
Efficient Homomorphic Comparison Methods
with Optimal Complexity

Jung Hee Cheon, Dongwoo Kim and Duhyeong Kim

Department of Mathematical Sciences, Seoul National University
{jhcheon,dwkim606,doodoo1204}@snu.ac.kr

Abstract. Comparison of two numbers is one of the most frequently used operations, but it
has been a challenging task to efficiently compute the comparison function in homomorphic
encryption (HE) which basically support addition and multiplication. Recently, Cheon et
al. (Asiacrypt 2019) introduced a new approximate representation of the comparison func-
tion with a rational function, and showed that this rational function can be evaluated by
an iterative algorithm. Due to this iterative feature, their method achieves a logarithmic
computational complexity compared to previous polynomial approximation methods; how-
ever, the computational complexity is still not optimal, and the algorithm is quite slow for
large-bit inputs in HE implementation.
In this work, we propose new comparison methods with optimal asymptotic complexity
based on composite polynomial approximation. The main idea is to systematically design a
constant-degree polynomial f by identifying the core properties to make a composite poly-
nomial f ◦ f ◦ · · · ◦ f get close to the sign function (equivalent to the comparison function)
as the number of compositions increases. Utilizing the devised polynomial f , our new com-
parison algorithms only require Θ(log(1/ε)) +Θ(logα) computational complexity to obtain
an approximate comparison result of a, b ∈ [0, 1] satisfying |a− b| ≥ ε within 2−α error.
The asymptotic optimality results in substantial performance enhancement: our comparison
algorithm on encrypted 20-bit integers for α = 20 takes 1.43 milliseconds in amortized
running time, which is 30 times faster than the previous work.

1 Introduction

Homomorphic Encryption (HE) is a primitive of cryptographic computing, which allows compu-
tations over encrypted data without any decryption process. With HE, clients who sent encrypted
data to an untrusted server are guaranteed data privacy, and the server can perform any operations
over the encrypted data. In recent years, HE has gained worldwide interest from various fields re-
lated to data privacy issues including genomics [29, 30, 31] and finances [3, 25]. In particular, HE
is emerging as one of the key tools to protect data privacy in machine learning tasks, which now
became a necessary consideration due to public awareness of data breaches and privacy violation.

The comparison function comp(a, b), which outputs 1 if a > b, −1 if a < b and 1/2 if a = b, is
one of the most prevalent operations along with addition and multiplication in various real-world
applications. For example, many of the machine learning algorithms such as cluster analysis [14, 26],
gradient boosting [19, 20], and support-vector machine [15, 32] require a number of comparison
operations. Therefore, it is indispensable to find an efficient method to compute the comparison
function in an encrypted state for HE applications.

Since HE schemes [6, 9, 18] basically support homomorphic addition and multiplication, to
compute non-polynomial operations including the comparison function in an encrypted state, we
need to exploit polynomial approximations on them. The usual polynomial approximation methods
such as minimax find approximate polynomials with minimal degree on a target function for given
a certain error bound. However, the computational complexity to evaluate these polynomials is

so large that it is quite inefficient to obtain approximate results with high-precision by these
methods. Recently, to resolve this problem, Cheon et al. [10] introduced a new identity comp(a, b) =
limd→∞ a2

d

/(a2
d

+ b2
d

) and showed that the identity can be computed by an iterative algorithm.
Due to this iterative feature, their algorithm achieves a logarithmic computational complexity
compared to usual polynomial approximation methods. However, the algorithm only achieves quasi-
optimal computational complexity, and it is quite slow in HE implementation; more than 20minutes
is required to compute a single homomorphic comparison of 16-bit integers (see Section 5).

In this work, we introduce new comparison methods using composite polynomial approximation
on the sign function, which is equivalent to the comparison function. Starting from the analysis
on the behavior of a composite polynomial f (d) := f ◦ f ◦ · · · ◦ f , we identify the core properties
of f to make f (d) get close to the sign function as d increases. Applying the polynomial f devised
to satisfy the core properties, we construct new comparison algorithms which firstly achieve the
optimal computational complexity among all polynomial evaluations to obtain an approximate
value of comparison within a certain error.

Our composite polynomial method can be directly applied to piecewise polynomials with two
sub-polynomials including the absolute function: For example, the function p such that p(x) = p1(x)
if x ∈ [0, 1] and p(x) = p2(x) if x ∈ [−1, 0) for polynomials p1 and p2 can be computed as
p1(x) · sgn(x) + p2(x) · (1 − sgn(x)). Furthermore, the method is potentially applicable to more
general piecewise polynomials including step functions (see Remark 1).

1.1 Our Idea and Technical Overview

Our key idea to identify several core properties of the basic function f essentially comes from a
new interpretation of the previous work [10]. To be precise, [10] exploits the following identity to
construct a comparison algorithm:

lim
k→∞

ak

ak + bk
=


1 if a > b

1/2 if a = b

0 if a < b

 = comp(a, b)

for positive numbers a, b ∈ [1/2, 3/2]. Since very large exponent k = 2d is required to obtain a
comparison result within small error, they suggest to iteratively compute a ← a2/(a2 + b2) and
b ← b2/(a2 + b2), which results in a2

d

/(a2
d

+ b2
d

) ' comp(a, b) after d iterations. The inverse
operation 1/(a2 + b2) in each iteration is computed by Goldschmidt’s division algorithm [24].

The computational inefficiency of the comparison algorithm in [10] mainly comes from the
inverse operation which should be done at least d times. Then, the natural question would be

“How can we construct an efficient comparison algorithm
without inverse operation?”

To do this, we analyze the comparison algorithm in [10] with a new perspective. Let f0(x) =
x2/(x2+(1−x)2), then each iteration a← a2/(a2+ b2) and b← b2/(a2+ b2) can be interpreted as
an evaluation of f0(a) and f0(b) = 1− f0(a) for 0 ≤ a, b ≤ 1, respectively. Indeed, the d iterations
correspond to the d-time composition of the basic function f0 denoted by f (d)0 := f0 ◦ f0 ◦ · · · ◦ f0,
and the comparison algorithm can be interpreted as approximating (sgn(x) + 1)/2 by a composite
polynomial f (d)0 .

Our key observation on the basic function f0 is that we actually do not need the exact formula
of f0(x) = x2/(x2 + (1 − x)2). Instead, it suffices to use other polynomials with similar shape to
f0: convex in [0, 0.5], concave in [0.5, 1], symmetric to the point (0.5, 0.5), and have a value 1 at

2

0 0.5 1
0

0.2

0.4

0.6

0.8

1
f0

f
(2)
0

f
(3)
0

Fig. 1: Illustration of f (d)0 for d = 1, 2, 3

x = 1. For example, the composition h(d)1 of our devised polynomial h1(x) = −2x3 + 3x2, which
has similar shape to f0, gets close to (sgn(x)+1)/2 as d increases. As a result, we can approximate
the comparison function by a composite polynomial f (d) for some constant-degree polynomial f
with several core properties, and identifying these core properties is the most important step in
our algorithm construction.

Core Properties of f . Since the sign function is equivalent to the comparison function, via
sgn(x) = 2 · comp(x, 0)− 1 and comp(a, b) = (sgn(a− b) + 1)/2, it is enough to find a polynomial
f such that f (d)(x) gets close to sgn(x) over [−1, 1] for some proper d. The core properties of f
are as following:

Prop I. f(−x) = −f(x)
Prop II. f(1) = 1, f(−1) = −1
Prop III. f ′(x) = c(1− x)n(1 + x)n for some constant c > 0

The first property is necessary from the origin symmetry of the sign function, and the second
property is required to achieve limd→∞ f (d)(x) = 1 for 0 < x ≤ 1. The last property makes f to
be concave in [0, 1] and convex in [−1, 0], and the multiplicity n of ±1 in f ′(x) accelerates the
convergence of f (d) to the sign function. Interestingly, for each n ≥ 1, a polynomial fn satisfying
above three properties is uniquely determined as

fn(x) =

n∑
i=0

1

4i
·
(
2i

i

)
· x(1− x2)i.

Since sgn(x) is a discontinuous function at x = 0, the closeness of a polynomial f(x) to sgn(x)
should be considered carefully. Namely, we do not consider a small neighborhood (−ε, ε) of zero
when measuring the difference between f(x) and sgn(x). In Section 3.2, we prove that the infinite
norm of f (d)n (x)− sgn(x) over [−1,−ε]∪ [ε, 1] is smaller than 2−α if d ≥ dn for some dn > 0. Then,
(f

(dn)
n (a − b) + 1)/2 outputs an approximate value of comp(a, b) within 2−α error for a, b ∈ [0, 1]

satisfying |a− b| ≥ ε.
Acceleration Method. Along with {fn}n≥1, we provide another family of odd polynomials
{gn}n≥1 which reduces the required number of polynomial compositions dn. At a high-level, we
can interpret dn as dn := dε + dα where each of the terms dε and dα has distinct aim as following:
The first term dε is a required number of compositions to map the interval [ε, 1] into the interval

3

[1 − τ, 1] for some fixed constant 0 < τ < 1 (typically, τ = 1/4), and the second term dα is a
required number of compositions to map [1− τ, 1] into [1− 2−α, 1], i.e.,

f (dε)n ([ε, 1]) ⊆ [1− τ, 1],
f (dα)n ([1− τ, 1]) ⊆ [1− 2−α, 1].

In this perspective, our idea is to reduce dε by substituting f (dε+dα)n with f
(dα)
n ◦ g(dε)n for some

(2n+1)-degree polynomial gn with weaker properties than the core properties of fn. Since the first
dε compositions only needs to map [ε, 1] into [1− τ, 1], Prop II & III are unnecessary in this part.
Instead, the following property along with Prop I is required:

Prop IV. ∃ 0 < δ < 1 s.t. x < gn(x) ≤ 1 for x ∈ (0, δ] and gn([δ, 1]) ⊆ [1− τ, 1]

For gn satisfying Prop I & IV, the composition g(d)n does not get close to the sign function as d
increases; however, we can guarantee that g(dε)n ([ε, 1]) ⊆ [1− τ, 1] for some dε > 0 which is exactly
the aim of first dε compositions. With some heuristic properties on gn obtained by Algorithm 2,
the required number of the first-part compositions dε is reduced by half (see Section 3.5).

