
Non-Profiled Side Channel Attack based on
Deep Learning using Picture Trace

Yoo-Seung Won1 and Jong-Yeon Park2

1 Kookmin University, South Korea, mathwys87@kookmin.ac.kr
2 Samsung Electronics, South Korea, jonyeon.park@samsung.com

Abstract. In this paper, we suggest a new format for converting side channel traces
to fully utilize the deep learning schemes. Due to the fact that many deep learning
schemes have been advanced based on MNIST style datasets, we convert from raw-
trace based on float or byte data to picture-formatted trace based on position. This
is induced that the best performance can be acquired from deep learning schemes.
Although the overfitting cannot be avoided in our suggestion, the accuracy for
validation outperforms to previous results of side channel analysis based on deep
learning. Additionally, we provide a novel criteria for attack success or fail based on
statistical confidence level rather than rule of thumb. Even though the data storage
is slightly increased, our suggestion can completely be recovered the correct key
compared to previous results. Moreover, our suggestion scheme has a lot of potential
to improve side channel attack.
Keywords: Non-profiled side channel attack · Deep learning · Multi-layer perceptron
· Convolutional neural network

1 Introduction
In many fields, the machine learning schemes such as MLP (Multi-Layer Perceptron) and
CNN (Convolutional Neural Network) are widely utilized to improve their final goals. One
of goals in side channel analysis is to retrieve the secret key. It means the machine learning
schemes can be naturally applied to side channel analysis. More precisely, the input and
output of MLP can be mapped to the points of traces and the guessed intermediate variable,
respectively. Afterwards, forward and backward propagations are performed to produce
induced output. Especially, CNN scheme is usually used to image recognition, utilizing
the additional methodology such as convolution and pooling layers. This scheme is usually
applied to avoid alignment and/or compression issues, utilizing pooling system. Moreover,
the machine learning schemes such as autoencoder are sometimes used to reduce the noise
level. To improve attack performance in side channel analysis, machine learning schemes
have been naturally applied to side channel analysis with only minor considerations such
as input and output vectors. However, to our best knowledge, there is no improvement in
order to make the best use of internal processes in machine learning scheme. That is, like
CNN scheme, it is required to fit the side channel analysis when applying machine learning
schemes. As previously mentioned, in order to recognize image, the concept of additional
layers was developed. As a result, the maximal result can be provided when the processing
system of image recognition in humans is matched with machine learning scheme.

In this paper, we suggest trace-transform concept to completely utilize the principle of
machine learning schemes. Until now, many papers suggest side channel analysis simply
connected with machine learning scheme. However, we modify trace form to completely
use the properties of MLP scheme.

mailto:mathwys87@kookmin.ac.kr
mailto:jonyeon.park@samsung.com

2 Non-Profiled Side Channel Attack based on Deep learning using Picture Trace

1.1 Motivation
The studies in side channel analysis have only concentrated on how to apply machine
learning scheme without any modifications in properties of machine learning scheme. As
previously stated, we transform the raw-trace to MNIST style, utilizing the properties of
machine learning scheme completely. More precisely, it is inspired from [LCB] as below
Figure 1. It is represented to value ’7’ using hexadecimal value. Of course, although single
point in MNIST data is represented to hexadecimal value, it is a float value to represent
the concentration of figure. Without the concentration, value ’7’ can be represented to
right of Figure 1. Afterward, we describe why we remove the concentration. Above all,
this MNIST style is significantly helpful to learn the data in terms of side channel analysis.

We expect that the best performance can be acquired if the trace is converted to MNIST
style, owing to the fact that machine learning schemes such as MLP and CNN have been
advanced based on MNIST style datasets.

00
00
00
00
00
00
00
00000054B99F973C24 00000000000000000000000000000000000000
000000DEFEFEFEFEF1C6C6C6C6C6C6C6C6AA34 000000000000000000
00000043 7248 72A3E3FEE1FEFEFEFAE5FEFE8C000000000000000000
000000000000000011 42 0E434343 3B15ECFE6A000000000000000000
00000000000000000000000000000053FDD112 000000000000000000
000000000000000000000000000016E9FF5300000000000000000000
000000000000000000000000000081FEEE2C00000000000000000000
000000000000000000000000003BF9FE3E0000000000000000000000
0000000000000000000000000085FEBB050000000000000000000000
00000000000000000000000009CDF83A000000000000000000000000
0000000000000000000000007EFEB600000000000000000000000000
00000000000000000000004BFBF039 00000000000000000000000000
0000000000000000000013DDFEA60000000000000000000000000000
00000000000000000003CBFEDB23 0000000000000000000000000000
00000000000000000026FEFE4D000000000000000000000000000000
00000000000000001FE0FE73 01000000000000000000000000000000
000000000000000085FEFE34 00000000000000000000000000000000
000000000000003DF2FEFE34 00000000000000000000000000000000
0000000000000079FEFEDB28 00000000000000000000000000000000
0000000000000079FECF12 0000000000000000000000000000000000
00

