
Computationally Modeling User-Mediated
Authentication Protocols

Britta Hale ?

Naval Postgraduate School (NPS)
Monterey, California, USA

britta.hale@nps.edu

Abstract User interaction constitutes a largely unexplored field in pro-
tocol analysis, even in instances where the user takes an active role as
a trusted third party, such as in the Internet of Things (IoT) device
initialization protocols. Initializing the study of computational analysis
of 3-party authentication protocols where one party is a physical user,
this research introduces the 3-party possession user mediated authen-
tication (3-PUMA) model. The 3-PUMA model addresses active user
participation in a protocol which is designed to authenticate posses-
sion of a fixed data string – such as in IoT device commissioning. To
demonstrate the 3-PUMA model in practice, we provide a computational
analysis of the ISO/IEC 9798-6:2010 standard’s Mechanism 7a authen-
tication protocol which includes a user interface and interaction as well
as a device-to-device channel. We show that the security of ISO/IEC
9798-6:2010 Mechanism 7a relies upon a non-standard MAC security
notion, which we term existential unforgeability under key collision at-
tacks (EUF-KCA). It is unknown if any standardized MAC algorithm
achieves EUF-KCA security, indicating a potential vulnerability in the
standard.

Keywords Authentication Protocols · key distribution · User Interface · MAC
Security · Key-Collision Attacks

1 Introduction

While work has been done on modeling of 3-party – and more generally multi-
party – key exchange protocols [9, 16, 17, 26, 35], 3-party authentication proto-
cols are largely ignored. Analyses of many 3-party key exchange protocols handle
the user as an out-of-band (OOB) information exchange [35, 17]. Indeed, this
follows from standard practice where security is only considered device-to-device
and identification of a device’s user is considered irrelevant or external to the
cryptographic model. However, in a user-mediated protocol, the user is an active
participant relaying and confirming information and even generating nonces or
keys, instead of a simple possessor of a device. It is thus possible to consider a
user-to-device “‘channel”, e.g. a device keypad or display, as well as adversarial
behavior on this channel. For example, an adversary may have a priori access
to a device and may therefore be able to manipulate inputs/outputs.
? The views expressed in this document are those of the author and do not reflect the

official policy or position of the Department of Defense or the U.S. Government.

ISO/IEC 9798–6:2010 Mechanism 7a Analysis. One such user-mediated pro-
tocol is ISO/IEC 9798–6:2010 Mechanism 7a [23] (abbreviated Mechanism 7a)
authentication protocol, originally published in [21]. Unlike previously analyzed
ISO/IEC 9798:2010 protocols, protocols within the ISO/IEC 9798–6 standard
employ an active user interface. Furthermore, the goals of Mechanism 7a differ
also from those expected from typical mutual authentication protocols; instead
of entity authentication, Mechanism 7a achieves a form of data authentication,
which can be seen as a version of “aliveness” [31]. In the absence of long-term
keys and symmetric keys, etc., which could normally be used for entity au-
thentication, the goal of Mechanism 7a is to provide a mutually authenticated
data string D, such that both parties are assured that the protocol partner
has also agreed to the string. Protocol participant identities are assumed to
be known a priori but no verification takes place during the protocol. In fact,
the only intended prevention mechanism against man-in-the-middle attacks is
a user generated value, which again highlights the highly interactive nature of
the protocol.

3-PUMA Model. This research introduces the 3-party possession user mediated
authentication (3-PUMA) model, for protocols with an active user protocol par-
ticipant and authentication of mutually held data. Application of the 3-PUMA
model extends beyond the current analysis of ISO/IEC 9798–6 Mechanism 7a,
and has implications for analysis of other common IoT protocols which demand
user interaction for authentication. Furthermore, this extends previous research
on other ISO/IEC 9798 authentication protocols which do not demand a user
interface.

EUF-KCA MAC Security. The security goals of Mechanism 7a’s underlying
message authentication code (MAC) algorithm differ not only from the stan-
dard’s currently assumed MAC goals, but also from all accepted MAC security
assumptions (e.g. EUF-CMA and SUF-CMA). Mechanism 7a sends a one-time
MAC key in the clear, before verifying the MAC tag. Thus the MAC must
be secure against an adversary that can produce a different but valid MAC
key – essentially producing a key forgery, given a message-tag pair. In order
to address these demands, we formalize key collision attacks (EUF-KCA). We
cross-compare EUF-KCA security with other standard security assumptions.
The non-standard reliance on EUF-KCA security calls into questions the secu-
rity of Mechanism 7a. It is currently unknown which, if any, standardized MAC
algorithms achieve EUF-KCA security.

Related Work. Previous analyses of the ISO/IEC 9798 standard have addressed
mechanisms in the standard which do not include a user interface [4, 22, 41].
These analyses include both formal modeling [4, 41] and computational mod-
eling [22]. None of these works cover any of the protocols of ISO/IEC 9798–6,
but demonstrate the importance of analyzing such standardized protocols. One
exception to the above list undertakes capturing the user interface in ISO/IEC
9798–2 and –4 using symbolic analysis [19]. However symbolic and computa-
tional analysis differ considerably in the scope and detail of the analysis per-
formed [18]. Computational analysis, as is used in this work, enables a detailed
view of the underlying algorithms, such as the EUF-KCA security assumption
discussed above.

Classically, we assume that an adversary cannot access an algorithm’s secret
key. This applies to MACs, digital signatures, etc.; if an adversary obtains the
key and can generate new MACs or signatures with it, security is lost. However,
this classical approach inherently assumes that changes to a MAC tag or digital
signature would not be noticed. Naturally this is the case with document sig-
natures, where generation of a new signature on an edited document yields an
apparently valid message-signature pair. Yet Mechanism 7a contains a different
scenario, one in which MAC tags are essentially “committed” to. Then, even if
the key is revealed, the tag cannot be altered and an adversary must generate
a message forgery that corresponds to the fixed tag, or produce an alternative
key.

Known Key, Chosen Key, and Related Key attacks bear some similarities to
the present adversarial MAC challenge of producing a new key given a known
key; however it is important to note that these differ from the present case.
Known Key attacks (KKAs) were introduced in [27] and cover the case of block
ciphers where an adversary knows a key and aims to exhibit non-random behav-
ior in the cipher. KKAs have been studied extensively [2, 14, 20, 33, 38, 39, 40].
Chosen Key attacks (CKAs) consider a similar situation, but where an adver-
sary may choose the key in question [13, 30, 36]. In a Related Key attack (RKA)
[11] an adversary chooses a relation between a pair of keys for a blockcipher,
but not the keys themselves, before launching a chosen plaintext attack. Much
research has been done on RKAs, both in the development of practical attacks
and in the theoretical definitions [3, 5, 6, 7, 12, 15, 32, 34]. As KKAs, CKAs, and
RKAs are aimed at block ciphers, they can be relevant for MAC security, and
RKAs have already been considered in the context of MACs [10, 28]. However,
the intrinsic goal of these attacks (e.g. non-random behavior in the cipher in
the case of a KKA) is different from the goal of the MAC adversary exhibited
in Mechanism 7a (generating a new key for a given message-tag pair).