1.2 Our Results

New Comparison Methods with Optimal Complexity. We first propose a family of polyno-
mials {fn}n≥1 whose composition f (d)n gets close to the sign function (in terms of (α, ε)-closeness)
as d increases. Based on the approximation

f
(d)
n (a− b) + 1

2
' sgn(a− b) + 1

2
= comp(a, b),

we construct a new comparison algorithm NewComp(a, b;n, d) which achieves optimal asymptotic
complexity among the polynomial evaluations obtaining an approximate value of comparison within
a certain level of error. The following theorem is the first main result of our work:

Theorem 1. If d ≥ 2+o(1)
logn ·log(1/ε)+ 1

logn ·logα+O(1), the comparison algorithm NewComp(a, b;n, d)
outputs an approximate value of comp(a, b) within 2−α error for a, b ∈ [0, 1] satisfying |a− b| ≥ ε.

The theorem implies that one can obtain an approximate value of comp(a, b) within 2−α error for
a, b ∈ [0, 1] satisfying |a − b| ≥ ε with Θ(log(1/ε)) + Θ(logα) + O(1) complexity and depth with
NewComp.

We also provide another family of polynomials {gn}n≥1, which enables to reduce the number
of polynomial compositions by substituting f (d)n with f

(df)
n ◦ g(dg)n . From the mixed polynomial

composition, we construct another comparison algorithm NewCompG with the following result:

Theorem 2 (Heuristic). If dg ≥ 1+o(1)
logn · log(1/ε) + O(1) and df ≥ 1

logn · logα + O(1), the
comparison algorithm NewCompG(a, b;n, df , dg) outputs an approximate value of comp(a, b) within
2−α error for a, b ∈ [0, 1] satisfying |a− b| ≥ ε.
Since gn and fn have the same degree, the total depth and computational complexity of NewCompG
are strictly smaller than those of NewComp.

The variety on choosing n in our comparison algorithms provides flexibility in complexity-depth
tradeoff. For instance, one can choose n = 4 to achieve the minimal computational complexity (see
Section 3.4). On the other hand, if one wants to obtain comparison results with larger complexity

4

but smaller depth, one can choose n larger than 4. Assuming some heuristic properties of gn, the
total depth of NewCompG(·, ·;n, df , dg) gets close to the theoretical minimal depth as n increases
(see Section 3.5).

Practical Performance Improvement. For two 8-bit integers which are encrypted by an ap-
proximate HE scheme HEAAN [9], the comparison algorithm NewComp (for ε = 2−8 and α = 8)
takes 0.9 milliseconds in amortized running time, and the performance is twice accelerated by ap-
plying the other comparison algorithm NewCompG (with heuristic properties). The implementation
result on NewCompG is about 8 times faster than that on the comparison algorithm of the previous
work [10] based on HEAAN. Note that this performance gap grows up as the bit-length of input
integers increases: For two encrypted 20-bit integers, our algorithm NewCompG is about 30 times
faster than the previous work.

Application to Max. Since the max function is expressed by the sign function as max(a, b) =
a+b
2 + a−b

2 · sgn(a − b), we can directly obtain max algorithms from the family of polynomials
{fn}n≥1 (and hence {gn}n≥1). Our max algorithms NewMax and NewMaxG outperform the max
algorithm in the previous work [10] in terms of both computational complexity and depth. To be
precise, the max algorithm in [10] requires 4α + O(1) depth and 6α + O(1) complexity to obtain
an approximate value of min/max of two numbers in [0, 1] within 2−α error. In our case, the max
algorithm NewMax applying f4 only require 3.08α+O(1) depth and complexity, and it can be even
reduced to 1.54α + 1.72 logα + O(1) by using the other max algorithm NewMaxG. In practice, for
encrypted 20-bit integers our NewMaxG algorithm is 4.5 times faster than the max algorithm in [10].

Moreover, our max algorithms fundamentally solve a potential problem of the max algorithm
in [10] when inputs are encrypted by HEAAN. When two input numbers are too close so that the
difference is even smaller than approximate errors of HEAAN, then the max algorithm in [10] may
output a totally wrong result; in contrasts, our max algorithms works well for any inputs from
[0, 1].

1.3 Related Work

There have been several works on comparison algorithms for HE schemes [6, 9, 18] basically sup-
porting addition and multiplication. The most recent work was proposed by Cheon et al. [10]
which exploits the identity comp(a, b) = limk→∞ ak

ak+bk
for a, b > 0 with an iterative inverse

algorithm. Their comparison algorithm requires Θ(α logα) complexity, which is quasi-optimal,
to obtain an approximate value of comp(a, b) within 2−α error for a, b ∈ [1/2, 3/2] satisfying
max(a, b)/min(a, b) ≥ 1 + 2−α.

There have been several approaches to approximate the sign function by polynomials to obtain
a comparison algorithm. In 2018, Boura et al. [4] proposed an analytic method to compute the
sign function by approximating it via Fourier series over a target interval which has an advantage
on numerical stability. In this method, one should additionally consider the error induced by
the polynomial approximation on eix. Another approach is to approximate the sign function by
tanh(kx) = ekx−e−kx

ekx+e−kx
for sufficiently large k > 0 [12]. In order to efficiently compute tanh(kx),

they repeatedly apply the double-angle formula tanh(2x) = 2 tanh(x)
1+tanh2(x)

≈ 2x
1+x2 where the inverse

operation is substituted by a low-degree minimax approximate polynomial. This procedure can
be interpreted as a composition of polynomial f which is the low-degree minimax approximation
polynomial of 2x

1+x2 . However, their method does not catch core properties of the basic polynomial
f (e.g., f(1) = 1), so the error between f (d) and sgn(x) cannot be reduced below a certain bound
even if we increase d to ∞.

When each bit of messages are encrypted separately, one can perform a comparison operation
of two α-bit integers with O(logα) depth and O(α) complexity [11]. The bit-by-bit encrypting

5

method was recently generalized to encrypt an integer a after decomposing it as a =
∑
aib

i for a
power of small prime b = pr [36]. However, these encrypting methods are rather inefficient when
large-scale polynomial evaluations are required as well as comparison such as cluster analysis [27].

2 Preliminaries

2.1 Notations

All logarithms are of base 2 unless otherwise indicated, and e denotes the Euler’s constant. Z, R
and C denote the integer ring, the real number field and complex number field, respectively. For
a finite set X, we denote the uniform distribution over X by U(X). For a real-valued function f
defined over R and a compact set I ⊂ R, we denote the infinity norm of f over the domain I by
||f ||∞,I := maxx∈I |f(x)|. The d-times composition of f is denoted by f (d) := f ◦ f ◦ · · · ◦ f . We
denote the sign function and the comparison function by

sgn(x) :=


1 if x > 0

0 if x = 0

−1 if x < 0

, comp(a, b) :=


1 if a > b

1/2 if a = b

0 if a < b

,

which are in fact equivalent to each other by comp(a, b) = (sgn(a− b) + 1)/2.
For α > 0 and 0 < ε < 1, we say a polynomial f is (α, ε)-close to sgn(x) over [−1, 1] if it

satisfies
||f(x)− sgn(x)||∞,[−1,−ε]∪[ε,1] ≤ 2−α.

For a, b ∈ R, we denote the complexity a · log(1/ε) + b · logα + O(1) by L(a, b). The O notation
in this paper regards to α and 1/ε. In the rest of this paper, we only consider the (non-scalar)
multiplicative depth and (non-scalar) multiplicative computational complexity, , i.e., we do not
count the number of additions nor scalar multiplications in computational complexity.

2.2 Minimax Polynomial Approximation of Sign Function

One of the most usual polynomial approximation method is the minimax approximation which
aims to minimize the maximal error between the target function and an approximate polynomial.
For a positive odd integer k, let us denote by pk,ε the degree-k approximate polynomial p which
minimizes ||sgn(x) − p(x)||∞,[−1,−ε]∪[ε,1]. For the sign function sgn(x), there exists a tight lower
bound on the approximation error:

lim
k→∞

√
k − 1

2
·
(
1 + ε

1− ε

) k−1
2

· ||sgn(x)− pk,ε(x)||∞,[−1,−ε]∪[ε,1] =
1− ε√
πε

for 0 < ε < 1, which was proved by Eremenko and Yuditskii [17]. Assume that k is large enough

so that
√

k−1
2 ·

(
1+ε
1−ε

) k−1
2 · ||sgn(x) − pk,ε(x)||∞,[−1,−ε]∪[ε,1] is sufficiently close to the limit value.

To bound the approximation error by 2−α for sgn(x) over [−1,−ε] ∪ [ε, 1], the degree k should be
chosen to satisfy √

k − 1

2
·
(
1 + ε

1− ε

) k−1
2

·
√
πε

1− ε > 2α,

which implies that k should be at least Θ(α/ε) from the fact log
(

1+ε
1−ε

)
≈ ε

2 for small ε. Then, the

evaluation of the polynomial pk,ε requires at least logα + log(1/ε) + O(1) depth and Θ
(√

α/ε
)

complexity applying the Paterson-Stockmeyer method [34] which is asymptotically optimal.

6

There exists a well-known theorem called the equioscillation theorem attributed to Chebychev,
which specifies the shape of the minimax approximate polynomial.

Lemma 1 (Equioscillation Theorem for sign function [17]). Let sgn(x) be the sign function
(Section 2.1). For n ≥ 1 and 0 < ε < 1, an odd polynomial pn,ε of degree (2n + 1) minimizes the
infinity norm ||sgn − pn,ε||∞,[−1,−ε]∪[ε,1] if and only if there are n + 2 points ε = x0 < x1 < · · · <
xn+1 = 1 such that sgn(xi)− pn,ε(xi) = (−1)i||sgn− pn,ε||∞. Here, x1,x2,...,xn are critical points.