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0

Figure 1: 7 value represented in MNIST dataset

1.2 Our Contribution
In this paper we introduce a novel side channel analysis scheme to apply completely prop-
erties of machine learning schemes in non-profiling scenarios. We induce the imagification
for trace to enhance the recognition to fully utilize the properties of machine learning
schemes. More precisely, the data form is based on position (a.k.a. picture-formatted trace)
rather than is more readable than float or byte value (a.k.a. n-dimension vector trace), as
if the person recognize a figure. This suggestion allows the significantly reduced trace to
retrieve the correct key, compared to previous results. Additionally, we provide an example
to describe why our suggestion outperforms classical data by intuitive ways. Similar to
[Tim19], without information about countermeasure in given power traces, we demonstrate
that our suggestion can retrieve the correct key as well as outperform previous results. Also,
in non-profiling scenarios, we apply a novel metric based on statistical confidence level to
distinguish the attack result of success or fail. All experimental results are supported by the
ASCAD database [PSB+18] and the ChipWhisperer-Lite board [CWw]. As a result, our
suggestion outperforms n-dimension vector trace in terms of first-order and second-order DL
attacks. Moreover, in second-order DL attack of ASCAD database, only picture-formatted
traces can be retrieved the correct key, although

2 Preliminaries
Deep learning (DL) is a particular kind of machine learning which produces great successful
results based on deep neural networks. It also has been easily applied to various fields
such as image recognition and speech recognition. In this section, we briefly describe how
to apply deep learning such as MLP and CNN to side channel analysis.

Yoo-Seung Won and Jong-Yeon Park 3

2.1 Multi-Layer Perceptron
The general objective of MLP is to classify some input vector x ∈ RD based on its labels
l(x) ∈ L = {l1, l2, · · · , l|L|}, where D is the dimension of the input data to categorize
and L is the set of classification labels. A goal of neural network (NN) is to produce
a function NN: RD → R|L| that takes as input vector x ∈ RD and output as vector
y of scores. In other words, the final goal is to make the score vector l(x) based on
NN(x), updating the internal properties. In general, the neural network is composed of
input, output, and hidden layers. In terms of side channel analysis, the input vector can
be represented as points of a trace, and the output has to be compared to hypothesis
intermediate variable such as Hamming weight model to learn expected result. Moreover,
hypothesis intermediate variable is usually encoded to one-hot encoding scheme.

2.1.1 Construction of MLP

Input
layer

Hidden
layer 1

Hidden
layer 2

Output
layer

x1

h1
1 h2

1

x2 y1

x3 h1
2 h2

2

x4 y2

b1 b2

b0

Figure 2: Example for a simple MLP

We provide an example for a simple MLP to enhance understanding. The number of
inputs, also known as the points, is 4 and Figure 2 consists of two hidden layers including
3 neurons and output layer has two neurons. Moreover, bias neuron is included to all
layers excluding output layer. All arrows in Figure 2 are called as weights represented to
Figure 3. The value of weights and bias is usually initialized to Xavier scheme and normal
distribution before performing deep learning. In order to acquire the expected result in
output layer, some operations are performed to get output in each neurons, which is called
as forward propagation. However, a learning is not even started since the weights are not
changed to gain the expected result. By backward propagation, the machine learns weights
and biases to right way for the expected result. This is done by comparing between the
expected result and the result of output layer. The expected result is sometimes encoded

4 Non-Profiled Side Channel Attack based on Deep learning using Picture Trace

to one-hot encoding. If the one-hot encoding is applied to single bit Hamming weight
model, the output layer should be composed of two neurons. If Hamming weight value
is 1, then the expected result is encoded to [1, 0] or [0, 1]. More precisely, by comparing
between [y1, y2] and one-hot encoded value, the backward propagations is performed to
update all weights.

2.1.2 Forward Propagation

The forward propagation can be naturally calculated as Figure 3. That is, a single neuron
in all hidden layers and output layer is computed by simple multiplication, addition, and
activation function. In Figure 3, x1 ·w1 +x2 ·w2 +x3 ·w3 + b is operated before calculating
activation function. Afterwards, the activation function fact such as sigmoid, tanH, ReLU,
softmax, and Swish is computed to calculate forward propagation. Excluding output layer,
ReLU is sometimes adopted to all hidden layers.

x1 w1

x2 w2 Σ fact

Activation
function

yout

Layer
output

x3 w3

Weights

Bias
b

Layer inputs

Figure 3: Calculation for a single neuron in hidden and output layers

2.1.3 Backward Propagation

The core of MPL is backward propagation, owing to the fact that each weights can
be updated to learn the expected result. The backward propagation is performed by
comparison between the expected result l(x) and the output of MPL NN(x), the backward
propagation can be performed. For comparison, the error function such as Euclidean
distance could be used to learn the expected result. Normally, one can define an error
function E : RD → R for example as the Euclidean distance between the output of MPL
and the one-hot encoded the label as below:

E(x) =
|L|∑
i=1

(l(x)[i]−NN(x)[i])2 (1)

where l(x)[i] and NN(x)[i] indicate respectively each label value and output neuron value.
The value of error function represents the gap between the expected result and MLP
output. That is, backward propagation allows to narrow the gap. To reflect the error for
all train data X = (xi)1≤i≤T , a loss function is defined as below.

L = 1
T

T∑
i=1

E(xi) (2)

The weights can be updated by Gradient Descent technique which is applied to the
loss function L. Because the variables in loss function are based on weights, the weights

Yoo-Seung Won and Jong-Yeon Park 5

can be trainable. Here, we denote this concept as Lw. In other words, based on Gradient
Descent technique, the weights in loss function can be updated with ∇Lw. Utilizing t-th
result Lw(t), (t+ 1)-th weights can be learned as below.

w(t+ 1) = w(t)− α∇Lw(t) (3)

where α indicates a learning rate. The total quantity for training T is consumed to learn
w. However, even though the T quantity is used, it is possible to re-use the T quantity to
learn w, which is called as Epoch.

For side channel analysis, the deep learning is simply applied as below.