Standard MAC security variants include EUF-CMA and SUF-CMA. In both
cases the MAC key is fixed, unlike the MAC security demands of Mechanism
7a where an adversary may select the verification key to be used. The concept
of adversarial key guessing has surfaced previously under terms such as key
spoofing and key-collision. The concept of key spoofing was briefly discussed in
[1], in terms of symmetric encryption, as a situation where an adversary’s goal
is to find a new key which produces a given message-ciphertext pair. Later, the
idea was revived in [37] (not peer-reviewed) under the term key-collision for
digital signatures. Unlike in key spoofing, key collision demands only a fixed
ciphertext – the adversary must find a new key, and may additionally find a
new message, which yields the given ciphertext. If the messages are indeed the
same, the term 1st order key collision is employed, while 2nd order key collision
is reserved for the case of different messages. [37] demonstrates key-collision
in DSA and ECDSA. Still, these attacks do not consider a related-key case,
where the adversary can exploit knowledge of the actual key. This leaves an
open problem. How can we formulate MAC security for when the MAC key is
intentionally provided to the adversary?

We consider a slightly different variant of the 1st order key collision goal,
where the adversary not only guesses a different valid key but is actually pro-
vided the correct key, thus enabling attacks based on related keys, etc. Pro-
viding the adversary with the correct validation key necessitates restriction of

Exhaustive comparison of MAC security experiments.
MAC security experiments corresponding to verification inputs which
are optionally generated by the adversary (*), required fresh for a win

(X), and fixed (-).
Security Experiment K m t
EUF-KCA X * -
EUF-CMA - X *
Forged tag - * X
SUF-KCA X X -
SUF-CMA = EUF-CMA + Forged tag - X X
Trivial (win) X - X
Trivial (win) X X X
Trivial (impossibility) - - -

Table 1. Security experiment against a MAC algorithm with corresponding new in-
puts into the verification oracle (key K, message m, or MAC tag t). If an adversary can
generate a new input (X) when others are fixed (-), it wins the corresponding experi-
ment. Other inputs which the adversary may manipulate are denoted (*). For example,
an adversary wins SUF-CMA if it can generate a new MAC tag, a new message or
both. For visual completeness we include the trivial combinations where the adversary
must generate a new key-tag pair for a message (whether given or of the adversary’s
choice). SUF-KCA and EUF-CMA experiments can be found in Appendix A.

its use, leading us to a one-time variant. We call this existential unforgeability
under key collision attacks (EUF-KCA), as the adversary is essentially forging
an alternative key with knowledge of a valid one. It is also possible to draw
comparisons to EUF-CMA and SUF-CMA, based on information available to
an adversary. Table 1 shows all possible forgeries an adversary can perform and
the corresponding security game that captures such abilities. In all non-trivial
cases, either the key or message tag is fixed. Note that classical SUF-CMA fixes
the key while SUF-KCA fixes the tag.

Other real-world examples exist where a MAC tag, or even digital signature,
is committed to in advance. One could consider implications of a signature
variant of the EUF-KCA model for blockchain, for example, where a digital
signature is publicly committed to and the adversary wins if it can produce a
new message or key that matches the given signature.

Since we allow the adversary full control of the key between generation of
a MAC tag and verification, the EUF-KCA security model falls in between the
typical secret-key cryptographic assumption, where the adversary cannot access
the key, and the open-key model (used in KKA and CKA). In the latter case,
an adversary knows – or even is in control of – the secret key.

Contributions. This work extends previous research on ISO/IEC 9798, provid-
ing a model for user-mediated authentication and analyzing a previously un-
touched protocol. Moreover, and in response to these new authentication goals
and challenges, the contributions in this paper include the following:

– We initiate the study of computational analysis for user-mediated proto-
cols and introduce the 3-party Possession User-Mediated Authentication
(3-PUMA) protocol security model.

– We introduce and provide security definitions for Existential Unforgeability
under Key Collision Attacks (EUF-KCA) for MAC algorithms.

– We computationally analyze the ISO/IEC 9798–6:2010 authentication pro-
tocol under the 3-PUMA model. Ultimately, we demonstrate that the MAC
requirements stated in Mechanism 7a are insufficient for the protocol’s se-
curity.

2 Preliminaries

Here we introduce Mechanism 7a according to the ISO/IEC 9798–6:2010 stan-
dard’s specification, as well as MAC definitions. The latter definitions include a
standard security experiments for a MAC (SUF-CMA), as well as MAC security
requirements per Mechanism 7a and the EUF-KCA security experiment.

2.1 ISO/IEC 9798–6:2010 Mechanism 7a Authentication Protocol
Specification

Both devices possess a “simple output interface”, e.g. red and green lights. They
also possess “standard input” interfaces which allow a user to input a bit-string
into the devices. Fig. 1 shows the Mechanism 7a protocol, with user-interface
interaction displayed in green and device-to-device message flows displayed in
blue.

Variables.

– R: A short random bit-string generated by the user. Per ISO/IEC 9798, R
should be 16-20 bits.

– D: A data string. D is the agreed upon data at the termination of the
protocol run.

– KI : A short-term session key derived by identity I. Per ISO/IEC 9798, KI

should be 128-160 bits.
– macI : A message authentication code output by a MAC algorithm. Per

ISO/IEC 9798, a mac should be 128-160 bits, with algorithms chosen from
ISO 9797 [24, 25].

– ready: An indicating signal that the device is ready for the protocol to start.
– start: An initiation message.
– OK: An indicating signal that the protocol is completed successfully. Alter-

natively, a message failed is sent.

Note that Mechanism 7a does not define the distribution of the data string
D, stating instead that it can be data transfered from one device to other other
or concatenation of bilaterally transfered data. In either case, the mechanism
does not begin until after the data has been distributed.

Mechanism 7a does not specify how each party obtains the other’s identity,
but makes it a specific requirement that identities are known prior to the start of
the mechanism. Thus, we consider the identities to be transmitted out-of-band.

