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Forward and Backward Private DSSE for Range
Queries

Cong Zuo1,2, Shi-Feng Sun1,2,∗,Joseph K. Liu1,∗, Jun Shao3, Josef Pieprzyk2,4, Lei Xu5,6

Abstract—Due to its capabilities of searches and updates over the encrypted database, the dynamic searchable symmetric encryption
(DSSE) has received considerable attention recently. To resist leakage abuse attacks, a secure DSSE scheme usually requires forward
and backward privacy. However, the existing forward and backward private DSSE schemes either only support single keyword queries
or require more interactions between the client and the server. In this paper, we first give a new leakage function for range queries,
which is more complicated than the one for single keyword queries. Furthermore, we propose a concrete forward and backward private
DSSE scheme by using a refined binary tree data structure. Finally, the detailed security analysis and extensive experiments
demonstrate that our proposal is secure and efficient, respectively.

Index Terms—Dynamic Searchable Symmetric Encryption, Forward Privacy, Backward Privacy, Range Queries.

F

1 INTRODUCTION

Outsourcing data to the cloud is a cost-effective and reliable
way to store large amounts of data. However, at the same
time, it exposes data to a server that is not always trusted.
Hence, the security and privacy of outsourced data should
be treated well before using cloud storage. A simple method
to mitigate these problems is to encrypt data before out-
sourcing. Unfortunately, encryption reduces the usability,
especially the searchability, of the data due to the nature
of encryption. To solve this problem, searchable symmetric
encryption (SSE) has been introduced in [1], [2]. In this kind
of encryption, as the name indicates, it can encrypt the data
while keeping the searchability of the data. Compared with
other techniques for enabling searchability over ciphertexts
[3], [4], the clear advantages of SSE is efficiency.

Nevertheless, traditional SSE schemes cannot support
updates over the encrypted database, which hinders its
applications in reality. To support updates of encrypted
databases, dynamic SSE (DSSE) has been proposed in [5],
[6]. However, updates leak information about data to po-
tential attacks (see [7]). Zhang et al. [8] demonstrated file-
injection attacks that break privacy of client queries by in-
jecting a small number of files to an encrypted database. To
deal with the attacks, forward and backward privacy have
been introduced informally in [9]. Later, they have been
formalized in [10] and [11], respectively. In particular, Bost
et al. [11] defined three different levels of backward privacy,
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namely, Type-I, Type-II and Type-III, where Type-I is the
most secure and Type-III is the least secure. Note that many
other forward and backward private DSSE schemes have
been also proposed (see [11], [12] for instance). Nevertheless,
a majority of published forward and backward private DSSE
schemes support single keyword queries only. This greatly
reduces their practicality. In many applications, we need
more expressive search queries, such as range queries, for
instance.

For range queries, a naı̈ve solution may simply apply
queries for all possible values in a range. Note that such
solution is not efficient if the range is large as it requires
a large communication overhead. To process range queries
more efficiently and reduce communication cost, Faber et
al. [13] applied a binary tree to the OXT scheme of Cash
et al. [14]. Their solution works for static databases only
and does support updates. Zuo et al. [15] designed two
DSSE schemes using a new binary tree data structure. Their
schemes support both range queries and updates. Their
first scheme (SchemeA) based on the framework of [10]
achieves forward privacy. However, it inherits low efficiency
of the scheme from [10] due to application of computation-
ally expensive public-key cryptographic operations. For the
second scheme (SchemeB), the authors combined the bit
string representation with the Paillier encryption [16]. The
second scheme achieves backward privacy. The maximum
number of files the scheme can support is equal to the
length of the message space for the Paillier encryption.
For a typical implementation, the message length is very
small (around 1024 bits) and therefore a scheme can support
limited number of files. To reduce storage requirements,
the authors homomorphicly add the ciphertexts together
and consequently their scheme looses forward privacy. In
addition, they did not provide a detailed backward privacy
analysis. Later, Wang et al. [17] suggested a generic forward
private DSSE with range queries by adapting the ShemeA
from [15]. To achieve backward privacy, they extended their
scheme by applying the generic backward private construc-
tion of [11]. Unfortunately, to support the backward privacy,
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their scheme requires another roundtrip between the client
and the server. In other words, the client needs to the re-
encrypt the matched files and send them back to the server
which is not efficient.

Recently, Zuo et al. [18] designed an efficient DSSE
scheme with forward and stronger backward privacy by
combining bitmap index with a simple symmetric encryp-
tion with homomorphic addition. To further support very
large databases, they extended their first scheme to multiple
block setting. However, their schemes support single key-
word queries only.
Our Contributions. In this paper, we develop an efficient
forward and backward private DSSE scheme that supports
range queries by extending the scheme from the work [18].
The scheme further called FBDSSE-RQ. It only requires one
roundtrip and the comparison with previous works is given
Table 1. In particular, the contributions of this work are as
follows:

TABLE 1: Comparison to previous works

Scheme Forward Backward Range Number of
Privacy Privacy Queries Roundtrips

FIDES [11] 3 Type-II 7 2
DIANAdel [11] 3 Type-III 7 2
Janus [11] 3 Type-III 7 1
Janus++ [12] 3 Type-III 7 1
MONETA [11] 3 Type-I 7 3
FB-DSSE [18] 3 Type-I− 7 1
SchemeA [15] 3 7 3 1
SchemeB [15] 7 Unknown 3 1
Generic [17] 3 7 3 1

Extension [17] 3 Type-II 3 2
Our scheme 3 Type-R 3 1

• First, we refine the construction of the binary tree
introduced in [15]. For our binary tree, we label all
nodes by keywords. Names of nodes are derived
from their leaf nodes rather from the order of node
insertion (see Section 2.2 for more details). We also
modify algorithms for the binary tree.