• Input layer The points of a trace correspond to the number of input values.

• Output layer The adversary sets to the expected result. If the target intermediate
variable for attacks is Hamming weight of a single bit of S-box output, then the
output layer has two neurons where one-hot encoding is applied.

• Hidden layer Except for input layer and output layer, the intermediate layers can
be applied to deep learning in order to learn more accurate result than single layer
neural network. This hyperparameter significantly depends on rule of thumb, which
means the adversary carefully choose the parameter with trial and error experience.

• Learning rate To update the weights, it is a ratio to utilize the previous training
result. The range is between 0.0 and 1.0.

• Activation function To activate each of neurons, the activation functions such as
sigmoid, tanH, ReLU, and softmax can be applied. Empirically in many researches,
the ReLU is applied to hidden layers and the softmax is employed to output layer.

• Initialization It is basic setting of initialing values of weights and baises. Simply,
the values can set random variables in Gaussian distribution or one can use additional
techniques.

2.1.4 Additional Functions

The additional functions are used to avoid some obstacles such as overfitting and memory
efficiency in machine learning schemes. There are many additional skills, but we explain
two techniques that is used in this paper.

• Batch size The total number of training divides into number of batches or sets or
parts. It can avoid the overfitting, updating the weights based on batch size.

• Dropout The key idea is to randomly drop units from the neural network during
training. That is, a part of connections only updated. The range is between 0.0 and
1.0. For example, 1.0 means no drop.

3 Picture Trace and Analysis
In this section, we introduce a new method of pre-processing for power traces and basic
attack principle. In general power trace, if an event occurs on one time, there is a voltage
value that has one float point value. It is 1-dimension vector. For example,

v(trace) = 2.34

A collected power trace is a sequence of these voltages. If there is n-time point, one
can express n-dimension (a.k.a. n-time).

6 Non-Profiled Side Channel Attack based on Deep learning using Picture Trace

v(trace) = (2.34, 1.36, 2.50, 2.97, ...)

This means n-dimension vector that has rational number on n-time. The floating with
n-dimension vector is described as below, it is normal power trace; x-axis is time, y-axis is
a voltage.

Time

A
m
p
li
tu
d
e

Figure 4: A trace for side channel analysis

Figure 4 shows that voltage on the time express “degree”, power trace can be visualized
for human’s recognition. People recognize power flow through upper marking that means
high degree of voltage and lower marking that means low degree. However real voltage
flow is not the figure but only n-dimension vector sequence. This is not a picture that is
expressed as picture.

7 14 21 28

7

14

21

28

Width: 28

H
ei

gh
t:

28

Figure 5: 7 value represented in MNIST database with concentration

We perform side channel analysis with picture-formatted power traces. Surely, there
are many methods that convert n-dimension vector sequence to a picture. We get hints
from MNIST database; this is simple way to make picture from power traces. Figure 5
shows handwriting number “7”. We can perceive the value through some values on 28× 28
area. There are visually unnecessary area treats value “0” that means NULL. We would
like to make power trace as this method. Figure 6 shows a power trace that we convert as
a picture. This is fundamental shape that we want to change vector sequence to a picture.
The meaningful line is 1 and 0 means nothing like foundation that helps only the relative
location of point “1”. We call it a picture trace.

Specific steps for a picture trace is described below.

Yoo-Seung Won and Jong-Yeon Park 7

00
00
00
00
00
00
00
10
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0

00
00
00
00
00
01
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0

00
00
00
00
00
00
10
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
10
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
01
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
10
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
10
00
00
00
00
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
10
00
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
10
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
01
00
00
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
10
00
00
00
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
01
00
00
00
00
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
01
00
00
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
01
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
10
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
01
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
01
00
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
01
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
10
00
00
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
01
00
00
00
00
00
00
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
10
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
01
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
10
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
00
10
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0

00
00
00
00
00
00
10
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0

00
00
00
00
10
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0

00
00
00
01
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0

00
00
00
00
01
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0

00
00
00
00
00
00
10
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0

00
00
00
00
00
00
00
01
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
01
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
01
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
01
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
10
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
01
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
10
00
00
00
00
00
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
01
00
00
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
01
00
00
00
00
00
0

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
01
00
00
00
00
0

Time

A
m
p
li
tu
d
e

Figure 6: A picture-formatted trace for side channel analysis

3.1 Picture encoding

3.1.1 Choice of resolution

The resolution determines how the picture trace is made exquisitely. To get all information
from original power trace, we have to know original trace’s resolution when the trace is
collected from collecting device such as oscilloscope. Otherwise, we can brute force search
to find resolution. Figure 7 shows determination of resolution for conversion power trace
to a picture trace. The original trace is n-dimension vector space whose size is the number
of point, but the size of a picture trace is the number of point × resolution. Therefore, a
picture trace has many bigger dimension.

Resolution

Number of points

Figure 7: Determination of resolution for a trace

We can choose small resolution. The small resolution picture trace has small input size,
it helps learning faster and reduce memory consumption. However, some of information
from original trace is missed. It can distort the real information of sensitive data. Detail
contents will be discussed.

8 Non-Profiled Side Channel Attack based on Deep learning using Picture Trace

3.1.2 Drawing

The drawing is the main step when generating a picture trace. To draw a picture, we
need to determine a position of a point and put a dot on fixed space. The related position
of a point is determined by upper bound, lower bound and resolution that we already
chose. First, a gap which difference between lower bound and upper bound is need to be
computed. All gaps in power traces are different, however conversion of all trace have to
be same for the same standard of analysis and simplicity of implementation.