A User B

D←−−−−−−−−−−−−−−−→
- -

ready
−−−−−−−→

ready
←−−−−−−−

R
$← {0, 1}n

R←−−−−−−− R−−−−−−−→
start←−−−−−−−

KA
$← KeyGen(1λ)

macA
$← MAC(KA, (A,D,R))

macA−−−−−−−−−−−−−−→

KB
$← KeyGen(1λ)

macB
$← MAC(KB , (B,D,R))

macB←−−−−−−−−−−−−−−
KA−−−−−−−−−−−−−−−→

vA ← Vfy(KA, (A,D,R),macA)
vA←−−−−−−

KB←−−−−−−−−−−−−−−−

vB ← Vfy(KB , (B,D,R),macB)
vB−−−−−−→
OK←−−−−−− OK−−−−−−→

Figure 1. ISO/IEC 9798–6:2010 Protocol Mechanism 7a. Protocol flows are color-
coded for the Device-to-Device channel and User-to-Device channel. Data string D
is distributed before the start of the protocol and identities are pre-shared.

Mechanism 7a does not specify how the random bit-string R is generated,
but does require it to be kept secret, as well as recommending caution during the
user-to-device transfer of R. It should be noted that an improperly behaving user
could re-use R in different protocol runs and, without checks on the reuse of R,
this could lead to potential attacks. Following the specification, we assume that
R is generated randomly. Additionally, we do not consider “shoulder-surfing”
attacks, where an adversary may observe R on input, in accordance with the
standard’s strict specification on the secrecy of R to prevent man-in-the-middle
attacks.

Device A, resp. B, outputs an indication of success/failure to the user based
on the MAC verification step – we indicate this as vB = 1/0, resp. vA = 1/0.
If both devices output an indication of success to the user (vB = vA = 1),
then the user enters a confirmation of success (OK) into both devices. If either
vB = 0 or vA = 0, the user enters an indication of failure failed into both
devices; absence of a user response (OK/failed) within a specified time interval
is interpreted as failed by the device.

Bit-length of keys, MACs, etc., clearly affects the security of the protocol.
However, this also linked to the threat landscape and device capability. In this

analysis we will forgo specific consideration of bit security levels. Mechanism 7a
also requires the implementation of time-out procedures (e.g. when a user fails
to enter a confirmation OK/failed within a specified time interval); we assume
that no such significant delays occur in the protocol execution.

We say that a protocol instance of Mechanism 7a accepts if:

– it has received a value R from the user, and
– it outputs a verification bit vpartner identity = 1, and
– the last message received from the user is OK.

2.2 MAC Security

Definition 1. A message authentication code (MAC) algorithm for a message
spaceM, a key space K, and an output message authentication code spaceMAC
is a tuple of algorithms:

– Kgn(1λ) $→ K: A probabilistic key generation algorithm that takes as input
a security parameter λ and outputs a key K ∈ K.

– MAC(K,m) $→ mac: A probabilistic message authentication algorithm that
takes as input a key K ∈ K and a message m ∈M, and outputs a MAC tag
mac ∈MAC.

– Vfy(K,m,mac) → v: A deterministic verification algorithm that takes as
input a key K ∈ K, a message m ∈ M, and a message authentication code
mac ∈MAC, and output is a verification bit v ∈ {0, 1}.

The authenticated message-tag pair is the pair (m,mac), and mac is called the
MAC or tag on m.

Correctness: It is required for all K ∈ K and m ∈ M, that Vfy(K,m,
MAC(K,m)) = 1.

Mechanism 7a refers to the ISO/IEC 9797-1 standard for MACs for use.
Particularly, Mechanism 7a uses the following definition for a MAC, which we
present here for comparison and later discussion.

Definition 2 (Mechanism 7a MAC [23]). A MAC algorithm is an algo-
rithm for computing a function which maps strings of bits and a secret key to
fixed-length strings of bits, satisfying the following properties:

– for any key and any input string the function can be computed efficiently;
– for any fixed key, and given no prior knowledge of the key, it is computa-

tionally infeasible to compute the function value on any new input string,
even given knowledge of the set of input strings and corresponding function
values, where the value of the ith input string may have been chosen after
observing the value of the first i-1 function values.

In juxtaposition to the above definition, we present the following security
games for a MAC, which will be used in the analysis of Mechanism 7a.

ExpSUF-CMA
MAC,A (λ):

1: K $← Kgn(1λ)
2: S ← ∅
3: AMAC(·),MAC.Vfy(·)()
4: return phase

MAC(m):
1: t← MAC(K,m)
2: S ← S ∪ {(m, t)}
3: return t

MAC.Vfy(m, t):
1: v ← Vfy(K,m, t)
2: if (v = 1) ∧ ((m, t) /∈ S) then
3: phase← 1
4: return phase from experiment
5: return v

Figure 2. Security experiment for strong unforgeability (SUF-CMA) of a message
authentication code algorithm MAC = (Kgn,MAC,Vfy) and adversary A.

Definition 3. Let A be a PPT adversarial algorithm against the MAC. The
one-time strong unforgeability (OT-SUF-CMA) experiment for MAC,
ExpOT-SUF-CMA

MAC,A is given by the strong unforgeability (SUF-CMA) experiment
ExpSUF-CMA

MAC,A per Fig. 2, with the additional restriction that an adversary may
only query MAC and MAC.Vfy once each. We define

AdvOT-SUF-CMA
MAC,A (λ) = Pr[ExpOT-SUF-CMA

MAC,A (λ) = 1] .

Definition 4 (One-Time Strong Unforgeability MAC Security). We
say that a MAC scheme is OT-SUF-CMA secure if there exists a negligible
function negl(λ) such that for all PPT adversaries A interacting according to
the experiment ExpOT-SUF-CMA

MAC,A it holds that

AdvOT-SUF-CMA
MAC,A (λ) ≤ negl(λ) .

As discussed in Section 1, unforgeability under key collision attacks are in-
trinsically different from Known-Key, Chosen-Key, and Related-Key attacks.
Since the MAC key is provided to the adversary following generation of a MAC
tag, EUF-KCA security is naturally a one-time security game.

Definition 5. Let A be a PPT adversarial algorithm against the MAC. The
existential unforgeability under key collision attacks (EUF-KCA) experiment
for MAC, ExpEUF-KCA

MAC,A is given in Fig. 3. We define

AdvEUF-KCA
MAC,A (λ) = Pr[ExpEUF-KCA

MAC,A (λ) = 1] .

Definition 6 (Existential Unforgeability under Key Collision Attacks
MAC Security). We say that a MAC scheme is EUF-KCA secure if there ex-
ists a negligible function negl(λ) such that for all PPT adversaries A interacting
according to the experiment ExpEUF-KCA

MAC,A it holds that

AdvEUF-KCA
MAC,A (λ) ≤ negl(λ) .

