biases in a depending on the secret random choices during encryption. Notice
in particular that the decision whether the message bit is flipped or not is correlated
with the bias in a.

A ≶ B t← {f, g} bias in a c

< f slightly biased towards B m
< g strongly biased towards B 1⊕m
> f no significant bias 1⊕m
> g slightly biased away from B m

3.3 The attack

Recall from Section 3.1. that a GuessAgain ciphertext consists of a tuple (c, a0)
with c a single bit and a0 a value between B and n− 1. The bit c is either equal
to the message bit m, or it is negated. In Section 3.2, we showed that the choice
between c = m and c = 1 ⊕m influences the distribution of the corresponding
value a0; concretely, a0 is biased towards B when c = 1⊕m. This means we can
mount a distinguishing attack by comparing a0 to its expected values relative to
the assumptions c = m and c = 1 ⊕m, and output a guess according to which
distribution a0 is more likely to come from. This distinguisher has a better than
1/2 chance of identifying the message given a ciphertext.

1% –

B
–

n

–Approximate distribution of a when A < B and t = f .

1% –

B

–

n

–Approximate distribution of a when A < B and t = g.

1% –

B

–

n

–Approximate distribution of a when A > B and t = f .

1% –

B

–

n

–Approximate distribution of a when A > B and t = g.

1% –

B

–

n

–Approximate distribution of a when c = m.

1% –

B

–

n

–Approximate distribution of a when c = 1⊕m.

Figure 1. Approximate distribution of a conditioned on the property A ≶ B and the
number of steps t, where (n, f, g) = (256, 100000, 2000) and B has been fixed as n/2.
(Similar graphs result from other public keys.) The mean of each distribution is marked
by a red vertical line. For efficiency reasons, we approximated the distribution of the
random walks walk(x, k) by the normal distribution N (x, k). Each of these histograms
contains one million data points.

When more than one ciphertext encrypting the same message is sent at a
time to boost the success rate, as was done in [1], accumulating this leakage
allows for a very reliable distinguisher: Group the ciphertexts by their bit c,
compute the average value of a0 in each group, and compare. Output the c with
the bigger average a0 as a guess for m. This approach is implemented in the
script below and works on 100% of the example ciphertexts included in [1].

In [2, Section 5], the authors—perhaps in response to, but with no mention
of, our earlier attack—warn against naïvely encrypting the same bit multiple
times, foreshadowing that “statistical attacks [...] may be possible”. However,
if the construction truly were information-theoretically secure, any number of
repetitions would never leak information (assuming uncorrelated randomness),
hence acknowledging the reality of “statistical attacks” is clearly incompatible
with their claim of unconditional security upheld elsewhere in the paper.

Figure 2 shows the essential part of our Python script [6] sent to NIST’s
pqc-forum mailing list on December 21st, 2017, not including boilerplate code
to parse and break the example ciphertext files contained in GuessAgain’s NIST
submission package.

l = 4000

def recover_bit(ct, bit):
assert bit < len(ct) // l
ts = [struct.unpack(’BB’, ct[i:i+2]) for i in range(l*bit, l*(bit+1), 2)]
xs, ys = [a for a, b in ts if b == 1], [a for a, b in ts if b == 2]
return sum(xs) / len(xs) >= sum(ys) / len(ys)

def decrypt(ct):
res = sum(recover_bit(ct, b) << b for b in range(len(ct) // l))
return int.to_bytes(res, len(ct) // l // 8, ’little’)

Figure 2. Excerpt of the attack script sent to NIST’s mailing list [6].

Note that this script does not implement the adversary from Lemma 2; it does
not brute-force anything and in fact runs in time linear in the input size. We
remark that it is certainly possible to tweak GuessAgain in such a way that
any concrete attack would be (much) less efficient— for an extreme example,
simply replace the entire construction by a computationally secure public-key
encryption scheme—but the fundamental impossibility of information-theoretic
security remains. Therefore, we conclude that the security claims of GuessAgain
are both theoretically impossible as well as demonstrably broken in practice.

References

[1] Mariya Bessonov, Dima Grigoriev, Alexey Gribov, and Vladimir Shpilrain. Guess
Again, 2017. Submission to [5].

[2] Mariya Bessonov, Dima Grigoriev, and Vladimir Shpilrain. A framework for un-
conditionally secure public-key encryption (with possible decryption errors). In
James H. Davenport, Manuel Kauers, George Labahn, and Josef Urban, editors,
Mathematical Software – ICMS 2018, pages 45–54. Springer, July 2018.

[3] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Trans. Information Theory, 22(6):644–654, November 1976.

[4] Ueli Maurer. Information-theoretic cryptography. In Michael J. Wiener, editor, Ad-
vances in Cryptology – CRYPTO ’99, volume 1666 of LNCS, pages 47–64. Springer,
August 1999.
ftp://ftp.inf.ethz.ch/pub/crypto/publications/Maurer99.pdf.

[5] National Institute of Standards and Technology. Post-quantum cryptography
standardization: Call for proposals announcement, December 2016.
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-
Quantum-Cryptography-Standardization.

[6] Lorenz Panny. OFFICIAL COMMENT: Guess Again, 21 December 2017. Email
message to the pqc-forum@list.nist.gov mailing list.
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/round-1/official-comments/guess-again-official-comment.pdf.

[7] Claude E. Shannon. A mathematical theory of communication. Bell System Tech-
nical Journal, 27(3):379–423, July 1948.

ftp://ftp.inf.ethz.ch/pub/crypto/publications/Maurer99.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/guess-again-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/guess-again-official-comment.pdf

	Guess what?! [.4ex] On the impossibility of unconditionally secure public-key encryption