Gap = upperbound− lowerbound (4)

Upper bound is maximum voltage value and lower bound is minimum value of all
sample power traces. After computation boundary, one compute related location. Let
resolution be n, a voltage value on specific time be v, then related location is computed as
formula t = ϕ(v)that is intuitive concept.

ϕ : R→ Zn (5)

t = ϕ(v) =
⌊
v − lowerbound

Gap

⌋
× n ≤ n (6)

Finally, one can make n(resolution)-th vector with related location t. The method to
express picture follows MNIST, but there is no depth in our power trace. Therefore, we
express number “1” for the related location, “0” means “NULL”. Let the related location
be t, n-th vector is computed as below.

δ : Zn → (Z2)n

δ (t) = (a0, a1, . . . , an−1)

ai =
{

0 (i 6= t)
1 (i = t)

Final picture of each trace is set of vectors σ(t). the picture is {δ1 (t1) , δ2 (t2) , . . . , δm (tm)}

3.1.3 Reducing

The reducing step is elimination of unnecessary portion in picture. The new-made picture
shaped trace has unchanged “1” to “0” or “0” to “1”. This section has no effect on power
analysis. In our experimental result, most of unchanged section of the pictures is “0” that
is generally foundation. One cannot know unchanged section from 1 trace. Thus, one
makes a filter to pit the picture traces through a sieve to sift out the unchanged portion.
The Filter is made by stacking all picture traces, and choose vectors having value “1”.

Figure 8 shows the method to make the filter. The filter eliminates unchanged “0”, as
a result one can get only meaningful locations, see Figure 9. Output picture right side of
Figure 9 is inside of filter boundary.

In our result, filtering picture traces mostly has approximately 90% input size reducing
of ASCAD example. Reducing input size makes it possible to be efficient learning time
and reduce training epochs.

3.2 Correct Key determination
For correct key determination, the previous non-profiling attack published in CHES 2019
[Tim19] choose best training speed, compared to other wrong keys. However, this method
assumes that deep learning with correct key find more efficient way of the provided labels.
This means weights and bias with higher training accuracy can compute correct labels
about any power traces. We have known that high accuracy of training trace does not

Yoo-Seung Won and Jong-Yeon Park 9

Time

A
m
p
li
tu
d
e

Filter
Overlapping
Traces

Figure 8: Overlapping traces to generate the filter

000
000
000
000
001
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
00

000
000
000
001
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
00

000
000
000
000
100
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
00

000
000
000
000
000
000
100
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
00

000
000
000
000
000
000
000
000
000
001
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
00

000
000
000
000
000
000
000
000
000
000
000
000
000
000
100
000
000
000
000
000
000
000
000
000
000
00

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
100
000
000
000
000
000
000
00

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
100
000
000
000
000
00

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
001
000
000
000
000
00

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
001
000
000
000
000
000
00

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
001
000
000
000
000
000
000
00

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
010
000
000
000
000
000
000
00

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
001
000
000
000
000
000
00

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
100
000
000
000
00

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
001
000
000
00

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
100
000
00

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
010
000
000
00

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
100
000
000
000
00

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
010
000
000
000
000
000
00

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
100
000
000
000
000
000
000
000
00

000
000
000
000
000
000
000
000
000
000
000
000
000
000
001
000
000
000
000
000
000
000
000
000
000
00

000
000
000
000
000
000
000
000
000
000
000
000
010
000
000
000
000
000
000
000
000
000
000
000
000
00

000
000
000
000
000
000
000
000
000
010
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
00

000
000
000
000
000
000
001
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
00

000
000
000
000
100
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
00

000
000
001
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
00

000
000
010
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
00

000
000
000
100
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
00

000
000
000
000
100
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
00

000
000
000
000
000
100
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
00

000
000
000
000
000
001
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
00

000
000
000
000
000
000
010
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
00

000
000
000
000
000
000
000
000
010
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
00

000
000
000
000
000
000
000
000
000
000
001
000
000
000
000
000
000
000
000
000
000
000
000
000
000
00

000
000
000
000
000
000
000
000
000
000
000
000
000
000
010
000
000
000
000
000
000
000
000
000
000
00

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
010
000
000
000
000
000
000
000
00

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
010
000
000
000
000
00

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
001
000
000
000
00

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
010
000
000
00

A picture before filter Filter

000
100
0

000
100
0

000
100
0000

100
0

000
100
0

000
100
0

000
100
0000

100
0

000
100
0

000
100
0

000
100
0

000
100
0000

100
0000

100
0000

100
0

000
100
0

000
100
0

000
100
0

000
100
0

000
100
0

000
100
0

000
100
0

000
100
0

000
100
0

000
100
0

000
100
0

000
100
0

000
100
0

000
100
0

000
100
0

000
100
0

000
100
0000

100
0000

100
0

000
100
0

000
100
0

000
100
0000

100
0

000
100
0

Final picture after filter

& =

Figure 9: Generating final figure trace based on the filter

guarantee find correct key according to lots of experimentations. This is because deep
learning can fall into an overfitting trap. In some of result, wrong keys have faster learning
speed even though removal overfitting techniques are adjusted in the experimentations.
Thus, we need to make other standards for determination of correct key. The reason that
overfitting is hard to remove will be discussed in the picture traces. It should be looked
at in an isolated topic. We use test set for the final decision of correct key or wrong
keys. The test set is not used for learning phase, actually we need more power traces to
check correct key. In addition, Validation set must be uniformly distributed about each
label. For example, 1bit labeling has 50% “1” and 50% “0”. If labeling is not uniformly
distributed, some cases of wrong learning, for example pick all “1” as result, has high
accuracy that is statically meaningful. Let test set has n power traces that has perfectly
half 0, and half 1. Bernoulli trials X1, X2, ..., Xn are independent. All Bernoulli trials with
success probability 1