Since it addresses key guessing, it is perhaps natural to ask how EUF-KCA
differs from a brute-force key search, and why it is necessary. Unlike in a brute-
force search, the adversary in an unforgeability key collision attack actually has

ExpEUF-KCA
MAC,A (λ):

1: K $← Kgn(1λ)
2: K← ⊥, t← ⊥
3: AMAC(·),MAC.Vfy(·)()
4: return phase

MAC(m):
1: if (K, t) 6= (⊥,⊥) then
2: return ⊥
3: t← MAC(K,m)
4: K← K, t← t
5: return (K, t)

MAC.Vfy(k,m):
1: v ← Vfy(k,m, t)
2: if (v = 1) ∧ (k 6= K) then
3: phase← 1
4: return phase from experiment
5: return v

Figure 3. Security experiment for EUF-KCA of a message authentication code algo-
rithm MAC = (Kgn,MAC,Vfy) and adversary A.

a valid key at its disposal. It also possesses a complete message triple (K,m, t),
with the goal of finding an alternative key. Improper handling of keys in a MAC
algorithm could enable an adversary to find a related key which satisfies the
message-tag pair.

3 3-PUMA Model for Simple Output Devices

Introducing a third-party user interface to a two-party protocol creates a unique
modeling challenge. Not only must we consider the communication channel be-
tween devices (wired or wireless), but also the third-party user interaction and
channels between the user and devices. The 3-PUMA model captures protocols
for simple-output devices (i.e. such as a red and green lights or other such suc-
cess/failure indication mechanisms [23]), and is suitable for protocols which do
not possess long-term keys. We leverage partnering via session IDs to capture
the agreement between authenticating devices instead of handling matching of
all three-party transcripts.

ISO/IEC 9798–6:2010 does not specify how each party obtains the other’s
identity, but requires that identities are known prior to the start of the mecha-
nism. In this model, we let the adversary choose partner identities.

3.1 Protocol Participants

Each device possesses a simple output interface, e.g. binary success/failure in-
dication, as well as a standard input interface which allows a user to input a
bit-string into the device. A participant in a 3-PUMA protocol is either a de-
vice I ∈ ID or a user U . As there is only one user interface, we do not model
multiple users.1 The set of all participants is the union ID ∪ {U}. We refer to
elements of ID alternatively as devices or identities.
1 Naturally, it is possible that two users each possess one of the devices participating in

the authentication protocol. However, by requiring the user to behave honestly and
reliably perform protocol steps, there is no conceptual difference between multiple
users and a single user in possession of all devices.

We model participants via sessions, such that πPi is the i-th session at P .
There may be multiple and simultaneous sessions at each participant, e.g. the
data D may be transferred and shared between devices before a protocol run
begins.

Devices. Each device I ∈ ID is modeled via session oracles, where each session
maintains a list of the following variables:

– K ∈ K: a variable for storing an ephemeral key, where K is the key space of
the protocol.

– D ∈ {0, 1}∗: a variable for storing the possession data represented by a finite
binary string, as defined in Section 2.1.

– role ∈ {initiator, responder}: a variable indicating the role of I in the session.
– pid ∈ ID/{I}: a variable for storing the partner identity for the session.
– δ ∈ {accept, reject, ∗}: a variable indicating if the session accepts, rejects, or

has not yet reached a decision.
– sid: a variable for storing the session ID.

The internal state of each session oracle at identity I is initialized to (K,D, role,
pid, sid) = (∅, ∗, ∅, ∅, ∅), where V = ∅ indicates that the variable V is undefined
and ∗ indicates that the variable value may or may not be defined. In the case
of out-of-band exchange of D, D is initialized to the agreed value; otherwise, D
is initialized to ∅. In general, the possession data D may be exchanged out-of-
band or during the protocol, and it is the explicit goal of the 3-PUMA protocol
to authenticate possession of D at two sessions πIs and πI

′

s , versus mutually
authenticating parties I and I ′. Rejection of the protocol run may occur at any
time, but acceptance does not usually occur until the protocol is complete. We
disallow pidI = I, such that devices do not authenticate themselves. Since a
3-PUMA protocol aims to authenticate possession of D, we require that D be
included in the sid, in addition to any other protocol elements.

User. U is modeled via session oracles, where each session maintains the follow-
ing variables:

– init ∈ ID: a variable indicating the initiating identity.
– resp ∈ ID: a variable indicating the responding identity.

The internal state of each session oracle at U is initialized to (init, resp) =
(∅, ∅).

For devices we use a notion of partnering based on session IDs (sid). Note
that Device-to-Device (DtD) messages occur on a different channel than User-
to-Device (UtD) messages, and partnering is defined on the DtD channel only.

Definition 7 (Matching Session ID). We say that identities I and I ′ possess
matching session IDs if sidI = sidI′ .

Remark 1. In practice for analysis of Mechanism 7a, we will use sid = (D,R,
macA,macB ,KA, KB), i.e. the transcript shared by device protocol participants
I and I ′ inclusive of the pre-exchanged data string D, and R. Selection of a
session ID is non-trivial, especially in a three-party case. We emphasize that
the selection above is made using the full transcript between I and I ′, inclusive

of out-of-band data D, but also includes elements sent to respective identities
by the user, on the UtD channel. Results of the MAC verifications are sent to
the user, and therefore are not mutually held by I and I ′, as are the ready
messages, but the user’s selection R is sent from the user to both devices and is
thus mutually held by the identities. While the confirmation message OK is also
sent by the user, as the final protocol message a recipient cannot be guaranteed
that the protocol partner has also received the message (i.e. it may be dropped),
and therefore we only include message flows up until the confirmation message.
In general, we expect the user to be an active protocol participant generating
such confirmations. Notably, this selection of session ID can be observed from
the end-goal. The identities authenticate possession of D, but no authentication
is considered with regards to user interaction. Thus, it is natural to include
messages between identities, as well as messages received by both identities
from the user.

Definition 8 (Partnering Device to Device). We say that two sessions
πIs , π

I′

s , for I, I ′ ∈ ID, are partnered if they both accept, and possess, re-
spectively, (pidI , sidI) and (pidI′ , sidI′), where pidI = I ′, pidI′ = I, and
sidI = sidI′ .

Note that the above definition is Device-to-Device only. We do not define
a notion of partnering between the user and devices as there is a single user
for all devices. Note that D is a required element of sid, therefore demanding
agreement between identities on D.

3.2 Adversarial Model

We consider a probabilistic polynomial-time (PPT) adversarial algorithm A
against authentication. We define the following abilities of A in the 3-party pos-
session user-mediated authentication experiment Exp3-PUMA

A , including allowed
queries.

Device-to-Device (DtD). For messages between participants I and I ′, such that
I, I ′ ∈ ID, the adversary is allowed to read, modify, replay, and delete messages.

