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Abstract. We present distinguishing attacks (based on the Birthday
Paradox) which show that the use of 2ℓ permutations for a block cipher
is insufficient to obtain a security of ℓ bits in the Ideal Cipher Model.
The context is that of an Oracle that can provide an Adversary the
ciphertexts of a very small number of known plaintexts under a large
number of (session) keys and IVs/nonces.
Our attacks distinguish an ideal cipher from a “perfectly ideal” block
cipher, realised as an Oracle that can always produce new permutations
up to the cardinality of the symmetric group on the block space.
The result is that in order to guarantee that an Adversary which is time
limited to O(2ℓ) encryption requests has only a negligible advantage,
the cipher needs to express 23ℓ distinct permutations. This seems to
contradict a folklore belief about the security of using a block cipher in
the multi-key setting, i.e. to obtain ℓ-bit security it is sufficient to use ℓ-
or 2 ℓ-bit keys depending on the mode of operation and the use case.
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1 Introduction

1.1 The Problem

We consider the security in the multi-key (mk) setting of a block-wise operating
cipher where the block size is n and the space of the permutations that can be
expressed by the cipher has a size of k bits. We note that the permutation space is
not only indexed by the key, but also by other information such as IVs or nonces if
not controlled by the attacker. We call the totality of the information that selects
the permutation the index (a possible such index would be a tweakey [27]).

Here, the Adversary that tries to distinguish the traffic from randomness has
access to an Oracle giving the encryption of a very few constant messages under
various indices. For instance, an Adversary may be able to eavesdrop the first
blocks of several HTTPS sessions. As Bernstein remarked [4], the first message
block of any such session is often quite predictable, e.g.:

“GET / HTTP/1.1\r\n” .

Questions that drive our investigations thus include:



1. What is the actual mk security level of a block cipher with n-bit blocks and
a k-bit permutation space?

2. How large should the permutation space of a n-bit block cipher be in order
to guarantee a mk security level of ℓ bits, for a given security parameter ℓ?

1.2 The State of the Art (Selection)

Bellare, Boldyreva, and Micali proved [2] that attacking any one of t indepen-
dently keyed instances of the same public-key encryption algorithm has success
probability bounded by t times the success probability of attacking a single in-
stance of the algorithm. Their result is expressed in the sense of (computational)
indistinguishability, that dates back to Goldwasser and Micali [20] and Yao [44].

Since Yuval’s 1979 paper [45] it is known that, by the Birthday Paradox, the
length of a hash function has to be at least the double of the desired security.
Similar results for encryption are very well known, for instance, many modes
of operation offer security only up to the birthday bound, and sometimes the
differences between such modes and Beyond the Birthday Bound (BBB) modes
can be subtle. For instance, the OCB mode as based on the XEX/XE construc-
tion [39] offers indistinguishability from a random Oracle only up to the birthday
bound, but BBB if based on a “true” tweakable block cipher (TBC) [31,32].

Mk security degradation for symmetric encryption, mostly studied for specific
modes of operation or block cipher constructions [3,24,25,36,42,33,12] (to name
a few), is an area where the Birthday Paradox finds natural application.

Furthermore, there has been a large body of contributions in understanding
the security of the underlying primitive, the block cipher, in the mk setting –
but this research is mostly in the areas of time-memory tradeoffs to find key
collisions or related-key security [5,11,19,26]. The applicability of related-key
attacks heavily depends on the design of the primitive and its specific use [16].
In the case of the AES [15], a significant body of research [6,29,8,7,18,9,10] has
been devoted to the related-key security of its versions with 192 and 256 bit keys,
eventually reducing their security to at most 176 and 99 bits respectively.

1.3 The Results

We describe simple distinguishing attacks that can tell an Ideal Block Cipher
(IBC) from the uniform sampling of all permutations, where the running time of
the distinguisher will yield the security level. The set of all permutations forms
a “perfectly ideal” cipher that intends to capture the maximal level of security
for a given block size. Hence, we study how close we should get to that “perfect
ideal” in order to achieve a desired security level.

We follow the Ideal Cipher Model (ICM) which (see e.g., [14]) consists in
having an Oracle uniformly and independently sample 2ℓ permutations from the
set of all n-bit permutations. The definition of an IBC naturally translates from
keys to indices, since, for instance, in an ideal TBC, the tweak shall provide the
same level of uniformity in the selection of the permutations as the key.
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Our Adversaries only requests encryption from the Oracle, but this is only a
limitation for the Adversaries, not for the Oracle. Adversaries that also request
decryptions may be more powerful, not less.

The analysis based on the Birthday Paradox: in a set of 2k permutations, it
takes only O(2k/2) random draws before we pick the same permutation twice.
In this Gedankenexperiment, the permutations are compared on a few inputs
(w.l.o.g. 0, 1, 2 and so on). Clearly, any such partial comparison may yield false
positives. The actual complexity of the distinguisher will thus depend on the
number of allowed comparisons. We analyse the security of IBCs against attacks
based on these distinguishers, according to the following classical definition.

Definition 1. Let ℓ be a security parameter. An ideal cipher is secure w.r.t. the
security parameter ℓ, or, in other words, achieves a security level of ℓ bits if, for
any Adversary upper bounded by O(2ℓ) queries, the advantage of the Adversary
is negligible in ℓ, i.e. at most O(2−ℓ) [21].

Our main result is that to get a security level of ℓ bits we need to use indices of
at least k = 3 ℓ bits. This result can be applied to several modes of operation. For
instance, the XTS mode, widely used for full disk encryption [34], if instantiated
with AES-128 and two independent keys (and a 128-bit IV) is more secure (in the
mk, indistinguishability setting) than if used with just one single 128-bit key (and
a 128-bit IV) – See Remark 9 in § 5.2. This contradicts Liskov and Minematsu’s
assertion that a single key should be used [30]. Since XTS and OCB are both
based on the XEX construction, a similar argument could be made for the use
of two distinct keys in OCB (of course, OCB is also known to not offer BBB
security). An exhaustive analysis of all modes of operation is beyond the scope
of this paper. We offer baseline results applicable to many different contexts, to
determine the parameters to achieve the desired security level.

Under the weaker security definition that an attack based on a distinguisher
shall have time complexity at least 2ℓ, we must have k ≳ 2n and n ⩾ ℓ.

Outline of the paper. In § 2 we introduce our notations and provide background
information. We formalise in § 3 the interaction between Adversary and Oracle
and present a simple strategy exploiting the Birthday Paradox: this strategy
serves mostly as an example to present the techniques used later. In § 4 we
introduce the Time-Advantage Trade-Off. In § 5 we discuss a more powerful
attack strategy that shows that, in contrast to authentication, doubling key
sizes is not enough to prevent distinguishing attacks. § 6 focuses on the index
size choice in order to defend against our attacks. We conclude in § 7. Technical
proofs are in the Appendix.

2 Notation and Background

2.1 Notation

Following the ICM, we assume the Oracle has chosen 2k permutations. We let
n, resp. k be the block size, resp. index size of the ideal block cipher in bits.
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Definition 2. A request (by the attacker) to the Oracle is a (d + 1)-tuple
(a,m1, . . . ,md) with a ∈ N ∪ {⊥} and mj ∈ {0, 1}n. If d = 1, the exponents are
omitted. The symbol ⊥ means “new”, as being independently (and uniformly)
drawn. In a sequence

[
(ai,m

0
i , . . .m

d−1
i )

]
i⩾1

of requests, the ai ∈ N∪{⊥} satisfy
the following: In the first tuple, we have a = ⊥, i.e., a1 = ⊥; We then continue
recursively by letting

Lj = {i | ai = ⊥, where 1 ⩽ i ⩽ j}

be the list of already sampled indices and requiring that aj+1 ∈ [1, |Lj |] ∪ {⊥}.

In other words, the first element of a request means “give me encryptions
with a fresh selected permutation, or with a specified, already sampled one.”
The returned permutations are indexed as πa. Upon receiving ⊥, the Oracle is
allowed to return a previously sampled permutation, so it may be πa′ = πa′′ for
indices a′ 6= a′′.