2 , then their sum is distributed according to a binomial distribution
with n and 1

2
n∑
k=1

Xk ∼ B(n, 1
2)

If n is large enough, B(n, p) is given normal distribution

N (np, np(p− 1))

For example, a case that n equals 3000, binomial distribution is regard as normal distribu-
tion. Therefore, distribution follows N (1500, 7500), one can calculate the error possibility
selected key is correct key with probability density function; lower cumulative distribution
P
(
x, 1500,

√
750
)
is computed as

∫ x
−∞

1√
2πσ e

− 1
2 (x−1500

σ)2
. If 1600 passes in 3000 quires of

key= 0x33, P
(
1600, 1500,

√
750
)

= 0.999869. One can insist the desired correct key is
0x33, and error rate is 1− 0.999869 = 0.000131.

10 Non-Profiled Side Channel Attack based on Deep learning using Picture Trace

3.3 Characteristics of Picture Trace
3.3.1 Easy learning

A notable difference of picture traces is that alteration of voltage for each trace causes
changing vector location. For example, in Figure 10, there are only 2 power traces; it
has 3 voltage values on 3 times. The left side of Figure 10 shows normal traces that is 3
dimension vector sequence. The first traces’ third value is 0.1 and 0.2 in the second trace.
The right side of Figure 10 shows the picture trace. Input vectors of the picture trace is
[0, 1, 0, 0, 0, 1, 1, 0, 0] in the first trace, the second trace has [0, 1, 0, 0, 0, 1, 0, 1, 0]. Alteration
of 2 traces is a location change expressed by [1, 0] to [0, 1]; normal trace’s alteration is 0.1
to 0.2.

0.1

0.2

0.3

[0.2, 0.3, 0.1]

Trace 1

0 0 1

1 0 0

0 1 0

0.1

0.2

0.3

Trace 2

0 0 0

1 0 1

0 1 0

3-dimension vector trace 9× 9 picture trace

[0.2, 0.3, 0.1] Vector sequence [0, 1, 0, 0, 0, 1, 1, 0, 0] Figure encoding

[0.2, 0.3,0.2] Vector sequence [0, 1, 0, 0, 0, 1,0, 1, 0] Figure encoding

Changed value Location cross

Figure 10: Example of easy learning

By this characteristic, it is easier to learn for neural network fitting with weight and
bias. Figure 11 shows intuitive appearance of learning in normal traces. At the last layer
of the neural network with softmax and one-hot encoding, 2 traces in voltage value 1 or 2.
The last step of network select location of 0P 1 or P2 that is bigger value after softmax.
Because softmax is only for normalizing the final value from 0 to 1, upper neuron is selected
when xiw1 + b1 is bigger than xiw2 + b2, lower neuron is selected on the contrary to this.
If the learning process is well done, the neural network computes different choice that
depends on input 1 or 2. Consider that input 1 makes network upper choice and input 2
makes network lower choice in 11. For the desired result, w1 + b1 > w2 + b2 when 1 is the
input, 2w1 + b1 < 2w2 + b2 when 2 is the input at the same time. These 2 inequalities

Yoo-Seung Won and Jong-Yeon Park 11

share the same variables, but have opposite inequality signs. (Of course it has the answer,
please try to find the solution). However intuitively, most of cases are not satisfied with
inequalities, the machine starts to find the solution with increasing epochs.

Softmax One-hot

xiw1 + b1 P1 hot

1 or 2

xiw2 + b2 P2 0

xi = {1, 2}

w1

w2

Sensitive input

>

To classify the input
Input 1: w1 + b1 > w2 + b2 (P1 > P2 case), and
Input 2: 2w1 + b1 < 2w2 + b2 (P1 < P2 case)
have solutions of complex equation

Figure 11: Intuitive appearance of final layer in normal traces

On the other hand, Figure 12 input is not 1,2 but (1,0), (0,1) that is the picture
trace example. This case need 4 weights w11, w12, w21, and w22. As the same way to
make solution with previous example, w11 + b1 > w12 + b2 when the input is (1, 0),
w21 + b1 < w22 + b2 when the input is (0, 1). Unlike normal traces, each neuron has its own
weight value, it is relatively easy to find solution, for example, w11 > w21 and w12 < w22.

Softmax One-hot

xiw1 + b1 P1 hot

xiw2 + b2 P2 0

w11

w12
w21

w22

Sensitive input
xi = {(1, 0), (0, 1)} >

To classify the input
Input (1, 0): w11 + b1 > w12 + b2 (P1 > P2 case), and
Input (0, 1): w21 + b1 < w22 + b2 (P1 < P2 case)
have simple solution such as w11 > w21 and w12 < w22

Figure 12: Intuitive appearance of final layer in figure traces

At intermediate layers, there is no choice function, weight and bias influence to next
layer’s inputs. Figure 13 is a model of which a input affects multiple neurons. This is
too simple model; this example just helps intuitive way expanding of huge size of neurons.
Assume that input is 0.5 or 0.6. output of n1 is 0.5w1 + b1, 0.6w1 + b1 or 0 computed by

