
Security and Efficiency Trade-offs for
Elliptic Curve Diffie-Hellman

at the 128-bit and 224-bit Security Levels

Kaushik Nath and Palash Sarkar

Applied Statistics Unit

Indian Statistical Institute

203, B. T. Road

Kolkata - 700108

India

{kaushikn r,palash}@isical.ac.in

Abstract

Within the Transport Layer Security (TLS) Protocol Version 1.3, RFC 7748 specifies elliptic curves targeted

at the 128-bit and the 224-bit security levels. For the 128-bit security level, the Montgomery curve Curve25519

and its birationally equivalent twisted Edwards curve Ed25519 are specified; for the 224-bit security level, the

Montgomery curve Curve448, the Edwards curve Edwards448 (which is isogenous to Curve448) and another

Edwards curve which is birationally equivalent to Curve448 are specified. Our first contribution is to provide

the presently best known 64-bit assembly implementations of Diffie-Hellman shared secret computation using

Curve25519. The main contribution of this work is to propose new pairs of Montgomery-Edwards curves at

the 128-bit and the 224-bit security levels. The new curves are nice in the sense that they have very small

curve coefficients and base points. Compared to the curves in RFC 7748, the new curves lose two bits of se-

curity. The gain is improved efficiency. For Intel processors, we have made different types of implementations

of the Diffie-Hellman shared secret computation using the new curves. The new curve at the 128-bit level

is faster than Curve25519 for all types of implementations, while the new curve at the 224-bit level is faster

than Curve448 using 64-bit sequential implementation using schoolbook multiplication, but is slower than

Curve448 for vectorized implementation using Karatsuba multiplication. Overall, the new curves provide

good alternatives to Curve25519 and Curve448.

Keywords: Elliptic curve cryptography, Montgomery form, Edwards form, Transport layer security, Diffie-

Hellman Protocol, Curve25519, Curve448

1 Introduction

Elliptic curves were independently introduced in cryptography by Koblitz [24] and Miller [27]. Since
their introduction, a large literature has developed around the theory and application of elliptic curves
in cryptography. Presently, elliptic curve cryptography is widely used in practical systems. Several
standards and proposals have been put forward by a number of influential organizations [10, 14, 36, 38].

The Transport Layer Security (TLS) Protocol, Version 1.3 [37] has been proposed by the Internet En-
gineering Task Force. This includes RFC 7748 [25] which specifies certain elliptic curves. The document
specifies Montgomery form curves and their birationally equivalent Edwards form curves.

Given a prime p, a parameter A ∈ Fp \ {−2, 2} defines the Montgomery curve EM,A,1 : y2 = x3 +
Ax2+x. Similarly, a parameter d ∈ Fp \{0, 1,−1} defines the Edwards curve EE,1,d : u2+v2 = 1+du2v2

or the twisted Edwards curve EE,−1,d : −u2 + v2 = 1 + du2v2.
We introduce notation for denoting primes and curves. The prime 2251−9 will be denoted as p251-9,

2255 − 19 will be denoted as p255-19, 2444 − 17 will be denoted as p444-17, and 2448 − 2224 − 1 will be
denoted as p448-224-1. A Montgomery curve EM,A,1 will be denoted as M[[A]], an Edwards curve EE,1,d
will be denoted as E[[d]], and a twisted Edwards curve EE,−1,d will be denoted as Ẽ[[d]]. If we wish to

emphasize the underlying field Fp, we will write M[[p,A]], E[[p, d]] and Ẽ[[p, d]] instead of M[[A]], E[[d]] and

Ẽ[[d]] respectively. In terms of this naming convention, the parameters of the new curves and those in
RFC 7748 are shown in Table 1.

1

Curves proposed in RFC 7748:

Over p255-19: The birationally equivalent pair (M [[486662]], Ẽ[[121665/121666]]) has been proposed. The

curve M[[486662]] is the famous Curve25519 and was introduced in [3]. The curve Ẽ[[121665/121666]]
is the famous Ed25519 curve and was introduced in [6].

Over p448-224-1: The curves M[[156326]] E[[39082/39081]] and E[[39081]] have been proposed. The curve
M[[156326]] has been named Curve448 in [25]. The curve E[[39081]] was proposed in [18] where it
was named Ed448-Goldilocks, and in [25] it has been called Edwards448. The isogenies between
M[[156326]] and E[[39081]] and the birational equivalence between M[[156326]] and E[[39082/39081]]
have been identified in [25].

Curve25519 and Ed25519 are targeted at the 128-bit security level while Curve448 and Edwards448 are
targeted at the 224-bit security level.

Our Contributions

Our first contribution is to provide new and the presently most efficient 64-bit implementations of Diffie-
Hellman shared secret computations using Curve25519. These implementations are targeted at Intel
processors. Compared to the previous best implementations [33], on the Skylake processor, the new
implementations provide about 17% speed-up compared to [33]; for the previous generation Haswell
processor, the improvement is nominal. The major speed improvement in Skylake makes the new imple-
mentation attractive for practical applications.

The main contribution of the paper is to propose new curves at the 128-bit and 224-bit security levels.
Similar to Curve25519 and Curve448, we consider prime order fields and pairs of birationally equivalent
curves. In particular the following pairs of curves are introduced.

Over p251-9: (M [[4698]], E[[1175/1174]]).

Over p444-17: (M [[4058]], E[[1015/1014]]).

The prime p251-9 was considered in [7] where the curve u2 + v2 = 1 − 1174u2v2 was introduced
and named Curve1174. The Montgomery curve (4/1175)y2 = x3 + (4/1175 − 2)x2 + x with base point
(4, ·) was considered as birationally equivalent to Curve1174; the corresponding base point on Curve1174
is (·, 3/5). Using the isogenies given in [12], it can be shown that M[[p251-9, 4698]] is 4-isogenous to
Curve1174 which was introduced in [7].

To the best of our knowledge, neither M[[p251-9, 4698]] nor E[[p251-9, 1175/1174]] has been earlier
considered in the literature. The prime p444-17 has been mentioned in a CFRG mailing list [26], but,
neither the curve M[[p444-17, 4058]] nor E[[p444-17, 1015/1014]] have been considered in the literature.

Sec
Prime Mont (h, hT) (k, kT) Security

Mont
Ed

Ed

Level Base Pt Base Pt

≈ 128
p251-9 M[[4698]] (4, 4) (`− 1,

`T −1

2) 124.5 (3, ·) E[[11751174]] (·, 2)
p255-19 M[[486662]] (8, 4) (`−1

6 ,
`T −1

2) 126 (9, ·) Ẽ[[121665121666]] (·, 4/5)

≈ 224
p444-17 M[[4058]] (4, 4) (`−1

3 , `T − 1) 221 (3, ·) E[[10151014]] (·, 2)
p448-224-1 M[[156326]] (4, 4) (`−1

2 ,
`T −1

4) 223 (5, ·) E[[3908239081]] (·,−3/2)

Table 1: Parameters of curves. See Section 2.3 for the definition of the parameters.

Table 1 compares the parameters of the newly proposed curves with those in RFC 7748. Note that the
curve coefficients of the new curves are quite small. Also, the fixed base points for the new Montgomery
and Edwards curve are also very small. In fact, the fixed base point over both the new Edwards curves
is (·, 2). As we explain later, this has an effect on the speed of fixed base point scalar multiplication over
such curves.