Note that the if-and-only-if statement of the above lemma also implies the uniqueness of the
minimax polynomial approximation of sgn(x) on [−1,−ε] ∪ [ε, 1] for given ε and degree 2n+ 1. In
the rest of paper, we will use the fact that pn,ε is concave and increasing in the interval [0, x0] (in
fact it holds for [0, x1]).

2.3 Homomorphic Encryption

Homomorphic Encryption (HE) is a cryptographic primitive which allows arithmetic operations
such as an addition and a multiplication over encrypted data without decryption process. HE is
regarded as a promising solution which prevents leakage of private information during analyses on
sensitive data such as genomic data and financial data. A number of HE schemes [5, 6, 9, 13, 16,
18, 22] have been suggested following Gentry’s blueprint [21], and achieving successes in various
applications [4, 7, 23, 29].

In this paper, we mainly focus on word-wise HE schemes, i.e., the HE schemes whose basic
operations are addition and multiplication of encrypted message vectors over Z/pZ for p ≥ 2 [6,
18, 22] or the complex number field C [9]. An HE scheme consists of the following algorithms:

• KeyGen(params). For parameters params determined by a level parameter L and a security
parameter λ, output a public key pk, a secret key sk, and an evaluation key evk.

• Encpk(m). For a message m, output the ciphertext ct of m.
• Decsk(ct). For a ciphertext ct of m, output the message m.
• Addevk(ct1, ct2). For ciphertexts ct1 and ct2 of m1 and m2, output the ciphertext ctadd of
m1 +m2.

• Multevk(ct1, ct2). For ciphertexts ct1 and ct2 of m1 and m2, output the ciphertext ctmult of
m1 ·m2.

Though any arithmetic circuit can be computed by HE theoretically, the number of multiplications
and multiplicative depth of the circuit are major factors affecting the practical performance and
feasibility in real-world applications.

3 Our New Comparison Method

Since the comparison function and the sign function are equivalent, it suffices to find a nice approx-
imate polynomial (with one variable) of the sign function instead of the comparison function (with
two variables). In this section, we will introduce new polynomial approximation methods for the
sign function which we call composite polynomial approximation, and analyze their computational
efficiency. As in [10], we assume that the input numbers are contained in the bounded interval
[0, 1], since x ∈ [c1, c2] for known constants c1 < c2 can be scaled down into [0, 1] via mapping
x 7→ (x− c1)/(c2 − c1). Therefore, the domain of sgn(x) we consider in this paper is [−1, 1].

7

3.1 Composite Polynomial Approximation of Sign Function

As described in [10], approximating a non-polynomial function (the sign function in our case) by
composite polynomials has an advantage in computational complexity: A composite function F of
a constant-degree polynomial f , i.e., F := f ◦ f ◦ · · · ◦ f , can be computed within O(log(degF))
complexity, while the evaluation of an arbitrary polynomial G requires at least Θ(

√
degG) [34].

However, even if this methodology achieves a log-degree computational complexity, it would be
meaningless if the total degree of the composite polynomial F is extremely large (e.g., degF =
2degG). Therefore, it is very important to well-design a constant polynomial f so that it requires
small d to make f (d) sufficiently close to sgn(x) over [−1, 1]. Since sgn(x) is discontinuous at x = 0,
we are not able to obtain a nice polynomial approximation of sgn(x) over (−ε, ε) for any 0 < ε < 1.
As a result, we set our goal to find f whose composition f (d) is (α, ε)-close to the sign function for
α > 0 and 0 < ε < 1 with small d.

The key observation for designing such polynomial f is as follows: For x0 ∈ [−1, 1], let xi be
the i-time composition value f (i)(x0). Then, the behavior of xi’s can be easily estimated with the
graph of f . For example, given x0 on the x-coordinate, x1 can be identified by the x-coordinate
of the intersection point of the graph y = x and the horizontal line y = f(x0). Note that we can
iteratively estimate xi+1 with the previous point xi (see Figure 2).

-1 1

−1

1

x0 x1 x2

x0x1x2

x

f(x)

Fig. 2: Behavior of xi = f (i)(x0) for f(x) = − 5
16x

7 + 21
16x

5 − 35
16x

3 + 35
16x

In this perspective, the basic polynomial f should be constructed so that xi gets close to 1
if x0 ∈ (0, 1] and −1 if x0 ∈ [−1, 0) as i increases. We can formally identify three properties of
f as follows: Firstly, since the sign function is an odd function, we set f to be an odd function
also (in other words, both functions are symmetric to the origin). Secondly, we set f(1) = 1 and
f(−1) = −1 to make f (d)(x) point-wise converge to sgn(x) whose value is ±1 for x 6= 0. More
precisely, if a composition f (d)(x) on some x ∈ [−1, 1] converges to y as d increases, it must hold
that

f(y) = f

(
lim
d→∞

f (d)(x)

)
= lim
d→∞

f (d)(x) = y.

Lastly, f should be considered as a better polynomial if it is more concave over [0, 1] (hence more
convex over [−1, 0]), which will accelerate the convergence of f (d) to the sign function. In order to
increase convexity, we set the derivative function f ′ of f to have maximal multiple roots at 1 and
−1. These properties are summarized as following.

8

-1 1

−1

1
f1

f2

f3

f4

(a) fn for n = 1, 2, 3, 4

-1 1

−1

1
f
(2)
1

f
(4)
1

f
(6)
1

(b) f (d)
1 for d = 2, 4, 6

Fig. 3: Illustration of f (d)n

Core Properties of f :

Prop I. f(−x) = −f(x) (Origin Symmetry)

Prop II. f(1) = 1, f(−1) = −1 (Convergence to ±1)
Prop III. f ′(x) = c(1− x)n(1 + x)n for some c > 0 (Fast convergence)

For a fixed n ≥ 1, a polynomial f of the degree (2n + 1) satisfying those three properties is
uniquely determined, and we denote this polynomial by fn (and the uniquely determined constant
c by cn): From Prop I and III, we get fn(x) = cn

∫ x
0
(1− t2)ndt, and the constant cn is determined

by Prop II. By applying the following identity∫ x

0

cosm t dt =
1

m
· cosm−1 x · sinx+

m− 1

m
·
∫ x

0

cosm−2 t dt

which holds for any m ≥ 1, we obtain

fn(x) =

n∑
i=0

1

4i
·
(
2i

i

)
· x(1− x2)i.

Hence, we can easily compute fn as following:

• f1(x) = − 1
2x

3 + 3
2x

• f2(x) = 3
8x

5 − 10
8 x

3 + 15
8 x

• f3(x) = − 5
16x

7 + 21
16x

5 − 35
16x

3 + 35
16x

• f4(x) = 35
128x

9 − 180
128x

7 + 378
128x

5 − 420
128x

3 + 315
128x

Since
(
2i
i

)
= 2 ·

(
2i−1
i−1
)
is divisible by 2 for i ≥ 1, every coefficient of fn can be represented as

m/22n−1 for m ∈ Z.

Size of the Constant cn. The constant cn takes an important role on the convergence of f (d)n

(on d) to the sign function. Informally, since the coefficient of x term is exactly cn, we can regard

9

fn as fn(x) ' cn · x for small x > 0, and then it holds that 1 − fn(x) ' 1 − cn · x ' (1 − x)cn .
In the next subsection, we will present a rigorous proof of the inequality 1− fn(x) ≤ (1− x)cn for
0 < x < 1. (see Section 3.2). From a simple computation, we obtain cn as a linear summation of
binomial coefficients

cn =

n∑
i=0

1

4i

(
2i

i

)
,

which is simplified by the following lemma.

Lemma 2. It holds that cn =
∑n
i=0

1
4i

(
2i
i

)
= 2n+1

4n

(
2n
n

)
.

Proof. We prove the statement by induction. It is easy to check for n = 1. Assume that cn =
2n+1
4n

(
2n
n

)
for some n ≥ 1. Then, it holds that

cn+1 = cn +
1

4n+1

(
2n+ 2

n+ 1

)
=

1

4n+1
·
(
2 · (2n+ 2)!

(n+ 1)!n!
+

(2n+ 2)!

(n+ 1)!(n+ 1)!

)
=

2n+ 3

4n+1

(
2n+ 2

n+ 1

)
.

Therefore, the lemma is proved by induction. ut

To measure the size of cn, we apply Wallis’s formula [28] which gives us very tight lower and
upper bound:

1√
π
· 2n+ 1√

n+ 1
2

<
2n+ 1

4n

(
2n

n

)
<

1√
π
· 2n+ 1√

n
.

From the inequality, we can check that cn = Θ(
√
n), which diverges as n→∞.

Remark 1. Our method can be naturally generalized to the composite polynomial approximation
on step functions. For example, if we substitute Prop III by f ′(x) = cx2m(1 − x2)n for m,n ≥ 1,
then a composite polynomial f (d) would get close to a step function F such that F (x) = −1 if
x ∈ [−1,−t), F (x) = 0 if x ∈ [−t, t] and F (x) = 1 if x ∈ (t, 1], for some 0 < t < 1 as d increases.

3.2 Analysis on the Convergence of f (d)
n

In this subsection, we analyze the convergence of f (d)n (on d) to the sign function for each n ≥ 1. To
be precise, we give a lower bound of d which makes the composite polynomial f (d)n to be (α, ε)-close
to the sign function. The following lemma gives an upper bound on 1 − fn(x) which is the core
part of our analysis. In fact, it is even tighter than the Bernoulli’s inequality [33]: This well-known
inequality implies 1− cnx ≤ (1−x)cn , but since 1− cnx ≤ 1− fn(x) we cannot directly obtain the
upper bound of 1− fn(x) from the Bernoulli’s inequality.

Lemma 3. It holds that 0 ≤ 1− fn(x) ≤ (1− x)cn for x ∈ [0, 1].