User-to-Device (UtD). For messages sent between identities I ∈ ID and the
user U , the adversary may not modify a message’s sender/recipient. We present
three variants of adversarial behavior allowed on the UtD channel, and use the
notation 3-PUMAi for the i-th variant:

1. Before the first DtD message, the adversary is allowed to read, modify,
replay, or delete UtD messages.
Once the first DtD message is sent, the adversary is allowed to read, replay,
and delete messages, but may not modify UtD messages.

2. The adversary is allowed to read, replay, and delete messages, but may not
modify UtD messages.

3. Before the first DtD message, the adversary is allowed to replay or delete
messages sent from a user to a device, but may not read or modify messages.
The adversary is allowed to replay, delete or read messages sent from a device
to a user, but may not modify messages.
Once the first DtD message is sent, the adversary is allowed to read, replay,
and delete UtD messages, but may not modify messages.

We model the user as an honest, benign, and unauthenticated third party, i.e.
which behaves according to the protocol specification and may not be compro-
mised. However, we capture a CCA1 variant (3-PUMA1) by allowing adversary
access to a device before the first DtD message. The 3-PUMA1 model may be
suitable for protocols that expect the user to behave as a confirmation source
(e.g. assuring that both devices output a confirmation message), but where the
user does not generate or control any secrets. 3-PUMA2 is likely the most typ-
ical user-mediated variant, capturing shoulder surfing attacks, but forbidding
active modification of messages. 3-PUMA3 provides the most restricted view,
where the adversary may not even view messages being sent in the initial phase.
It is expected that user-interaction involving secrets (keys, random nonces, etc.)
occurs before communication on the DtD channel, thus we allow the adversary
to read messages that do not involve protocol secrets.

We distinguish between an adversary’s ability to read user and device mes-
sages in variant 3 based on typically required user behavior. A user may be
asked to conceal input of secret information (e.g. pin codes into a card reader,
or R in the case of Mechanism 7a), but is rarely required to conceal information
displayed by a device or machine.

Remark 2. Note that this adversarial behavior is as expected for a UtD channel,
due to the physicality of the channel (i.e. user interface). While we may consider
message deletion, re-routing/modification of the sender or receiver of message is
not realistic. We distinguish between the memory/card on the device (used in the
generation of KI) and device input/output mechanisms. Excluding compromise
of the user or device card, we have the following channel adversarial control
scenarios:

– An adversary can observe inputs to devices (i.e. shoulder surfing attacks).
– An adversary can observer outputs from a device to a user (e.g. simple

output screen or red/green lights).
– An adversary may delete or replay messages (e.g. faulty hardware in a de-

vice).
– An adversary can modify messages output from a device to a user (implies

control of e.g. a display or red/green lights).
– An adversary can modify messages input into a device (implies control of

e.g. touchpad or touchscreen).

Clearly the last two items are only viable attack vectors in certain sophisticated
devices where control of e.g. display output does not imply compromise of the
device secret key. This model does not consider a manipulated or dishonest user;
more particularly, the user does not relinquish control of the devices throughout
the protocol run.

Mechanism 7a specifies that partner identities are already known to respec-
tive devices before a protocol run, but does not specify how they are distributed.
To enable maximum flexibility in modeling, we allow the adversary to choose
partner identities when initiating devices via the following queries.

Queries. The adversary may use the following queries:

– SendDevice(πIs ,m). Using this query, the adversary sends a message m to a
session oracle of his choice, where πIs is an oracle for session s at a partici-
pant I ∈ ID. The message is processed according to the protocol and any
response is returned to the adversary.
If a session oracle πIs , where I ∈ ID, receives m as a first message, then the
oracle checks if m consists of a special initiation message (m = (init, I ′)),
for I ′ ∈ ID, to which it responds by setting pid = I ′ and outputting the
first protocol message. Else it outputs ⊥.
If at any point a session oracle πIs , where I ∈ ID, receives a message m
from U during a protocol run, such that m consists of a special role-setting
message m = start and πIs has not received a message from another identity
I ′ ∈ ID, then πIs sets role = initiator and responds according to the initiator
role in the protocol. Else, if πIs receives a message from another identity
I ′ ∈ ID according to the protocol without having received such a message
m = start from U , it sets role = responder and responds according to the
responder role in the protocol.

– SendUser(πUs ,m). Using this query, the adversary sends a message m to a
session oracle of his choice, where πUs is an oracle for session s at user U . The
message is processed according to the protocol and any response is returned
to the adversary.
If a session oracle πUs , receives m as a first message, then the oracle checks
of m consists of a special initiation message (m = (init, (I, I ′))), for I, I ′ ∈
ID, to which it responds by setting init = I and resp = I ′. Else it outputs
⊥.

– RevealEphKey(πIs). This query returns the ephemeral key KIs
of the s-th

session for the identity I ∈ ID. If KIs
= ∅, RevealEphKey returns ⊥.

In brief, the above queries are used by the adversary to send messages to
devices (SendDevice), to the user (SendUser), and to acquire the ephemeral key
used at a device (RevealEphKey). The first message used in a SendUser query
must consist of an initiation message with an identity I; this sets the initiating
identity for the protocol. For a user-mediated protocol, the user selects the
device that will start the protocol run. We specifically allow the adversary to
choose the initiating device using this message.

Definition 9 (Freshness). A session oracle πIs for an identity I ∈ ID is called
fresh unless

– a RevealEphKey query on πIs occurs before the last DtD message is sent/re-
ceived by πIs , or

– a RevealEphKey query on πI
′

s occurs before the last DtD message is sent/re-
ceived by πI′

s , where πI′

s is the partner of πIs .

3.3 Security

Here we define authentication security, building on previous authentication se-
curity definitions [8], with inclusion of ephemeral key reveal and session IDs per
the eCK model [29].

We rely on session IDs due to the parallel-channel structure of the protocol.
Even in an honest protocol run, participants are not expected to possess match-
ing transcripts at the end of the protocol, due to the three-party interaction.

Thus session IDs can be used to define the expected agreement between devices.
If matching session transcripts were used, it would be necessary to extract and
distinguish between the transcripts in the DtD and UtD channels within the
protocol. In practice, the session ID may be the DtD transcript in addition to
any critical information provided by the user U .

Definition 10 (3-PUMA Experiment). Let A be a PPT adversarial algo-
rithm against 3-party possession user-mediated authentication, interacting with
a challenger in the experiment Exp3-PUMA

A via the queries defined above. We
say that the challenger outputs 1, denoted Exp3-PUMA

A (λ) = 1, if either of the
following conditions hold:

1. Failure of (matching sid → acceptance).
– Oracles πIs and πI′

s have matching sid and
– either πIs or πI′

s does not accept.
2. Failure of (acceptance → matching sid).