For 64-bit implementations of the Montgomery ladder, scalar multiplication over the new curves is
faster than that over Curve25519 and Curve448. The improvement arises due to working with a slightly
smaller prime. Suppose m = dlog2 pe and elements of Fp are represented using κ 64-bit words. We
show that if 64κ −m ≥ 3, then it is possible to omit performing the reduction step on the outputs of
all the addition/subtraction operations in the ladder step. This is the major reason for obtaining faster
ladder computation modulo p251-9 compared to p255-19 and for obtaining faster ladder computation
modulo p444-17 compared to p448-224-1. Using 64-bit implementations, for both the 128-bit and 224-bit
security levels, compared to Curve25519 and Curve448, the new curves provide about 10% speed-up on
the Haswell and the Skylake processors.

2

Recently, vectorization strategies for the Montgomery ladder have been proposed [20, 32]. We have
made vectorized implementations for the new curves. For such implementations, the above mentioned
advantage no longer applies. At the 128-bit level, M[[4698]] provides about 4% speed-up over Curve25519.
The situation for the 224-bit level is different. For 4-way vectorized implementation using 256-bit regis-
ters, the representation of field elements has 16 limbs. This makes Karatsuba multiplication more efficient
than schoolbook multiplication. Since p448-224-1 is particularly efficient for Karatsuba multiplication,
the vectorized implementation of Curve448 turns out to be faster than that of M[[4058]]. We note that
future availability of wider vector operations would reduce the number of limbs and would possibly lead
to schoolbook becoming faster than Karatsuba and consequently, M[[4058]] being faster than Curve448.

To summarize, at the 128-bit security level, M[[4698]] provides speed-up over Curve25519 for all the
types of implementations that we have considered. At the 224-bit security level, M[[4058]] is faster
than Curve448 when schoolbook is faster than Karatsuba. So overall, the new curves provide efficient
alternatives to Curve25519 and Curve448.
The assembly codes of all our implementations are available at the following links.

https://github.com/kn-cs/nice-curves

https://github.com/kn-cs/x25519

https://github.com/kn-cs/x448/tree/master/8limb

Related Works

In this work, we consider elliptic curves over large prime order fields. We note that elliptic curves over
composite order fields have been proposed in the literature [11, 19]. Cryptography over hyper-elliptic
curves was proposed by Koblitz [19] and there have been concrete proposals for cryptography in genus
2 [1, 9, 17]. For the same security level, computations over these proposals are faster than over genus
one prime order field curves. On the other hand, the security perception for composite order fields and
genus two curves is different from that of elliptic curves over prime order fields. It is perhaps due to this
perception issue that elliptic curves over prime order fields remain to be of primary interest.

Variable base scalar multiplication over Kummer lines associated with Legendre form elliptic curves
have been proposed in the literature [16]. These have very efficient vectorized implementations [22]. So,
if applications are targeted primarily for vector implementations, then the curves proposed in [22] will
be the primary choice. On the other hand, for non-vectorized implementations, Montgomery curves will
be faster.

2 Montgomery and (Twisted) Edwards Form Elliptic Curves

We consider elliptic curves over a field Fp where p is a prime.
In general, the Montgomery form elliptic curve EM,A,B is given by the equation EM,A,B : By2 =

x3 +Ax2 +x with A ∈ Fp \{−2, 2} and B ∈ Fp \{0}. In general, the twisted Edwards form elliptic curve
EE,a,d is given by the equation EE,a,d : au2 + v2 = 1 + du2v2 with a, d ∈ Fp \ {0} and a 6= d. If a = 1,
then the corresponding curve is simply called an Edwards form curve (instead of twisted Edwards form
curve). If a is a square and d is not a square in Fp, then the addition formula in EE,a,d is complete [4].
In this case, EE,a,d is called a complete twisted Edwards curve. For further details about Montgomery
curves, we refer to [8, 13, 28] and for (twisted) Edwards curves, we refer to [2, 4, 15].

In the following discussion, a full field multiplication (resp. squaring) in Fp will be denoted as [M]
(resp. [S]); if one of the multiplicands is a constant, the resulting multiplication will be denoted as [C].

2.1 Addition on Complete (Twisted) Edwards Curves

Following [21], the extended affine coordinate system is (u, v, t) with t = uv. The projective version of
this coordinate system is (U, V, T,W) where u = U/W , v = V/W and t = T/W . Suppose, it is required
to add (U1 : V1 : T1 : W1) and (U2 : V2 : T2 : W2) to obtain (U3 : V3 : T3 : W3). The formulas for
U3, V3, T3 and W3 are as follows [21].

U3 = (U1V2 + V1U2)(W1W2 − dT1T2)
V3 = (V1V2 − aU1U2)(W1W2 + dT1T2)
T3 = (U1V2 + V1U2)(V1V2 − aU1U2)
W3 = (W1W2 + dT1T2)(W1W2 − dT1T2).

 (1)

1. Computing V1V2 and U1U2 and then computing U1V2 +V1U2 as (U1 +V1)(U2 +V2)− (U1U2 +V1V2)
leads to an algorithm for computing U3, V3, T3 and W3 using 9[M]+2[C] operations, where the

3

https://github.com/kn-cs/nice-curves
https://github.com/kn-cs/x25519
https://github.com/kn-cs/x448/tree/master/8limb

multiplications by the two constants are by a and d. If a = 1, then the number of operations is
9[M]+1[C].

2. If a = −1, then by first computing α = (V1 + U1)(V2 + U2), β = (V1 − U1)(V2 − U2) and then
computing 2(V1V2 + U1U2) = α + β and 2(V1U2 + U1V2) = α − β, the number of operations can
be brought down to 8[M]+1[C] [21], where 1[C] corresponds to a multiplication by d. The relevant
formula becomes the following.

4U3 = 2(U1V2 + V1U2)(2W1W2 − 2dT1T2) = (α− β)(2W1W2 − 2dT1T2)
4V3 = 2(V1V2 + U1U2)(2W1W2 + 2dT1T2) = (α+ β)(2W1W2 + 2dT1T2)
4T3 = 2(U1V2 + V1U2)2(V1V2 + U1U2) = (α− β)(α+ β)

4W3 = (2W1W2 + 2dT1T2)(2W1W2 − 2dT1T2).

 (2)

If W1 = 1, the number of operations required is 7[M]+1[C] [21].

3. For a = −1, suppose (U1 : V1 : T1 : W1) is a fixed base point with W1 = 1. By pre-computing and
storing (V1 − U1, V1 + U1, 2dT1) the number of operations can be brought down to 7[M] [6]. The
multiplication by d becomes part of the pre-computed quantity 2dT1. In this formula, since the
multiplication by d is part of the pre-computed quantity 2dT1, the efficiency of the computation is
not affected by whether d is small or large. Also, the efficiency of the computation is not affected
by whether V1 (or U1) is small or large.