• We define a new backward privacy for our range
queries named Type-R. Compared with singe key-
word queries, range queries introduce more leak-
ages. In this paper, we map a range query into several
keywords that are assigned to nodes of our binary
tree. For a range search query [a, b], our range query
leaks the number of keywords for the range query,
the repetition of these keywords and the final results
for the range query1, and for the update with value v,
it leaks the number of keywords have been updated
(the number of levels of the binary tree). See Section
4 and 5 for more details.

• We give a forward and Type-R backward pri-
vate DSSE for range queries. The scheme called
FBDSSE-RQ uses our refined binary tree and is based
on the FB-DSSE from the work [18]. In addition, it
only requires one roundtrip. See Section 5 for more
details.

• Finally, the security analysis and implementation
experiments demonstrate that the scheme achieves
claimed security goals and is practical.

1. If a = b, the leakage of the search query would be same as Type-I−.

1.1 Related Work

Searchable symmetric encryption (SSE) was first introduced
by Song et al. [1]. In their scheme, a client encrypts every
keyword of a file. For a search query, the client first encrypts
a keyword and then finds a match by comparing the (en-
crypted) keyword to (encrypted) keywords of all the files.
As a result, the search time is linear with the number of
file/keyword pairs. To reduce the search time, Curtmola et
al. [2] deployed inverted index data structure. Consequently,
their SSE scheme obtains sublinear search time. In [2], the
authors also formally defined the SSE security model. There
is a large number of followup papers studying different
aspects of SSE. For instance, SSE with expressive queries
is examined in [13]–[15], SSE for multi-client setting is
explored in [2], [19], dynamic SSE – in [5], [6] and locality
SSE – in [20], [21].

Once database is encrypted, SSE schemes do not allow
the update of the encrypted database. To support updates
of encrypted database, dynamic SSE (DSSE) schemes are
introduced in [5], [6]. Early DSSE schemes are, however,
vulnerable to file-injection attacks [7], [8]. To deal with
the attacks, forward and backward privacy are informally
introduced in [9]. Later, Bost [10] formalized the forward
privacy. In 2017, Bost et al. [11] defined three levels of
backward privacy (Type-I to Type-III, ordered from the most
secure to the least secure). Sun et al. [12] designed a DSSE
called Janas++, which achieves Type-III backward privacy
by replacing (public-key) puncturable encryption (PE) with
symmetric puncturable encryption (SPE) of Janas, and
Janas++ is more efficient than Janas.

Most forward and/or backward private DSSE schemes
support single keyword queries only. Faber et al. [13]
constructed a SSE scheme that accepts range queries. The
scheme applies a binary tree data structure to the OXT
scheme of Cash et al. [14]. However, the scheme is static
(does not allow updates). To design a DSSE for range
queries, Zuo et al. [15] deployed a new binary tree data
structure. They described two solutions. The first one is
based on the scheme by Bost [10] and it achieves for-
ward privacy. The second solution applies the Paillier cryp-
tosystem [16] and it is backward private. Unfortunately,
the solution can support a limited number of files. This
weakness is due to a limited length of the message space
of the Paillier cryptosystem. Wang et al. [17] designed a
generic forward private DSSE for range queries. The generic
construction applies the framework of SchemeA from [15].
Then they extended their first scheme by integrating the
generic backward private construction from [11] to achieve
Type-II backward privacy. Their scheme, however, requires
2 roundtrips between the client and the server, which is not
efficient. Independently, Demertzis et al. [22] developed sev-
eral SSE schemes for range queries with different security
and efficiency tradeoffs by using the binary tree data struc-
ture. To support update, they deploy several independent
SSE instances and periodically consolidate them together.
As far as information leakage is concerned, their schemes
leak not only the number of keywords queried but also the
level of each keyword in the binary tree.

Recently, Zuo et al. [18] introduced a forward and
stronger backward private DSSE which requires one



ZUO et al.: FORWARD AND BACKWARD PRIVATE DSSE FOR RANGE QUERIES 3

roundtrip only. Moreover, they introduced a new notion
of backward privacy (named Type-I−). Compared with
Type-I [11], Type-I− does not leak the insertion time of
matching files. To achieve this, they deployed bitmap index
and simply symmetric encryption with homomorphic addi-
tion. Experiments show that their DSSE scheme is efficient
and practical. Nevertheless, it can support single keyword
queries only. To the best of our knowledge, there is no
forward and backward private DSSE that can process range
queries with one roundtrip only.

There is also another line of investigation that explores
usage of trusted hardware (SGX) in order to obtain secure
DSSE (see [23], [24], for example). In this paper, we focus on
constructing a secure DSSE without the trusted third party.
The readers who are interested in this aspect of DSSE design
are referred to [23], [24].

1.2 Organization

The remaining sections of this paper are organized as
follows. In Section 2, we give the necessary background
information and preliminaries. In Section 3, we define our
DSSE model and forward and backward privacy notions
for our range queries are given in Section 4. In Section 5,
we give our forward and backward private DSSE for range
queries. The security analysis is given in Section 6. Section
7 discusses implementation of our scheme and its efficiency.
Finally, Section 8 concludes the work.