– There exists a fresh oracle πIs which has accepted and
– there is no partner oracle πI′

s which is fresh.

Otherwise the experiment outputs a random bit. We define the advantage of
the adversary A in the experiment Exp3-PUMA

A (λ) as

Adv3-PUMA
A (λ) := Pr[Exp3-PUMA

A (λ) = 1] .

Note that, as an adversary cannot corrupt the user U , modification of mes-
sages on the UtD channel require a RevealEphKey query on the device. The
above definition therefore allows for maximum flexibility for the adversary.

Definition 11 (Security of 3-PUMA). We say that a 3-party possession
user-mediated authentication protocol is secure if there exists a negligible func-
tion negl(λ) such that for all PPT adversaries A interacting according to the
experiment Exp3-PUMA

A (λ), it holds that

Adv3-PUMA
A (λ) ≤ negl(λ) .

4 Security Analysis

As stated in Section 3.2, we define sid = (D,R,macA,macB ,KA, KB) for
Mechanism 7a. Given the protocol, as presented in Fig. 1, we now consider
security with respect to the MAC requirements presented in Section 2.2. As
ISO/IEC 9798–6:2010 Mechanism 7a requires strict privacy with regards to R,
we use the 3-PUMA3 model. In contrast, ISO/IEC 9798–6:2010 Mechanisms 1–
6 do not require the same form of secrecy; 3-PUMA2 would be a more suitable
variant in such cases.

Theorem 1 (Security of ISO/IEC 9798–6:2010 Mechanism 7a). Let
ISO be the Mechanism 7a protocol and let A be a PPT adversarial algorithm
against the 3-PUMA3. Let q be a polynomial bound on the number of queries
allowed to A and let p = |ID|. Then we can construct adversaries B0 and B1

against the OT-SUF-CMA and EUF-KCA security of the MAC, respectively,
such that

Adv3-PUMA3
ISO,A (λ) ≤(2p2 + 1) ·AdvOT-SUF-CMA

MAC,B0
(λ) + 2p2 ·AdvEUF-KCA

MAC,B1
(λ)

+ q2/2n .

where n is the prescribed bit-length of R.
Proof. To prove security it is necessary to address both cases in Definition 10.
Checking the first case is trivial. Therefore this proof will focus on the second
case.

In this proof we will follow a series of game hops between an attacker A
and a challenger, where the adversarial advantage in Game i is denoted Advi.
Let q be a polynomial bound on the number of queries allowed to A. The
challenger generates a set of identities for potential protocol participants ID,
where p = |ID|.

Game 0 . This is the same as the original security experiment, thus
Adv0 = Adv3-PUMA3

ISO,A (λ) .

Game 1 . This game is identical to Game 0 except for the addition of an abort
condition. We raise the event abort and abort the experiment, outputting a
random bit, if there ever exists two session oracles which generate the same
MAC key. Thus,

Adv1 ≥ Adv0 − Pr[abort] .
By a straightforward reduction to the security of the MAC algorithm, we can

construct an adversary B0 against the OT-SUF-CMA security of the MAC. B0
possesses a MAC oracle which it uses to compute message authentication codes
for identity A, per the ExpOT-SUF-CMA

MAC experiment, run on a random key KA
$←

Kgn(), and a MAC.Vfy oracle. When identity A sends a message (A,D,R), B0
calls MAC(A,D,R) and returns t = macA. B0 then generates an additional p−1
keys Ki

$← Kgn() and computes Vfy(Ki, (A,D,R),macA) for each i ∈ [p−l], us-
ing the Vfy algorithm. If there exists i such that 1← Vfy(Ki, (A,D,R),macA),
then B0 can trivially compute macwin

$← MAC(Ki, (A,D,R)), a new MAC
on A’s message. Since macA = macwin, the new MAC will verify correctly in
MAC.Vfy, despite never being generated by MAC (as MAC is probabilistic), and
therefore B0 wins the ExpOT-SUF-CMA

MAC experiment. Thus we have,
Pr[abort] ≤ AdvOT-SUF-CMA

MAC,B0
(λ) ,

and
Adv1 ≥ Adv0 −AdvOT-SUF-CMA

MAC,B (λ) .

Game 2 . This game is identical to Game 1 except for the addition of an abort
condition. We raise the event abort and abort the experiment, outputting a
random bit, if there ever exists two session pairs for which the user generates
the same R value. Thus,

Adv2 ≥ Adv1 − Pr[abort] ,
and

Adv2 ≥ Adv1 − q2/2n .

Game 3 . This game is identical to Game 2 except that we guess the pair of
authenticating devices uniformly at random and abort if A does not try to
win the authentication experiment against the guessed pair. From the birthday
paradox we have,

Adv3 ≥ 1/p2 ·Adv2 .

The challenger starts the protocol run with guessed identities A and B. We
replace the generated ephemeral keys with random keys which will be used in
MAC oracles. If the adversary calls a RevealEphKey query on either A or B, the
challenger aborts.

In order to win, the adversary must get A or B to accept, such the identity
does not possess a matching sid = (D,R,macA,macB ,KA, KB) with the other.

Case 1. We assume that the adversary gets A to accept incorrectly. Thus,
the adversary must produce a different MAC tag or key for which the MAC
algorithm to verifies correctly. We can therefore construct an efficient attacker
B0 against the OT-SUF-CMA security of the MAC, or an efficient attacker B1
against the EUF-KCA security of the MAC, such that

Adv3 ≤ AdvOT-SUF-CMA
MAC,B0

(λ) + AdvEUF-KCA
MAC,B1

(λ) .

Case 2. We assume that the adversary gets B to accept incorrectly. This case
follows similarly to Case 1. ut

Remark 3. The reliance of Mechanism 7a security on the EUF-KCA security
of the MAC presents a significant issue. EUF-KCA security is not well under-
stood and is non-standard. Consequently, it is unknown whether or not basic
MAC primitives, such as are recommended for use in Mechanism 7a, satisfy this
security requirement.

One can perhaps ask why the EUF-KCA security game is of interest if we
allow the 3-PUMA attacker to reveal keys part-way through the protocol. Such
an action mixes expected protocol behavior with adversarial abilities. Moreover,
it is important to note the difference between the security goals of the proto-
col and those of the MAC algorithm. It may not be the case that all 3-PUMA
protocols send ephemeral keys in the clear mid-protocol. The MAC in ISO/IEC
9798–6:2010 Mechanism 7a is expected to be secure even when the key is re-
vealed before MAC verification takes place. Intrinsically, the MAC should thus
provide the security guarantees against a key collision or related key generation
based on a known key.