2.2 Mathematical Background

We recall some facts about the Birthday Paradox [17, §§ II.3, II.7]. When having
t balls and u bins and we throw t balls each in a uniformly, randomly chosen bin,
let Pt,u be the probability that no bin contains two balls. Provided t ⩽ u, it is:

Pt,u =

t−1∏
i=0

(
1− i

u

)
.

Then, 1−Pt,u is the probability that after t balls have been thrown, at least one
bin contains two balls. Put

pt,u = e−
t(t−1)

2u .

It is
e−

(t−1)2

2u ⩾ pt,u ⩾ Pt,u ⩾ e−
t2

2u , and

1− e−
t2

2u ⩾ 1− Pt,u ⩾ 1− e−
(t−1)2

2u .

3 The Distinguishing Attack

3.1 The Setting and the Protocol Between Adversary and Oracle

An Adversary A faces an Oracle O. O chooses randomly one of two sets, either

S0 = {π : {0, 1}n → {0, 1}n} = Σ2n ,

which is the set of all permutations on 2n elements and that we use to model a
“perfectly ideal” block cipher, and a multiset

S1,v = S1,2k = {EK ∈R S0 | ∀K ∈ {0, 1}k} ⊆ S0
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Protocol 1: Interaction Between Oracle and Adversary

Step 1 The Oracle O flips a fair coin giving as outcome b ∈ {0, 1}.
Step 2 The Adversary sets i := 0.
Step 3 The Adversary lets i := i+1 and requests the Oracle (ai,m

0
i , . . . ,m

d−1
i ), where

the request (d+ 1)-tuple satisfies Definition 2.
Step 4 If ai = ⊥, then O chooses uniformly a permutation π|Li| ∈ Sb and sends(

O0
i , . . . , O

d−1
i

)
=

(
π|Li|(m

0
i ), . . . , π|Li|(m

d−1
i )

)
to the Adversary; else O returns(

O0
i , . . . , O

d−1
i

)
=

(
πai(m

0
i ), . . . , πai(m

d−1
i )

)
.

Step 5 The Adversary decides whether to continue with this attack.
If so, then we go to Step 3, else the Adversary outputs b′.

of size 2k of uniformly and independently sampled permutations, indexed by k
bit strings, in other words an IBC. In the following the Oracle will lazily assign a
permutation to an index once a new permutation is requested, which is equivalent
to requesting that the Adversary choose a new random string for the index.

The task of the Adversary is to find with a non negligible bias which set the
Oracle has chosen. Of course it is no surprise that one can distinguish between
these two choices: One will clearly get sampling collisions more often in S1 than in
S0, as long as 2k � (2n)!. By Stirling’s Formula this means k � (n− log2 e)2

n+
O(n). The parameters we are interested in are when this will happen and its
likelihood. We describe this formally in Protocol 1.

3.2 A Simplified Strategy
The Adversary A executes Protocol 1 in which the Adversary chooses a sequence
of requests and outputs b′ depending on the decision she is capable of making
within the running time t allowed. Since the time t is a parameter, we define A|t
as the restriction of A to being able to request only t queries from the Oracle,
to be more precise, i.e., executing the strategy with a specific time bound t.

The first Strategy of the Adversary is as follows:
Strategy 1 Fix d = 1. The Adversary always picks mi = 0. If there exists a
j < i such that Oi = Oj, then return b′ = 1; if after iteration i = t no such
collision was observed, then return b′ = 0; else increase i and continue.

As mentioned in the introduction, this strategy serves mostly as an example
to showcase the techniques that are later used in the general case.

3.3 Preliminary Observations
We analyse the attack, for now, in the case d = 1, and by assuming that S1,v

has v = 2k random permutations, where k = n is a special case.
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Even though Oracles for the ICM are assumed to be bidirectional, our at-
tacker only requests encryptions. For the moment, as only encryptions of 0 are
requested, we can introduce a multi-set D1 formed by the 2k encryptions of 0
through all 2k permutations in S1,v – where repeated values are included with
their multiplicity. We now analyse this multi-set. We observe that:

1. The Oracle O choosing 2k permutations, implies that it chooses a multi-set
D1 of size 2k with repetition allowed out of 2n possible values.

2. When the attacker requests a “fresh” index and an encryption of 0, then O
will choose a random value out of the multi-set D1.

3.4 Analysis

Definition 3. We define the security of S1,v against an Adversary A requesting
t queries from the Oracle O as

AdvS1,v
(A|t) =

∣∣P[A|t(S1,v) = 1]− P[A|t(S0) = 1] .

Definition 4. We also define the absolute advantage of the Adversary A as

AdvS1,v
(A) = max

t
AdvS1,v

(A|t) , (1)

the maximum taken over the instances of A making t queries, for all t ∈ N.

Let us define two positive quantities u and u:

u = 2n and v = 2k . (2)

The main result of this section is the following Theorem:

Theorem 1. Consider Adversary A executing Protocol 1, with n and k natural
numbers satisfying k ⩾ n, and u = 2n, v = 2k. The advantage of A satisfies

AdvS1,v
(A) ⩽

(
v

u+ v

)v/u

· u

u+ v
+O

(
max

{
1√
u
,
1√
v

})
where the maximum is attained for some t = Θ̃

(√
min{u, v}

)
. In particular, if

u = v, this maximum is ≈ 1
4 and in general it is ≈ χ 1

1+2k−n where 1 < χ < 1
e .

Hence, an IBC with a block size of n and equal index size can be distinguished
by Adversary A from truly random permutations in time O(2n/2).

The proof of Theorem 1 relies on some technical Lemmas. The first two
Lemmas establish that we can study analytic approximations of the advantage
instead of exact probabilities. We use them – and Lemma 3 – in this section with
u = 2n and v = 2k, but they hold with greater generality.
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Lemma 1. Let u, v, t ∈ N, with 1 ⩽ t ⩽ min{u, v}. The security of S1,v against
an Adversary A requesting t queries from the Oracle satisfies:

e−
(t−1)2

2u

(
1− e−

t2

2v

)
⩾ AdvS1,v

(A|t) ⩾ e−
t2

2u

(
1− e−

(t−1)2

2v

)
(3)

and
AdvS1,v

(A|t) ≈ pt,u (1− pt,v) . (4)

The error in (4) will be bounded in Lemma 2. These bounds are in general
meaningful for t ⩽ min{u, v} only. For larger t the likelihoods become trivial, the
approximation for Pt,u breaks down, and the cases have to be treated separately.

Proof. We evaluate the advantage piecewise.
First, P[A|t(S0) = 1] is the likelihood that for any multi-set of t functions from

S0, once they are all evaluated at the same point (which we can assume w.l.o.g.
to be the value 0), they result in a collision. Since S0 is the whole symmetric
group, this is the same as picking a multi-set of t values from [0, 2n−1]. In other
words, P[A|t(S0) = 1] = 1− Pt,u.

For S1,v there are two ways a collision can occur:

Way A The Oracle when returning an encryption of zero, chooses indices i
and j in D1 (see § 3.3) that are identical. When doing t experiments
the probability this happens follows from the Birthday Paradox and is
1−Pt,v. Obviously, in this case, the condition πi(0) = πj(0) is satisfied.

Way B The Oracle when returning an encryption of zero chooses indices that
are all different. This happens with probability Pt,v. However, it is
still possible that for two different indices i and j, the values in the
corresponding pigeonholes are the same! This is due to the first choice
of the Oracle – i.e. when it built the IBC. This probability is 1− Pt,u.