Proof. Since fn is an increasing function, it is trivial that fn(x) ≤ fn(1) = 1 for x ∈ [0, 1]. Set
G(x) = (1− x)cn − (1− fn(x)). We will prove that G(x) ≥ 0 for x ∈ [0, 1] by showing

1. G(0) = G(1) = 0
2. there exists x0 ∈ (0, 1) s.t. G(x0) > 0.
3. there exists a unique y0 ∈ (0, 1) s.t. G′(y0) = 0.

10

We first check why these three conditions derive the result G(x) ≥ 0. Assume that there exists
x1 ∈ (0, 1) such that G(x1) < 0. Since G is continuous, there exists a root x2 of G between x0
and x1. Then by the mean value theorem, there exist y1 ∈ (0, x2) and y2 ∈ (x2, 1) satisfying
G′(y1) = G′(y2) = 0, which contradicts to the third condition. Therefore, it suffices to show that
the three conditions hold.

The first condition is trivial. To show the second condition, we observe G(0) = 0, G′(0) = 0
and G′′(0) > 0 which can be easily checked. Since G′′ is continuous, G′(0) = 0 and G′′(0) > 0
imply that G′(x) > 0 for x ∈ (0, δ) for some δ > 0. Combining with G(0) = 0, we obtain G(x) > 0
for x ∈ (0, δ) which implies the second condition.

The existence of a root of G′ is trivial from the mean value theorem. To show the uniqueness,
let G′(x) = cn(1 − x2)n − cn(1 − x)cn−1 = 0. Then it holds that (1 − x)n−cn+1 · (1 + x)n = 1 for
x ∈ (0, 1). Taking a logarithm, the equation is equivalent to

log(1 + x)

log (1− x) = −n− cn + 1

n
.

Since log(1+ x)/ log(1− x) is a strictly increasing function, there should exist a unique y0 ∈ (0, 1)
satisfying the equation which implies G′(y0) = 0. ut

We give another inequality on 1 − fn(x) which is tighter than the inequality in the previous
lemma when x is close to 1.

Lemma 4. It holds that 0 ≤ 1− fn(x) ≤ 2n · (1− x)n+1 for x ∈ [0, 1].

Proof. Let y = 1− x, and set

H(y) =
cn · 2n
n+ 1

· yn+1 − (1− fn(1− y)).

Then H ′(y) = cn ·2n ·yn−f ′n(1−y) = cn ·2n ·yn−cn ·yn(2−y)n ≥ 0 for y ∈ [0, 1]. Since H(0) = 0,
it holds that H(y) ≥ 0. Therefore, we obtain

1− fn(x) ≤
cn · 2n
n+ 1

· (1− x)n+1 ≤ 2n · (1− x)n+1

for x ∈ [0, 1], where the second inequality comes from cn < n+ 1. ut
Now we obtain the following result on the convergence of f (d)n to the sign function.

Theorem 3 (Convergence of f (d)n). If d ≥ 1
log cn

· log(1/ε) + 1
log(n+1) · log(α − 1) + O(1), then

f
(d)
n (x) is an (α, ε)-close polynomial to sgn(x) over [−1, 1].
Proof. Since fn is an odd function, it suffices to consider the case that the input x is non-negative.
We analyze the lower bound of the number of iterations d for the convergence of f (d)n by applying
Lemma 3 and Lemma 4. Note that Lemma 3 is tighter than Lemma 4 if x is close to 0 while
the reverse holds if x is close to 1. To this end, to obtain a tight lower bound of the number of
iterations, our analysis is divided into two steps each of which applies Lemma 3 and Lemma 4,
respectively.

Step 1. Since fn is an odd function, it suffices to consider the case x ∈ [ε, 1] instead of [−1,−ε]∪[ε, 1].
Let dε =

⌈
1

log(cn)
· log

(
log
(
1
τ

)
/ε
)⌉

for some constant 0 < τ < 1. Then applying Lemma 3, we
obtain following inequality for x ∈ [ε, 1].

1− f (dε)n (x) ≤ (1− x)cdεn

≤ (1− ε)log(1
τ)/ε <

(
1

e

)log(1
τ)
< τ.

11

Step 2. Now let dα =
⌈

1
log(n+1) · log

(
(α− 1)/ log

(
1
2τ

))⌉
. Applying previous result and Lemma 4,

we obtain following inequality for x ∈ [ε, 1].

2 ·
(
1− f (dε+dα)n (x)

)
≤
(
2 ·
(
1− f (dε)n (x)

))(n+1)dα

≤ (2τ)(n+1)dα ≤ (2τ)(α−1)/ log(
1
2τ) = 2−α+1.

Therefore, if d ≥ dε + dα, we obtain 1− f (d)n (x) ≤ 2−α for x ∈ [ε, 1].
Note that the choice of the constant τ is independent to ε and α. When τ = 1/4, then we get

dε + dα = 1
log(cn)

· log (1/ε) + 1
log(n+1) · log(α − 1) + 1

log(cn)
+ O(1). Since 1

log(cn)
≤ 2, the theorem

is finally proved. ut

3.3 New Comparison Algorithm NewComp

Now we introduce our new comparison algorithm based on the previous composite function ap-
proximation (Theorem 3) of the sign function. From the identity comp(a, b) = (sgn(a − b) + 1)/2

and approximation f (d)n (x) ' sgn(x), we get

comp(a, b) ' f
(d)
n (a− b) + 1

2
,

which results in our new comparison algorithm denoted by NewComp described in Algorithm 1.

Algorithm 1 NewComp(a, b;n, d)

Input: a, b ∈ [0, 1], n, d ∈ N
Output: An approximate value of 1 if a > b, 0 if a < b and 1/2 otherwise
1: x← a− b
2: for i← 1 to d do
3: x← fn(x) // compute f (d)n (a− b)
4: end for
5: return (x+ 1)/2

It is naturally expected that bigger number of iteration d gives more accurate result. Since
the comparison algorithm NewComp(·, ·;n, d) is obtained from the evaluation of f (d)n , Theorem 3
is directly transformed into the context of NewComp as Corollary 1, which informs us how many
iterations are sufficient to get the result in certain accuracy.

Corollary 1. If d ≥ 1
log cn

· log(1/ε) + 1
log(n+1) · log(α − 2) + O(1), then the error of the output

of NewComp(a, b;n, d) compared to the true value is bounded by 2−α for any a, b ∈ [0, 1] satisfying
|a− b| ≥ ε.
Remark 2. One can substitute the scalar multiplications in the evaluation of fn with additions by
linearly transforming fn to an integer-coefficient polynomial hn as

hn(x) :=
fn(2x− 1) + 1

2
=

n∑
i=0

1

4i
·
(
2i

i

)
· (2x− 1) · (4x− 4x2)i

=

n∑
i=0

(
2i

i

)
· (2x− 1) · (x− x2)i,

12

since multiplying m can be interpret as m additions for any positive integer m. Note that it is
easily proved that h(d)n (x) = f(d)(2x−1)+1

2 by induction, so we can express the comparison functions
as

comp(a, b) ' f
(d)
n (a− b) + 1

2
= h(d)n

(
(a− b) + 1

2

)
.

Therefore, Algorithm 1 can be naturally converted into the context of hn which does not require
scalar multiplications for the evaluation.

3.4 Computational Complexity of NewComp and its Asymptotic Optimality

In this subsection, we analyze the computational complexity of our new comparison method, and
compare the result with the previous methods. Note that the (multiplicative) computational com-
plexity of NewComp(·, ·;n, d) equals to that of evaluating f (d)n , so it suffices to focus on this composite
polynomial.

For each n ≥ 1, let Cn be the required number of multiplications (hence the computational
complexity) of fn using some polynomial evaluation algorithm, and denote the lower bound of d
in Theorem 3 by dn := 1

log cn
· log(1/ε)+ 1

log(n+1) · log(α− 1)+O(1). Then the total computational

complexity of f (dn)n is TCn := dn · Cn which varies on the choice of n. When n becomes larger,
then dn becomes smaller but Cn becomes larger. Namely, there is a trade-off between dn and Cn,
so we need to find the best choice of n which minimizes the total computational complexity TCn
of f (dn)n .

We assume that each polynomial fn is computed by the Paterson-Stockmeyer method [34]
which achieves an optimal computational complexity upto constant. Then, the depth is Dn :=
log(deg fn) + O(1) = log n + O(1), and the computational complexity is Cn := Θ(

√
deg fn) =

Θ(
√
n)1. The total depth of f (dn)n is TDn := dn ·Dn = L

(
logn+O(1)

log cn
, logn+O(1)

log(n+1)

)
(see Section 2.1

for L notation). Since cn = Θ(
√
n) as described in Section 3.1, the total depth TDn gets close to

L(2, 1) as n increases2. On the other hand, the total computational complexity of f (dn)n is

TCn = L

(
1

log cn
·Θ(
√
n),

1

log(n+ 1)
·Θ(
√
n)

)
,

which diverges as n increases, contrary to the total depth TDn. Therefore, the optimal choice of
n which minimize the total complexity TCn exists. The exact number of multiplications Cn of fn
and the exact value of TCn for small n’s are described in Table 1. From simple computations, we
can check that n = 4 gives the minimal computational complexity TC4.

Asymptotic Optimality. As described in Section 2.2, the minimal degree of an (α, ε)-close ap-
proximate polynomial of the sign function over [−1, 1] is Θ(α/ε). Since the sign function and
the comparison function are equivalent, this implies that any comparison algorithm on inputs
a, b ∈ [0, 1] whose output is within 2−α error when |a − b| ≥ ε requires at least Θ(logα) +
Θ(log(1/ε)) complexity. As described above, the computational complexity of NewComp(·, ·;n, dn) is
Θ(logα)+Θ(log(1/ε)) for each n. Therefore, our new comparison method achieves an optimality in
asymptotic computational complexity upto constant, while the previous method [10] only achieves
quasi-optimality with an additional logα factor.