Consider (1) for a = 1 and suppose (U1 : V1 : T1 : W1) is a fixed base point where W1 = 1. Further sup-
pose that V1 is small and U1 +V1 and dT1 are pre-computed and stored as part of (U1, V1, U1 +V1, dT1).
In (1), by directly computing U1V2, V1U2, U1U2 and V1V2, (dT1)T2 along with the other four multiplica-
tions, the formulas in (1) can be computed using 7[M]+2[C], where 2[C] counts the multiplications V1U2

and V1V2. The efficiency of the computation following this strategy is not affected by whether d is small
or large. For the curves that we introduce, V1 is equal to 2 as can be seen from Table 1. So, for fixed base
multiplication, the difference in the cost between a = −1 and a = 1 is essentially two multiplications by
very small constants.

For dedicated (not unified) addition in Ẽ[[p, d]], it has been shown in [21] that 8[M] operations are
sufficient without the assumption that (U1 : V1 : T1 : W1) is a fixed base point. The corresponding
formulas do not involve d. Further, Section 4.3 of [21] shows how to perform efficient scalar multiplication
using fast formulas for dedicated addition and dedicated doubling that do not involve d. The resulting
scalar multiplication is not necessarily constant time and can be used only when the scalars are not
secret.

Summary:

Role of d: For the fastest formulas, the size of d does not play a role.

� For fixed base point scalar multiplication, the fastest complete addition formulas over both
E[[d]] and Ẽ[[d]] do not depend on the size of d.

� For scalar multiplication with non-secret scalars, the fastest formulas do not involve d.

Size of fixed base point:

� For Ẽ[[p, d]], the fastest formula for complete and unified addition does not depend on the size
of any of the components of the fixed base point. The number of operations required is 7[M].

� For E[[p, d]], the fastest formula for complete and unified addition is achieved when V1 is small.
The number of operations required is 7[M]+2[C], where 2[C] counts two multiplications by
very small constants. In particular, for both E[[p251-9, 11751174]] and E[[p444-17, 10151014]], (·, 2) is a
base point. So, the multiplication by constant is the operation of multiplying an element of
Fp by 2.

2.2 Birational Equivalences between Montgomery and Edwards Curves

Consider the curves M[[A]] and E[[d]] over a field Fp with p ≡ 3 mod 4. If A − 2 is a square in Fp, then
the map

(x, y) 7→ (u, v) =

(
δx

y
,
x+ 1

x− 1

)
, (3)

4

where δ2 = (A − 2), is a birational equivalence from M[[A]] to E[[d]] with exceptional points y = 0 and
x = 1. Conversely, the map

(u, v) 7→ (x, y) =

(
v + 1

v − 1
,
δ(v + 1)

u(v − 1)

)
, (4)

is a birational equivalence from E[[d]] to M[[A]] with exceptional points u = 0 and v = 1. The relation
between A and d is (A − 2)/4 = 1/(d − 1). The above birational equivalences can be obtained using
the elementary birational equivalences in [2, 4]. On the other hand, verification of these birational
equivalences can be done by direct substitution.

2.3 Security Properties

Let E be an elliptic curve over Fp, where p is a prime.
Let n = #E(Fp) and nT = 2(p+1)−#E(Fp), i.e., n and nT are the orders of E(Fp) and its twist. Let

` (resp. `T) be a prime such that n = h · ` (resp. nT = hT · `T). Cryptography is done over a subgroup
of E(Fp) of size `. The parameters h and hT are the co-factors of E(Fp) and its twist respectively.

For a Montgomery curve, the curve order n is a multiple of 4. Using this fact along with n + nT =
2(p + 1), it is easy to argue that if p ≡ 3 mod 4, then the minimum value of (h, hT) is (4, 4), while if
p ≡ 1 mod 4, then the minimum value of (h, hT) is either (8, 4) or (4, 8).

Let k (resp. kT) be the smallest positive integer such that `|pk−1 (resp. `T |pkT −1). The parameters
k and kT are the embedding degrees of the curve and its twist respectively.

The complex multiplication field discriminant D of E is defined in the following manner. Let t =
p+1−n. By Hasse’s theorem, |t| ≤ 2

√
p and in the cases that we considered |t| < 2

√
p, so that t2−4p is a

negative integer; let s2 be the largest square dividing t2−4p; define D = (t2−4p)/s2, if t2−4p mod 4 = 1
and D = 4(t2 − 4p)/s2, otherwise.

SafeCurves1, recommend all of `, `T , k, kT and D to be large. In particular, we are interested in curves
for which (h, hT) has the optimal value.

By security of a curve in terms of bits we will mean the value of the expression 1
2 min(log2 `, log2 `T).

3 Concrete Curves

The parameters of the new curves are given below.

Curves over F2251−9: Let p = 2251 − 9 ≡ 3 mod 4. The minimum positive value of A for which the
curve M[[p251-9, A]] attains the optimal value of (h, hT) is A = 4698. We have that A− 2 is a square in
Fp. Using the birational equivalences given by (3) and (4), we obtain the pair (M [[4698]], E[[1175/1174]])
of birationally equivalent curves. The quantity 1175/1174 is a non-square modulo p251-9 and so the
addition formula over EE,1,1175/1174 is complete. The parameters for M[[p251-9, 4698]] are as follows.

n = 3618502788666131106986593281521497120369356141117981896093957047094571902404,

` = 904625697166532776746648320380374280092339035279495474023489261773642975601,

log2 ` = 249,

h = 4,

k = `− 1,

nT = 3618502788666131106986593281521497120460017900484553356372141953399998700076,

`T = 904625697166532776746648320380374280115004475121138339093035488349999675019,

log2 `T = 249,

hT = 4,

kT = (`T − 1)/2,

D = −12419122501803997450343277787015672473799971462290478421477646400945935050060,

dlog2(−D)e = 253.

The point (·, 2) is a point of order ` on EE,1,1175/1174; the corresponding point on EM,4698,1 is (3, ·).
The set of scalars for EM,4698,1 is set to be 4(2248 + {0, 1, . . . , 2248 − 1}). Given a 32-byte scalar a,

the clamping function clamp(a) is defined as follows (assuming that the first byte is the least significant
byte of a): clear bits 0 and 1 of the first byte; set bit number 2 of the last byte and clear bits numbered
3 to 7 of the last byte.

1https://safecurves.cr.yp.to/disc.html, accessed on September 8, 2019.

5

https://safecurves.cr.yp.to/disc.html

Curves over F2444−17: Let p = 2444 − 17 ≡ 3 mod 4. The minimum positive value of A for which the
curve M[[p444-17, A]] attains the optimal value of (h, hT) is A = 4058. We have that A− 2 is a square in
Fp. Using the birational equivalences given by (3) and (4), we obtain the pair (M [[4058]], E[[1015/1014]])
of birationally equivalent curves. The quantity 1015/1014 is a non-square modulo p444-17 and so the
addition formula over EE,1,1015/1014 is complete. The parameters for M[[p444-17, 4058]] are as follows.

n = 454274202684754306593327379930002833971025850429573787675931374487884788221099\
94887784723325457774857125204145126361050201810186649452,

` = 113568550671188576648331844982500708492756462607393446918982843621971197055274\
98721946180831364443714281301036281590262550452546662363,

log2 ` = 442,

h = 4,

k = (`− 1)/3,

nT = 454274202684754306593327379930002833971025850429573787675931374487914321920647\
45527989158013762670837970111055656911191490015016927348,

`T = 113568550671188576648331844982500708492756462607393446918982843621978580480161\
86381997289503440667709492527763914227797872503754231837,

log2 `T = 442,

hT = 4,

kT = (`T − 1),

D = −17952908255149577299516917379535520546407753331717917874287686507374029949589\
6775961634341986909858530888358546664503937673912260606892,

dlog2(−D)e = 446.