Hence AdvS1,v
(A|t) =

(
(1− Pt,v) + Pt,v(1− Pt,u)

)
− (1− Pt,u) and finally

AdvS1,v (A|t) = Pt,u(1− Pt,v) . (5)

Now, the bounds given in § 2.2 imply Equations (3) and (4), the second one
being clearly between the bounds of the first one. ut

Lemma 2. Put
εt,u = min

{
1,

t3

6 (u− (t− 1))2

}
. (6)

Then the error in Lemma 1 is bounded as follows:∣∣AdvS1,v (A|t)− pt,u (1− pt,v)
∣∣ < (εt,u + εt,v pt,v) pt,u < εt,u pt,u + εt,v pt,v

< εt,u + εt,v .
(7)

Proof. Let 0 < pt,u−Pt,u = Et,u pt,u be the error in the approximation of Pt,u by
pt,u. Sayrafiezadeh [41] proved that Et,u <

t3

6 (u−(t−1))2 . This bound is very good
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for small t but it becomes increasingly less precise as t approaches u. However,
by the obvious inequality Et,u = pt,u − Pt,u ⩽ pt,u we get Et,u < εt,u where εt,u
is defined as in (6). The error in approximation (4) can now be easily bounded:∣∣AdvS1,v

(A|t)− pt,u (1− pt,v)
∣∣ = ∣∣− Pt,u (1− Pt,v) + pt,u (1− pt,v)

∣∣
=
∣∣− Pt,u (1− Pt,v) + pt,u (1− Pt,v)−

− pt,u (1− Pt,v) + pt,u (1− pt,v)
∣∣

=
∣∣(pt,u − Pt,u) (1− Pt,v)− pt,u (pt,v − Pt,v)

∣∣
⩽ | pt,u − Pt,u | (1− Pt,v) + pt,u | pt,v − Pt,v |
< εt,u pt,u + εt,v pt,u pt,v < εt,u pt,u + εt,v pt,v

< εt,u + εt,v . ut

Remark 1. We note that t3

6 (u−(t−1))2 < 1 for all u ⩾ 2, t ⩽ u2/3. Furthermore,
for t = 3

√
6u2/3 it is t3

6 (u−(t−1))2 > 1, and for all ϵ > 0 there is a uϵ such that for
all u > uϵ, t3

6 (u−(t−1))2 < 1 holds with t = ( 3
√
6− ϵ)u2/3.

Now we can use (4) to approximate the advantages, so we set out to analyse
it as a function of t > 1. Define

f(t) := pt,u (1− pt,v) = e−
t(t−1)

2u

(
1− e−

t(t−1)
2v

)
. (8)

Lemma 3. The function f(t) defined in (8) is positive for t ⩾ 1, with f(1) = 0,
and lim

t→∞
f(x) = 0 and has only one maximum for t = t0 where

t0 =
1

2

(
1 +

√
4R+ 1

)
≈

√
R with R = 2 v ln

(
1 +

u

v

)
. (9)

Asymptotically in u, say for a fixed ratio σ = v
u , or ln v

lnu , and u→ ∞ we have:

t0 ≈

{√
2u for v ⩾ u, and√
2 v ln

(
1 + u

v

)
for u > v .

(10)

More precisely, we have the following general bounds

1

2
+

√
2 v ln

(
1 +

u

v

)
⩽ t0 ⩽ 1 +

√
2 v ln

(
1 +

u

v

)
. (11)

Proof. The result will be established by looking at the extrema for t > 1. We
start by observing that f(t) is a differentiable function and

f′(t) = (2 t− 1)

[(
1

2u
+

1

2v

)
e−

t(t−1)
2v − 1

2u

]
e−

t(t−1)
2u .

Now it is easy to check that f′(t) = 0 for t > 1 if and only if

e−
t(t−1)

2v =
v

u+ v
. (12)
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Taking logarithms

− t(t− 1)

2v
= ln

(
v

u+ v

)
,

i.e.
t2 − t−R = 0 , where R := 2 v ln

(
1 +

u

v

)
> 0 .

This quadratic equation is easy to solve and it has only one positive solution

t0 =
1

2

(
1 +

√
4R+ 1

)
≈

√
R (13)

which, together with f(1) = 0 and lim
x→∞

f(x) = 0, establishes (9). The different
asymptotic behaviours of t0 in the two cases where v ⩾ u and u > v, given in
(10), are trivial to prove.

From (13) we obtain t0 = 1
2+
√

1
4 +R withR = 2 v ln

(
1 + u

v

)
we immediately

get the lower bound of (11), whereas the upper bound of (11) follows upon
application of

√
x+ y ⩽

√
x+

√
y for x, y ⩾ 0. ut

We are now ready to prove Theorem 1.

Proof (Theorem 1). In order to estimate the absolute advantage according to
(1), we can directly replace t20 − t0 with R in (8):

max
t

AdvS1,v
(A|t) = AdvS1,v

(A|t0) ≈ f(t0) = e−
R
2u

(
1− e−

R
2v

)
= e−

v
u ln (u+v

v )
(
1− e− ln (u+v

v )
)
=

(
v

u+ v

)v/u
· u

u+ v
. (14)

In the particular case where k = n we have u = v and therefore

AdvS1,v
(A|t0) ≈

1

2
· 1
2
=

1

4

which is a positive advantage independent of n. Also, by (13) we have

t0 ≈ 1

2
+
√
2 ln 2 ·

√
u ≈ 1.17741 · 2n/2 + 0.5 .

This implies that an IBC with a block size of n and equal index size can be
distinguished from truly random permutations in time O(2n/2).

For the general case, put now σ = v
u . Expression (14) becomes

f|t=t0(u) =

(
σ

1 + σ

)σ

· u

u+ v
.

The function χ(σ) =
(

σ
1+σ

)σ is monotonically decreasing for σ ⩾ 0 with χ(0) = 1,
χ(1) = 1

2 and lim
σ→∞

χ(σ) = 1
e . This completes the proof. ut
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4 The Time-Advantage Trade-Off

In this section we introduce a different definition of security which uses our type
of distinguisher as a “traditional” cryptanalytic distinguisher, i.e. as a procedure
that can be repeatedly run until a bias is measured with certainty.

Definition 5. Let a = AdvS1,v (A|t) be the advantage of Adversary A. In order to
observe a bias the distinguisher must be repeated O(1/a) times (possibly in parallel
by several independent instances of A). The resulting (cumulative) running time
is t/a. We call such an expression a Time-Advantage Trade-Off (TATO).

Remark 2. The relation between minimising the TATO and optimising Time-
Memory Trade-Offs is the following. A run of the distinguisher will take time
t and also require O(t) memory. The contents of this memory are ignored and
reused for each of the 1/f(t0) runs of the distinguisher, whereas in Time-Memory
Trade-Offs the memory is not erased. Increasing t and with it the memory com-
plexity will increase the success likelihood of a single run of the distinguisher,
thus reducing the number of required runs. Note that this is not an equivalence,
and a general study of Time-Memory Trade-Offs is out of the scope of this paper.

Remark 3. Indistinguishability implies TATO security.

The next result follows immediately from the proof of Theorem 1.

Corollary 1. It is

t0
f(t0)

=

≈
√
2

χ
u+v√

u
= Θ

( v√
u

)
for v ⩾ u, with χ→ 1

e

c
√
2v ln

(
1 + u

v

)
= Θ

(√
v ln

(
1 + u

v

))
for v ⩽ u, with c ∈ ( 14 , 1) .

Another consequence of Theorem 1 is the following.

Corollary 2. Let 2n ⩾ 40. For the TATO t/AdvS1,v (A|t) to be at least 2n or, in
other words, for a n bit IBC with and an index size of k bits to retain a TATO
security level of n bits against Adversary A, the parameters n and k must satisfy

k ⩾ 3

2
n− c for some absolute constant c . (15)

Proof. In the setting of the proof of Theorem 1, we want to determine when
t/AdvS1,v

(A|t) ⩾ 2n. Let us assume first v < u. By Theorem 1 and (11) we have

1 +
√
2 v ln

(
1 + u

v

)
1
2

u
u+v

⩾ t0
f(t0)

. (16)

If t0/f(t0) ⩾ u, then the r.h.s. of (16) must be ⩾ u as well. From this we obtain
2u > 2 v ln

(
1 + u

v

)
>
(
1
2

u2

u+v − 1
)2
>
(u
4 − 1

)2. However, 2u >
(u
4 − 1

)2 cannot
hold for u ⩾ 8

√
6 + 20 ≈ 39.595. Thus it must be v ⩾ u. In this case, from

Corollary 1 we get Θ
( v√

u

)
⩾ 2n, and (15) follows upon taking logarithms. ut

10



Remark 4. Corollary 2 to Theorem 1 tells us that we need to increase index
lengths by at least 50% in order to obtain TATO security against our type of
Adversary. However, this bound is not necessarily tight: Indeed, Theorem 5 will
show that index lengths must be doubled instead.