12 Non-Profiled Side Channel Attack based on Deep learning using Picture Trace

ReLU activation. Even if influence factor is very huge about n1 that depends on only w1
and b1. This means that influence does not care about input values. n2 is computed by
w2 and b2, it is in the same situation. Neural network give influence the input xi, that
is not about the value 0.5 or 0.6. It is the limitation of network solve the very complex
equations. This is because every input 0.5, 0.6, 0.7, and 0.8 have the same output.

n1 ReLU

0.5 or 0.6

n2 ReLU

xi = {0.5, 0.6}

w1

w2

Sensitive input

xiw1 + b1

xiw2 + b2

n1 =
Input 1: 0.5w1 + b1

Input 2: 0.6w1 + b1
or 0

n2 =
Input 1: 0.5w2 + b2

Input 2: 0.6w2 + b2
or 0

Figure 13: Intuitive appearance of hidden layer in normal traces

ReLU

ReLU

w11

w12
w21

w22

Sensitive input
xi = {(1, 0), (0, 1)}

n1 =
Input (1, 0): w11 + b1

Input (0, 1): w21 + b1
or 0

n2 =
Input (1, 0): w12 + b2

Input (0, 1): w22 + b2
or 0

Figure 14: Intuitive appearance of hidden layer in figure traces

Figure 14 shows intermediate layer of a picture trace. In common with the last
layer example in Figure 12, (1,0) or (0,1) matches different weight w11, w12, w21, and w22
independently, see Figure 14. This affect next layer’s neurons more than normal inputs in
Figure 13. Inputs (0, 1) or (1, 0). The result of next neurons depends on valuables that is
connected inputs (0, 1) or (1, 0). Therefore, the difference of result of the next neurons is
0 to infinity theoretically. In side channel attack with Hamming weight, 1-bit difference
Hamming weight has an effect with huge difference by inputs.

3.3.2 Overfitting

According to attack models by attackers, most of voltage information of a power trace for
side channel attack is simple noise that is not used to find keys. Large inputs do not mean

Yoo-Seung Won and Jong-Yeon Park 13

much information. Bigger input size has bigger noise. With normal trace, bigger noise
makes learning slow; noise interferes with success to find solution. It is simple mapping
rule.

Bigger noise = learning slow

However, the picture trace makes learning easy with lots of weight, bias and input size.
This is finding simultaneous equations with many variables with only one simple equation.
That is a lot of possible solutions but only one solution is right. In this case, deep learning
produces a network with weights and biases but that is wrong answer. In addition that
there is much noise in power traces for side channel attack in some attack models. Finally,
we can get another simple mapping rule.

Bigger noise
+ High learning ability

+ a lot of inputs and follwing weight and bias
= overfitting

So, there are simple reasons that deep learning with a picture trace has more possibility
of overfitting.

1) A lot of noise (some of attack model in side channel attack)
2) a lot of inputs and followed weight and bias
3) high learning ability

Overfitting is a characteristic of analysis with picture traces. There have been already
many researches for reducing overfitting such as using enough traces, L1, L2, regularization,
drop-out or early stop. In our research, we adjust only “early stop” and determine correct
key with validation with test set. This is because we do not need to perfect network to
find key like image-net. The purpose of deep learning here is finding key in only this
environment. Therefore, related research will be future work.

4 Experimental Results
In this section, we show experimental results. Experimentation is fulfill with Chipwisperer
lite [CWw] and ASCAD database [PSB+18]. The setting of resolution of picture traces is
maximum resolution, and quarter size of maximum resolution. The reducing resolution has
a risk of information distortion. However, it makes learning faster and remove overfitting
slightly caused by diminishing number of weights related in inputs of the first layers. The
only difference between the first order attack the higher order attacks is the label. If one
uses power traces that has sensitive data masked, the label will be generated by the pure
data. If masking value is known, one can set label with unmasked values. Thus, our first
order attack uses unmasked labels with known making values. Also, the second order
attack uses exactly the same power traces, and sets labels S-Box outs without masking.
The machine with assumption of second order attack would solve harder problems.

4.1 Attack on Chipwisperer Lite
Basic specification of Chipwisperer lite described in Appendix B. The target operation is
AES Subbyte; target data is S-box output. The order of S-box is the fourth. The data
is randomized by exclusive-or with random 8bit masking. We check CPA on the power
traces in order that it is impossible to find key from the first order attack. Figure 15 is
the result of CPA. There are two correlation coefficients line on 100 points. The left line is

14 Non-Profiled Side Channel Attack based on Deep learning using Picture Trace

analysis of S-box output with known masking which is the first order CPA attack on S-box
output and the right line is CPA with masking value. We make simple sample power traces
that has only 4th Subbyte operation and masking value in 100 points. Each correlation
coefficient is formed up to 0.8 ∼ 0.9. One can easily expect that the first order analysis
may be well done with deep learning attack.

0 10 20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

0.8

1

Number of Points

A
b
so
lu
te

co
rr
el
at
io
n
co
effi

ci
en
t

Only mask
S-box output with known mask

Figure 15: Result of correlation coefficient on CW

Figure 16 shows attack results with deep learning. The left figure is the first order
attack and right figure is second order attack. Each figure has three detail contents;
Figure-α means the deep learning attack with picture trace using resolution α, normal
means deep learning attack with normal traces. 256 is the maximum resolution that
is originated Chipwisperer specification, 64 is an example of reducing resolution that is
quarter of 256. There are two red lines; lower line is minimum accuracy for confidence
level 99.9%, upper line is 99.99% with 3, 000 validation traces. If the accuracy is higher
than upper line, the key is correct with 99.99%.