As stated in Section 3.2, the analysis of ISO/IEC 9798–6:2010 Mechanism
7a assumes an honest and benign user U . However, this may not adequately
represent real-world scenarios. For example, even if the MAC verification fails
on one device during the protocol run shown in Fig. 1, a distracted user or
physically present adversary may enter an OK acceptance message on each device.
Consequently, satisfaction of the model and the honest and benign nature of the
user, cannot be over-emphasized for achieving the security analysis result.

5 Conclusion

User mediated protocols are used every day real-world scenarios, including IoT
device commissioning, decommissioning, and pairing protocols. Modern users
even accept such protocols as part of their daily life, such as with mobile phone
pairing with car speaker systems. Despite this, user modeling remains largely
overlooked in protocol analysis, particular within computational analysis ap-
proaches. As a result subtle security weaknesses, such as the EUF-KCA as-
sumption of ISO/IEC 9798–6:2010 Mechanism 7a, have gone unnoticed. This
work initiates the study of computational modeling of user mediated protocols
as well as the computational analysis of other non-standard protocol interac-
tions.

Bibliography

[1] Ross J. Anderson and Roger M. Needham. Robustness principles for public
key protocols. In Don Coppersmith, editor, CRYPTO’95, volume 963 of
LNCS, pages 236–247. Springer, Heidelberg, August 1995.

[2] Elena Andreeva, Andrey Bogdanov, and Bart Mennink. Towards under-
standing the known-key security of block ciphers. In Shiho Moriai, editor,
FSE 2013, volume 8424 of LNCS, pages 348–366. Springer, Heidelberg,
March 2014.

[3] Benny Applebaum, Danny Harnik, and Yuval Ishai. Semantic security
under related-key attacks and applications. In Bernard Chazelle, editor,
ICS 2011, pages 45–60. Tsinghua University Press, January 2011.

[4] David Basin, Cas Cremers, and Simon Meier. Provably repairing the iso/iec
9798 standard for entity authentication. In Principles of Security and Trust,
pages 129–148. Springer Berlin Heidelberg, 2012.

[5] Mihir Bellare and David Cash. Pseudorandom functions and permuta-
tions provably secure against related-key attacks. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 666–684. Springer, Heidel-
berg, August 2010.

[6] Mihir Bellare, David Cash, and Rachel Miller. Cryptography secure against
related-key attacks and tampering. In Dong Hoon Lee and Xiaoyun
Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 486–503.
Springer, Heidelberg, December 2011.

[7] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key
attacks: RKA-PRPs, RKA-PRFs, and applications. In Eli Biham, editor,
EUROCRYPT 2003, volume 2656 of LNCS, pages 491–506. Springer, Hei-
delberg, May 2003.

[8] Mihir Bellare and Phillip Rogaway. Entity Authentication and Key Distri-
bution. In Douglas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS,
pages 232–249. Springer, Heidelberg, August 1993.

[9] Mihir Bellare and Phillip Rogaway. Provably Secure Session Key Distri-
bution: The Three Party Case. In 27th ACM STOC, pages 57–66. ACM
Press, May / June 1995.

[10] Rishiraj Bhattacharyya and Arnab Roy. Secure message authentication
against related-key attack. In Shiho Moriai, editor, FSE 2013, volume
8424 of LNCS, pages 305–324. Springer, Heidelberg, March 2014.

[11] Eli Biham. New types of cryptanalytic attacks using related keys. Journal
of Cryptology, 7(4):229–246, 1994.

[12] Eli Biham, Orr Dunkelman, and Nathan Keller. A unified approach to
related-key attacks. In Kaisa Nyberg, editor, FSE 2008, volume 5086 of
LNCS, pages 73–96. Springer, Heidelberg, February 2008.

[13] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher
and related-key attack on the full AES-256. In Shai Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 231–249. Springer, Heidel-
berg, August 2009.

[14] Céline Blondeau, Thomas Peyrin, and Lei Wang. Known-key distinguisher
on full PRESENT. In Rosario Gennaro and Matthew J. B. Robshaw,

editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 455–474.
Springer, Heidelberg, August 2015.

[15] Florian Böhl, Gareth T. Davies, and Dennis Hofheinz. Encryption schemes
secure under related-key and key-dependent message attacks. In Hugo
Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 483–500.
Springer, Heidelberg, March 2014.

[16] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor
tracing, and more from indistinguishability obfuscation. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of
LNCS, pages 480–499. Springer, Heidelberg, August 2014.

[17] Richard Chang and Vitaly Shmatikov. Formal Analysis of Authentica-
tion in Bluetooth Device Pairing. https://www.cs.cornell.edu/˜shmat/
shmat_fcs07.pdf, 2018.

[18] Véronique Cortier, Steve Kremer, and Bogdan Warinschi. A survey of sym-
bolic methods in computational analysis of cryptographic systems. Journal
of Automated Reasoning, 46(3):225–259, Apr 2011.

[19] Stephanie Delaune, Steve Kremer, and Ludovic Robin. Formal verification
of protocols based on short authenticated strings. In 2017 IEEE 30th Com-
puter Security Foundations Symposium (CSF), pages 130–143, Aug 2017.

[20] Le Dong, Wenling Wu, Shuang Wu, and Jian Zou. Known-key distinguisher
on round-reduced 3D block cipher. In Souhwan Jung and Moti Yung,
editors, WISA 11, volume 7115 of LNCS, pages 55–69. Springer, Heidelberg,
August 2012.

[21] Christian Gehrmann and Kaisa Nyberg. Security in Personal Area Net-
works.

[22] Britta Hale and Colin Boyd. Computationally Analyzing the ISO 9798-2.4
Authentication Protocol. In Security Standardisation Research, SSR 2014.
Proceedings, pages 236–255, 2014.

[23] ISO. Information technology – Security techniques – Entity Authentication
– Part 6: Mechanisms using manual data transfer. ISO ISO/IEC 9798-
6:2010, International Organization for Standardization, Geneva, Switzer-
land, 2010.

[24] ISO. Information technology – Security techniques – Message Authen-
tication Codes (MACs) – Part 1: Mechanisms using a block cipher.
ISO ISO/IEC 9797-1:2011, International Organization for Standardization,
Geneva, Switzerland, 2011.

[25] ISO. Information technology – Security techniques – Message Authentica-
tion Codes (MACs) – Part 2: Mechanisms using a dedicated hash-function.
ISO ISO/IEC 9797-2:2011, International Organization for Standardization,
Geneva, Switzerland, 2011.

[26] Mike Just and Serge Vaudenay. Authenticated Multi-Party Key Agree-
ment. In Advances in Cryptology — ASIACRYPT ’96, pages 36–49, Berlin,
Heidelberg, 1996. Springer Berlin Heidelberg.