It is natural to ask whether the TATO t/AdvS1,v
(A|t) can be improved. The

next Theorem will show that the results just proved are substantially tight.

Theorem 2. Similarly to Theorem 1, let us consider the Adversary A executing
Protocol 1, where the natural numbers n and k satisfy n, k ⩾ 8. Put u = 2n and
v = 2k as in (2). The TATO of A has a global minimum at t = t∗ where

(a) for v ⩾ u it is

t∗
AdvS1,v (A|t∗)

= Θ

(
v√
u

)
and t∗ ∈

[√
uv

u+ v
− 2,

√
u

]
= Θ(

√
u) ; and (17)

(b) for v < u it is

t∗
AdvS1,v

(A|t∗)
= Θ

(√
v
)

and t∗ ∈

[√
uv

u+ v
− 2, 2

√
v +

3

2

]
= Θ(

√
v) . (18)

Theorem 2 is proved in three steps. We first establish in Lemma 4 ranges
where the TATO is always increasing or always decreasing, leaving only a tight
interval I in which it may have a minimum. This is done directly from the
definition of the probabilities Pt,u, since for very small and very large t the ap-
proximations by exponentials are not sufficiently precise for our purposes. We
then bound the error between the TATO and the approximations by exponen-
tials, in Lemma 5, which is luckily very good over the interval I. Finally, we
estimate the TATO itself using the approximations and the bounds on the er-
rors. Note that the constants in Theorem 2 can be computed explicitly, but we
do not need them for our purposes. Omitting them simplifies the proofs.

We define the functions that represents the TATO, resp. its approximation
by exponentials as

h(t) :=
t

AdvS1,v (A|t)
resp. g(t) :=

t

f(t)
=

t

pt,u (1− pt,v)
≈ h(t) . (19)

Lemma 4. Let u, v ⩾ 64. The following statements hold:

(i) For t < ξ − 2, where ξ =
√

uv
u+v , it is h(t+ 1) < h(t);

(ii) For t >
√
u it is h(t+ 1) > h(t); and

(iii) For t > 2
√
v + 3

2 it is h(t+ 1) > h(t).

The proof of Lemma 4 can be found in Appendix A.1.
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Lemma 5. Assume u, v ⩾ 64. It is

h(t) = g(t) (1 +O (c)) . (20)

with

c =

1−
(
1− 6√

u

)(
1− 9u

128 v

)
for v ⩾ u

1−
(
1− 8√

v

)(
1− 9 v

128u

)
for v < u

(21)

over the interval

I =


[
ξ − 2,

√
u

]
=
[
(1− ϵa)

√
u − 2,

√
u

]
for v ⩾ u[

ξ − 2, 2
√
v + 3

2

]
=
[
(1− ϵb )

√
v − 2, 2

√
v + 3

2

]
for v < u .

(22)

where ϵa → 0 as u/v → ∞ and where ϵb → 0 as v/u→ ∞.

The proof of Lemma 5 is given in Appendix A.2.
We now give the proof of Theorem 2.

Proof (Theorem 2). In this proof, ci denotes absolute constants for i = 1, 2, etc.
It is clear that

max
t∈I

g(t) ⩽ maxt∈I t

mint∈I pt,u (1−maxt∈I pt,v)
and

min
t∈I

g(t) ⩾ mint∈I t

maxt∈I pt,u (1−mint∈I pt,v)
.

For v ⩾ u we have

ξ − 2

pξ−2,u

(
1− p√u,v

) ⩽ g(t) ⩽
√
u

p√u,u (1− pξ−2,v)
. (23)

Note that 1
2 < pξ−2,u < 1 (for u ⩾ 20) and 1

1−e−1/x > x whence

ξ − 2

pξ−2,u

(
1− p√u,v

) ⩾
(√

u

2
− 2

)
2 v

u−
√
u
= c1

v√
u
+O

(
v

u

)
. (24)

Now, for v, u ⩾ 64 we have

pξ−2,v = e−
(ξ−2)(ξ−3)

2 v < e−
u

8 (u+v) <
1

1 + u
8 (u+v)

=
8u+ 8 v

9u+ 8 v
, (25)

whence
√
u

p√u,u (1− pξ−2,v)
⩽

√
u ·

√
e · 17

8

v

u
= c2

v√
u
. (26)

Summarising, for v ⩾ u ⩾ 64, using (23), (24) and (26), we obtain

g(t) = Θ

(
v√
u

)
+O

(
v

u

)
. (27)
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From (27) and (20) with (21) for v ⩾ u we have

h(t) =

(
Θ

(
v√
u

)
+O

(
v

u

))(
1 +O

(
1√
u

)
+O

(
u

v

))
and thus (17) follows.

For u > v we have

ξ − 2

pξ−2,u

(
1− p2

√
v+ 3

2 ,v

) ⩽ g(t) ⩽
2
√
v + 3

2

p2
√
v+ 3

2 ,u

(
1− p√ 4 v

5 ,v

) . (28)

We use the fact that 1
pξ−2,u

> 1 to get the following estimate:

ξ − 2

pξ−2,u

(
1− p2

√
v+ 3

2 ,v

) ⩾
(√

v

2
− 2

)(
2 +O

(
1√
v

))
= c3

√
v +O(1) . (29)

Now (25) holds as in Case (a), but this time, being u > v, we have 1
1−pξ−2,v

< 17

and thus

2
√
v + 3

2

p2
√
v+ 3

2 ,u

(
1− pξ−2,v

) < 17 ·
(
2
√
v +

3

2

)
= c4

√
v +O(1) . (30)

Now, for u ⩾ v ⩾ 64, using (28), (29) and (30), we do obtain (18), but with g(t)
in place of h(t). The desired result follows upon application of Lemma 5. ut

5 Comparing More Message Blocks

We now return to the classical definition of security and discuss a more complex
adversarial strategy. This strategy will be able to distinguish Ideal Ciphers from
truly random permutations even if the Oracle chooses for example 22ℓ permuta-
tions where ℓ is the security parameter.

The Adversary and the Oracle execute Protocol 1 in which the Adversary
chooses the sequence (ai,mi) and outputs b′ as defined by the following strategy.

Strategy 2 Assuming d = 2, the Adversary always picks mi = 0 except if there
exists a j < i such that Oi = Oj and mi = mj = 0, in which case she requests
from the Oracle (a′j ,m

′
j) = (j, 1) receiving O′

j, and (a′i,m
′
i) = (i, 1) receiving O′

i.
At this point if also O′

i = O′
j then she returns b′ = 1. If after iteration i = t no

such collision has been observed, then she returns b′ = 0, else continues with the
next value of i.

Remark 5. Note that, as opposed to Protocol 1, (ai,mi) may not correspond
with the attacker’s i-th request. However, it is at most the 2i-th request. There-
fore, for an attack with a given t, the running time is at most 2 t.
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Remark 6. It is now obvious how to define Strategy 2 for larger d: if Oi = Oj ,
then compare O′

i with O′
j , and if these match request encryptions of 2, obtaining

O′′
i and O′′

j . Now compare them and continue until we compare O(d−1)
i to O(d−1)

j .
If any of these comparisons fails, abort this series of comparisons and increase i,
otherwise return b′ = 1. After the t-th iteration return b′ = 0.

In order to simplify the analysis of the advantage, we shall instead consider the
following equivalent strategy.

Strategy 3 Let d ∈ N. The Adversary always picks ma
i = a for 0 ⩽ a < d. If(

O0
i , . . . , O

d−1
i

)
=
(
O0

j , . . . , O
d−1
j

)
for some j < i, then she returns b′ = 1. If

after iteration i = t no such collision has been observed, then she returns b′ = 0,
else she continues with the next value of i.

Remark 7. Strategies 2 and 3 are equivalent in the sense that the second strategy
requests the encryptions of at least as many and at most d times as many blocks
as the first one. Conversely, Strategy 3 reduces to Strategy 2 by making the
encryption requests lazy and with early abort. Therefore we shall optimise as
before for t, and the running time will be O(t).