The point (·, 2) is a point of order ` for EE,1,1015/1014; the corresponding point on EM,4058,1 is (3, ·).
The set of scalars is set to be 4(2441 + {0, 1, . . . , 2441 − 1}). Given a 56-byte scalar a, the clamping

function clamp(a) is defined as follows (assuming that the first byte is the least significant byte of a):
clear bits 0 and 1 of the first byte; set bit number 3 of the last byte and clear bits numbered 4 to 7 of
the last byte.

Remark. Using the isogenies given in [12], it can be shown that M[[p444-17, 4058]] is 4-isogenous to
E[[p444-17,−1014]]. Also, it has been mentioned earlier that M[[p251-9, 4698]] is 4-isogenous to Curve1174.
Connecting Montgomery and Edwards using these isogenies can be a problem, since a small base point
on one of these curves does not translate to a small base point on the other.

4 Implementation Details

We consider the Montgomery form curve. Let P be a generator of the prime order cyclic subgroup of
the elliptic curve over which cryptography is to be done. For all the curves considered in this work,
the point P can be chosen such that its x-coordinate is small. Such a fixed point is called the base
point of the corresponding curve. The base points of the curves considered in this paper are given in
Table 1. For a point Q ∈ 〈P 〉 and a non-negative integer a which is less than the order of P , the task
of computing the a-fold product aQ is called scalar multiplication. In the case, Q = P , we will call the
operation aP to be fixed base scalar multiplication, while when Q is an arbitrary element of 〈P 〉, we will
call the operation aQ to be variable base scalar multiplication. In the Diffie-Hellman protocol, variable
base scalar multiplication is required for the shared secret phase, while fixed base scalar multiplication
is required for the key generation phase. Our primary focus will be variable base scalar multiplication
for the shared secret phase.

The Montgomery ladder [28] is an x-coordinate only algorithm which can be used to compute the x-
coordinate of the result of a scalar multiplication. The ladder computation is performed using projective
coordinates and at the end, the result is converted to affine coordinates. When the scalar a in the
scalar multiplication aQ is a secret, for secure computation, it is important that the computation be
implemented in constant time. There are known ways to implement the Montgomery ladder in constant
time. A detailed treatment of the Montgomery ladder has been addressed in [8, 13]. For an overview on
the constant time sequential algorithm of the ladder we refer to [31], and for 4-way vectorized algorithms
we refer to [20, 32].

Intel processors provide two kinds of 64-bit integer multiplication operations, namely mul and mulx,
where mul modifies both the carry and overflow flags, but mulx does not modify either of these flags. The

6

add and adc instructions perform addition and addition-with-carry using the carry flag respectively and
modifies both the carry and the overflow flags; the instruction adcx performs addition-with-carry using
the carry flag, but does not modify the overflow flag, while the instruction adox performs addition-with-
carry using the overflow flag, but does not modify the carry flag. By maa we will denote implementations
which use only the mul, add and adc instructions and not any of mulx, adcx or adox; mxaa will denote
implementations which use mulx, add and adc instructions; while maax will denote implementations
which use mulx, adcx and adox. The maa type implementations are supported across a wide range of
Intel processors, the mxaa type implementations are supported from the Haswell processor onwards, while
the maax type instructions are supported on modern generation Intel processors such as Skylake.

The previously best known maa, mxaa and maax type implementations of Curve25519 are available
in [33]. For all three types, we provide new implementations of Curve25519 which are faster than the
implementations in [33]. For Curve448, mxaa and maax type implementations are available from [30, 33].
We provide a new maa type implementation for Curve448.

Intel processors from Haswell onwards provide AVX2 instructions which support 4-way SIMD on 256-
bit registers. This allows vectorized implementations. For the Montgomery ladder, 4-way vectorized
algorithms have been described in [20, 32]. Vectorized implementations of the Montgomery ladder for
Curve25519 and Curve448 are known.

We provide maa, mxaa and maax type implementations for the new curves. We also provide vectorized
implementations of the new curves which follow the strategy in [32].

4.1 64-Bit Implementations

All 64-bit implementations of the Montgomery curves are based on Algorithms 1 and 7 of [31]. The
details of the implementations are discussed below.

Let m = dlog2 pe. Elements of Fp can be represented as m-bit strings which will be represented as
κ 64-bit words. Conventionally, each such word is called a limb. We will consider packed or saturated
limb representation. In this representation, m is written as m = 64(κ − 1) + ν with 1 ≤ ν ≤ η ≤ 64.
In other words, the first (κ − 1) limbs are 64 bits long, while the size of the last limb is ν which lies
between 1 and η. In the appendix, we mention unsaturated limb representation in the context of maa
type implementations.

Representation of field elements. The representations of the four primes of interest to this work
are given in Table 2. Note that for p251-9 and p444-17, η − ν ≥ 3 (equivalently, the last limb has three
or more “free” bits), for p255-19, η − ν = 1 (equivalently, the last limb has one “free” bits) and for
p448-224-1, η = ν (equivalently, the last limb has no “free” bits). These have significant effect on the
ladder computation as we will see below.

Prime m κ η ν η − ν

p251-9 251 4 64 59 5

p255-19 255 4 64 63 1

p444-17 444 7 64 60 4

p448-224-1 448 7 64 64 0

Table 2: Saturated limb representations of field elements.

Integer multiplication/squaring. The maax operations can be used to perform fast integer mul-
tiplication using two independent carry chains. For multiplication/squaring of 256-bit numbers, this
technique has been explained in the Intel white papers [34, 35]. A general algorithmic description for
multiplication/squaring of 64κ-bit numbers, κ ≥ 4 is given in [29]. Saturated limb multiplication/squar-
ing algorithms can also be implemented using a single carry chain with the help of the instructions
mulx/add/adc. Such sequential implementations are applicable for the Haswell processor where the in-
struction mulx is available but the instructions adcx/adox are not.

Reduction. Integer multiplication/squaring of κ-limb quantities produces a 2κ-limb output. The
reduction step reduces this output modulo the prime p. A full reduction will reduce the output to a
value less than p. For the purposes of efficiency a full reduction is not carried out in the intermediate steps
of the computation. Instead a size reduction is done. The size reduction can be of two types, namely,

7

reduction to an (m+ 1)-bit integer and reduction to an m-bit integer (note than an m-bit integer is not
necessarily fully reduced since it is not necessarily less than p). The former is more efficient than the
later. Further, the reduced quantity should again be a κ-limb quantity. If ν < 64, i.e., the last limb has
at least one free bit, then reduction to an (m+ 1)-bit integer is a κ-limb quantity. On the other hand, if
ν = 64, i.e., the last limb has no free bits, then it is a necessity to reduce to an m-bit integer to obtain
a κ-limb quantity. Among the primes in Table 2, the prime 2448 − 2224 − 1 has no extra bits in the last
limb and the reduction for this prime has to be to an m-bit integer. For the other primes, it is possible
to reduce to an (m + 1)-bit integer without any overfull. The size reductions to (m + 1) bits modulo
2251 − 9 and 2444 − 17 have been done following the algorithm reduceSLPMP in [29].