2 PRELIMINARIES

In this paper, λ denotes the security parameter. We use
bitmap index to represent file identifiers in the same way
as in the work [18]. For a database with y files, we set a bit
string bs of length y. If there exists file fi, we set the i-th bit
of bs to 1. Otherwise, it is set to 0. Fig. 1 illustrates setup,
addition and deletion of file identifiers. In particular, Fig.
1(a) shows a bitmap index for a database that can store up
to y = 5 files. The index tells us that the database contains
a single file f2. Fig. 1(b) illustrates addition of file f1 to the
database, i.e. the bit string 00010 (that corresponds to f1)
is added to the index. Fig. 1(c) displays operations on the
index, when the file f2 is deleted from the database. This
can be done either by subtracting the string 00100 from the
index or by adding−(00100)2 = (11100)2 to the index (note
that operations are performed modulo 25).

mod	25

(b)	Addition

(c)	Deletion

0 0 1 0 0

f0f1f2f3f4

(a)	Bitmap	Index

0 0 1 0 0

0 0 0 1 0
0 0 1 1 0

mod	25
0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

1 1 1 0 0

mod	25

0 0 0 0 0

Fig. 1: Illustration of bitmap index operations

2.1 Simple Symmetric Encryption with Homomorphic
Addition
Following [25], a simple symmetric encryption with homo-
morphic addition Π = (Setup, Enc, Dec, Add) is described
by following four algorithms:

• n ← Setup(1λ): For a security parameter λ, it out-
puts a public parameter n, where n = 2y and y is the
maximum number of files a scheme can support.

• c ← Enc(sk,m, n): For a message m (0 ≤ m < n),
the public parameter n and a random secret key
sk (0 ≤ sk < n), it computes a ciphertext c =
sk + m mod n. For every encryption, the secret key
sk needs to be stored, and it can be used once only.

• m ← Dec(sk, c, n): For the ciphertext c, the public
parameter n and the secret key sk, it recovers the
message m = c− sk mod n.

• ĉ← Add(c0, c1, n): For two ciphertexts c0, c1 and the
public parameter n, it computes ĉ = c0 + c1 mod n,
where c0 ← Enc(sk0,m0, n), c1 ← Enc(sk1,m1, n),
n← Setup(1λ) and 0 ≤ sk0, sk1 < n.

We claim that the above defined encryption supports homo-
morphic addition in the sense that knowing two ciphertexts
c0 = m0 + sk0 mod n and c1 = m1 + sk1 mod b, anybody
can create ĉ = c0 + c1 mod n. However, to decrypt ĉ and
recoverm0+m1 mod n, one needs to know sk0+sk1 mod n.
To prove validity of the claim, it is enough to check that

Dec(ŝk, ĉ, n) = ĉ− ŝk mod n = m0 +m1 mod n,

where ŝk = sk0 + sk1 mod n.
Note that Π enjoys perfect security as long as secret keys

are used once only. To see that this is true is enough to note
that our encryption becomes the well-know one-time pad
(OTP) when secret key is chosen randomly and uniformly
for each new message.

Perfectly Security [25]. We say Π is perfectly secure if
for any adversary A, its advantage defined as below is
negligible,

AdvPS
Π,A(λ) = |Pr[A(Enc(sk,m0, n)) = 1]−

Pr[A(Enc(sk,m1, n)) = 1]| ≤ ε,

where n ← Setup(1λ), the secret key sk (0 ≤ sk < n) is
kept secret and A chooses m0,m1 s.t. 0 ≤ m0,m1 < n.

2.2 Binary Tree
In this section, we revisit the binary tree BT from the work
[15]. For simplicity, we always use a perfect (a.k.a. full)
binary tree and denote the root root as BT. A perfect binary
tree is a binary tree with 2` leaf nodes, where ` + 1 is the
number of levels, the root exists at level 0 and leaves belong
to the level `. For range queries on attributeA (e.g. age) with
range R = {0, 1, · · · , d − 1}, each leaf of BT is associated
with a value v from R. For example, in Fig. 2(a), d is 3. To
form a perfect binary tree, we need to add an additional leaf
(the dot-line node in Fig. 2(a)). For Fig. 2(c), d is 5. Every
node in BT has three pointers, which are initially set to null.
The three pointers are parent, left and right. The parent
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Algorithm 1 Binary Tree

TGen(d)

1: if d ≤ 0 then
2: return ⊥
3: else if d = 1 then
4: Generate one node n and set this node as BT.
5: Associate value 0 to this node and name it as w0.
6: return BT
7: else
8: Generate 2` leaf nodes . 2`−1 < d ≤ 2`

9: Associate each leaf node with each value v ∈ 2` and
name the corresponding leaf node as wv .

10: for i = `− 1 to 0 do
11: Generate 2i nodes.
12: for each node do
13: Set its left and right child to two consecu-

tive nodes from previous level, where the value of its
leftmost is even and the value of its rightmost is odd.

14: Name this node as wab, where a and b are the
values associated with its leftmost and rightmost.

15: end for
16: end for
17: Set the root node as BT
18: return BT
19: end if

TGetCover(q, BT) . q = [a, b], where 0 ≤ a < b < d

1: BRC, Temp, Parent← Empty Set
2: for i = a to b do
3: Temp← Temp ∪ wi . Put all the leaf nodes to the

temp set Temp.
4: end for
5: while Temp 6=⊥ do
6: for two nodes in Temp have the same parent do
7: Remove these two nodes from Temp, and put the

parent node to the set Parent.
8: end for
9: Move the remaining nodes from Temp to BRC.

10: Temp← Parent, Parent←⊥
11: end while
12: return BRC

TPath(v, BT)

1: PT← Empty Set
2: w ← wv
3: while w 6=⊥ do
4: PT← PT ∪ w
5: w ← w · parent
6: end while
7: return PT

w0

0

w1

1

w2

2

w3

3

(a)

w0

0

w1

1

w2

2

w3

3

w01 w23
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(b)

w0
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w1

1
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w3

3

w01 w23

w03

w4

4

w5

5

w6

6

w7

7

w45 w67

w47

w07

(c)

Fig. 2: Binary Tree

links the node with its parent. The pointers left and right
connect the node with its left and right child, respectively.
We also define the leftmost child leftmost and rightmost
child righmost. The leftmost leaf is a node, which is the
left child of its parent and all parents are left children of
their ancestors. The rightmost is defined similarly but for
right child. For example, in Fig. 2(b), w0 is the leftmost
leaf of w03 and w3 is the rightmost leaf of w03. Now, we
are ready to describe a collection of algorithms for BT (see
Algorithm 1 for precise definition).