For several settings of α and ε, we compare the computational complexity of our method to
the minimax approximation and the method in [10] as Table 2.
1 The asymptotic complexity notations in Dn and Cn only depend on n, not α and ε.
2 It does not mean the “convergence” to L(2, 1) as n → ∞, since the equation TDn :=

L
(

logn+O(1)
log cn

, logn+O(1)
log(n+1)

)
only holds when n = O(1) with respect to α and 1/ε.

13

n Dn Cn dn TDn TCn

1 2 2 L(1.71, 1) L(3.42, 2) L(3.42, 2)

2 3 3 L(1.1, 0.63) L(3.3, 1.89) L(3.3, 1.89)

3 3 4 L(0.89, 0.5) L(2.67, 1.5) L(3.56, 2)

4 4 4 L(0.77, 0.43) L(3.08, 1.72) L(3.08, 1.72)

5 4 5 L(0.7, 0.39) L(2.8, 1.56) L(3.5, 2.45)

6 4 6 L(0.64, 0.36) L(2.56, 1.44) L(3.84, 2.16)

7 4 7 L(0.61, 0.33) L(2.44, 1.32) L(4.27, 2.31)

Table 1: Depth / Computational Complexity of fn and f (dn)n

Parameters Minimax Approx. [10] Method Our Method

log(1/ε) = Θ(1) Θ(
√
α) Θ(log2 α) Θ(logα)

log(1/ε) = Θ(α) Θ(
√
α · 2α/2) Θ(α · logα) Θ(α)

log(1/ε) = 2α Θ
(√

α · 22α−1
)

Θ(α · 2α) Θ (2α)

Table 2: Asymptotic Computational Complexity for each Comparison Method

3.5 Heuristic Methodology of Convergence Acceleration

In the previous subsection, we dealt with the asymptotic optimality in computational complexity
of our comparison algorithm NewComp. In this subsection, we introduce a heuristic methodology to
reduce the constants a and b in L(a, b) of the computational complexity TCn, which accelerates
NewComp in practice.

The intuition of our acceleration method can be found in the proof of Theorem 3. The proof
is divided into two steps: Step 1 is to make f (dε)n ([ε, 1]) ⊆ [1 − τ, 1] for some constant 0 < τ < 1

(applying Lemma 3), and Step 2 is to make f (dα)n ([1−τ, 1]) ⊆ [1−2−α, 1] (applying Lemma 4). Our
key observation is that we can accelerate Step 1 by using another function g rather than fn. The
convergence of f (d)n (1 ≤ d ≤ dε) in Step 1 mainly depends on the constant cn, the derivative of fn
at zero. Therefore, we may expect that the required number of polynomial compositions dε in Step
1 can be reduced if we substitute fn by some other odd polynomial g which satisfies g′(0) > f ′n(0).

However, we cannot take any g with large derivative at 0, since the range of g(d) over the
domain [ε, 1] must be contained in [1− τ, 1] when d is large enough. In particular, the polynomial
g must satisfy following properties (compare it with the Core Properties of f in Section 3.1):

Prop I. g(−x) = −g(x) (Origin Symmetry)

Prop IV. ∃ 0 < δ < 1 s.t. x < g(x) ≤ 1 for all x ∈ (0, δ], (Toward [1− τ, 1])
and g([δ, 1]) ⊆ [1− τ, 1] (Keep in [1− τ, 1])

14

For each g, we will denote the minimal 0 < δ < 1 in Prop IV by δ0 in the rest of paper.
Note that Prop IV is necessary to make g(d)(x) ∈ [1− τ, 1] for x ∈ [ε, 1] when d ≥ d0 for some

sufficiently large d0 > 0. Intuitively, among all g of the same degree satisfying above properties, a
smaller d is required for g(d)([ε, 1]) ⊆ [1− τ, 1] if g satisfies Prop IV with smaller δ0 and has bigger
value on the interval (0, δ0) (hence g′(0) is bigger).

We introduce a novel algorithm (Algorithm 2) which outputs a degree-(2n + 1) polynomial
denoted by gn,τ having minimal δ0 of Prop IV among all degree-(2n + 1) polynomials satisfying
Prop I & IV. In a certain condition, we can additionally show that gn,τ (x) is bigger (hence bigger
derivative at zero) than g(x) on x ∈ (0, δ) for any other polynomials g satisfying Prop I & IV (see
Theorem 4 and Corollary 2). It implies that gn,τ is the best polynomial among all same-degree
polynomials achieving our goal, i.e., g(d)n,τ ([ε, 1]) ⊆ [1− τ, 1] with minimal d.

Algorithm 2 FindG(n, τ)

Input: n ≥ 1, 0 < τ < 1
Output: A degree-(2n+ 1) polynomial gn,τ satisfying Prop I & IV with minimal δ of Prop IV.
1: gn,τ ← x // Initialize gn,τ (x) = x
2: repeat
3: δ0 ← minimal δ s.t. gn,τ ([δ, 1]) ⊆ [1− τ, 1] // Initial δ0 is 1− τ
4: gmin ← degree-(2n+ 1) minimax approx. poly. of (1− τ

2) · sgn(x) over [−1,−δ0] ∪ [δ0, 1]
5: gn,τ ← gmin
6: S ← ||gn,τ − (1− τ

2)||∞,[δ0,1]
7: until S == τ

2
8: return gn,τ

In Algorithm 2, the equality check S == τ
2 on line 7 is done with a certain precision in practice

(e.g., 2−10 or 2−53). Note that S converges (increases) to τ
2 , δ0 converges (decreases) to some

δconv > 0, and hence gn,τ converges to some polynomial gconvn,τ (see Appendix A). From this, we
obtain two facts: First, Algorithm 2 terminates in finite iterations given a finite precision for the
equality check. Second, the output of the algorithm satisfies Prop I & IV3.

We provide a theoretical analysis on gconvn,τ to which gn,τ converges, which we call the ideal
ouput polynomial of Algorithm 2. Note that the ideal ouput polynomial gconvn,τ satisfies ||gconvn,τ −
(1− τ

2)||∞,[δ0,1] = τ
2 . The following theorem shows the optimality of gconvn,τ , which implies that the

real output of Algorithm 2 with a certain precision is nearly optimal.

Theorem 4 (Optimality of gconvn,τ). The ideal output polynomial gconvn,τ of Algorithm 2 satisfies
Prop I & IV with minimal δ0 among all degree-(2n + 1) polynomials satisfying Prop I & IV. Let
x2 > 0 be the smallest positive x-coordinate of local minimum points of gn,τ following the notation
in Lemma 1 (If local minimum does not exist, set x2 = 1). If x2 ≥ 1− τ , then gn,τ (x) > g(x) for
x ∈ (0, δ0) for any other degree-(2n+ 1) polynomial g satisfying Prop I & IV.

Proof. Let δconv be the minimal δ such that gconvn,τ ([δ, 1]) ⊆ [1 − τ, 1]. Assume that there exists
a degree-(2n + 1) polynomial g satisfying Prop I & IV with δ ≤ δconv. By Prop IV, we get

3 In every iteration of Algorithm 2, the minimax approximate polynomial gmin of (1 − τ
2
) · sgn(x) over

[−1, δ0] ∪ [δ0, 1] satisfies Prop I & IV. Prop I is trivial, and gmin([δ0, 1]) ⊂ [1− τ, 1] by Lemma 1. Since
gmin(δ0) > 1 − τ ≥ δ0 and gmin is concave & increasing in [0, δ0], it holds that x < gmin(x) < 1 for
x ∈ (0, δ0].

15

δ0 δg x2 1

1− τ

1

0
0

g

gconvn,τ

(a) Intersections without multiplicity

δ0 δg x2 1

1− τ

1

0
0

g

gconvn,τ

(b) Intersection with multiplicity at x2

Fig. 4: Example description of intersections of g and gconvn,τ for n = 3

||g − (1 − τ
2)||∞,[δ,1] ≤ τ

2 , and then it trivially holds that ||g − (1 − τ
2)||∞,[δconv,1] ≤ τ

2 = ||gconvn,τ −
(1− τ

2)||∞,[δconv,1]. Therefore, g = gconvn,τ by Lemma 1 which implies the minimality of δconv.
Now we prove the second statement. Let g be a degree-(2n + 1) polynomial satisfying Prop I

& IV which is distinct from gconvn,τ , and δg be the minimal δ such that g([δ, 1]) ⊆ [1 − τ, 1]. From
the minimality of δconv and Prop IV, we can see that δconv < δg ≤ 1− τ ≤ x2. By Lemma 1, the
minimax approximate polynomial gconvn,τ oscillates on [δconv, 1] with 1 and 1− τ as maximum and
minimum, respectively, and it has n critical points in (δconv, 1). Since g([δg, 1]) ⊆ [1 − τ, 1] and
δg ≤ x2, the polynomial g intersects with gconvn,τ on at least n points in [δg, 1]: when g(x) = gconvn,τ (x)

and g′(x) = gconv
′

n,τ (x), then x is counted as two points (see Figure 4). Now our second argument is
proved as following: If g(x) ≥ gconvn,τ (x)4 on some x ∈ (0, δconv) ⊂ (0, δg), then g and gconvn,τ intersect
on at least one point in (0, δg) by intermediate value theorem since there exists y ∈ (δconv, δg) such
that g(y) < 1 − τ ≤ gconvn,τ (y) by the definition of δg. This leads to a contradiction since g and
gconvn,τ intersect on 2(n + 1) + 1 = 2n + 3 points (the factor 2 comes from the fact that both are
odd polynomials) including the origin while the degree of both g and gconvn,τ is 2n + 1 < 2n + 3.
Therefore, gconvn,τ (x) > g(x) for all x ∈ (0, δconv). ut

The following corollary shows some cases that the condition x2 ≥ 1−τ of the second statement
of Theorem 4 holds.

Corollary 2. Let gconvn,τ be the ideal output polynomial of Algorithm 2, and δ0 be the corresponding
minimal positive number satisfying Prop IV. For the cases n = 1, (n, τ) = (2, 0.25), and (n, τ) =
(3, 0.35), the polynomial gconvn,c satisfies that for any other polynomial g of degree 2n + 1 and δg
satisfying Prop I & IV, it holds that δ0 < δg and gconvn,τ (x) > g(x) on x ∈ (0, δ0).