Addition and subtraction. Other than multiplication/squarings, the ladder algorithm also uses field
addition and subtraction. In the ladder algorithm, the inputs to an addition/subtraction operation are
outputs of multiplication/squaring operations and the outputs of addition/subtraction operations are
inputs to multiplication/squaring operations. In particular, the outputs of addition/subtraction are
never inputs to another addition/subtraction.

We have mentioned that the outputs of multiplication/squaring are size reduced to either m bits or
to (m+ 1) bits. So, the inputs to addition/subtraction operations are either m bits or (m+ 1) bits. We
require the outputs of the addition/subtraction operations to be κ-limb quantities so that the integer
multiplication/squaring algorithm can be applied to these outputs. So, it is not always required to size
reduce the outputs of addition/subtraction operations to m or (m + 1) bits. Depending upon the sizes
of the inputs to the addition/subtraction operation and the relative values of η and ν, various cases may
arise. We discuss the cases of addition and subtraction separately.

Addition. A field addition is typically an integer addition followed by a possible reduction operation.
The integer addition operation increases the size of the output by one bit compared to the sizes of the
inputs.

Case p448-224-1: In this case, there is no leeway in the last limb and the output of integer addition
must necessarily be reduced to obtain a κ-limb quantity.

Case p255-19: If the inputs to the addition are m-bit quantities, then it is possible to omit applying
the reduction step to the output of the integer addition operation. On the other hand, if the
inputs to the addition are (m+ 1)-bit quantities, then the reduction step has to be applied to the
output of the integer addition operation. The inputs to the addition operation are the outputs of
previous multiplication/squaring operations. So, whether the output of the integer addition needs
to be reduced depends on whether the outputs of the multiplication/squaring operation have been
reduced to m bits or to (m+ 1) bits.

Cases p251-9 and p444-17: In these cases, it is possible to reduce the outputs of multiplication/squaring
to (m+ 1) bits and omit the reduction step after the integer addition operation.

Subtraction. A field subtraction is of the type a − b mod p. To avoid handling negative numbers, a
suitable multiple of p is added to a so that the result is guaranteed to be positive. Since the result will
be reduced modulo p, the correctness of the result is not affected by adding a multiple of p.

Cases p255-19 and p448-224-1: The reduction operation must be performed on the output of each
subtraction operation to ensure that the result fits in κ limbs.

Cases p251-9 and p444-17: The operation a− b mod p is performed as follows. Note that both a and b
are (m+1)-bit quantities. The operation 4p+a−b is guaranteed to be an (m+3)-bit non-negative
integer. So, instead of performing a − b mod p, the operation (4p + a) − b is computed. Since
the result is at most an (m + 3)-bit quantity, it fits within κ limbs. Consequently, no reduction
operation is performed on this result.

Remark. We have discussed the issue of avoiding reduction with respect to 64-bit arithmetic. The gen-
eral idea, on the other hand, holds for saturated limb representations using 32-bit (or, lower) arithmetic.
The implementation benefits of of p251-9 and p444-17 over p255-19 and p448-224-1 also holds for 32-bit
arithmetic.

8

Optimizations of the ladder step. Based on the description in Section 4, the following strategy
may be adopted for implementing the ladder step for the various primes.

Case p448-224-1: The outputs of all multiplication/squaring operations are to be size reduced to m
bits. Outputs of all addition/subtraction operations are to be size reduced to m bits.

Case p255-19: The outputs of all multiplication/squaring operations are to be size reduced to (m+ 1)
bits. Outputs of all addition/subtraction operations are to be size reduced to m or (m+ 1) bits.

Cases p251-9 and p444-17: The outputs of all multiplication/squaring operations are to be size reduced
to (m+ 1) bits. Outputs of all addition/subtraction operations are left unreduced.

The above strategy has direct consequences to the efficiencies of the ladder step for the various primes.
We summarize these below.

4-limb representations: For both F2251−9 and F2255−19, field elements have 4-limb representations. So,
the integer multiplication/squaring operations take the same time in both cases. Due to the ability
to avoid reductions, the ladder step is significantly faster modulo 2251 − 9 compared to 2255 − 19.

7-limb representations: For the fields F2444−17 and F2448−2224−1, field elements have 7-limb representa-
tions. So, the integer multiplication/squaring operations take the same time in both cases. Due to
the ability to avoid reductions, the ladder step is significantly faster modulo 2444− 17 compared to
2448 − 2224 − 1.

4.2 Vectorized Implementation

Vectorized implementations of the new Montgomery curves are based on Algorithms 7 and 8 of [32]. We
briefly mention the relevant details.

Representation of field elements. The elements of F2251−9 are represented using 9 words, i.e., we
consider values of κ as 9. The elements of F2444−17 are represented using 16 words, and here the value
of κ is 16. The details of the representations are provided in Table 3.

Prime m κ η ν η − ν

p251-9 251 9 28 27 1

p444-17 444 16 28 24 4

Table 3: Representations of field elements for vectorized implementation of the Montgomery ladder.

Multiplication and squaring in Fp. For p = 2251 − 9, the schoolbook method is used for multi-
plication and squaring. For p = 2444 − 17 we use a (8+8)-Karatsuba strategy for performing integer
multiplication and squaring; for the sub-problems of size 8 we apply directly the schoolbook method.
After integer multiplication/squaring we have a 31-limb quantity. Directly trying to reduce this 31-limb
quantity to a 16-limb quantity results in overfull. Instead, we first expand the 31-limb quantity to an
32-limb quantity so that the sizes of the limbs get reduced. Then the 32-limb quantity is reduced to a
16-limb quantity. This is essentially the multe algorithm in [23].

The multiplication and squaring operations in Fp include a reduction operation. Instead of using the
direct carry chain, we use the interleaved carry chain for reduction.

� For p = 2251 − 9, we interleave the chains c0 → c1 → · · · → c4 → c5 and c4 → c5 → · · · → c8 →
c0 → c1.

� For p = 2444 − 17, we interleave the chains c0 → c1 → · · · → c7 → c8 → c9 and c8 → c9 → · · · →
c15 → c0 → c1.

Multiplication by a small constant in Fp. LetA ∈ Fp have a κ-limb representation (a0, a1, . . . , aκ−1).
Let c be a small element in Fp, which can be represented using a single limb. Then multiplication of A
by c provides κ limbs of the form (c0, c1, . . . , cκ−1) = (a0 · c, a1 · c, . . . , aκ−1 · c). This needs to be reduced.

� For p = 2251 − 9, we interleave the chains c0 → c1 → · · · → c3 → c4 and c4 → c5 → · · · → c8 → c0.

� For p = 2444−17, we interleave the chains c0 → c1 → · · · → c7 → c8 and c8 → c9 → · · · → c15 → c0.

