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Abstract

It is well known, due to the adaptive attack by Galbraith, Petit, Shani, and Ti (GPST), that
plain SIDH is insecure in the static setting. Recently, Kayacan’s preprint A Note on the Static-Static
Key Agreement Protocol from Supersingular Isogenies, ePrint 2019/815, presented two possible fixes.
Protocol A (also known as 2-SIDH, a low-degree instantiation of the more general k-SIDH) has been
broken by Dobson, Galbraith, LeGrow, Ti, and Zobernig. In this short note we will show how to
break Protocol B in one oracle query per private key bit and O(1) local complexity.

We will assume the readers to be familiar with the GPST attack [GPST16] on Supersingular Isogeny
Diffie–Hellman (SIDH) [JF11, FJP14]. Kayacan proposed two possible countermeasures in [Kay19],
called Protocol A and Protocol B. Protocol A is a specialisation of 2-SIDH [AJL17] and has recently
been broken, see [DGL+19].

Protocol B is as follows. Choose a prime p = `nA · `mB · f ± 1 (here f is some small cofactor), a su-
persingular elliptic curve E/Fp2 , and generators PA, QA and PB , QB of E[`nA] and E[`mB ], respectively.
Split n = fA + gA and m = fB + gB such that fA ≈ gA, fB ≈ gB . Alice and Bob choose secrets
α ∈ Z/`fAA Z and β ∈ Z/`fBB Z, respectively. The idea is that Alice and Bob complete the following
commutative diagram.
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Here φA is the `fAA -isogeny φA : E → EA = E/〈[`gAA ](PA + [α]QA)〉 which Alice uses to publish
KA = φA(PA + [`n−1

A + α]QA), RB = φA(PB), and SB = φA(QB), along with EA. As always, Bob
computes and publishes the mirrored information.

To finalize the key agreement, first Alice completes the inner diagram like in plain SIDH, to ob-
tain EBA. She then computes φ′B : EB → E′B = EB/〈KB〉, UA = φ′B(RA), VA = φ′B(SA), and
ΨA : E′B → E′BA = E′B/〈UA + [`n−1

A + α]VA〉. The shared key is given by h = H(j(EBA)||j(E′BA)).

[Kay19] claims that this protocol is secure against an adversary that has access to an oracle that outputs
the value H(j(EBA)||j(E′BA)) upon completion of the protocol. We will now show that even an oracle
that outputs 0 or 1 depending on whether both sides computed the same shared key h (Oracle1 from
[Kay19]) is sufficient to break the protocol in the static setting - that is, when Alice keeps her secret α
fixed over multiple rounds.

In the following discussion we shall assume Bob is malicious and attempting to learn Alice’s static
secret key, and that `A = 2, but the attack holds for either party and any choice of `A. The key obser-
vation is the following. If a malicious Bob modifies RA = φB(PA) and SA = φB(QA) in his public key
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by adding torsion points, say X and Y , of small enough order, then this modification leaves the inner
diagram unchanged. Formally, if X,Y ∈ E[2gA ] then

〈[2gA ](φB(PA +X) + [α]φB(QA + Y ))〉 = 〈[2gA ](φB(PA) + [α]φB(QA))〉. (1)

Let αi denote the i-th bit (starting from 0) of a key α. We define the i-th partial key Ki of α as

Ki =
∑i−1
k=0 αk2k with which α can be written as α = Ki + α′2i for some α′.

Suppose we have recovered the first i bits of the secret α. We proceed to learn the (i + 1)-th bit.
Bob generates φB : E → EB and KB as per the protocol. He then calculates

RA = φB(PA − [Ki · 2n−(i+1)]QA)

SA = φB(QA + [2n−(i+1)]QA)

and sends the public key (EB ,KB , RA, SA) to Alice. Upon receipt of Alice’s public key (EA,KA, RB , SB),
Bob will complete his side of the protocol honestly to obtain the shared secret h = H(j(EAB)||j(E′AB)).

Alice computes
ψA : EB → EBA = EB/〈[2gA ](RA + αSA)〉

which completes the inner diagram. By Equation (1) ψA remains unchanged regardless of the value of
αi+1, so does EBA. Alice proceeds to compute

UA = φ′B(RA)

VA = φ′B(SA)

ΨA : E′B → E′BA = E′B/〈UA + [2n−1 + α]VA〉

and eventually the shared secret h′ = H(j(EBA)||j(E′BA)). Note that whether E′AB
∼= E′BA (and hence

whether h = h′) depends on whether αi+1 is 0 or 1:

UA + [2n−1 + α]VA = φ′B(RA) + [2n−1 + α]φ′B(SA)

= φ′B(RA + [2n−1 + α]SA)

= φ′B(φB(PA − [Ki · 2n−(i+1)]QA + [2n−1 + α](QA + [2n−(i+1)]QA)))

= φ′B(φB(PA + [2n−1 + α]QA + [2n−(i+1)][α−Ki]QA))

=

{
φ′B(φB(PA + [2n−1 + α]QA)) if αi+1 = 0.

φ′B(φB(PA + [α]QA)) if αi+1 = 1.

This holds since QA has order 2n. Thus if the shared secret Alice computes is equal to the one Bob
computed (h = h′), the bit is 0, else it is 1. So Bob can learn this bit by querying Oracle1.

Scaling to avoid pairing-based detection can be done as in GPST. The number of oracle queries Bob
needs to learn the whole secret α of Alice is the bit-length fA of α.
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