This observation is important in order to consider optimality of these strate-
gies. In fact, as usual we start by ignoring adversaries that make “useless” com-
parisons, such as comparing two encryptions of 1 if the encryptions of 0, or asking
for only one encryption of some new text. Only adversaries following Strategy 2
(as generalised for all d) are left in the end.

Definition 6. Let d ∈ N. We define the security of S1,v against an Adversary
Ad using the for loop until t as

AdvS1,v
(Ad

|t) =
∣∣P[Ad

|t(S1,v) = 1]− P[Ad
|t(S0) = 1]

∣∣ .
5.1 Analysis of the Advantage for d = 2

Let us fix d = 2 for now. Let A2 be an Adversary following Strategy 3 and A2
|t

be the restriction of A2 to at most t iterations of the loop in Protocol 1.
We start with analysing P[A2

|t(S1,v) = 1]. We proceed similarly as in the
proof of Lemma 1 and conclude that b′ = 1 can occur in two different ways:

Way A The Oracle when returning an encryption of 0, chooses identical per-
mutations πi and πj . When doing t experiments the probability that
this happens is 1−Pt,2k . Obviously, in this case, the conditions πi(0) =
πj(0) and πi(1) = πj(1) are satisfied.

Way B The Oracle when returning an encryption of 0 had chosen different
permutations. This happens with probability Pt,2k . However, it is still
possible that b′ = 1. For this to be satisfied we need both collisions
O0

i = O0
j and O1

i = O1
j .

We now want to determine the probability corresponding to this case.
Note that in the arguments in § 3.3, we can replace the multi-set of
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encryptions of 0 with the multi-set of ordered pairs of encryptions of
0 and 1. The two elements of the pair must be different, so we have
2n(2n − 1) such pairs. The analysis from § 3.4 carries over with u = 2n

replaced by u = 2n(2n − 1). So, the conditional probability we are
interested in is: 1− Pt,2n(2n−1).

Summarising, we get

P[A2
|t(S0) = 1] = 1− Pt,2n (2n−1) and

P[A2
|t(S1,v) = 1] = (1− Pt,2k) + Pt,2k(1− Pt,2n(2n−1)) ,

which we combine into

AdvS1,v
(A2

|t) = Pt,u · (1− Pt,v) (31)

where
u = 2n (2n − 1) and v = 2k . (32)

Going back to (5), with the bounds given in § 2.2 we get

e−
(t−1)2

2u

(
1− e−

t2

2v

)
⩾ AdvS1,v

(A2
|t) ⩾ e−

t2

2u

(
1− e−

(t−1)2

2v

)
.

We can define f(t) as in (8) with u defined as in (32). Lemma 3 and its proof
also remains valid and in particular f′(t) = 0 for t > 1 if and only if (12) is
satisfied. The entire analysis up to (14) included remains valid without changes.

The case u = v has minor changes. Since u = 2n(2n−1) ≈ 22n, when k = 2n
we can continue as in the treatment of the case u = v of the proof of Theorem 1.
This means that

AdvS1,v
(A|t0) ≈

1

2
· 1
2
=

1

4

however t0 is much larger now, i.e., by (13) with the new value of u

t0 ≈
√
2 ln 2 · 2n ≈ 1.17741 . . . · 2n .

This implies that an IBC with a block size of n and double index size, i.e.,
2n can be distinguished from truly random permutations in time O(2n).

Remark 8. To better understand the impact of this result: it seems to be a
common understanding that a block cipher with a key size of k bits should
require an exhaustive search to be secure. However, even doubling the key size
is not sufficient against our distinguishing attack.

5.2 The Case of General d

So far in this section we have considered an Adversary who would ask encryptions
of 0 and 1. We now consider an Adversary who will ask encryptions of 0, 1, …,
d− 1. Adversary and Oracle execute Protocol 1 with Strategy 3.
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To simplify our analysis we assume that d is a constant (i.e., independent of
n). The previous analysis carries over mostly unchanged. In the case of Way B,
we only have to consider d-tuples instead of pairs. Then, (31) generalises into:

AdvS1,v (Ad
|t) = Pt,u · (1− Pt,v) , (33)

where
u = 2n(2n − 1)(2n − 2) · · · (2n − d+ 1) . (34)

With this, the rest of the proof of Lemma 1 carries over verbatim, so we get

e−
(t−1)2

2u

(
1− e−

t2

2v

)
⩾ AdvS1,v

(Ad
|t) ⩾ e−

t2

2u

(
1− e−

(t−1)2

2v

)
(35)

with u defined as in (34). We also still obtain AdvS1,v
(A|t0) ≈ 1/4, but t0 is

O(2dn/2) and k = dn. Similarly, also the results in Section 4 hold. We have thus
proved the following result.

Theorem 3. Let Ad be an Adversary executing Protocol 1 against the Oracle O.
Ad follows Strategy 3, with parameters n, k, d, and t ∈ N. Put u = 2dn and v = 2k

instead of (2). Then, the results of Theorem 1, Corollary 1, and Theorem 2 all
hold also with the more general definition of u.

Remark 9. Note that we never compare Oi
a with Oj

b for a 6= b. In fact, all our dis-
tinguishers and their analysis work also assuming that the sets of permutations
used to encrypt different (but fixed!) messages are different as well, and in this
case it is the set of permutations applied to 0, 1, etc. that is selected by the in-
dex. This allows to directly consider modes of operation that further change the
permutation applied to each block in a deterministic and message-independent
way such as OCB, GCM [35], XEX, Counter-in-Tweak [38], and so on.

Note, that being the messages blocks of which we compare the encryptions
fixed in advance, even this condition on the permutation being message-indepen-
dent can be lifted. If the mode of operation has two passes where the output of
the first is a ν-bit value that is used to nonce the second pass (as in synthetic IV
modes [40,37], for instance GCM-SIV [23]), this means that the message itself
will contribute up to ν bits to the cumulative index length. Also for basic GCM,
the value ν is not larger than 96 even if the IV is longer, since in that case it
must be hashed to 96 bits before use.

6 Parameters to Satisfy Security Definitions

Clearly, ideal cipher parameters must take other attacks than distinguishing
attacks into account. A classical attack is the Codebook Attack [28] in which
the encryptions of different texts for a fixed index are exhaustively collected.

From now on we shall therefore assume that we want an IBC which is secure
against a Codebook Attack, so, we assume n ⩾ ℓ. For the same reason we bound
the time complexity of an attack to O(2n), which is the time to build a Codebook
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for a given index. (We are not assuming a priori that k ⩾ ℓ since the index space
is possibly larger than the key space, brute forcing the keys can be done for a
known nonce/IV, and thus take time smaller than 2k.)

Furthermore, d can be bounded in terms of the other parameters.

Proposition 1. For our distinguishers we can assume w.l.o.g. that

d ⩽
⌈
k + ℓ

n

⌉
. (36)

Proof. It is easy to see that the difference between the advantages of two ad-
versaries Ad′ and Ad′′ with d′′ > d′ ⩾

⌈
k+ℓ
n

⌉
, being all other parameters equal,

is negligible, i.e. O(2−ℓ). This is comes from the fact that if d′ ⩾
⌈
k+ℓ
n

⌉
, then

a collision between two requests performed by Ad′ implies that the indices are
the same with likelihood at least 1− 2−ℓ. This implies that a complete security
analysis can be performed even if restricting d to satisfy (36). ut

Proposition 2. For our distinguishers, when studying TATO security we can
assume w.l.o.g. that

d ⩽
⌈
k

n

⌉
. (37)

Proof. By Theorem 3, Theorem 2 states that the TATO of our Attacker is
Θ(2k−

dn
2 ) if k ⩾ dn and Θ(2

dn
2 ) if k < dn. Hence, if d′ is the largest num-

ber such that k ⩾ d′ n, the TATO will not decrease further for d > d′. ut

6.1 Indistinguishability

Theorem 4. Let us consider an IBC with n-bit blocks and k-bit index. In order
for the IBC to have security of ℓ bits according to Definition 1 and against a
Codebook Attack, the parameters n and k must satisfy

k ⩾ 3 ℓ and n ⩾ ℓ .