• BT← TGen(d): It takes d and outputs a perfect binary
tree BT for 2` leaf nodes, where 2`−1 < d ≤ 2` and
` is the smallest such integer. For example, Fig. 2(b)
and Fig. 2(c) illustrate a tree constructed for d = 3
and d = 5 leaves, respectively.

• BRC ← TGetCover(q, BT): The algorithm takes a

range q = [a, b] and a binary tree BT as its input
and outputs the best range cover BRC that contains
all leaves in the range [a, b] , where 0 ≤ a < b < d2.
Note that a BRC has to include the smallest number
of parent nodes of leaves in the range. Consider the
tree depicted in Fig. 2(c), BRC = {w23, w4} for range
query q = [2, 4].

• PT ← TPath(v, BT): The algorithm takes a value v
and a binary tree BT as its input and outputs a set
PT of nodes that belong to the path traversing from
the leaf wv to the root root, where 0 ≤ v < d. For
instance, consider the tree in Fig. 2(c). For v = 1 (or
the leaf w1), the set PT = {w1, w01, w03, w07}.

2.3 Notations

Notations used in the work are given in Table 2.

3 DSSE DEFINITION AND SECURITY MODEL

For range queries, we assume that each file f is charac-
terised by an attribute A (e.g. age), whose value v belongs to
the range R = {0, 1, · · · , d− 1}. We assign the range values
to the leaves of our binary tree BT as shown in Fig. 2(b).
Consequently, each file contains not only the keyword of its
leaf but also the keywords associated with its ancestors.

A database DB stores a list of file-identifier/keyword-
set pairs or DB= (fi,Wi)

y
i=1, where fi ∈ {0, 1}λ is the file

identifier, Wi is the keyword set and y is the total number
of files in DB. For example, consider the tree from Fig. 2(b),
the file f0 is associated with the range value 0 and contains

2. If a = b, it becomes a single keyword query for keyword wa.
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TABLE 2: Notations

v The value in a range query
BT The full binary tree
`+ 1 The number of levels of the binary tree, where the root

is in level 0 and the leaves are in level `
d The boundary of our range query
R The set of values for our range query {0, 1, · · · , d− 1}

[a, b] A range query
BRC The set of least number of nodes to cover range [a, b]
PT The set of nodes in the path from a leaf to the root
DB A database
λ The security parameter
STc The current search token for a keyword w
EDB The encrypted database EDB which is a map
F A secure PRF
W The set of all keywords of the database DB
CT A map stores the current search token STc and counter

c for every keyword in W
fi The i-th file
bs The bit string which is used to represent the existence

of files
y The length of bs
e The encrypted bit string

Sume The sum of the encrypted bit strings
sk The one time secret key

Sumsk The sum of the one time secret keys

keywords from the set W0 = {w0, w01, w03}. We denote the
collection of all distinct keywords in DB by W = ∪yi=1Wi.
The notation W means the total number of keywords in the
set W (or cardinality of the set). The total number of file-
identifier/keyword pairs is denoted by N =

∑y
i=1 |Wi|.

A set of files that satisfy a range query q is denoted by
DB(q). Note that we use bitmap index to represent the file
identifiers. For a search query q, the result is a bit string
bs, which represents a list of file identifiers in DB(q). For an
update query u, a bit string bs is used to update a list of
file identifiers. Moreover, we isolate the actual files from the
metadata (e.g. file identifiers). We focus on the search of the
metadata only. We ignore the retrieval process of encrypted
files from the database.

3.1 DSSE Definition

A DSSE scheme consists of an algorithm Setup and two
protocols Search and Update that are executed between a
client and a server. They are described as follows:

• (EDB, σ)← Setup(1λ, DB): For a security parameter λ
and a database DB, the algorithm outputs a pair: an
encrypted database EDB and a state σ. EDB is stored
by the server and σ is kept by the client.

• (I , ⊥) ← Search(q, σ; EDB): For a state σ, the client
issues a query q and interacts with the server who
holds EDB. At the end of the protocol, the client
outputs a set of file identifiers I that match q and
the server outputs nothing.

• (σ′, EDB′) ← Update(σ, op, in; EDB): For a state σ,
the operation op ∈ {add, del} and a collection of
in = (f,w) pairs, the client requests the server (who
holds EDB) to update database by adding/deleting
files specified by the collection in. Finally, the proto-
col returns an updated state σ′ to the client and an
updated encrypted database EDB′ to the server.

Remark. In literature, there are two result models for SSE
schemes. In the first one (considered in the work [14]), the
server returns encrypted file identifiers I so the client needs
to decrypt them. In the second one (studied in the work
[10]), the server returns the file identifiers to the client as a
plaintext. In our work, we consider the first variant, where
the protocol returns encrypted file identifiers.

3.2 Security Model
DSSE security is modeled by interaction between the Real
and Ideal worlds called DSSEREAL and DSSEIDEAL, respec-
tively. The behavior of DSSEREAL is exactly the same as
the original DSSE. However, DSSEIDEAL reflects a behavior
of a simulator S , which takes the leakages of the original
DSSE as input. The leakages are defined by the function
L = (LSetup,LSearch,LUpdate), which details what infor-
mation the adversary A can learn during execution of the
Setup algorithm, Search and Update protocols.