9

Hadamard transforms. The vectorized Montgomery ladder in [32] uses Hadamard transforms. Effi-
cient implementations of these operations can be done using a dense packing of the field elements. We
refer to [32] for details. The outputs of the Hadamard transforms are reduced for both the primes.

4.3 Inversion in Fp

The final output of the ladder algorithm needs to compute a modular inverse. The computation of the
inverse is done through exponentiation, which needs squaring and multiplication in Fp. For p = 2251−9,
the computation of inverse is done using the saturated 4-limb representation, and for p = 2444 − 17, the
saturated 7-limb representation has been used. We provide both mxaa and maax implementations of the
inversion algorithm. The relevant algorithms for field arithmetic from [29] have been used.

5 Timings and Performance Analysis

The timing experiments were carried out on a single core of Haswell and Skylake processors. During
measurement of the CPU-cycles, Turbo-Boost and Hyper-Threading features were turned off.

Curve Haswell Skylake κ Strategy Implementation Implementation Type

Curve25519

143956 126940 4 64-bit seq [33] mxaa, inline assembly

143369 113481 4 64-bit seq this work mxaa, assembly

- 118231 4 64-bit seq [33] maax, inline assembly

- 98694 4 64-bit seq this work maax, assembly

140996 104519 9 4-way, [20] [20] AVX2, intrinsics

121539 99898 9 4-way SIMD [20] [32] AVX2, assembly

126521 97590 10 4-way SIMD [20] [32] AVX2, assembly

120108 99194 9 4-way SIMD [32] [32] AVX2, assembly

123899 95437 10 4-way SIMD [32] [32] AVX2, assembly

M[[4698]]

129732 102570 4 64-bit seq this work mxaa, assembly

- 87807 4 64-bit seq this work maax, assembly

114937 91203 9 4-way SIMD [32] this work AVX2, assembly

Table 4: CPU-cycle counts for variable base scalar multiplication at the 128-bit security level.

Curve Haswell Skylake κ Strategy Implementation Implementation Type

Curve448

732013 587389 7 64-bit seq [33] mxaa, inline assembly

719217 461379 7 64-bit seq [30] mxaa, assembly

- 530984 7 64-bit seq [33] maax, inline assembly

- 434831 7 64-bit seq [30] maax, assembly

462277 373006 16 4-way SIMD [20] [32] AVX2, assembly

441715 357095 16 4-way SIMD [32] [32] AVX2, assembly

M[[4058]]

644791 423042 7 64-bit seq this work mxaa, assembly

- 384905 7 64-bit seq this work maax, assembly

476866 401809 16 4-way SIMD [32] this work AVX2, assembly

Table 5: CPU-cycle counts for variable base scalar multiplication at the 224-bit security level.

Platform specifications. The details of the hardware and software tools used in our software imple-
mentations are as follows.

Haswell: Intel®CoreTM i7-4790 4-core CPU 3.60 Ghz. The OS was 64-bit Ubuntu 14.04 LTS and the
source code was compiled using GCC version 7.3.0.

Skylake: Intel®CoreTM i7-6500U 2-core CPU @ 2.50GHz. The OS was 64-bit Ubuntu 14.04 LTS and
the source code was compiled using GCC version 7.3.0.

10

Along with the timings of our implementations, we also report timings of previous implementations. For
a fair comparison, we have downloaded the relevant codes and have measured the timings of these codes
on the same platforms where we measured the timings of our implementations. The timings thus obtained
have been reported in the tables. In some cases, these values are different from the timings reported in
the original papers. The source of such differences is the possible differences in the micro-architectures
of the same family of processors.

Timings in form of CPU-cycles are shown in Tables 4 and 5 for Haswell and Skylake processors. As
mentioned earlier, we have carried out maa, mxaa and maax type implementations. The timing results
show that the maa-type implementations are uniformly slower than the mxaa-type and the maax type
implementations. Due to this, we do not report the timings of the maa type implementations in Tables 4
and 5. For reference, we report the timings of the maa-type implementations in Table 7 of Appendix A.

For comparison, we report the timings of the previously most efficient (to the best of our knowl-
edge) and publicly available sequential and vectorized implementations. For 64-bit implementations of
Curve25519 we refer to [33] and for Curve448 we refer to [30, 33]. For vectorized implementations of
Curve25519 and Curve448 we refer to [20, 32]. In the discussion below, we mention speed-up percentages
which is defined to be 100(t1 − t2)/t1, where t1 and t2 are the old and new timings respectively.

New implementations of Curve25519. Table 4 shows the timing results for the new implemen-
tations of Curve25519 that have done in the context of the present work. The new maax-type imple-
mentation is about 17% faster over the previous best implementation [33] on Skylake. On Haswell,
the performance improvement of the new mxaa-type implementation over the mxaa-type implementation
of [33] is small. We would like to mention two issues.

1. For reduction we have used the algorithm reduceSLPMP from [29], while the algorithm used by [33]
is the same as algorithm reduceSLPMPa of [29]. To assess the effect of the reduction algorithm,
we made an assembly implementation (note that the code of [33] uses inline assembly) using
reduceSLPMPa. It turns out that using reduceSLPMP leads to a faster code.

2. The field operations in the implementations of [33] have been developed using inline assembly and
then integrated through a high level function in the Montgomery ladder-step. In contrast, we have
developed the entire Montgomery ladder-step as a single hand-optimized assembly code, in which
we have judiciously used the available 64-bit registers to minimize the overall load/store operations.
The timings indicate that such a strategy to develop the assembly code provides a substantial gain
in efficiency on the Skylake processor, while on Haswell the gain is nominal.

From Table 4, we note that the performance of the new maax implementation of Curve25519 lies between
the performances of the 9-limb and 10-limb 4-way SIMD implementations of [32].

Comparison between M[[4698]] and Curve25519. From Table 4, we see that M[[4698]] is faster than
Curve25519 for all the types of implementations, though the speed-up percentages vary. For mxaa type
implementations, the speed-ups on both Haswell and Skylake are about 9.5%; for maax type implemen-
tations, the speed-up (on Skylake) is about 11%; for AVX2 type implementations, the speed-ups on both
Haswell and Skylake are about 4.3%.

Comparison between M[[4058]] and Curve448. From Table 5, we observe that M[[4058]] is faster
than Curve448 for mxaa and maax implementations; for mxaa implementations, the speed-ups are 10.3%
and 8.3% respectively on Haswell and Skylake, while for maax, the speed-up is 11.5 % (on Skylake). For
AVX2 implementations, compared to Curve448, M[[4058]] has slowdowns of 7.4% and 11% on Haswell and
Skylake respectively.

The explanation for the above observations is as follows. The number of limbs for both Curve448
and M[[4058]] are the same. For AVX2 implementations (using 256-bit registers) the number of limbs is
16, whereas for mxaa and maax type implementations the number of limbs is 7. As a result, for AVX2 type
implementations the underlying integer multiplication is faster using Karatsuba rather than schoolbook,
while for the other two implementations schoolbook is faster than Karatsuba. The prime p448-224-1 on
which Curve448 is based has been chosen such that Karatsuba is particularly efficient. So, whenever
the underlying integer multiplication is faster using Karatsuba than schoolbook, Curve448 will be faster
than M[[4058]]. In a similar vein, due to the reasons explained in Section 4, whenever the underlying
multiplication is faster using schoolbook than Karatsuba, M[[4058]] will be faster than Curve448. Future
availability of wider vector operations would lead to a reduction in the number of limbs. This may result
in schoolbook becoming faster than Karatsuba and consequently, M[[4058]] being faster than Curve448.