Remark 10. This result is particularly broad in light of Remark 9: if a n-bit
block cipher based encryption algorithm wants to achieve strict n-bit security,
the index length shall be at least 3n.

Proof. We start by discussing the case that d (see § 5.2) is a constant, and then
later we do a sanity check that this case is valid. Since

u = 2dn +O
(
2(d−1)n

)
we can use this approximation to analyse (33). We first have the following lemma.

Lemma 6. Let t0 be the value of t for which AdvS1,v (Ad
|t) is maximum and

let the Adversary be bounded above by O(2ℓ) queries. In order to determine
when AdvS1,v (Ad

|t) is always negligible, if t0 < 2ℓ, then we need to check that
AdvS1,v (Ad

|t0) is negligible, otherwise, that AdvS1,v (Ad
|2ℓ) is negligible.
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Proof. From the proof of Lemma 3 we know that the function AdvS1,v
(Ad

|t) in
t has one maximum and that the function is concave. So, the case t0 ⩽ 2ℓ is
trivial. Now when t0 > 2ℓ, then using t = t0 to perform the attack is beyond
the resources of the bounded Adversary. Since the function is concave, the time
t = 2ℓ will give the Adversary the largest advantage obtainable. ut

We resume the Proof of Theorem 4. Using Lemma 6 we now analyse how to
ensure AdvS1,v

(Ad
|t) to be negligible.

Case 1 when t0 < 2ℓ. We have two subcases, being:
Case 1 (a) when v ⩾ u, which when taking u = 2dn and v = 2k gives:

dn ⩽ k and t0 ≈
√
2dn+1 < 2ℓ . (38)

In other words, dn + 1 < 2 ℓ. We need to check when AdvS1,v
(Ad

|t0) will
be negligible, in other words using the left inequality in (35) and approx-
imating by taking u = 2dn we need

e−
(
√

2dn+1−1)2

2·2dn

(
1− e−

2dn+1

2·2k

)
to be negligible when the conditions in (38) are satisfied, which means
that 1− e−

2dn+1

2·2k should be negligible. This will happen when k ⩾ dn+ ℓ.
Note that k is independent of d and negligibility should hold for all d.
Now note that when we have k ⩾ n+ ℓ, and we want to protect against
the Codebook Attack, we need n ⩾ ℓ, giving k ⩾ 2 ℓ. For the parameters
of n and k being n ⩾ ℓ and k ⩾ n + ℓ, which guarantee the negligibility,
we see that when we now consider d > 1, that the condition that t0 < 2ℓ

is violated. So, we will later need to do a sanity check on choosing the
parameters k ⩾ n+ ℓ and n ⩾ ℓ.

Case 1 (b) when u > v which with an analysis similar as before, but now
using a simplified version of (10) gives:

dn > k and t0 ≈
√
2k+1 < 2ℓ . (39)

In other words, k + 1 < 2 ℓ. We then need to check when AdvS1,v
(Ad

|t0)

will be negligible, in other words using the left inequality in (35) and
approximating by taking u = 2dn we need

e−
(
√

2k+1−1)2

2·2dn

(
1− e−

2k+1

2·2k

)
to be negligible when the conditions in (39) are satisfied. which means

that e−
(
√

2k+1−1)2

2·2dn should be negligible. This will happen when 2k ⩾ 2dn+ℓ,
which contradicts with (39). So, this case is void. (Using the more accurate
(10) still leads to a void case.)
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Case 2 when t0 ⩾ 2ℓ. We have two subcases, being:
Case 2 (a) when v ⩾ u, which when taking u = 2dn and v = 2k gives:

dn ⩽ k and t0 ≈
√
2dn+1 ⩾ 2ℓ . (40)

In other words, dn + 1 ⩾ 2 ℓ, which implies that k + 1 ⩾ 2 ℓ. We then
need to check when AdvS1,v

(Ad
|2ℓ) will be negligible, in other words using

the left inequality in (35) with u ≈ 2dn we need

e−
(2ℓ−1)2

2·2dn

(
1− e−

22ℓ

2·2k

)
to be negligible when the conditions in (40) are satisfied. Since dn+1 ⩾
2 ℓ, e−

(2ℓ−1)2

2·2dn can not be negligible. That means that we need k+1 ⩾ 3 ℓ
provided that dn ⩽ k, which will be violated for large d. So, we will later
need to do a sanity check on choosing the parameters k ⩾ 3 ℓ − 1 and
n ⩾ ℓ, the last condition when protecting against the Codebook Attack.

Case 2 (b) when u > v which with an analysis similar as before, but now
using a simplified version of (10) gives:

dn > k and t0 ≈
√
2k+1 ⩾ 2ℓ . (41)

In other words, k + 1 ⩾ 2 ℓ. We then need to check when AdvS1,v
(Ad

|2ℓ)

will be negligible, in other words using the left inequality in (35) and
approximating by taking u = 2dn we need

e−
(2ℓ−1)2

2·2dn

(
1− e−

22ℓ

2·2k

)
to be negligible when the conditions in (41) are satisfied. Trying to make

e−
(2ℓ−1)2

2·2dn negligible leads to a contradiction with (41). So, we need to
have 1− e−

22ℓ

2·2k negligible, which implies k + 1 ⩾ 3 ℓ, provided dn > k.
Note that Case 2 (a) and Case 2 (b) both lead to negligibile advantages.

Their discussions could have been merged, but at the price of making the analysis
more complicated.

We now summarise the findings and discuss the sanity checks.
First note that the parameters k and n which guarantee security, should only

depend on ℓ and be independent of d (see § 5.2), even though our case study was
heavily dependent on d. In particular, we assumed that d is a constant, which
needs to be checked. We postpone this check until later.

We now proceed with the sanity checks we encountered in our case study,
which occurred when:

– k ⩾ n+ℓ and n ⩾ ℓ. From Case 1 (a) we know that when d = 1, the security
is satisfied. We now check d > 1. As pointed out in Case 1 (a), then t0 > 2ℓ,
and so dependent on whether dn ⩽ k or dn > k, we end up respectively in
Case 2 (a) or Case 2 (b). So, we need k + 1 ⩾ 3 ℓ to make the parameters
independent of d.
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– k ⩾ 3 ℓ − 1 and n ⩾ ℓ in Case 2 (a). It is easy to check from Case 2 (b)
that this is satisfied.

Finally, we justify why d was chosen as a constant. Fix some k ⩾ 3 ℓ and
n ⩾ ℓ and let d vary. In Case 1 (a) d ⩽ 2, Case 1 (b) is a contradiction, in
Case 2, we use t = 2ℓ and so from (35), we see that increasing d and since
u ≈ 2dn it decreases AdvS1,v

(Ad
|2ℓ). So, large values of d are useless (i.e. they will

not improve advantages). This concludes the proof. ut

6.2 TATO Security

In § 5.2 we generalised Theorem 1 and most of its consequences for all d ⩾ 1.
We discuss now a generalisation of Corollary 2 for all d.

Theorem 5. Let n ⩾ 7. For the TATO t/AdvdS1,v
(A|t) to be at least 2n for any

d ⩾ 1 or, in other words, for a n bit IBC with and an index size of k bits to
retain a TATO security level of n bits, the parameters n and k must satisfy

k ⩾ 2n− c for some absolute constant c .

Proof. Let k0 be the smallest value of k such that a TATO security level of
exactly n bits is attained. We want this value to be at least 2n in either case.
Theorem 2 with Theorem 3 gives:

(a) k0 − dn
2 + ϵ = n if k0 ⩾ dn with |ϵ| < c′′ for some absolute constant c′′.

(b) k0/2 + ϵ = n if k0 ⩽ dn with |ϵ| < c′ for some absolute constant c′.

In both cases we obtain d ⩽ 2+ ϵ/n, which means that for n sufficiently large it
is d ⩽ 2 (note that this is substantially the same logic of Proposition 2).

The case d = 1 by Corollary 2 implies k ⩾ 3
2n− c.