If the adversary A can distinguish DSSEREAL from
DSSEIDEAL with a negligible advantage, we can say that
leakage of information is restricted to the leakage L. More
formally, we consider the following security game. The
adversaryA interacts with one of the two worlds DSSEREAL
or DSSEIDEAL which are described as follows:

• DSSEREALA(λ): On input a database DB, which is
chosen by the adversary A, it outputs EDB to the A
by running Setup(λ, DB). A performs search queries
q (or update queries (op, in)). Eventually, A outputs
a bit b, where b ∈ {0, 1}.

• DSSEIDEALA,S(λ): Simulator S outputs the simu-
lated EDB with the input LSetup(λ,DB)). For search
queries q (or update queries (op, in)) generated by
the adversary A, the simulator S replies by using
the leakage function LSearch(q) (or LUpdate(op, in)).
Eventually, A outputs a bit b, where b ∈ {0, 1}.

Definition 1. Given a DSSE scheme and the security game
described above. The scheme is L-adaptively-secure if for every
probabilistic polynomial time (PPT) adversary A, there exists an
efficient simulator S (with the input L) such that,

|Pr[DSSEREALA(λ) = 1]− Pr[DSSEIDEALA,S(λ) = 1]|

≤ negl(λ).

Leakage Function. Before defining the leakage function, we
define a range query q = (t, [a, b]) = {t, w}w∈BRC, where
BRC is the best range cover of range [a, b]. An update query
u = (t, op, (v, bs)) = {t, op, (w, bs)}w∈PT(v), where t is the
timestamp, PT contains all the keywords in the path from
the leaf node of v to the root, op is the update operation
and bs denotes a list of file identifiers to be updated. For a
list of search queries Q, we define a search pattern sp(q) =
{t : (t, w)}w∈BRC, where t is a timestamp and q ∈ Q. The
search pattern leaks the repetition of search queries on q.
Denote a result pattern rp(q) = bs, where bs represents
all file identifiers that match the range query q. Note that,
after a search query, we implicitly assume that the server
knows the final result bs, since the client may retrieve the
file identifiers represented by bs which is not described in
this paper. Moreover, the server can infer if a range query
contain other range queries or not by looking at bs.
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4 FORWARD AND BACKWARD PRIVACY FOR OUR
RANGE QUERIES

To support range queries, we incorporate the binary tree
data structure (see Section 2.2 for more details). For an up-
date with value v, we need to update every node (keyword)
in the path from the corresponding leaf node to the root
node, where the value v is within the boundaries of the
current binary tree. For the update with a value v, we need
to issue several updates (all the keywords from the leaf to
the root), hence the number of updates (the number of levels
of the binary tree) is leaked.

4.1 Forward Privacy

Informally, for any adversary who may continuously ob-
serve the interactions between the server and the client,
forward privacy guarantees that an update does not leak
information about the newly added files that match the
previously issued queries. The definition given below is
taken from [10]:

Definition 2. A L-adaptively-secure DSSE scheme is forward-
private if the update leakage function LUpdate can be written as

LUpdate(op, in) = L′(op, {(fi, µi)}),

where fi is the identifier of the modified file, µi is the number of
keywords corresponding to the updated file fi.

Remark. For our range query, the leakage function will be
LUpdate(op, v, bs) = L′(op, bs, ` + 1), where ` + 1 is the
number of levels of the full binary tree BT.

4.2 Backward Privacy

Given a time interval, in which two search queries for the
same range occur. Backward privacy ensures that there is no
leak of information about the files that have been previously
added and later deleted. Note that information about files
leaks if the second search query is issued after the files
are added but before they are deleted. In [18], Zuo et al.
formulated a stronger level of backward privacy named
Type-I− for single keyword queries. To deal with range
queries, we map a range query to several keywords. For
our range queries, to update a value, we need to update
every keyword, which contains this value, hence the update
leaks the number of keywords corresponding to the value,
which is the number of levels of the binary tree ` + 1. We
call the new backward privacy Type-R.

• Type-R: Given a time interval between two calls
issued for a range query q. Then it leaks the files that
currently match q and the total number of updates
for each w, where w ∈ BRC . Update of a leaf (value
v) leaks the number of keywords corresponding to
the value.

To define Type-R formally, we need to introduce Time. For
a range query q, Time(q) lists the timestamp t of all updates
corresponding to each w, where w ∈ BRC. Formally, for a
sequence of update queries Q′:

Time(q) = {t : (t, op, (w, bs))}w∈BRC.

Definition 3. A L-adaptively-secure DSSE scheme is Type-
R backward-private iff the search and update leakage function
LSearch,LUpdate can be written as:

LUpdate(op, v, bs) = L′(op, `+ 1),

LSearch(q) = L′′(sp(q), rp(q), Time(q)),

where L′ and L′′ are stateless, `+ 1 is the number of levels of the
full binary tree BT.

5 FORWARD AND BACKWARD PRIVATE DSSE
FOR RANGE QUERIES

Now, we are ready to give our forward and backward
private DSSE for range queries. We call it FBDSSE-RQ and
it is defined by Algorithm 2. Our DSSE is based on the
framework of [18], a simple symmetric encryption with
homomorphic addition Π = (Setup, Enc, Dec, Add), and a
keyed PRF FK with key K . The scheme is defined by the
following algorithm and two protocols:

• (EDB, σ = (n, d,K,CT)) ← Setup(1λ): The algo-
rithm is run by a client. It takes the security param-
eter λ as input. Then it chooses a secret key K and
an integer n, where n = 2y and y is the maximum
number of files that this scheme can support. More-
over, it sets the range query boundary d, two empty
maps EDB and CT, where R = {0, · · · , d − 1} is set
of values for our range queries and the two maps are
used to store the encrypted database as well as the
current search token STc and the current counter c
(the number of updates) for each keyword w ∈ W,
respectively. Finally, it outputs encrypted database
EDB and the state σ = (n, d,K,CT), and the client
keeps (d,K,CT) secret.

