
Single-Trace Vulnerability of Countermeasures
against Instruction-related Timing Attack

Bo-Yeon Sim1 and Dong-Guk Han1,2

1 Department of Mathematics, Kookmin University, Seoul, Republic of Korea
{qjdusls,christa}@kookmin.ac.kr

2 Department of Financial Information Security, Kookmin University, Seoul, Republic of Korea

Abstract. In this paper, we propose that countermeasures against instruction-related
timing attack would be vulnerable to single-trace attacks, which are presented
at ISPEC 2017 and CHES 2019. The countermeasures use determiner to make
operations, which leak timing side-channel information, perform in a constant-time.
Since determiner is divided into two groups according to secret credentials, it is
possible to recover secret credentials by clustering determiner into two groups.
Keywords: Side-Channel Attack · Timing Attack Countermeasures · Single-Trace
Attack · Clustering

1 Introduction
If large-scale quantum computers become a reality, current widely used Rivest-Shamir-
Adleman (RSA) [RSA78] and elliptic curve cryptography (ECC) [Mil85, Kob87] become
obsolete due to Shor’s algorithm [Sho94]. Therefore, as a new alternative, research has
been actively conducted on post-quantum cryptography (PQC), which is secure against
quantum and classical computers [Age15, CCJ+16, NIS16]. Twenty-six candidates were
announced in the second-round of NIST PQC standardization [NIS19], lattice-based and
code-based cryptography are promising candidates.

Cryptographic algorithms should be implemented for use and run on a variety of
equipment. Therefore, it not only consumes time and power, it also emits electromagnetic
waves, while the cryptographic algorithm is running; these kinds of physical information
are called as side-channel information. It is possible to extract secret credentials, such as
cryptographic keys, using side-channel information, and it was first proposed by Kocher
[Koc96]. We called this kind of attacks as side-channel attacks.

LAC [LLZ+18] and Hamming quasi-cyclic (HQC) [MAB+], which are lattice-based
and code-based cryptography, respectively, are the second-round candidates of NIST PQC
standardization. They use error-correcting code, Bose–Chaudhuri–Hocquenghem (BCH),
due to non-zero decryption failure rate. However, there are timing side-channel leakage of
BCH, then it is possible to reduce the security of LAC and HQC. Thus, to counter timing
attack, constant-time variants of BCH were proposed [WR19, WBBG19].

Our Contributions. In this paper, we show that there are single-trace vulnerabilities
of countermeasures against Instruction-related timing attack [WR19, WBBG19]. This
vulnerabilities are based on the single-trace attack [SH17, SKH18, SKC+19], which exploits
the characteristic that the mask value as determined by the secret value is used to obtain
accurate results.

mailto:{qjdusls, christa}@kookmin.ac.kr

2
Single-Trace Vulnerability of Countermeasures

against Instruction-related Timing Attack

2 Instruction-related Timing Attacks on Decoding of BCH
codes and Its Countermeasures

Decoding of BCH codes consists of three steps. Firstly, computing the syndromes from
the received codeword. Secondly, computing the error-locator polynomial using the
syndromes. Thirdly, computing the roots of the error locator polynomial and correcting
the received codeword. The simplified inversion-less Berlekamp-Massey algorithm [LJ83],
which is mainly used for computing the error-locator polynomial, is vulnerable to timing
attacks [WR19, WBBG19]. Vulnerable operations to instruction-related timing attack are
categorized into three types as follows.

Loops whose bound is input-dependent For instance, if a loop iterates depending on
input length for efficiency reasons or there are early-termination statements such as List-
ing 1, it would be vulnerable to timing attack.

1 // Case 1
2 for (i = 0 ; i < secret_length ; i++)
3 {
4 . . .
5 }
6 // Case 2
7 for (i = 0 ; i < max_length ; i++)
8 {
9 . . . break ;

10 }
11 // Case 3
12 for (i = 0 ; i < max_length ; i++)
13 {
14 . . . exit ;
15 }

Listing 1: Examples of loops whose bound is input-dependent

Thus, to mitigate these vulnerabilities, the iteration length must be fixed and early-
termination statements should not be used. Accordingly, repeating the iteration of the
loop as maximum length and using a bound determiner, such as Listing 2, were proposed.
Since mask is −1, which all the bits are 1, the mask value is 0xffffffff when the bit
length of data types is 32. The determiner1 is as shown below:

determiner1 =
{

0x00000001 , if i < secret_length;
0x00000000 , if i ≥ secret_length.

Therefore, the results of loops determines depending on determiner1, and dummy opera-
tions are performed when i ≥ secret_length.