Let us consider the case d = 2. As in the proof of Corollary 2 we begin with the
case v < u. Equation (16) holds unchanged, but with t0

f(t0)
⩾ 2n =

√
u. From this,

we obtain 2 v ln
(
1+ u

v

)
>
(
1
2
u
√
u

u+v − 1
)2
>
(u1/2

4 − 1
)2. Now

(u1/2

4 − 1
)2 ⩾ u

20 for
any u ⩾ 37.888, so we can restrict to this range of u and solve 40 ln

(
1+ u

v

)
> u

v .
The last inequality (solved numerically) is satisfied for u

v > 215.013, and thus,
we get that for u ⩾ 37.888, which is satisfied already for n ⩾ 3, it must be
k ⩾ 2n − 7.748. For the case v ⩾ u we easily get a tautology. Therefore for
d = 2, we obtain that as long n ⩾ 3, it must be k ⩾ 2n− 7.748. ut

7 Conclusions and Open Problems

To prevent a distinguishing attack on n-bit block ciphers, we have shown that
to get a security of ℓ bits with ℓ ⩾ n we need to choose 23ℓ permutations. When
we want to exclude Codebook Attacks as well, n ⩾ ℓ as well and thus n = ℓ.

Our paper indicates that a distinguisher having the resources to mount an
attack which is time limited to 2128 request can distinguish AES-256 with a large
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advantage. The security of AES-256 against a mk distinguisher attack seems
lower than 128 bits, as this security level would need 384 bit keys, and possibly
approach 85 bits (which would be tight it this were also the block size). So, the
key lengths in ciphers like the AES should be revised and possibly upgraded if
they are to be used in modes of operation that inherit this security degradation.

Even under the weaker requirements that an attack based on our distinguish-
ers shall have complexity at least 2128, 256-bit keys are the minimum for the
AES, especially if used in modes that provide another 128 bits of index space.
Since we know that in the post-quantum context it is already known that ℓ ⩽ k/2
due to Grover’s algorithm [22], moving to 256 bit keys is already advisable.

Remarks 9 and 10 explain how that these results apply to block cipher modes
of operation. The practical impact comes from the observation that, in some real
world protocols, messages begin with known or restricted blocks. The result is
that in order to guarantee n bits of security in this context a block cipher mode
of operation should have a cumulative minimum of 3n bits of key and nonce/IV
material and a minimum of n bits blocks. Considering cryptanalytic attacks to
the key only for known nonce/IVs, the underlying cipher should have 2n bits of
key to attain a TATO security level of n bits.

Preliminary versions of these results indeed motivated the choice of key and
tweak sizes for the TBC QARMA [1]. QARMA-128, for instance aims at offering at
least 128 bits of “tradeoff” security with 256 bit keys. This could be achieved
using the theory of FX-constructions and Even-Mansour ciphers to get a (hope-
fully) solid key schedule with a security proof. There tradeoff means that an
attack taking time 2128 would require either data or memory to be at least 2128

as well. The size of key plus tweak is indeed 3n = 384 bits. The key size is
2n = 256 bits, whence for any fixed tweak TATO security is achieved as well.

Finally, in light of the fact that quantum computers could perform birthday
attacks in cubic root time [13], how much could our distinguishing attacks on
classical implementations of ciphers be improved on such a machine?

Acknowledgements. Some computations in this paper have been performed with
the help of SageMath, the Sage Mathematics Software System, Version 8.7 [43].
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A Appendices

A.1 Proof of Lemma 4

We start with some general observations. Clearly, h(t + 1) ⩾ h(t) if and only if
h(t)/h(t+ 1) ⩽ 1. Using (5), we can write

h(t)

h(t+ 1)
=

t

t+ 1

Pt+1,u · (1− Pt+1,v)

Pt,u · (1− Pt,v)
=

t

t+ 1

(
1− t

u

)
1− Pt+1,v

1− Pt,v
,

which is ⩽ 1 if and only if(
1− t

u

)
(1− Pt+1,v) ⩽

(
1 +

1

t

)
(1− Pt,v)
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which, replacing Pt+1,v by
(
1− t

v

)
Pt,v, becomes

Pt,v ⩽ Lu,v(t) :=
1
t +

t
u

1
t +

t
u + t

v − t2

uv

=
t2v + uv

t2(u+ v) + uv − t3
. (42)

Similarly, h(t+ 1) ⩽ h(t) is equivalent to

Pt,v ⩾ Lu,v(t)

and these results hold also with ‘<’ and ‘>’ in place of ‘⩽’ and ‘⩾’ throughout.

Proof of Claim (i). We know that h(t + 1) ⩽ h(t) if and only if Pt,v ⩾ Lu,v(t).
Since Pt,v ⩾ e−

t2

2v ⩾ 1− t2

2v , it will suffice to prove that for t <
√

uv
u+v − 2 it is

1− t2

2v
⩾ Lu,v(t) ,

which simplifies to
t3 − (u+ v)t2 − 2 v t+ uv ⩾ 0 .

Now put

φ(t) = t3 − (u+ v)t2 − 2 v t+ uv and ξ =

√
uv

u+ v
.

We claim that the three roots of φ(t) = 0 lie in the following disjoint intervals

ρ0 ∈ (−∞, 0), ρ1 ∈ (ξ − 2, ξ), and ρ2 ∈ (u+ v,∞) . (43)

We first note that these intervals are indeed disjoint: it is easily verified that
ξ > 2 (because u, v > 8) and that ξ <

√
u < u + v. Now, being φ(t) monic of

degree 3, (43) will imply that φ(t) is positive over the interval (ρ0, ρ1) and in
particular over [0, ξ − 2]. We shall establish (43) by proving that: (a) φ(0) > 0;
(b) φ(ξ − 2) > 0; (c) φ(ξ) < 0; and (d) φ(u+ v) < 0. The arguments follow:

(a) It is φ(0) = uv > 0.
(b) Observe that

φ(ξ − 2) = ξ3 − (u+ v + 6)ξ2 + 2 ξ(2u+ v + 6) + (uv − 4u− 8) > 0

if and only if

ξ
[
ξ2 + 2 (2u+ v + 6)

]
> ξ2(u+ v + 6)− (uv − 4u− 8)

i.e., replacing ξ2 with uv
u+v :

ξ [uv + 2 (2u+ v + 6)(u+ v)] > uv(u+ v + 6)− (uv − 4u− 8)(u+ v) ,

or
ξ >

4u2 + 10uv + 8 (u+ v)

2 v2 + 4u2 + 7uv + 12 (u+ v)
. (44)
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Upon squaring and replacing ξ2 with uv
u+v again, (44) becomes

16u5(v − 1) + 8 (7 v2 − 8)u4 + (65 v3 + 84 v2 − 144 v − 64)u3 +

+ 4 v(7 v3 + 29 v2 − 24 v − 48)u2 +

+ 4 v2(v3 + 12 v2 − 4 v − 48)u− 64 v3 > 0 .

(45)

Now, for u, v > 8, we see that all coefficients of the powers of u are non-
negative. Considering the coefficient of u3, if we subtract v3 from it we obtain
64 v3 + 84 v2 − 144 v − 64 which is also positive. The sum of the difference
and of the known term, v3u3−64 v3 is positive as well. Hence (45) is strictly
positive.

(c) It is φ(ξ) = ξ3 − (u+ v) v
u+v u− 2 vξ + uv = ξ

(
u

u+v − 2
)
v < 0.

(d) Clearly, φ (u+ v) = −(u+ 2 v)v < 0.

We have established that φ(t) is positive for 0 ⩽ t ⩽ ξ − 2 and thus h(t) is
decreasing over the same interval, which is Claim (i). ut

Proof of Claim (ii). Since Pt,v ⩽ e−
t(t−1)

2v <
(
1 + t(t−1)

2v

)−1

= 2v
2v+t(t−1) it will

suffice to prove that
2v

2v + t(t− 1)
< Lu,v(t) (46)

for t >
√
u: indeed, (46) is easily seen to be equivalent to t2 − u > 0 if t < u, v.

ut

Proof of Claim (iii). We proceed as in Claim (ii) but we need a tighter estimate

Pt,v ⩽ e−
t(t−1)

2v <Mv(t) :=

(
1 +

t(t− 1)

2v
+

1

2

(
t(t− 1)

2v

)2
)−1

.