• (σ′,EDB′) ← Update(v, bs, σ;EDB): The protocol
runs between a client and a server. The client inputs
a value v (v ∈ R), a state σ and a bit string bs3. The
client updates each keyword w ∈ PT. For each key-
word w, he/she encrypts the bit string bs by using
the simple symmetric encryption with homomorphic
addition to get the encrypted bit string e. To save the
client storage, the one time key skc is generated by
a hash function H3(K ′w, c), where c is the counter.
Then he/she chooses a random search token and
use a hash function to get the update token. He/She
also uses another hash function to mask the previous
search token. After that, the client sends the update
token, e and the masked previous search token C
to the server and update CT to get a new state
σ′. Finally, the server outputs an updated encrypted
database EDB′.

• bs ← Search(q, σ;EDB): The protocol runs between
a client and a server. The client inputs a range query
q and a state σ, and the server inputs EDB. Firstly,
the client gets BRC. For each keyword w ∈ BRC,
he/she gets the search token corresponding to the
keyword w from CT and generates the Kw. Then
he/she sends them to the server. The server retrieves

3. Note that, we can update many file identifiers through one update
query by using bit string representation bs.
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Algorithm 2 FBDSSE-RQ

Setup(1λ)
Client:

1: K
$←− {0, 1}λ, n← Setup(1λ)

2: CT, EDB← empty map
3: Set the range boundary d.
4: return (EDB, σ = (n, d,K,CT))

Update(v, bs, σ;EDB) . 0 ≤ v < d
Client:

1: BT← TGen(d)
2: PT← TPath(v, BT)
3: for w ∈ PT do
4: Kw||K ′w ← FK(w), (STc, c)← CT[w]
5: if (STc, c) =⊥ then
6: c← −1, STc ← {0, 1}λ
7: end if
8: STc+1 ← {0, 1}λ
9: CT[w]← (STc+1, c+ 1)

10: UTc+1 ← H1(Kw, STc+1)
11: CSTc ← H2(Kw, STc+1)⊕ STc
12: skc+1 ← H3(K ′w, c+ 1)
13: ec+1 ← Enc(skc+1, bs, n)
14: Send (UTc+1, (ec+1, CSTc)) to the server.
15: end for
Server:
16: Upon receiving (UTc+1, (ec+1, CSTc))
17: Set EDB[UTc+1]← (ec+1, CSTc)

Search(q, σ,EDB) . q = [a, b], where 0 ≤ a < b < d.
Client:

1: BT← TGen(d)
2: BRC← TGetCover(q, BT)
3: for w ∈ BRC do
4: Kw||K ′w ← FK(w), (STc, c)← CT[w]

5: if (STc, c) =⊥ then
6: return ⊥
7: end if
8: end for
9: Send {(Kw, STc, c)}w∈BRC to the server.

Server:
10: Sum← 0
11: for each (Kw, STc, c) do
12: Sume ← 0
13: for i = c to 0 do
14: UTi ← H1(Kw, STi)
15: (ei, CSTi−1)← EDB[UTi]
16: Sume ← Add(Sume, ei, n)
17: Remove EDB[UTi]
18: if CSTi−1 =⊥ then
19: Break
20: end if
21: STi−1 ← H2(Kw, STi)⊕ CSTi−1

22: end for
23: EDB[UTc]← (Sume,⊥)
24: Sum← Add(Sum,Sume, n)
25: end for
26: Send Sum to the client.
Client:
27: Sumsk ← 0
28: for w ∈ BRC do
29: for i = c to 0 do
30: ski ← H3(K ′w, i)
31: Sumsk ← Sumsk + ski mod n
32: end for
33: end for
34: bs← Dec(Sumsk, Sum, n)
35: return bs

all the encrypted bit strings e corresponding to w.
To reduce the communication overhead, the server
adds them together by using the homomorphic ad-
dition (Add) of the simple symmetric encryption to
get the final result Sume and sends it to the client.
Finally, the client decrypts it and outputs the final bit
string bs which can be used to retrieve the matching
files. Note that, in order to save the server storage,
for every search, the server can remove all entries
corresponding to w and store the final result Sume

corresponding to the current search token STc to the
EDB. Moreover, the client does not need to re-encrypt
the final result bs which makes our scheme more
efficient than the one in [17].

6 SECURITY ANALYSIS

In this section, we give the security proof of our proposed
scheme.

Theorem 1. (Adaptive forward and Type-R backward
privacy of FBDSSE-RQ). Let F be a secure PRF,
Π = (Setup, Enc, Dec, Add) be a perfectly secure
simple symmetric encryption with homomorphic

addition, and H1, H2 and H3 be random oracles.
We define LFBDSSE-RQ = (LSearchFBDSSE-RQ,L

Update
FBDSSE-RQ),

where LSearchFBDSSE-RQ(q) = (sp(q), rp(q), Time(q)) and
LUpdateFBDSSE-RQ(op, v, bs) = L(` + 1). Then FBDSSE-RQ is
LFBDSSE-RQ-adaptively forward and Type-R backward private.

Proof. Similar to the proof from [18], we formulate a se-
quence of games from DSSEREAL to DSSEIDEAL. We show
that every two consecutive games are indistinguishable.
Finally, we simulate DSSEIDEAL with the leakage functions
defined in Theorem 1.