1 for (i = 0 ; i < max_length ; i++)
2 {
3 // mask i s generated based on data types
4 determiner1 = ((i − s e c r e t_ length) & mask) >> 31 ;
5 }

Listing 2: Examples of constant-execution loops

B.-Y. Sim, J. Kwon, K. Y. Choi, J. Cho, A. Park, and D.-G. Han 3

Branches whose condition is input-dependent As shown in Listing 3, branches execute
differently depending on condition, thus, operating pattern is irregular. This irregularity
induces the possibility of timing attack.

1 // Case 1
2 i f (i = = 1)
3 {
4 a = b ;
5 }
6 // Case 2
7 i f (j != 0)
8 {
9 v = x ;

10 }
11 else
12 {
13 v = v ;
14 }

Listing 3: Examples of branches whose condition is input-dependent

To make it perform in constant-time, regular operations always carried out independent
of secret credentials i and j, as shown in Listing 4. When the bit length of data types is
32, the determiner2 and determiner3 are as shown below:

determiner2 =
{

0x00000001 , if i = 0;
0x00000000 , if i = 1.

determiner3 =
{

0x00000000 , if i = 0;
0xffffffff , if i = 1.

Therefore, the results determines depending on determiner2 and determiner3.

1 // mask i s generated based on data types
2 determiner2 = ! (((i − 1) & mask) >> 31) ;
3 a = b ∗ determiner2 ;
4 determiner3 = −((uint32_t)− j >> 31) ;
5 v = x & determiner3 + v & ! determiner3 ;

Listing 4: Examples of constant-execution branches

Input-dependent memory access Even though arrays are stored in contiguous memory
blocks, accessing arrays depends on specific secret data, such as Listing 5, would be
vulnerable to timing attack.

1 // Case 1
2 for (i = 0 ; i < length ; i++)
3 {
4 i f (i = = index)
5 {
6 a [i]=b[2 i +1] ;
7 }
8 }

Listing 5: Examples of input-dependent memory access

4
Single-Trace Vulnerability of Countermeasures

against Instruction-related Timing Attack

To make uniform array accessing, blinded array access, which accesses all elements such
as Listing 6, was proposed. If the bit length of data types is 32, the determiner4 is as
below:

determiner4 =
{

0x00000000 , if i 6= index;
0xffffffff , if i = index.

Therefore, the results determines depending on determiner4.

1 for (i = 0 ; i < length ; i++)
2 {
3 // mask i s generated based on data types
4 xorVal = i ^ index ;
5 // anyOnes = 0 i f i = index , 1 otherwi se
6 anyOnes = set_bi t (xorVal)
7 determiner4 = (anyOnes & 1) − 1 ;
8 out = b [i] & determiner4 ;
9 }

Listing 6: Examples of uniform array access

To mitigate instruction-relate timing side-channel vulnerabilities, correspondence tech-
niques such as Listing 2, 4, and 6 were applied. As a result, constant-time simplified
inversion-less Berlekamp-Massey algorithms are proposed such as Algorithm 1 and 2.

Algorithm 1 Constant-time simplified inversion-less Berlekamp-Massey algorithm [WR19]
Input : S[2t] = S[1], S[2], · · · , S[2t] I calculated syndromes
Input : t I error-correcting capability of the code

Output : Ct+1(x) I error-location polynomial
1: /* Arrays */
2: C [t+2][t + 1](x), D[t + 1], L[t + 1] = {0}, UP [t + 1]
3: /* Initialization */
4: C0[0] = 1, C1[0] = 1, D[0] = 1, D[1] = S[1], L[0] = 0, L[1] = 0, UP [0] = −1
5: upMax = −1, p = −1, pV al = 0
6: /* Main algorithm */
7: for i = 1 up to t do
8: UP [i] = 2 · (i− 1)− L[i]
9: flag1 =!(((0−D[i]) & mask)� 31) I flag1 = 1 if D[i] = 0

10: Ci+1(x) = Ci(x) · flag1
11: L[i + 1] = L[i] · flag1
12: /* Find another row p, prior to ith row such that D[p]! = 0 and UP [p] has largest value */
13: for j = 0 up to i− 1 do
14: flag2 = ((0−D[i]) & mask)� 31 I flag2 = 1 if D[i] 6= 0
15: flag2 = flag2 · ((upMax− UP [j]) & mask)� 31
16: I flag2 = 1 if D[i] 6= 0 and UP [j] > upMax

17: flag2 = flag2·!flag1
18: upMax = UP [j] · flag2 + upMax·!flag2
19: p = j · flag2 + p·!flag2
20: end for
21: flag2 =!(((0− p) & mask)� 31) I flag2 = 1 if p = 0
22: pV al = 1/2 · flag2 + p·!flag2
23: Ci+1(x) = (Ci(x)+(D[i] ·(blinded(p, t+1, D))−1 ·x2·((i−1)−(pV al−1)) ·Cp(x)))·!flag1
24: L[i + 1] = (max(L[i], blinded(p, t + 1, L) + 2 · (i− 1)− (pV al − 1)))·!flag1
25: flag2 = (((i− t) & mask)� 31) I flag2 = 1 if i 6= t