The specific setting information about hyper parameters is described in Appendix A.
According to Figure 16, the result with picture traces has higher accuracy than normal
traces regardless of resolutions and attack orders. The result will be different with
different settings such as hyper parameters, the number of layers or the number of neurons.
Therefore, we cannot easily say simply that the picture traces show better results. In the
result of epoch 200, accuracy of normal traces is 0.9.

The results of the second order are remarkable. The accuracy of attack with picture
traces is higher than attack with normal traces in the second order attack. Moreover, lower
resolution has a better result; it is also expressed in the first order attack. This caused
by small input size and reducing overfitting. We can know that lower resolution brings
especially removing noises. The attack with normal traces fails on extremely high epoch,
for example epoch 10, 000. This is out of our intuition because accuracy of first order
attack is 0.9 on training epoch 200. As a result, the performance of deep learning attack
with picture traces is better than attack with normal traces on Chipwisperer environment.

4.2 Attack on ASCAD database
We uses ASCAD.h5 file in the database; it is well aligned. For comparison other attack
performance with ASCAD database, we make the same setting of neural network in CHES
2019, but we use 7, 000 traces that is about 1

3 number of traces of CHES 2019. Figure 17

Yoo-Seung Won and Jong-Yeon Park 15

0 10 20 30 40 50 60 70 80 90 100
0.4

0.5
0.53

0.6

0.7

0.8

0.9

1

Number of Epochs

A
cc
u
ra
cy

fo
r
V
al
id
at
io
n

Result of
first order analysis

0 10 20 30 40 50 60 70 80 90 100
0.4

0.45

0.5

0.53
0.55

0.6

0.65

0.7

Number of Epochs

A
cc
u
ra
cy

fo
r
V
al
id
at
io
n

Result of
second order analysis

Figure-256 Figure-64 Normal

Figure 16: Result of first and second order MLP attacks on CW board

is the results of the first order and second order attack. The resolution of encoding is 113
and 29 that is quarter of 113 for the same environment with Chipwisperer. Because we
don’t know the collecting information of power traces, we count all kinds of voltage values
in ASCAD.h5. There are 113 kinds of voltage values with integer form from −47 to 66.

0 10 20 30 40 50 60 70 80 90 100
0.4

0.5
0.53

0.6

0.7

0.8

0.9

1

Number of Epochs

A
cc
u
ra
cy

fo
r
V
al
id
at
io
n

Result of
first order analysis

0 10 20 30 40 50 60 70 80 90 100
0.4

0.45

0.5

0.53

0.55

0.6

Number of Epochs

A
cc
u
ra
cy

fo
r
V
al
id
at
io
n

Result of
second order analysis

Figure-113 Figure-29 Normal

Figure 17: Result of first and second order MLP attacks on ASCAD database

Minimum epoch with meaningful accuracy of first order attack is lower with the picture
traces on both Figure-113 and Figure-29 than normal traces; epoch 1 is enough to get
correct key. This means the picture traces has better performance in the first order attack.
The redline is the same meaning to Chipwihperer attack environment.

The attack with resolution 29 of picture traces is the best result in the second order
attack. With normal trace in our setting environment in Appendix A, the attack succeeds
in more than trace epoch 1, 000. Because the minimum number of training epoch in the
first order attack is just 5, non-picture trace has lower ability to solve relatively hard

16 Non-Profiled Side Channel Attack based on Deep learning using Picture Trace

problem such as higher order attacks. However, picture encoding makes higher learning
ability, organize inputs and neurons to solve difficult problems.

4.3 Differential analysis and DDLA [Tim19]
One can compare accuracy of 256 candidates, and choose a correct key that has the
highest accuracy instead of absolute criteria. Figure 18 shows accuracy values with 3, 000
validation set of all key candidates of ASCAD database. As a result, some accuracy values
of wrong key is higher than red line of 99.99%, it is not general. Indeed, this method can
distinguish correct key from wrong keys, the expected time for attack is twice as using
absolute criteria with red line. In addition, if one can determine a correct key that has the
best accuracy, it can be a wrong key. This is because the best accuracy does not mean
higher accuracy without statistical confidence level.

0 10 20 30 40 50 60 70 80 90 100
0.4

0.45

0.5

0.53

0.55

0.6

Number of Epochs

A
cc
u
ra
cy

fo
r
V
al
id
at
io
n

Correct key
Wrong key

Figure 18: Result of second order analysis for Figure-29 with all key candidates (Validation
3, 000 traces)

Figure 19 shows the method of DDLA (differential deep learning analysis) [Tim19]
with the picture traces on ASCAD database. Because of overfitting, training accuracy
values is very high for all key candidates. Interestingly, the correct key has a tendency of
high training accuracy for each epoch. However, the correct key is not always the highest
accuracy. Also, there is no statistical significance level, one cannot choose one correct
key. This may depend on attacker’s heuristic result. Therefore, training accuracy is not
trustworthy criteria, validation set must be applied for correct key determination.

5 Conclusion
Many researchers have studied to utilize the deep learning to side channel analysis. MPL,
CNN, and autoencoder can be applied to enhance side channel attack. In spite of many
studies, no one challenges to transform side channel information or machine learning scheme
to fit each other. For this, our suggestion is that side channel information based on n-th
dimension vector is converted to figure-formatted form. As a result, the validation accuracy is
quite higher and learning epochs is smaller to get secret key, compared to previous schemes
in ASCAD DB and ChipWshiperer board. Additionally, our figure-formatted form allows

Yoo-Seung Won and Jong-Yeon Park 17

0 10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Epochs

A
cc
u
ra
cy

fo
r
T
ra
in
in
g

Correct key
Wrong key

Figure 19: Result of second order analysis for Figure-29 with all key candidates (Training
7, 000 traces)

to retrieve the correct key in second-order deep learning analysis, but previous suggestions
cannot be recovered the correct key in our criteria based on statistical confidence.