If we can prove that Lu,v(t) ⩾ Mv(t), this will a fortiori imply that Lu,v(t) ⩾ Pt,v.
Let us study then when

Lu,v(t)−Mv(t) =

=
tv
(
t5 − 2t4 + t3(1 + u+ 4 v) + t2(4 v − 2u)− tu(4 v − 1)− 4uv

)
(t4 − 2t3 + t2(4 v + 1)− 4tv + 8v2) (t2(u+ v) + uv − t3)

⩾ 0 .

For 2 ⩽ t ⩽ u, v, the sign of Lu,v(t)−Mv(t) is equal to the sign of

ψu,v(t) := t5 − 2 t4 + t3(1 + u+ 4 v) + t2(4 v − 2u)− tu(4 v − 1)− 4uv .

Put t1 = 2
√
v + 3

2 and let us compute ψu,v(t) at t = t1:

ψu,v

(
2
√
v +

3

2

)
=

1

32

(
2048 v5/2 + 5632 v2 + 5440 v3/2 + 2160 v +

+ (112u+ 324)
√
v + (12u+ 27)

)
> 0 .
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Note that ψu,v(2
√
v+a) becomes negative for u� v for any a ⩽ 3

2 . This implies
that also the coefficient 2 of

√
v is tight.

We want to prove that ψu,v(t) is positive for all t ⩾ t1. Note that

∂

∂t
ψu,v(t) = 5 t4 − 8 t3 + 3 t2(u+ 4 v + 1)− 4 t(u− 2 v) + u− 4uv ,

∂

∂t
ψu,v(t1) =

1

16

(
128uv + 160u

√
v + 28u+

+ 2048 v2 + 4224 v3/2 + 2832 v + 720
√
v + 81

)
> 0 , and

∂2

∂t2
ψu,v(t) = 20t3 − 24t2 + 6 t(u+ 4 v + 1) + 4 (2 v − u)

= 4 t2(5 t− 6) + u(6 t− 4) + 6 t(4 v + 1) + 8 v .

The second derivative of ψu,v(t) is always positive for t ⩾ 2, regardless of u,
v (recall u, v > 0). Then, the first derivative of ψu,v(t) is always increasing for
t ⩾ 2, and since it is positive for t = t1, then it is always positive for all t ⩾ t1.
Similarly, since ψu,v(t) > 0 holds for t = t1, then it holds for all t ⩾ t1. This
completes the proof. ut

A.2 Proof of Lemma 5

Proof. Let us define

g(t) =
t

e−
t2

2u

(
1− e−

(t−1)2

2v

) and g(t) =
t

e−
(t−1)2

2u

(
1− e−

t2

2v

)
where clearly

g(t) > g(t), h(t) > g(t)

with h(t) and g(t) defined as in (19).
We want to give lower bounds for

g(t)

g(t)
=

e−
t2

2u

e−
(t−1)2

2u

· 1− e−
(t−1)2

2v

1− e−
t2

2v

= e−
2t−1
2u · 1− e−

(t−1)2

2v

1− e−
t2

2v

. (47)

Note that t 7→ e−
2t−1
2u is monotonically decreasing in t and t 7→ 1−e−

(t−1)2

2v

1−e−
t2
2v

is
monotonically increasing for t ⩾ 1 with limit at infinity equal to 1.

We distinguish two cases: (a) v ⩾ u; (b) v < u; For both cases we first
determine intervals on which to evaluate the TATO and (47), and which are
comfortable for the computations, and then perform these evaluations.

Case (a): v ⩾ u. Consider the interval Ia = [ ξ − 2,
√
u ] = [ (1− ϵa)

√
u− 2,

√
u ].

The limit of ϵa is easily proven: ϵa = 1−
√

v
u+v = 1−

√
1

1+u/v <
u
2 v . This implies

that ϵa can be taken arbitrarily small for fixed u and sufficiently large v (for
instance, when increasing key length for a fixed block length) or when v = us
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for s > 1 (such as when the ratio of key length to block length is fixed and we
study the asymptotic behaviour). For the upper bound for (47) we have

g(t)

g(t)
⩾ e

− 1√
u · 1− e−

(√
uv

u+v
−3

)2

2v

1− e−

(√
uv

u+v
−2

)2

2v

⩾ e
− 1√

u · 1− e−
(
√

u
2

−3)
2

2v

1− e−
(
√

u
2

−2)
2

2v

⩾
(
1− 1√

u

)(√u
2 − 3√
u
2 − 2

)2(
1− 9u

128 v

)
(48)

for u, v ⩾ 32 (see Appendix A.3), and
(√

u−3
√
2√

u−2
√
2

)2
= 1− 2

√
2√
u
− 6

u − 8
√
2

u3/2 − 16
u2 +

128
u3 − · · · ⩾ 1− 5√

u
for u ⩾ 18, hence

⩾
(
1− 1√

u

)(
1− 5√

u

)(
1− 9u

128 v

)
⩾
(
1− 6√

u

)(
1− 9u

128 v

)
.

Case (b): v < u. We evaluate over the interval Ib =
[
(1− ϵb)

√
v, 2

√
v + 3

2

]
.

The statement about ϵb is proved exactly as the limit of ϵa, where u and v are
swapped. We obtain the following bound (see Appendix A.3):

g(t)

g(t)
⩾ e−

2
√

v+3
2

u · 1− e−

(√
uv

u+v
−3

)2

2v

1− e−

(√
uv

u+v
−2

)2

2v

⩾
(
1−

2
√
v + 3

2

u

)(√v
2 − 3√
v
2 − 2

)2

⩾
(
1− 3√

v

)(
1− 5√

v

)(
1− 9 v

128u

)
⩾
(
1− 8√

v

)(
1− v + 1

256u

)
. (49)

For both cases we thus have proved that g(t)

g(t) ⩾ 1 − c with c defined as
in (21). Now, g(t) − g(t) ⩾ c · g(t) and thus g(t) ⩾ (1 − c) · g(t). Turning to
(20), we note that, since both h(t) and g(t) lie between g(t) and g(t), we have
|h(t)− g(t)| ⩽ c g(t) ⩽ c

1−c g(t) which implies h(t) = g(t)
(
1 +O

(
c

1−c

))
, but

since 1− c is bounded from below by 3
16 , it is O

(
c

1−c

)
= O(c) and (20) follows.

ut

A.3 Proof of Bounds (48) and (49)

Consider the function

γ(x) =
1− e−

(x−a)2

w

1− e−
(x−b)2

w

with a, b ⩾ 0 for x ⩾ a, b. It is straightforward to show that γ(x) is increasing if
a > b and decreasing if a < b. We apply this fact to x =

√
uv
u+v , a = 3 and b = 2.

We see that the function has smaller values for smaller values of x.
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Assume that v ⩾ u. Then uv
u+v ⩾ u

2 and

1− e−
(ξ−3)2

2 v

1− e−
(ξ−2)2

2 v

⩾ 1− e−
(
√

u
2

−3)
2

2 v

1− e−
(
√

u
2

−2)
2

2 v

= (∗) .

Now we use the inequalities 1− e−x ⩾ x(1− x
2 ) and 1

1−e−x ⩾ 1
2 + 1

x and

(∗) ⩾
(√

u
2 − 3

)2
2 v

(
1−

(√
u
2 − 3

)2
4 v

)(
1

2
+

2 v(√
u
2 − 2

)2
)

⩾
(√

u
2 − 3

)2(√
u
2 − 2

)2 (1− u

8 v

)(
1 +

(√
u
2 − 2

)2
4 v

)

⩾
(√

u
2 − 3

)2(√
u
2 − 2

)2 (1− u

8 v

)(
1 +

u

16 v

)
>

(√
u
2 − 3√
u
2 − 2

)2(
1− 9u

128 v

)
the last approximation holding because 0 < u

v ⩽ 1.
Bound (49) follows by swapping u with v. ut
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