B.-Y. Sim, J. Kwon, K. Y. Choi, J. Cho, A. Park, and D.-G. Han 5

26: D[i + 1] = (blinded(2 · (i · flag2) + 1− j, t, S)
27: +

∑L[i+1]
j=1 (blinded(j, t + 1, Ci+1) · blinded(2 · i + 1− j, t, S))) · flag2

28: end for
29: Return Ct+1(x)

Algorithm 2 Constant-time simplified inversion-less Berlekamp-Massey algorithm
[WBBG19]

Input : syndromes I calculated syndromes
Input : t I error-correcting capability of the code

Output : sigma I error-location polynomial
1: /* Arrays */
2: sigma[2 · (t + 1)], sigma_copy[t− 1], X_sigma_p[t + 1]
3: /* Initialization */
4: sigma[0] = 1, X_sigma_p[1] = 1, d = syndromes[0]
5: deg_sigma = 0, deg_sigma_p = 0, deg_sigma_copy = 0, pp = −1, d_p = 1
6: /* Main algorithm */
7: for i = 0 up to t− 1 do
8: memcpy(sigma_copy, sigma, 2 · (t− 1))
9: deg_sigma_copy = deg_sigma

10: dd = gf_mul(d, gf_inverse(d_p))
11: for j = 1 up to (j ≤ 2 · i + 1) && (j ≤ t) do
12: sigma[j] = sigma[j]⊕ gf_mul(dd, X_sigma_p[j])
13: end for
14: deg_X = 2 · i− pp
15: deg_X_sigma_p = deg_X + deg_sigma_p
16: mask1 = −(((uint16_t)− d)� 15) I mask1 = 0xffff if d 6= 0
17: mask2 = −(((uint16_t)(deg_sigma− deg_X_sigma_p)� 15)
18: I mask2 = 0xffff if deg_X_sigma_p > deg_sigma

19: mask12 = mask1 & mask2
20: deg_sigma = (mask12 & deg_X_sigma_p)⊕ (!mask12 & deg_sigma)
21: if i == t− 1 then
22: break;
23: end if
24: pp = (mask12 & (2 · i))⊕ (!mask12 & pp)
25: d_p = (mask12 & d)⊕ (!mask12 & d_p)
26: for j = t− 1 down to 0 do
27: X_sigma_p[j + 1] = (mask12 & sigma_copy[j − 1])
28: ⊕(!mask12 & X_sigma_p[j − 1])
29: end for
30: X_sigma_p[1] = 0
31: X_sigma_p[0] = 0
32: deg_sigma_p = (mask12 & deg_sigma_copy)⊕ (!mask12 & deg_sigma_p)
33: d = syndromes[2 · i + 2]
34: for j = 1 up to 0 do
35: d = d⊕ gf_mul(sigma[j], syndromes[2 · i + 2− j])
36: end for
37: end for
38: Return sigma

6
Single-Trace Vulnerability of Countermeasures

against Instruction-related Timing Attack

3 Single-Trace Vulnerabilities of Countermeasures against
Instruction-related Timing Attacks

In this section, we demonstrate that there are single-trace vulnerabilities on Algorithm 1 and
2, which are countermeasures against instruction-related timing attack. We consider single-
trace attacks proposed in [SH17, SKH18, SKC+19]. Key bit-dependent properties were
categorized and used to classify the power consumption traces into two groups according
to key bit value. In this paper, we consider software implementations and Hamming
weight power consumption model. Our object is clustering the power consumption traces
depending on determiner, thus, the key bit-dependent properties are written according to
determiner as follows.

Property 1. Assume that determiner is 0 or 1. Thus, if determiner = 0, the power
consumption is associated with 0 when saving and loading the determiner value. In
contrast, if determiner = 1, then the power consumption is associated with 1.

Property 2. Assume that determiner is 0x00000000 or 0xffffffff on a 32-bit processor;
therefore, if determiner is 0x00000000, the power consumption is related to 0. In contrast,
when determiner is 0xffffffff, the power consumption is related to 32, which is the
Hamming weight of the determiner value.

See the example in Section 2, determiner1 and determiner2 can be divided into
two groups based on Property 1. Likely, determiner3 and determiner4 can be divided
into two groups based on Property 2. According to the results of the experiments in
[SH17, SKH18, SKC+19], it is possible to classify using the clustering algorithm, such as
k-means, fuzzy k-means, or EM algorithms). Single trace is sufficient and profiling is not
needed. Therefore, distinguishing the determination conditions of determiner is possible,
and it makes countermeasures against instruction-related timing attack obsolete.