[27] Lars R. Knudsen and Vincent Rijmen. Known-key distinguishers for some
block ciphers. In Kaoru Kurosawa, editor, ASIACRYPT 2007, volume 4833
of LNCS, pages 315–324. Springer, Heidelberg, December 2007.

[28] Tadayoshi Kohno. Related-key and key-collision attacks against RMAC.
Cryptology ePrint Archive, Report 2002/159, 2002. http://eprint.iacr.
org/2002/159.

[29] B. LaMacchia, K. Lauter, and A. Mityagin. Stronger Security of Authen-
ticated Key Exchange. In ProvSec 2007, pages 1–16. LNCS vol. 4784,
Springer, 2007.

[30] Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen,
and Martin Schläffer. Rebound distinguishers: Results on the full Whirlpool
compression function. In Mitsuru Matsui, editor, ASIACRYPT 2009, vol-
ume 5912 of LNCS, pages 126–143. Springer, Heidelberg, December 2009.

[31] Gavin Lowe. A Hierarchy of Authentication Specifications. In Proceedings
of the 10th IEEE Workshop on Computer Security Foundations, CSFW ’97,
pages 31–43. IEEE Computer Society, 1997.

[32] Stefan Lucks. Ciphers secure against related-key attacks. In Bimal K. Roy
and Willi Meier, editors, FSE 2004, volume 3017 of LNCS, pages 359–370.
Springer, Heidelberg, February 2004.

[33] Bart Mennink and Bart Preneel. On the impact of known-key attacks
on hash functions. In Tetsu Iwata and Jung Hee Cheon, editors, ASI-
ACRYPT 2015, Part II, volume 9453 of LNCS, pages 59–84. Springer,
Heidelberg, November / December 2015.

[34] Phuong Ha Nguyen, Matthew J. B. Robshaw, and Huaxiong Wang. On
related-key attacks and KASUMI: The case of A5/3. In Daniel J. Bernstein
and Sanjit Chatterjee, editors, INDOCRYPT 2011, volume 7107 of LNCS,
pages 146–159. Springer, Heidelberg, December 2011.

[35] Trung Nguyen and Jean Leneutre. Formal Analysis of Secure Device Pair-
ing Protocols. 2014 IEEE 13th International Symposium on Network Com-
puting and Applications, pages 291–295, 2014.

[36] Ivica Nikolic, Josef Pieprzyk, Przemyslaw Sokolowski, and Ron Steinfeld.
Known and chosen key differential distinguishers for block ciphers. In
Kyung Hyune Rhee and DaeHun Nyang, editors, ICISC 10, volume 6829
of LNCS, pages 29–48. Springer, Heidelberg, December 2011.

[37] Tomas Rosa. Key-collisions in (EC)DSA: Attacking non-repudiation. Cryp-
tology ePrint Archive, Report 2002/129, 2002. http://eprint.iacr.org/
2002/129.

[38] Yu Sasaki. Known-key attacks on Rijndael with large blocks and strength-
ening ShiftRow parameter. In Isao Echizen, Noboru Kunihiro, and Ryôichi
Sasaki, editors, IWSEC 10, volume 6434 of LNCS, pages 301–315. Springer,
Heidelberg, November 2010.

[39] Yu Sasaki, Sareh Emami, Deukjo Hong, and Ashish Kumar. Improved
known-key distinguishers on Feistel-SP ciphers and application to Camellia.
In Willy Susilo, Yi Mu, and Jennifer Seberry, editors, ACISP 12, volume
7372 of LNCS, pages 87–100. Springer, Heidelberg, July 2012.

[40] Yu Sasaki and Kan Yasuda. Known-key distinguishers on 11-round Feis-
tel and collision attacks on its hashing modes. In Antoine Joux, editor,
FSE 2011, volume 6733 of LNCS, pages 397–415. Springer, Heidelberg,
February 2011.

[41] Sheikh Ziauddin and Bruno Martin. Formal Analysis of ISO/IEC 9798-2
Authentication Standard Using AVISPA, 07 2013.

A Appendix: Strong Unforgeability under Key Forgery
Attacks and Applications

Section 2.2 introduces EUF-KCA security for a MAC, which is particularly nec-
essary in Mechanism 7a. However, other key collision variants could prove use-
ful in other environments. Here we describe the security experiment for strong
unforgeability under a key forgery attack (SUF-KCA). EUF-KCA allows an ad-
versary to win only if it produces a valid key corresponding to a given MAC tag
– regardless of whether or not a new message is used. In comparison, SUF-KCA
allows an adversary to win if it produces either a new key or a new message
corresponding to a given authentication tag. Table 1 shows this comparison.
The security experiments for SUF-KCA and EUF-CMA are presented in Fig. 4
and Fig. 5, respectively.

From Table 1 it appears that SUF-KCA is a combination of EUF-CMA
and EUF-KCA. However, note that this is not the case. To win EUF-CMA, an
adversary may manipulate the message tag in addition to the message, although
the winning requirement is on the message only. Therefore, an adversary that
can forge a new message-tag pair (m′, t′), which validates correctly and where
both m′ and t′ are new, may win the EUF-CMA experiment, but does not win
the SUF-KCA experiment as the tag differs from those previously output by
the MAC oracle.

ExpSUF-KCA
MAC,A (λ):

1: K $← Kgn()
2: K← ⊥, m← ⊥, t← ⊥
3: AMAC(·),MAC.Vfy(·)()
4: return phase

MAC(m):
1: if (K, t) 6= (⊥,⊥) then
2: return ⊥
3: t← MAC(K,m)
4: K← K, m← m, t← t
5: return (K, t)

MAC.Vfy(K,m):
1: v ← Vfy(K,m, t)
2: if (v = 1) ∧ ((K,m) 6= (K, m) then
3: phase← 1
4: else
5: phase← 0
6: return phase from experiment
7: return v

Figure 4. SUF-KCA security experiment for a message authentication code algorithm
MAC = (Kgn,MAC,Vfy) and adversary A.

ExpEUF-CMA
MAC,A (λ):

1: K $← Kgn()
2: S ← ∅
3: AMAC(·),MAC.Vfy(·)()
4: return phase

MAC(m):
1: t← MAC(K,m)
2: S ← S ∪ {m}
3: return t

MAC.Vfy(m, t):
1: v ← Vfy(K,m, t)
2: if (v = 1) ∧ (m /∈ S) then
3: phase← 1
4: return phase from experiment
5: return v

Figure 5. EUF-CMA security experiment for a message authentication code algorithm
MAC = (Kgn,MAC,Vfy) and adversary A.