Though the output gn,τ is hard to be expressed in closed form contrary to fn, we can find it
with a certain precision (e.g., 2−10) by running Algorithm 2 in MATLAB. For example, we provide
explicit descriptions of the polynomials gn,τ for n = 1, 2, 3, 4 and τ = 1

4 . In this case, the equality
check in Algorithm 2 was done with 10−4 precision. We omit the subscript τ of gn,τ for τ = 1

4 .

• g1(x) = − 1359
210 · x3 + 2126

210 · x
• g2(x) = 3796

210 · x5 − 6108
210 · x3 + 3334

210 · x
• g3(x) = − 12860

210 · x7 + 25614
210 · x5 − 16577

210 · x3 + 4589
210 · x

• g4(x) = 46623
210 · x9 − 113492

210 · x7 + 97015
210 · x5 − 34974

210 · x3 + 5850
210 · x

16

−1 1

−1
τ − 1

1− τ

1
g1
g2
g3
g4

−1 1

−1

1 f
(5)
1

f
(3)
1 ◦ g

(2)
1

Fig. 5: Illustration of gn and the comparison of f (df+dg)1 and f (df)1 ◦ g(dg)1

We can empirically check that gn also satisfies the following two heuristic properties.

Heuristic Properties of gn:

1. g′n(0) ' 0.98 · f ′n(0)2 (Hence, log g′n(0) ' 2 · log cn)
2. 1− gn(x) ≤ (1− x)g′n(0) for x ∈ [0, δ0] where δ0 is the minimal δ in Prop IV

Experimental results supporting above heuristic properties are described in Appendix B. Applying
these gn polynomials, we can provide a new comparison algorithm (Algorithm 3), which is a
modified version of Algorithm 1 and offers the same functionality with the reduced computational
complexity and depth. We can also estimate the number of compositions df and dg required for
this modified algorithm to achieve a certain accuracy as Corollary 3.

Algorithm 3 NewCompG(a, b;n, df , dg)

Input: a, b ∈ [0, 1], n, df , dg ∈ N
Output: An approximate value of 1 if a > b, 0 if a < b and 1/2 otherwise
1: x← a− b
2: for i← 1 to dg do
3: x← gn(x) // compute g(dg)n (a− b)
4: end for
5: for i← 1 to df do
6: x← fn(x) // compute f (df)n ◦ g(dg)n (a− b)
7: end for
8: return (x+ 1)/2

Corollary 3. (With Heuristic Properties) If dg ≥ 1
log g′n(0)

· log(1/ε)+O(1) = 1/2+o(1)
log cn

· log(1/ε)+
O(1) and df ≥ 1

logn · log(α − 2) + O(1), then the error of the output of NewCompG(a, b;n, df , dg)
compared to the true value is bounded by 2−α for any a, b ∈ [0, 1] satisfying |a− b| ≥ ε.
4 If g(x) = gconvn,τ (x) on some x ∈ (0, δ0), it is the point of intersection in (0, δg), and proof continues.

17

Proof. Following the proof of Theorem 3, it suffices to show that 1 − g(dg)n (x) ≤ τ for x ∈ [ε, 1]
where τ = 1/4. Let en := g′n(0) for convenience. By the second heuristic property of gn, we obtain
two inequalities: 1 − g(d)n (x) ≤ (1 − x)edn for d satisfying g(d−1)n (x) ≤ δ0, and 1 − g(d)n (x) ≤ τ for
g
(d−1)
n (x) > δ0. Therefore, it holds that

1− g(d)n (x) ≤ max
(
(1− x)c′dn , τ

)
for any d > 0. Applying d = dg :=

⌈
1

log en
· log

(
log
(
1
τ

)
/ε
)⌉
, we finally obtain 1 − g(dg)n (x) ≤ τ

since (1− x)e
dg
n ≤ (1− ε)log(1

τ)/ε < τ . ut
The important point is that dg is reduced as approximately half (applying the first heuristic

property of gn) compared to the previous case that only uses fn to approximate the sign function.
Since gn and fn requires same number of non-scalar multiplications, we can conclude that the
computational complexity of f (df)n ◦ g(dg)n is L

(
an
2 , bn

)
where an and bn are defined from TCn =

L(an, bn).
The total depth of f (df)n ◦ g(dg)n is L

(
logn+O(1)
2·log cn , logn+O(1)

log(n+1)

)
which gets close to L(1, 1) as n

increases5. Note that L(1, 1) is theoretically the minimal depth obtained by minimax polynomial
approximation (see Section 2.2) in the case of log(1/ε) = O(α).

4 Application to Min/Max

As described in [10], min/max functions correspond to the absolute function as

min(a, b) =
a+ b

2
− |a− b|

2
and max(a, b) =

a+ b

2
+
|a− b|

2
.

Therefore, an approximate polynomial of |x| directly gives us the approximate polynomial of
min/max functions. Since |x| = x · sgn(x), we can consider the convergence of x · f (d)n (x) to |x| as
an analogue. As min(a, b) is directly computed from max(a, b), we only describe an algorithm of
max for convenience.

Contrary to the sign function sgn(x), the absolute function |x| is continuous so that we do not
need to consider the parameter ε. The following theorem gives us the convergence rate of x ·f (d)n (x)
to |x|.
Theorem 5 (Convergence of x·f (d)n). If d ≥ 1

log cn
·(α−1), then the error of x·f (d)n (x) compared

to |x| is bounded by 2−α for any x ∈ [−1, 1].
Proof. Since |x| = x · sgn(x), the error is upper bounded as∣∣∣x · f (d)n (x)− |x|

∣∣∣ = |x| · ∣∣∣f (d)n (x)− sgn(x)
∣∣∣ ≤ |x| · |1− |x||cdn .

Let y = |x| ∈ [0, 1] and k = cdn, then the error upper bound is expressed as E(y) = y · (1− y)k. By
a simple computation, one can check that E(y) has the maximal value at y = 1/(k+1). Therefore,
k should satisfy

E

(
1

k + 1

)
=

kk

(k + 1)k+1
≤ 2−α.

Since 2 ≤ (1+1/k)k ≤ e for k ≥ 1, it suffices to set k ≥ 2α−1 which implies d ≥ 1
log cn

· (α− 1). ut
5 It does not mean the “convergence” to L(1, 1) as n→∞, since n should be O(1) with respect to α and
1/ε.

18

We denote an algorithm which evaluates a+b
2 + a−b

2 · f
(d)
n (a− b) by NewMax (see Algorithm 4),

and Theorem 5 is naturally transformed into the context of min/max as Corollary 4.

Algorithm 4 NewMax(a, b;n, d)

Input: a, b ∈ [0, 1], n, d ∈ N
Output: An approximate value of max(a, b)
1: x← a− b
2: y ← a+b

2
3: for i← 1 to d do
4: x← fn(x) // compute f (d)n (a− b)
5: end for
6: y ← y + a−b

2 · x
7: return y

Corollary 4. If d ≥ 1
log cn

· (α− 2), then the error of the output of NewMax(a, b;n, d) compared to
the true value is bounded by 2−α for any a, b ∈ [0, 1].

Our Max v.s. Previous Max. In [10], Cheon et al. introduced an iterative algorithm to compute
the max value between a and b exploiting the same identitymax(a, b) = a+b

2 + |a−b|2 , but they used a
different transformation to compute the absolute value |a−b|: They interpret the absolute function
as |x| =

√
x2, while we interpret it as |x| = x · sgn(x). To compute

√
(a− b)2, they exploit Wilkes’s

iterative algorithm [37] denoted by Sqrt(y; d) which approximately computes √y for y ∈ [0, 1]

with the parameter d: Let a0 = y and b0 = y− 1, and iteratively compute an+1 = an
(
1− bn

2

)
and

bn+1 = b2n
(
bn−3

4

)
for 0 ≤ n ≤ d− 1, where the final output is ad.

We note that the output of Sqrt(x2; d) equals to x · f (d)1 (x), which means our max algorithm
NewMax(a, b; 1, d) (in the case of n = 1) gives the same output to the max algorithm in [10]. However,
there are several significant advantages to use our max algorithm instead of the max algorithm in
[10].

– Sqrt(x2; d) requires 3 multiplications including 1 square multiplication for each iteration, while
f1(x) can be computed by only 2 multiplications. Therefore, NewMax(·, ·; 1, d1) is faster than
the max algorithm in [10].

– We can further optimize our max algorithm to reduce the computational cost by substituting
f1(x) with fn(x) for some n > 1. More precisely, as an analogue of Section 3.4, we can select
an optimal n which minimizes d · Cn where d = 1

log cn
· (α− 2). From simple computation, we

can easily check that the case n = 4 is the optimal choice.
– Applying the approximate HE scheme HEAAN [8, 9], the max algorithm in [10] is unstable

when two inputs a and b are too close: it can output a totally wrong value due to approximate
errors of HEAAN. To be precise, if the input (a − b)2 of the algorithm Sqrt(y; d) is close to
zero and even smaller than an error accompanied by HEAAN, then the input attached with
the error can be a negative value. However, the output of Sqrt(y; d) for y < 0 diverges as d
increases. In contrary, our function f (d)n is stable over the interval [−1, 1], so our max algorithm
still works well even if two inputs are very close.

Applying {gn}n≥1 to Max. As a construction of NewCompG, we can also apply the family of
polynomials {gn}n≥1 with heuristic properties to accelerate our NewMax algorithm. We denote an

19

algorithm which evaluates a+b
2 + a−b

2 · f (df) ◦ g(dg)(a − b) by NewMaxG(a, b;n, df , dg). Applying
ε = 2−α to Corollary 3, one can easily obtain the following result on NewMaxG.

Corollary 5. If dg ≥ 1
log g′n(0)

· α+O(1) and df ≥ 1
logn · log(α− 2) +O(1), then the error of the

output of NewMaxG(a, b;n, df , dg) compared to the true value is bounded by 2−α.