Constant-time simplified inversion-less Berlekamp-Massey algorithm As mentioned in
the paragraph above, there are single-trace vulnerabilities on Algorithm 1 and 2. The
countermeasures removed input-dependent loops, branches, and array accesses, however,
they use input-dependent determiner to acquire correct results. In case of Algorithm 1, it
is possible to cluster flag1 and flag2 into two groups, respectively. Similarly, mask1 and
mask2 can be clustered into two groups, respectively, depending on whether it is 0xffff
or 0x0000 on 16-bit processors. Finding the determination conditions is easy since one
of groups indicates leakage of zero, and the other group indicates leakage of non-zero.
Consequently, the error-locator polynomial can be known, and correcting the error and
recovering the message become easy.

4 Conclusion

In this paper, we discussed that constant-time simplified inversion-less Berlekamp-Massey
algorithms [WR19, WBBG19] are vulnerable to single-trace attacks presented in [SH17,
SKH18, SKC+19]. This results implies that the use of input-dependent determiner can
counter against timing attack, but it cannot counter against clustering-based single-trace
attacks. Therefore, research on constructing countermeasure is required, and the hiding
methods, such as dummy operation and random noise, can be applied to decrease the
accuracy of classification.

B.-Y. Sim, J. Kwon, K. Y. Choi, J. Cho, A. Park, and D.-G. Han 7

References
[Age15] National Security Agency. Cryptography today. https://www.nsa.gov/ia/

programs/suiteb_cryptography/, 2015.

[CCJ+16] Lily Chen, Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene
Peralta, Ray Perlner, and Daniel Smith-Tone. Report on post-quantum cryp-
tography. US Department of Commerce, National Institute of Standards and
Technology, 2016.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of computation,
48(177):203–209, 1987.

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In Advances in Cryptology - CRYPTO ’96, 16th Annual
International Cryptology Conference, Santa Barbara, California, USA, August
18-22, 1996, Proceedings, pages 104–113, 1996.

[LJ83] Shu Lin and Daniel J. Costello Jr. Error control coding - fundamentals and
applications. Prentice Hall computer applications in electrical engineering
series. Prentice Hall, 1983.

[LLZ+18] Xianhui Lu, Yamin Liu, Zhenfei Zhang, Dingding Jia, Haiyang Xue, Jingnan
He, and Bao Li. LAC: practical ring-lwe based public-key encryption with
byte-level modulus. IACR Cryptology ePrint Archive, 2018:1009, 2018.

[MAB+] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti,
and Gilles Zémor. HQC (Hamming Quasi-Cyclic). http://pqc-hqc.org/.

[Mil85] Victor S. Miller. Use of elliptic curves in cryptography. In Advances in
Cryptology - CRYPTO ’85, Santa Barbara, California, USA, August 18-22,
1985, Proceedings, pages 417–426, 1985.

[NIS16] NIST. Post-quantum cryptography. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography, 2016.

[NIS19] NIST. Post-Quantum Cryptography, Round 2 Submissions, NIST Com-
puter Security Resource Center. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-2-Submissions, 2019.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Commun. ACM,
21(2):120–126, 1978.

[SH17] Bo-Yeon Sim and Dong-Guk Han. Key bit-dependent attack on protected
PKC using a single trace. In Information Security Practice and Experience
- 13th International Conference, ISPEC 2017, Melbourne, VIC, Australia,
December 13-15, 2017, Proceedings, pages 168–185, 2017.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In 35th Annual Symposium on Foundations of Computer Science,
Santa Fe, New Mexico, USA, 20-22 November 1994, pages 124–134, 1994.

[SKC+19] Bo-Yeon Sim, Jihoon Kwon, Kyu Young Choi, Jihoon Cho, Aesun Park,
and Dong-Guk Han. Novel side-channel attacks on quasi-cyclic code-based
cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(4):180–212,
2019.

https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
http://pqc-hqc.org/
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions

8
Single-Trace Vulnerability of Countermeasures

against Instruction-related Timing Attack

[SKH18] Bo-Yeon Sim, Junki Kang, and Dong-Guk Han. Key bit-dependent side-
channel attacks on protected binary scalar multiplication †. Applied Sciences,
8(11):2168, nov 2018.

[WBBG19] Guillaume Wafo-Tapa, Slim Bettaieb, Loïc Bidoux, and Philippe Gaborit.
A practicable timing attack against HQC and its countermeasure. IACR
Cryptology ePrint Archive, 2019:909, 2019.

[WR19] Matthew Walters and Sujoy Sinha Roy. Constant-time BCH error-correcting
code. IACR Cryptology ePrint Archive, 2019:155, 2019.

	Introduction
	Instruction-related Timing Attacks on Decoding of BCH codes and Its Countermeasures
	Single-Trace Vulnerabilities of Countermeasures against Instruction-related Timing Attacks
	Conclusion