Game G0: G0 is exactly same as the real world game
DSSEREALFBDSSE-RQA (λ). So we can write that

Pr[DSSEREALFBDSSE-RQA (λ) = 1] = Pr[G0 = 1].

Game G1: Instead of generation of a key for a keyword
w using F , we chooses the key at random and with uniform
probability. The key and the corresponding keyword are
stored in the table Key. If a keyword has been queried, then
the corresponding key is fetched from the table Key. Assum-
ing that an adversary A is able to distinguish between G0
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Algorithm 3 G2

Setup(1λ)
Client:

1: K
$←− {0, 1}λ, n← Setup(1λ)

2: CT, EDB← empty map
3: Set the range boundary d.
4: return (EDB, σ = (n, d,K,CT))

Update(v, bs, σ;EDB) . 0 ≤ v < d
Client:

1: BT← TGen(d)
2: PT← TPath(v, BT)
3: for w ∈ PT do
4: Kw||K ′w ← Key(w)
5: (ST0, · · · , STc, c)← CT[w]
6: if (STc, c) =⊥ then
7: c← −1, STc ← {0, 1}λ
8: end if
9: STc+1 ← {0, 1}λ

10: CT[w]← (ST0, · · · , STc+1, c+ 1)
11: UTc+1 ← {0, 1}λ
12: UT[w, c+ 1]← UTc+1

13: CSTc ← H2(Kw, STc+1)⊕ STc
14: skc+1 ← H3(K ′w, c+ 1)
15: ec+1 ← Enc(skc+1, bs, n)
16: Send (UTc+1, (ec+1, CSTc)) to the server.
17: end for
Server:
18: Upon receiving (UTc+1, (ec+1, CSTc))
19: Set EDB[UTc+1]← (ec+1, CSTc)

Search(q, σ,EDB) . q = [a, b], where 0 ≤ a < b ≤ d− 1.
Client:

1: BT← TGen(d)
2: BRC← TGetCover(q, BT)
3: for w ∈ BRC do
4: Kw||K ′w ← Key(w)
5: (ST0, · · · , STc, c)← CT[w]

6: if (STc, c) =⊥ then
7: return ⊥
8: end if
9: for i = 0 to c do

10: H1(Kw, STi)← UT[w, i]
11: end for
12: end for
13: Send {(Kw, STc, c)}w∈BRC to the server.
Server:
14: Sum← 0
15: for each (Kw, STc, c) do
16: Sume ← 0
17: for i = c to 0 do
18: UTi ← H1(Kw, STi)
19: (ei, CSTi−1)← EDB[UTi]
20: Sume ← Add(Sume, ei, n)
21: Remove EDB[UTi]
22: if CSTi−1 =⊥ then
23: Break
24: end if
25: STi−1 ← H2(Kw, STi)⊕ CSTi−1

26: end for
27: EDB[UTc]← (Sume,⊥)
28: Sum← Add(Sum,Sume, n)
29: end for
30: Send Sum to the client.
Client:
31: Sumsk ← 0
32: for w ∈ BRC do
33: for i = c to 0 do
34: ski ← H3(K ′w, i)
35: Sumsk ← Sumsk + ski mod n
36: end for
37: end for
38: bs← Dec(Sumsk, Sum, n)
39: return bs

and G1, then we can build an adversary B1 to distinguish
between F and a truly random function. More formally,

Pr[G0 = 1]− Pr[G1 = 1] ≤ AdvprfF,B1
(λ).

Game G2: The game is described in Algorithm 3. For the
Update protocol, an update token UT is picked randomly
and is stored in table UT. When the Search protocol is called,
the random tokens are generated by the random oracle H1

such that H1(Kw, STc) = UT[w, c]. The value (Kw, STc) is
stored in table H1 for future queries. If an entry (Kw, STc+1)
already in table H1, then we cannot obtain the requested
equalityH1(Kw, STc+1) = UT[w, c+1] and the game aborts.
Now, we show that the abortion possibility is negligible.
As a search token is chosen randomly, the probability of a
correct guess for search token STc+1 by the adversary is
1/2λ. If A makes polynomial number p(λ) of queries, then

Pr[G1 = 1]− Pr[G2 = 1] ≤ p(λ)/2λ

Game G3: We model the H2 as a random oracle which is
similar to H1 in G2. So we can write

Pr[G2 = 1]− Pr[G3 = 1] ≤ p(λ)/2λ

Game G4: Again, we model the H3 as a random oracle.
If the adversary does not know the key K ′w, then the
probability of guessing the right key is 1/2λ (we set the
length of K ′w to λ). Assuming that A makes polynomial
number p(λ) of queries, the probability is p(λ)/2λ. So we
have

Pr[G3 = 1]− Pr[G4 = 1] ≤ p(λ)/2λ

Game G5: We replace the bit string bs by the string
of all zeros (its length is y). If the adversary A is able
to distinguish between G5 and G4, then we can build a
reduction B2 to break the perfect security of the simple
symmetric encryption with homomorphic addition Π. So we
have
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Algorithm 4 Simulator S
S .Setup(1λ)

1: n← Setup(1λ)
2: Set the range boundary d.
3: CT, EDB← empty map
4: return (EDB,CT, n, d)

S .Update(`+ 1)
Client:

1: for 0 to ` do
2: UT[t]← {0, 1}λ
3: C[t]← {0, 1}λ
4: sk[t]← {0, 1}λ
5: e[t]← Enc(sk[t], 0s, n)
6: Send (UT[t], (e[t],C[t])) to the server.
7: t← t+ 1
8: end for
S .Search(sp(q), rp(q), Time(q))
Client:

1: q̂ ← min sp(q)
2: ˆBRC← q̂
3: for w ∈ ˆBRC do

4: Kw||K ′w ← Key(w)
5: (STc, c)← CT[w]
6: Parse rp(q̂) as bs.
7: Parse Time(w) as (t0, · · · , tc), where Time(w) ∈

Time(q̂) .
8: if (STc, c) =⊥ then
9: return ⊥

10: end if
11: for i = c to 0 do
12: STi−1 ← {0, 1}λ
13: Program H1(Kw, STi)← UT[ti]
14: Program H2(Kw, STi)← C[ti]⊕ STi−1

15: if i = c and w is the last keyword in ˆBRC then
16: Program H3(K ′w, i)← sk[ti]− bs
17: else
18: Program H3(K ′w, i)← sk[ti]
19: end if
20: end for
21: end for
22: Send {(Kw, STc, c)}w∈ ˆBRC to the server.

Pr[G4 = 1]− Pr[G5 = 1] ≤ AdvPSΠ,B2
(λ).

Simulator Now we can replace the searched range query
q with sp(q) in G5 to simulate the ideal world in Algorithm
4, it uses the first timestamp q̂ ← min sp(q) for the range
query q. We ignore a part of Algorithm 3 which does not
influence the view of the adversary.

Now we are ready to show that G5 and Simulator are
indistinguishable. For Update, it is obvious since we choose
new random strings for each update in G5. For Search,
the simulator starts from the current search token STc and
choose a random string for previous search token. Then
it embeds it to the ciphertext C through H2. Moreover, S
embeds the bs to the STc of the last keyword in BRC and
all 0s to the remaining search tokens through H3. Finally,
we map the pairs (w, i) to the global update count t. Then
we can map the values in table UT, C and sk that we chose
randomly in Update to the corresponding values for the pair
(w, i) in the Search. Hence,

Pr[G5 = 1] = Pr[DSSEIDEALFBDSSE-RQA,S (λ) = 1]

Finally,

Pr[DSSEREALFBDSSE-RQA (λ) = 1]−Pr[DSSEIDEALFBDSSE-RQA,S (λ)

= 1] ≤ AdvprfF,B1
(λ) + AdvPSΠ,B2

(λ) + 3p(λ)/2λ

which completes the proof.

7 EXPERIMENTAL ANALYSIS

In this section, we evaluate the performance of our schemes
in a test bed of one workstation. This machine plays the

roles of client and server. The hardware and software of this
machine are as follows: Mac Book Pro, Intel Core i7 CPU
@ 2.8GHz RAM 16GB, Java Programming Language, and
macOS 10.13.2. Note that, we use the bitmap index to denote
file identifiers. We use the “BigInteger” with different bit
length to denote the bitmap index with different size which
acts as the database with different number of files. The
relation between the i-th bit and the actual file is out of our
scope. The update time includes the client token generation
time and server update time, and the search time includes
the token generation time, the server search time and the
client decryption time. Note that the result only depends on
the maximum number of files supported by the system (the
bit length), but not the actual number of files in the server.

103 104 105 106 107

Bit length
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im

e 
(m

s)

0.23 0.24 0.25

0.82

7.24

0.26 0.25

0.42

0.85

7.43
d=128
d=256

Fig. 3: The update time of FBDSSE-RQ with different bit
length for different d

First, we show the update time of our scheme with
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different bit length for different d in Fig. 3. The bit length
refers to y, which is equal to the maximum number of files
supported by the system. d refers the boundary of our range
query. We update one time for each value. Then we get the
total update time for all values and divide the number of
values to get the average update time for each value. With
the increase of bit length, from Fig. 3, we can see that the
update time increases, except the update time with the bit
length from 103 to 104 for d = 256. This is because the
module addition has not contributed too much when the
bit string is less than 104. We also observe that the average
update time of each value for d = 256 is larger than the
one for d = 128. This is due to the fact that when d = 256,
the binary tree has more levels which means it needs more
updates than the one with d = 128.
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  4.06
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307.28

548.82
440.94

549.48

Fig. 4: The search time of FBDSSE-RQ with different range
(d = 256, bit length is 107)

In Fig. 4, we evaluate the search time of our
scheme with different range ([0, 0], [0, 50], [0, 100], [0, 150],
[0, 200], [0, 250]), where d = 256 and bit length is 107. From
Fig. 4, it can be seen that a lager range results in a larger
search time. However, this is not always true. The search
time is depends on the number of keywords in BRC of
each range. The search time for range [0, 150] is larger than
the search time for range [0, 200], because the number of
keywords in BRC for range [0, 150] is larger than the one for
[0, 200]. In addition, with the increase of the bit length, the
search time increases.

Theoretically, the bit string can be of an arbitrary length
but a larger n (e.g. ` = 223) will significantly contribute a lot
of modular computation time. To support an extreme large
number of files, we can divide a large bit string into several
short bit strings as the multi-block setting in [18]. We refer
readers to [18] for more details.

8 CONCLUSION

In this paper, we propose a forward and backward private
DSSE for range queries (named FBDSSE-RQ) which requires
only 1 roundtrip. In other words, for every search, it does
not require the re-encryption of the matching files which
makes our scheme more efficient. Moreover, we refine the
construction of the binary tree in [15]. Names of nodes

are derived from their leaf nodes rather from the order of
node insertion [15]. In addition, we define a new backward
privacy for range queries named Type-R. For our range
query, to update a file with value v, it leaks the number
of keywords that have been updated due to the binary tree
data structure. From the security and experimental analyses,
we can see that our proposed scheme achieves claimed
security goals and is efficient, respectively. In the future, we
will investigate more expressive queries.
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