5 Experimental Results

In this section, we provide some experimental results on our algorithms: NewComp, NewCompG,
NewMax, and NewMaxG. We measured the performance of each algorithm and compared it with Comp
or Max of [10]. The experiments are divided into two categories: 1. Running algorithms on plain
inputs (in the interval [0, 1]), 2. Running algorithms on encrypted inputs. All experiments were
conducted on Linux with Intel Xeon CPU at 2.10GHz processor with 8 threads. For experiments
in an encrypted state, we used an approximate HE library HEAAN [9, 35].

5.1 Approximate HE Scheme HEAAN

Cheon et al. [9] proposed an HE scheme HEAAN which supports approximate computations of
real/complex numbers. Let N be a power-of-two integer and L be the bit-length of initial ciphertext
modulus, and define q` = 2` for 1 ≤ ` ≤ L. For the polynomial rings R = Z[X]/(XN + 1)
and Rq := R/qR, let χkey, χerr and χenc be distributions over R. A (field) isomorphism τ :
R[X]/(XN + 1)→ CN/2 is applied for encoding/decoding of plaintexts.

• KeyGen(N,L,D).
- Sample s← χkey. Set the secret key as sk← (1, s).
- Sample a← U(RqL) and e← χerr. Set pk← (−a · s+ e, a) ∈ R2

qL .
- Sample a′ ← U(Rq2L) and e

′ ← χerr, and set evk← (b′ = −a′ · s+ e′ + qL · s2, a′) ∈ R2
q2L
.

• Encpk(m;∆).
- For a plaintext m = (m0, ...,mN/2−1) in CN/2 and a scaling factor ∆ = 2p > 0, compute
a polynomial m← b∆ · τ−1(m)e ∈ R

- Sample v ← χenc and e0, e1 ← χerr. Output ct = [v · pk+ (m+ e0, e1)]qL .
• Decsk(ct;∆).

- For a ciphertext ct = (c0, c1) ∈ R2
q`
, compute m′ = [c0 + c1 · s]q` .

- Output a plaintext vector m′ = ∆−1 · τ(m′) ∈ CN/2.
• Add(ct, ct′). For ct, ct′ ∈ R2

q`
, output ctadd ← [ct+ ct′]q` .

• Multevk(ct, ct′). For ct = (c0, c1), ct
′ = (c′0, c

′
1) ∈ R2

q`
, let (d0, d1, d2) = (c0c

′
0, c0c

′
1 + c1c

′
0, c1c

′
1).

Compute ct′mult ← [(d0, d1) + bq−1L · d2 · evke]q` , and output ctmult ← [b∆−1 · ct′multe]q`−p .

The secret key distribution χkey is set to be HWTN (256), which uniformly samples an element
with ternary coefficients in R that has 256 non-zero coefficients.

5.2 Parameter Selection

We have two parameters α and ε which measure the quality of our comparison algorithms. In our
experiments, we set ε = 2−α, which is the case expecting that input and output of algorithms have
the same precision bits.

HEAAN Parameters. We fix the dimension N = 217, then we can set the initial ciphertext
modulus qL upto 22250 to achieve 128-bit security estimated by Albrecht’s LWE estimator [1, 2].

20

In each experiment, we set the initial modulus such that the modulus bit after each algorithm is
log∆+10. For example, on our comparison algorithm NewComp(·, ·;n, d), we set the initial modulus
bit as

log qL = (log∆ · dlog(2n+ 1)e+ 2n− 1) · d+ log∆+ 10.

Note that each coefficient of fn is of the form m/22n−1 for m ∈ Z (Section 3.1). We progress
the scalar multiplication of m/22n−1 in an encrypted state by m homomorphic additions and
(2n− 1)-bit scaling down which results in the factor (2n− 1) in the above equation. In the case of
NewCompG(·, ·;n, df , dg), we similarly set

log qL = log∆ · dlog(2n+ 1)e · (df + dg) + (2n− 1) · df + 10 · dg + log∆+ 10.

The bit-length of the scaling factor ∆ is set to be around 40 as in [10].
Note that one can evaluate N/2 comparison functions simultaneously in a single homomorphic

comparison. In this sense, an amortized running time of our algorithm is obtained by dividing the
total running time by N/2 = 216.

Choice of n in {fn}n≥1 and {gn}n≥1. One should consider a different cost model other than
TCn in the case of experiments in an encrypted state. When running our algorithms with HEAAN,
not only the complexity TCn but also the depth TDn is an important factor affecting the running
time, since the computational cost of a homomorphic multiplication is different for each level.
Instead of TCn, we take another cost model TDn · TCn considering that a multiplication in Rq
takes (quasi-)linear time with respect to log q. Under the setting ε = 2−α, one can check by simple
computation that n = 4 also minimizes TDn · TCn as well as TCn, and we used fn and gn with
n = 4 for the experiments.

5.3 Performance of NewComp and NewCompG

We compared the performance of our algorithm NewComp and NewCompG with the previous com-
parison algorithm Comp proposed in [10]. The following experimental results show that NewComp is
much faster than Comp in practice, and applying gn polynomials (NewCompG) substantially improves
the performance of NewComp.

Plain State Experiment. For “plain inputs” a, b ∈ [0, 1] satisfying |a−b| ≥ ε = 2−α, we measured
the required computational complexity and depth of each comparison algorithm to obtain an
approximate value of comp(a, b) within 2−α error. The parameters d, df and dg are chosen as the

4 8 12 16 20 24 28 32

0

100

200

300

400

α

R
eq

ui
re

d
C

om
pl

ex
it
y

(#
M

ul
ts

.) Comp
NewComp
NewCompG

4 8 12 16 20 24 28 32
0

50

100

150

200

α

R
eq

ui
re

d
(m

ul
ti

pl
ic

at
iv

e)
D

ep
th Comp

NewComp
NewCompG

Fig. 6: Comp, NewComp and NewCompG on various α with ε = 2−α in a plain state

21

lower bounds described in Corollary 1 and Corollary 3, and we checked that these theoretical lower
bounds are indeed very close to those obtained experimentally.

From Figure 6, we can see that NewComp requires much less depth and complexity than Comp,
and those of NewCompG are even smaller. Note that the gap between these algorithms in terms
of both depth and complexity grows up as α increases. For example, when α = 8, the required
complexity is ×3–4 less in NewComp and NewCompG; when α = 32, it is over ×7 less in NewCompG.

Encrypted State Experiment. We also measured the performance of our algorithms which
ouput an approximate value of comp(a, b) within 2−α error for “encrypted inputs” a, b ∈ [0, 1]
satisfying |a − b| ≥ ε. Note that parameters d, df and dg are chosen as the lower bounds in
Corollary 1 and 3. We checked through 100 experiments that our algorithms with chosen parameters
give accurate results in spite of errors accompanied by HEAAN.

In Table 3, we can see the running time (and amortized running time) of our algorithms
NewComp, NewCompG, and that of Comp ([10]) for various α. Note that our new algorithms NewComp
and NewCompG provide outstanding performance in terms of amortized running time: NewComp takes
0.9 milliseconds for 8-bit comparison, and NewCompG only takes about 1 millisecond to compare up
to 20-bit inputs. It is a significant improvement over the previous algorithm Comp. For example,
NewCompG is about ×8 faster than Comp when α = 8, about ×18 faster when α = 16, and the ratio
increases as α increases.

Note that the required depth of Comp is much larger than that of our algorithms as described
in Figure 6. Consequently, to run Comp for α ≥ 10 in an encrypted state with 128-bit security, one
must increase the HEAAN parameter N = 217 to N = 218, or use bootstrapping techniques [8],
both of which yields more than twice performance degradation, especially in total running time.

α Comp NewComp NewCompG

8 238 s (3.63 ms) 59 s (0.90 ms) 31 s (0.47 ms)

12 572 s (8.73 ms)∗ 93 s (1.42 ms) 47 s (0.72 ms)

16 1429 s (21.8 ms)∗ 151 s (2.30 ms) 80 s (1.22 ms)

20 2790 s (42.6 ms)∗ 285 s (4.35 ms)∗ 94 s (1.43 ms)

Table 3: Running time (amortized running time) of Comp, NewComp and NewCompG on HEAAN for
various α and ε = 2−α; an asterisk (∗) means that the parameter for HEAAN does not achieve
128-bit security due to large log qL ≥ 2250.

5.4 Performance of NewMax and NewMaxG

We also compared the performance of NewMax and NewMaxG in an encrypted state to that of the
max algorithm Max in the previous work [10]. The parameters d, df and dg were chosen from the
theoretical lower bounds described in Corollary 4 and Corollary 5, and were confirmed that they
are very close to those obtained experimentally. In Figure 7, we can see the running time of our new
algorithms NewMax, NewMaxG, and that of Max in [10]. Our algorithms improve the Max considerably
in running time (and depth), and the gap increases for larger α: when α = 8, our NewMax and
NewMaxG algorithms are ×1.6 and ×2 faster than Max, respectively; when α = 20, our NewMaxG
algorithm is ×4.5 faster than Max.

22

8 12 16 20

0

100

200

300

400

α
R

un
ni

ng
T

im
e

(s
ec

)

Max
NewMax
NewMaxG

Fig. 7: Running Time of Max, NewMax and NewMaxG on HEAAN for various α. Hollow marker implies
that the parameter for HEAAN does not achieve 128-bit security due to large log qL ≥ 2250, which
can be achieved by setting N = 218

References

1. M. R. Albrecht. A Sage Module for estimating the concrete security of Learning with Errors instances.,
2017. https://bitbucket.org/malb/lwe-estimator.

2. M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with errors. Journal of
Mathematical Cryptology, 9(3):169–203, 2015.

3. F. Armknecht, C. Boyd, C. Carr, K. Gjøsteen, A. Jäschke, C. A. Reuter, and M. Strand. A guide to
fully homomorphic encryption. Cryptology ePrint Archive, Report 2015/1192, 2015.