11

Remark: It is interesting to note that for both M[[4698]] and M[[4058]], the best timings are obtained
for the maax implementation rather than the AVX2 implementation.

Key generation. We have also developed assembly code for fixed base scalar multiplication using
Montgomery ladder. This corresponds to the key generation phase of the Diffie-Hellman protocol. The
timings are reported in Table 6. For comparison we also report the corresponding timings of Curve25519
and Curve448 from [30, 32]. The timings of the maa-type implementations are reported in Table 8 of
Appendix A.

Curve Haswell Skylake κ Strategy Implementation Implementation Type

Curve25519

132162 106725 4 64-bit seq this work mxaa, assembly

- 93247 4 64-bit seq this work maax, assembly

100127 86885 9 4-way SIMD [32] [32] AVX2, assembly

106190 84047 10 4-way SIMD [32] [32] AVX2, assembly

Curve448

653035 427058 7 64-bit seq [30] mxaa, assembly

- 396583 7 64-bit seq [30] maax, assembly

381417 317778 16 4-way SIMD [32] [32] AVX2, assembly

M[[4698]]

120599 96683 4 64-bit seq this work mxaa, assembly

- 82116 4 64-bit seq this work maax, assembly

96419 79770 16 4-way SIMD [32] this work AVX2, assembly

M[[4058]]

573782 389371 7 64-bit seq this work mxaa, assembly

- 359597 7 64-bit seq this work maax, assembly

403697 335314 16 4-way SIMD [32] this work AVX2, assembly

Table 6: CPU-cycle counts for fixed base scalar multiplication required by the curves Curve25519, Curve448,
M[[4698]] and M[[4058]] at 128-bit and 224-bit security levels on Haswell and Skylake processors.

6 Conclusion

In this paper, we have introduced two pairs of Montgomery-Edwards curves for performing cryptography
at the 128-bit and the 224-bit security levels. Compared to the curves proposed in IETF RFC 7748,
the new curves provide 1.5 to 2 bits less security. We have performed various kinds of implementations
of scalar multiplication using the Montgomery ladder for the new curves. At the 128-bit level, the new
curve is faster than Curve25519 for all the types of implementations that we have considered. At the
224-bit level, the new curve is faster when the underlying integer multiplication is faster using schoolbook
than Karatsuba. Our work provides a wider picture of the efficiency/security trade-off at the 128-bit
and the 224-bit security levels.

Acknowledgements: Thanks to Rene Struik for comments on an earlier version of the paper and to
Armando Faz Hernández for comments on an earlier version of our implementation code.

References

[1] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and P. Schwabe. Kummer strikes back: New DH speed
records. In Advances in Cryptology - ASIACRYPT, volume 8873 of Lecture Notes in Computer Science,
pages 317–337. Springer, 2014.

[2] D. J. Bernstein and Lange T. Faster addition and doubling on elliptic curves. In Advances in Cryptology -
ASIACRYPT, volume 4833 of Lecture Notes in Computer Science, pages 29–50. Springer, 2007.

[3] Daniel J. Bernstein. Curve25519: New Diffie-Hellman Speed Records. In Moti Yung, Yevgeniy Dodis, Aggelos
Kiayias, and Tal Malkin, editors, Public Key Cryptography - PKC 2006, 9th International Conference on
Theory and Practice of Public-Key Cryptography, New York, NY, USA, April 24-26, 2006, Proceedings,
volume 3958 of Lecture Notes in Computer Science, pages 207–228. Springer, 2006.

[4] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters. Twisted edwards curves.
In Serge Vaudenay, editor, Progress in Cryptology - AFRICACRYPT 2008, First International Conference
on Cryptology in Africa, Casablanca, Morocco, June 11-14, 2008. Proceedings, volume 5023 of Lecture Notes
in Computer Science, pages 389–405. Springer, 2008.

12

[5] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-security
signatures. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded Systems
- CHES 2011 - 13th International Workshop, Nara, Japan, September 28 - October 1, 2011. Proceedings,
volume 6917 of Lecture Notes in Computer Science, pages 124–142. Springer, 2011.

[6] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-security
signatures. J. Cryptographic Engineering, 2(2):77–89, 2012.

[7] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator: elliptic-curve points in-
distinguishable from uniform random strings. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung,
editors, 2013 ACM SIGSAC Conference on Computer and Communications Security, CCS’13, Berlin, Ger-
many, November 4-8, 2013, pages 967–980. ACM, 2013.

[8] Daniel J. Bernstein and Tanja Lange. Montgomery curves and the Montgomery ladder. In Joppe W. Bos
and Arjen K. Lenstra, editors, Topics in Computational Number Theory inspired by Peter L. Montgomery,
pages 82–115. Cambridge University Press, 2017.

[9] Joppe W. Bos, Craig Costello, Hüseyin Hisil, and Kristin E. Lauter. Fast cryptography in genus 2. In
Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings, volume 7881 of
Lecture Notes in Computer Science, pages 194–210. Springer, 2013.

[10] Brainpool. ECC standard. http://www.ecc-brainpool.org/ecc-standard.htm.

[11] C. Costello and P. Longa. Four(Q): Four-dimensional decompositions on a Q-curve over the Mersenne prime.
In Advances in Cryptology - ASIACRYPT Part I, volume 9452 of Lecture Notes in Computer Science, pages
214–235. Springer, 2015.

[12] Craig Costello and Michael Naehrig. Isogenies between (twisted) Edwards and Montgomery curves. https:
//cryptosith.org/papers/isogenies_tEd2Mont.pdf, 2015. Accessed on 16 September, 2019.

[13] Craig Costello and Benjamin Smith. Montgomery curves and their arithmetic - the case of large characteristic
fields. J. Cryptographic Engineering, 8(3):227–240, 2018.

[14] NIST Curves. Recommended elliptic curves for federal government use. http://csrc.nist.gov/groups/

ST/toolkit/documents/dss/NISTReCur.pdf, 1999.

[15] Harold M. Edwards. A Normal Form for Elliptic Curves. Bulletin of the American Mathematical Society,
44:393–422, 2007.

[16] P. Gaudry and D. Lubicz. The arithmetic of characteristic 2 Kummer surfaces and of elliptic Kummer lines.
Finite Fields and Their Applications, 15(2):246–260, 2009.

[17] P. Gaudry and É. Schost. Genus 2 point counting over prime fields. J. Symb. Comput., 47(4):368–400, 2012.

[18] Mike Hamburg. Ed448-goldilocks, a new elliptic curve. IACR Cryptology ePrint Archive, 2015:625, 2015.

[19] Darrel Hankerson, Koray Karabina, and Alfred Menezes. Analyzing the Galbraith-Lin-Scott point multipli-
cation method for elliptic curves over binary fields. IEEE Trans. Computers, 58(10):1411–1420, 2009.