Moreover, our conversion scheme has many applications to enhance the side channel
attack. Therefore, we leave some potential applications for further work as below.

• Using additional dimension to make depth Some picture-formatted traces can
be overlapped. For example, if plaintext is the same then some traces can be
overlapped by changing the concentration. Therefore, the dot in picture-formatted
trace has specific value, not ’1’. Because picture overwrapping does not lose original
information, it is different from trace integration of normal traces such as average.

• Additional weight to point of interest (PoI) Similar to previous one, it can be
provided some additioanl weight on the critical data represented to dot.

• Applying the additional deep learning schemes Because the target is converted
to MNIST dataset style, additional deep learning schemes such as dropout and batch
can be applied and more effective, compared to previous side channel attacks based
on deep learning. It is also impossible that the normal trace gives extra weight on
PoI because the weight distorts original attack models.

References
[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine
learning on heterogeneous systems. Software available from tensorflow.org (2015)

[ANS18a] ANSSI. Ascad database. https://github.com/ANSSI-FR/ASCAD. (2018)

tensorflow.org
https://github.com/ANSSI-FR/ASCAD

18 Non-Profiled Side Channel Attack based on Deep learning using Picture Trace

[ANS18b] ANSSI. secaes-atmega8515. https://github.com/ANSSI-FR/
secAES-ATmega8515. (2018)

[BCO04] É. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage
Model. In M. Joye and J.-J. Quisquater (eds) Cryptographic Hardware and Embedded
Systems - CHES 2004, LNCS, vol. 3156, pp. 16-29, Springer, Heidelberg (2004)

[CWw] ChipWhisperer website. https://newae.com/tools/chipwhisperer/.

[DLw] Deep learning website. https://deeplearning.net/tutorial/tutorial.

[KJJ99] P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M.J. Wiener (ed),
Advances in Cryptology – CRYPTO ’99, LNCS, vol. 1666, pp. 388–397. Springer,
Heidelberg (1999)

[LCB] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. The mnist database of
handwritten digits. http://yann.lecun.com/exdb/mnist/.

[PSB+18] E. Prouff, R. Strullu, R. Benadjila, E. Cagli, and C. Dumans. Study of Deep
Learning Techniques for Side-Channel Analysis and Introduction to ASCAD Database.
Cryptology ePrint Archive, Report 2018/053, https://eprint.iacr.org/2018/053.
(2018)

[Tim19] B. Timon, Non-Profiled Deep Learning-based Side-Channel attacks with Sensitivity
Analysis. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2019(2), pp. 107-131. (2019)

A Hyperparameter with deep learning for all experimental
results

Table 1: Hyperparameter of deep learning for ChipWhisperer on first-order and second-
order attack

ChipWhisperer Normal Figure-64 Figure-256
Input size 100 1, 023 3, 690

Hidden layer 4
Neuron 30× 30× 30× 30 80× 80× 80× 80
Label MSB Hamming weight

Optimizer Adam (default setting)
Dropout 70% per each layer
Activation
function Relu, softmax, and one-hot encoding

Learning rate 0.01 0.001
Batch N/A 200

#Traces Train: 7, 000 / Valid: 3, 000
Initializing Xavier initialization

B Experimental environment on CW board
We use the CW1173 ChipWhisperer-Lite board [CWw] to acquire power traces. The
detailed information is as below.

https://github.com/ANSSI-FR/secAES-ATmega8515
https://github.com/ANSSI-FR/secAES-ATmega8515
https://newae.com/tools/chipwhisperer/
https://deeplearning.net/tutorial/tutorial
http://yann.lecun.com/exdb/mnist/
https://eprint.iacr.org/2018/053

Yoo-Seung Won and Jong-Yeon Park 19

Table 2: Hyperparameter of deep learning for ASCAD database on first-order and second-
order attack

ASCAD DB Normal Figure-29 Figure-113
Input size 700 3, 271 10, 528

Hidden layer 2
Neuron 20× 10 200× 100
Label LSB Hamming weight

Optimizer Adam (default setting)
Dropout N/A 70% per each layer
Activation
function Relu, softmax, and one-hot encoding

Learning rate 0.001
Batch 1, 000 500

#Traces Train: 7, 000 / Valid: 3, 000
Initializing Xavier initialization

Normalization −1 to 1 N/A

• ADC frequency: 29.5MHz

• ADC sample clock source: External input 4× multiplier

• System frequency: 96MHz

• USB interface: Custom open-source USB firmware, up to 25MB/s speed.

• Target device: Atmel XMEGA128D4 (on classic device)

• Programming protocols: Atmel PDI (for XMEGA)

Figure 20: CW1173 ChipWhisperer-Lite board

	Introduction
	Motivation
	Our Contribution

	Preliminaries
	Multi-Layer Perceptron

	Picture Trace and Analysis
	Picture encoding
	Correct Key determination
	Characteristics of Picture Trace

	Experimental Results
	Attack on Chipwisperer Lite
	Attack on ASCAD database
	Differential analysis and DDLA Tim19

	Conclusion
	Hyperparameter with deep learning for all experimental results
	Experimental environment on CW board