4. C. Boura, N. Gama, and M. Georgieva. Chimera: a unified framework for b/fv, tfhe and heaan
fully homomorphic encryption and predictions for deep learning. Cryptology ePrint Archive, Report
2018/758, 2018.

5. Z. Brakerski. Fully homomorphic encryption without modulus switching from classical GapSVP. In
CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 868–886. Springer, 2012.

6. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption without
bootstrapping. In Proc. of ITCS, pages 309–325. ACM, 2012.

7. J. H. Cheon, K. Han, S. M. Hong, H. J. Kim, J. Kim, S. Kim, H. Seo, H. Shim, and Y. Song. Toward
a secure drone system: Flying with real-time homomorphic authenticated encryption. IEEE Access,
6:24325–24339, 2018.

8. J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song. Bootstrapping for approximate homomorphic
encryption. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 360–384. Springer, 2018.

9. J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic encryption for arithmetic of approximate
numbers. In International Conference on the Theory and Application of Cryptology and Information
Security, pages 409–437. Springer, 2017.

10. J. H. Cheon, D. Kim, D. Kim, H. H. Lee, and K. Lee. Numerical method for comparison on homo-
morphically encrypted numbers. Cryptology ePrint Archive, Report 2019/417, 2019. To appear in
ASIACRYPT 2019.

11. J. H. Cheon, M. Kim, and M. Kim. Search-and-compute on encrypted data. In International Confer-
ence on Financial Cryptography and Data Security, pages 142–159. Springer, 2015.

12. D. Chialva and A. Dooms. Conditionals in homomorphic encryption and machine learning applications.
Cryptology ePrint Archive, Report 2018/1032, 2018.

13. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene. Faster fully homomorphic encryption: Boot-
strapping in less than 0.1 seconds. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 3–33. Springer, 2016.

14. D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis. IEEE
Transactions on Pattern Analysis & Machine Intelligence, (5):603–619, 2002.

23

https://bitbucket.org/malb/lwe-estimator

15. C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995.
16. L. Ducas and D. Micciancio. Fhew: Bootstrapping homomorphic encryption in less than a second. In

Advances in Cryptology–EUROCRYPT 2015, pages 617–640. Springer, 2015.
17. A. Eremenko and P. Yuditskii. Uniform approximation of sgn x by polynomials and entire functions.

Journal d’Analyse Mathématique, 101(1):313–324, 2007.
18. J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryptology

ePrint Archive, 2012:144, 2012.
19. J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics,

pages 1189–1232, 2001.
20. J. H. Friedman. Stochastic gradient boosting. Computational statistics & data analysis, 38(4):367–378,

2002.
21. C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009. http:

//crypto.stanford.edu/craig.
22. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors: Conceptually-

simpler, asymptotically-faster, attribute-based. In Advances in Cryptology–CRYPTO 2013, pages 75–
92. Springer, 2013.

23. R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing. Cryptonets: Apply-
ing neural networks to encrypted data with high throughput and accuracy. In International Conference
on Machine Learning, 2016.

24. R. E. Goldschmidt. Applications of division by convergence. PhD thesis, Massachusetts Institute of
Technology, 1964.

25. K. Han, S. Hong, J. H. Cheon, and D. Park. Logistic regression on homomorphic encrypted data at
scale. The Thirty-First AAAI Conference on Innovative Applications of Artificial Intelligence (IAAI-
19), 2019.

26. J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering algorithm. Journal of the
Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108, 1979.

27. A. Jäschke and F. Armknecht. Unsupervised machine learning on encrypted data. In International
Conference on Selected Areas in Cryptography, pages 453–478. Springer, 2018.

28. D. K. Kazarinoff. On wallis’ formula. Edinburgh Mathematical Notes, 40:19–21, 1956.
29. A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon. Logistic regression model training based on the

approximate homomorphic encryption. BMC Medical Genomics, 11(4):83, Oct 2018.
30. D. Kim, Y. Son, D. Kim, A. Kim, S. Hong, and J. H. Cheon. Privacy-preserving approximate gwas

computation based on homomorphic encryption. Cryptology ePrint Archive, Report 2019/152, 2019.
31. M. Kim, Y. Song, B. Li, and D. Micciancio. Semi-parallel logistic regression for gwas on encrypted

data. Cryptology ePrint Archive, Report 2019/294, 2019.
32. Y. Lin. A note on margin-based loss functions in classification. Statistics & probability letters, 68(1):73–

82, 2004.
33. D. S. Mitrinović, J. E. Pečarić, and A. Fink. Bernoulli’s inequality. In Classical and New Inequalities

in Analysis, pages 65–81. Springer, 1993.
34. M. S. Paterson and L. J. Stockmeyer. On the number of nonscalar multiplications necessary to evaluate

polynomials. SIAM Journal on Computing, 2(1):60–66, 1973.
35. snucrypto. HEAAN Library. https://github.com/snucrypto/HEAAN, 2017.
36. B. H. M. Tan, H. T. Lee, H. Wang, S. Q. Ren, and K. M. M. Aung. Efficient private comparison

queries over encrypted databases using fully homomorphic encryption with finite fields. Cryptology
ePrint Archive, Report 2019/332, 2019.

37. M. V. Wilkes. The Preparation of Programs for an Electronic Digital Computer: With special reference
to the EDSAC and the Use of a Library of Subroutines. Addison-Wesley Press, 1951.

24

http://crypto.stanford.edu/craig
http://crypto.stanford.edu/craig
https://github.com/snucrypto/HEAAN

Appendix

A Convergence of δ0, S and gn,τ

It is trivial that S ≤ τ
2 . Let us denote S, δ0 and gn,τ updated in the i-th iteration by Si, δ0,i and gn,τ,i

respectively. Assume that Si < τ
2 for some i ≥ 1. Then it holds that gn,τ,i(x) ≥ (1− τ

2)−Si > 1−τ
for x ∈ [δ0,i, 1]. Therefore, δ0,i+1 should be smaller than δ0,i, and hence Si+1 is larger than Si.
Since δ0,i has a lower bound 0, δ0,i converges to some constant δconv > 0 as i increases. Hence,
gn,τ,i converges to some gconvn,τ , and Si converges to some Sconv ≤ τ

2 .
Now, assume by contradiction that Sconv < τ

2 and let ρ = τ
2 − Sconv > 0. Since δ0,i converges

(and decreases) to δconv, there exists some i ≥ 1 such that δ0,i < 1−τ+ρ
1−τ · δconv. Note that gn,τ,i

is concave in [0, δ0,i] as noted in Section 2.2. Therefore, it holds that gn,τ,i(δ0,i)−(1−τ)
δ0,i−δ0,i+1

<
gn,τ,i(δ0,i)

δ0,i

where gn,τ,i(δ0,i+1) = 1− τ . Since gn,τ,i(δ0,i)− (1− τ) ≥ ρ, we obtain

δ0,i − δ0,i+1 >
gn,τ,i(δ0,i)− (1− τ)

gn,τ,i(δ0,i)
δ0,i = δ0,i −

1− τ
gn,τ,i(δ0,i)

δ0,i

≥ δ0,i −
1− τ

1− τ + ρ
δ0,i =

ρ

1− τ + ρ
δ0,i.

Hence, we get δ0,i > 1−τ+ρ
1−τ · δ0,i+1 ≥ 1−τ+ρ

1−τ · δconv, which is a contradiction.

B Heuristic Properties on gn

We provide some experimental results validating the heuristic properties in Section 3.5:

1. g′n(0) ' 0.98 · f ′n(0)2 (Hence, log g′n(0) ' 2 · log cn)
2. 1− gn(x) ≤ (1− x)g′n(0) for x ∈ [0, δ0] where δ0 is the minimal δ in Prop IV

On the First Heuristic. Using MATLAB, we computed the value g′n(0) and compared it
with f ′2n (0) derived from Lemma 2. Our experiment shows g′n(0) ' 0.98 · f ′2n (0) (see Figure 8 for
1 ≤ n ≤ 20).

0 5 10 15 20 25
0

5

10

15

20

25

f ′2
n (0)

g
′ n
(0
)

(f ′2
n (0), g′n(0))

0.98 · x− 0.18

Fig. 8: f ′2n (0) and g′n(0) (R2 = 0.9999); n = 1, 2, ..., 20 from the left to the right

25

On the Second Heuristic. Let Gn(x) := 1− (1−x)g′n(0), then we can experimentally check that
Gn(x) ≤ gn(x) when x ∈ (0, δ0], which is equivalent to 1 − gn(x) ≤ (1 − x)g′n(0). Let δ1 be the
largest δ such that Gn(x) ≤ gn(x) for all x ∈ [0, δ] (see Figure 9a). The experiment results show
that 1/δ0 > 1/δ1 which is equivalent to δ0 < δ1 (see Figure 9b for 1 ≤ n ≤ 20).

δ0 δ1 1

1− c

1

0

g1

G1

(a) Description of δ0, δ1, G1, and g1

0 5 10 15 20 25 30
0

10

20

30

1/δ0
1/
δ 1

(1/δ0, 1/δ1)
y = x

(b) 1/δ0 and 1/δ1; n = 1, 2, ..., 20 from the left to
the right

Fig. 9: Experimental evidence on 1− gn(x) ≤ (1− x)g′n(0) when x ∈ (0, δ0]

26

	Introduction
	Our Idea and Technical Overview
	Our Results
	Related Work

	Preliminaries
	Notations
	Minimax Polynomial Approximation of Sign Function
	Homomorphic Encryption

	Our New Comparison Method
	Composite Polynomial Approximation of Sign Function
	Analysis on the Convergence of fn(d)
	New Comparison Algorithm NewComp
	Computational Complexity of NewComp and its Asymptotic Optimality
	Heuristic Methodology of Convergence Acceleration

	Application to Min/Max
	Experimental Results
	Approximate HE Scheme HEAAN
	Parameter Selection
	Performance of NewComp and NewCompG
	Performance of NewMax and NewMaxG

	Convergence of 0, S and gn,
	Heuristic Properties on gn