[20] Hüseyin Hisil, Berkan Egrice, and Mert Yassi. Fast 4 way vectorized ladder for the complete set of mont-
gomery curves. IACR Cryptology ePrint Archive, 2020:388, 2020.

[21] Hüseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson. Twisted Edwards curves revisited.
In Josef Pieprzyk, editor, Advances in Cryptology - ASIACRYPT 2008, 14th International Conference on
the Theory and Application of Cryptology and Information Security, Melbourne, Australia, December 7-11,
2008. Proceedings, volume 5350 of Lecture Notes in Computer Science, pages 326–343. Springer, 2008.

[22] Sabyasachi Karati and Palash Sarkar. Kummer for Genus One over Prime Order Fields. Journal of Cryp-
tology, 2019. https://doi.org/10.1007/s00145-019-09320-4.

[23] Sabyasachi Karati and Palash Sarkar. Kummer for genus one over prime-order fields. J. Cryptology, 33(1):92–
129, 2020.

[24] Neal Koblitz. Elliptic curve cryptosystems. Math. Comp., 48(177):203–209, 1987.

[25] Adam Langley and Mike Hamburg. Elliptic curves for security. Internet Research Task Force (IRTF),
Request for Comments: 7748, https://tools.ietf.org/html/rfc7748, 2016. Accessed on 16 September,
2019.

[26] CFRG/IETF mail archive. https://mailarchive.ietf.org/arch/msg/cfrg/LQIyeCFGgoROzsx_

UBf9cjlsS-A.

[27] Victor S. Miller. Use of elliptic curves in cryptography. In Advances in Cryptology - CRYPTO’85, Santa
Barbara, California, USA, August 18-22, 1985, Proceedings, pages 417–426. Springer Berlin Heidelberg,
1985.

[28] Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. Mathematics of
Computation, 48(177):243–264, 1987.

13

http://www.ecc-brainpool.org/ecc-standard.htm
https://cryptosith.org/papers/isogenies_tEd2Mont.pdf
https://cryptosith.org/papers/isogenies_tEd2Mont.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
https://doi.org/10.1007/s00145-019-09320-4
https://tools.ietf.org/html/rfc7748
https://mailarchive.ietf.org/arch/msg/cfrg/LQIyeCFGgoROzsx_UBf9cjlsS-A
https://mailarchive.ietf.org/arch/msg/cfrg/LQIyeCFGgoROzsx_UBf9cjlsS-A

[29] Kaushik Nath and Palash Sarkar. Efficient Arithmetic in (Pseudo-)Mersenne Prime Order Fields. IACR
Cryptology ePrint Archive, 2018:985, 2018.

[30] Kaushik Nath and Palash Sarkar. Reduction modulo 2448 − 2224 − 1. IACR Cryptology ePrint Archive,
2019:1304, 2019.

[31] Kaushik Nath and Palash Sarkar. Constant Time Montgomery Ladder. IACR Cryptology ePrint Archive,
2020:956, 2020.

[32] Kaushik Nath and Palash Sarkar. Efficient 4-way Vectorizations of the Montgomery Ladder. IACR Cryp-
tology ePrint Archive, 2020:378, 2020.

[33] Thomaz Oliveira, Julio López Hernandez, Hüseyin Hisil, Armando Faz-Hernández, and Francisco Rodŕıguez-
Henŕıquez. How to (pre-)compute a ladder - improving the performance of X25519 and X448. In Carlisle
Adams and Jan Camenisch, editors, Selected Areas in Cryptography - SAC 2017 - 24th International Con-
ference, Ottawa, ON, Canada, August 16-18, 2017, Revised Selected Papers, volume 10719 of Lecture Notes
in Computer Science, pages 172–191. Springer, 2017.

[34] E. Ozturk, J. Guilford, and V. Gopal. Large integer squaring on Intel architecture processors, in-
tel white paper. https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/

large-integer-squaring-ia-paper.pdf, 2013.

[35] E. Ozturk, J. Guilford, V. Gopal, and W. Feghali. New instructions supporting large integer arithmetic on
Intel architecture processors, intel white paper. https://www.intel.com/content/dam/www/public/us/en/
documents/white-papers/ia-large-integer-arithmetic-paper.pdf, 2012.

[36] Certicom Research. SEC 2: Recommended elliptic curve domain parameters. http://www.secg.org/

sec2-v2.pdf, 2010.

[37] Version 1.3 TLS Protocol. RFC 8446. https://datatracker.ietf.org/doc/rfc8446/?include_text=1,
2018. Accessed on 16 September, 2019.

[38] NUMS: Nothing up my sleeve. https://tools.ietf.org/html/draft-black-tls-numscurves-00.

14

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/large-integer-squaring-ia-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/large-integer-squaring-ia-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-large-integer-arithmetic-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-large-integer-arithmetic-paper.pdf
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
https://datatracker.ietf.org/doc/rfc8446/?include_text=1
https://tools.ietf.org/html/draft-black-tls-numscurves-00

A Timings of maa-type Implementations

In this section we report the timings of the maa-type implementations. Table 7 contains the timings of
variable base scalar multiplication and Table 8 contains the timings of fixed base scalar multiplication.
Note that for Curve25519 and M[[4698]], we also consider representations where the number of limbs κ
is equal to 5. This corresponds to an unsaturated (or redundant) limb representation, where the limbs
store less than 64 bits of information. Similarly, for Curve448 and M[[4058]], we consider unsaturated
limb representation using 8 limbs.

Comparing the Haswell entry for the maa-type implementation of Curve448 in Table 8 with the
Haswell entry for the mxaa-type implementation of Curve448 in Table 6 we can see that the maa-type
implementation performs better than mxaa-type in this case.

Curve Haswell Skylake κ Strategy Implementation Implementation Type

Curve25519

161045 148291 5 64-bit seq [5] maa, assembly

179124 147823 4 64-bit seq [5] maa, assembly

170381 137453 4 64-bit seq [33] maa, inline assembly

167170 128843 4 64-bit seq this work maa, assembly

Curve448 721044 558740 8 64-bit seq this work maa, assembly

M[[4698]]
154455 132255 5 64-bit seq this work maa, assembly

143282 118019 4 64-bit seq this work maa, assembly

M[[4058]] 681257 597240 8 64-bit seq this work maa, assembly

Table 7: CPU-cycle counts of maa-type implementations for variable base scalar multiplication.

Curve Haswell Skylake κ Strategy Implementation Implementation Type

Curve25519 153754 119958 4 64-bit seq this work maa, assembly

Curve448 644288 504808 8 64-bit seq this work maa, assembly

M[[4698]]
141965 121265 5 64-bit seq this work maa, assembly

133346 109989 4 64-bit seq this work maa, assembly

M[[4058]] 612225 540766 8 64-bit seq this work maa, assembly

Table 8: CPU-cycle counts of maa-type implementations for fixed base scalar multiplication.

15

	Introduction
	Montgomery and (Twisted) Edwards Form Elliptic Curves
	Addition on Complete (Twisted) Edwards Curves
	Birational Equivalences between Montgomery and Edwards Curves
	Security Properties

	Concrete Curves
	Implementation Details
	64-Bit Implementations
	Vectorized Implementation
	Inversion in Fp

	Timings and Performance Analysis
	Conclusion
	Timings of maa-type Implementations

