On Round-By-Round Soundness and State Restoration Attacks

Justin Holmgren*

Abstract

We show that the recently introduced notion of round-by-round soundness for interactive proofs (Canetti et al.; STOC 2019) is equivalent to the notion of soundness against state restoration attacks (Ben-Sasson, Chiesa, and Spooner; TCC 2016). We also observe that neither notion is implied by the random-oracle security of the Fiat-Shamir transform.

1 Introduction

The Fiat-Shamir transform [FS86] is a heuristic methodology for using a hash family \mathcal{H} to convert a publiccoin interactive protocol Π (either a proof or argument) into a non-interactive protocol FS[Π, \mathcal{H}]. In this protocol, a hash function $H \leftarrow \mathcal{H}$ is first chosen as a public parameter. A proof for a claim x then consists of messages ($\alpha_1, \ldots, \alpha_r$) such that with $\beta_i = H(\alpha_1, \beta_1, \ldots, \alpha_i)$, the transcript ($\alpha_1, \beta_1, \ldots, \alpha_r, \beta_r$) is accepted on input x in Π . It is also often convenient to model \mathcal{H} as a random oracle, in which case we will denote the resulting random oracle protocol by $\mathsf{FS}^{\mathsf{RO}}[\Pi]$.

It is known that $\mathsf{FS}^{\mathsf{R}^{\mathsf{O}}}[\Pi]$ is sound for all constant-round protocols Π [**PS96**] and, more generally, for all protocols Π that resist *state restoration attacks* [**BCS16**]. In a state restoration attack, a malicious prover P^* interacting with a verifier V may at any point reset V to a state that V was previously in. Then, P^* may continue to interact with V, with V using fresh randomness.

Returning our attention to the soundness of Fiat-Shamir in the plain model, the state of the art is that $FS[\Pi, \mathcal{H}]$ is (computationally) sound if Π is *round-by-round sound* [CCH⁺19] and \mathcal{H} is correlation intractable [CGH04]. Round-by-round soundness stipulates that there is a way to label certain transcript prefixes as "doomed" relative to an input x such that:

- If x is an input that represents a false claim, then the empty transcript \emptyset is doomed relative to x.
- If τ is any transcript prefix (ending in a verifier message) that is doomed relative to x, then for all choices α of the prover's next messages, it holds with overwhelming probability over β that $\tau |\alpha|\beta$ is also doomed relative to x.
- If τ is a complete transcript that is doomed relative to x, then the verifier on input x will reject the transcript τ .

These two results and two subclasses of public-coin interactive proofs naturally raise the question:

What is the relation between soundness against state-restoration attacks and round-by-round soundness?

It was observed by $[CCH^+19]$ that if a protocol Π is round-by-round sound, then Π is also sound against state restoration attacks. Proving the converse (or indeed instantiating Fiat-Shamir by any means for this potentially broader class of protocols) was left as an open question.

In this work, we show that the converse holds.

^{*}Simons Institute. Email: holmgren@alum.mit.edu.

Theorem 1.1. For any public-coin protocol Π , if Π is sound against state restoration attacks, then Π is round-by-round sound.

We also show that soundness against state restoration attacks is a strictly stronger notion for a protocol Π than the soundness of $\mathsf{FS}^{\mathsf{RO}}[\Pi]$.

Theorem 1.2. There exists a public-coin interactive proof Π such that Π is unsound against state restoration attacks, but $FS^{RO}[\Pi]$ is secure.

Our separation leverages the fact that in a state restoration attack a prover may rewind to the same state multiple times, each time obtaining a freshly random verifier messages. On the other hand, in $\mathsf{FS}^{\mathsf{RO}}[\Pi]$, verifier messages are deterministically generated as a function of the random oracle and the preceding partial transcript.

$\mathbf{2}$ **Preliminary Definitions**

$\mathbf{2.1}$ Interactive Protocols

It will be convenient for us to consider separately from interactive proofs (which are associated with a language \mathcal{L} , involve an input x, and have completeness / soundness properties depending on whether $x \in \mathcal{L}$) a notion of an interactive game, which has no input.

We think of an interactive game as something that is played by a single player in r rounds. At the beginning of the i^{th} round, the player must specify a message $\alpha_i \in \{0,1\}^*$. Then, a message β_i is sampled uniformly from $\{0,1\}^{\ell_i}$ for some ℓ_i that is pre-specified independently of any of the player's choices. At the end of the r^{th} round, a predicate W is applied to $(\alpha_1, \beta_1, \ldots, \alpha_r, \beta_r)$ to determine whether the player wins. More formally:

Definition 2.1 (Interactive Game). An (*r*-round) public-coin interactive game is a tuple $(\ell_1, \ldots, \ell_r, W)$, where each $\ell_i \in \mathbb{Z}^+$ and $W \subseteq \{0,1\}^*$ is an "acceptance" set. A strategy is a function $s: \{0,1\}^* \to \{0,1\}^*$.

If $\mathcal{G} = (\ell_1, \ldots, \ell_r, W)$ is a public-coin interactive game and s is a strategy, then the value of \mathcal{G} with respect to s (alternatively the probability with which s wins \mathcal{G}) is

$$v[s](\mathcal{G}) \stackrel{\mathsf{def}}{=} \Pr_{\substack{\beta_1 \leftarrow \{0,1\}^{\ell_1} \\ \cdots \\ \beta_r \leftarrow \{0,1\}^{\ell_r}}} \left[(\alpha_1, \beta_1, \dots, \alpha_r, \beta_r) \in W \right],$$

where each α_i is defined to be $s(\beta_1, \ldots, \beta_{i-1})$. The value of \mathcal{G} , denoted $v(\mathcal{G})$, is $\sup_{\alpha} v[s](\mathcal{G})$.

Definition 2.2 (Interactive Proof). An $(r(\cdot)$ -round) public-coin interactive proof for a language \mathcal{L} with soundness error $\epsilon(\cdot)$ is a pair (P, V), where V is a polynomial-time algorithm mapping any string $x \in \{0, 1\}^*$ to an r(|x|)-round single-player game with the following properties:

- (Completeness) If $x \in \mathcal{L}$, then P(x) is a strategy that wins V(x) with probability 1.
- (Soundness) If $x \notin \mathcal{L}$, then all strategies P^* win V(x) with probability at most $\epsilon(|x|)$.

The interactive proof is said to be public-coin if each V(x) is public-coin.

Definition 2.3 (Game Transcript). If $\mathcal{G} = (\ell_1, \ldots, \ell_r, W)$ is a public-coin interactive game, then a (complete) transcript for \mathcal{G} is $\alpha_1|\beta_1|\cdots|\alpha_r|\beta_r$ with each $\beta_i \in \{0,1\}^{\ell_i}$ and $\alpha_i \in \{0,1\}^*$. An accepting transcript is one that is contained in W. A transcript prefix is any $\alpha_1 | \beta_1 | \cdots | \alpha_i | \beta_i$ for $i \in \{0, \ldots, r\}$.

Definition 2.4 (Game Suffix). If $\mathcal{G} = (\ell_1, \ldots, \ell_r, W)$ is an *r*-round public-coin interactive game and $\alpha_1|\beta_1|\cdots|\alpha_i|\beta_i$ is a transcript prefix for \mathcal{G} , we denote by $\mathcal{G}|_{\tau}$ the game $(\ell_{i+1},\ldots,\ell_r,W|_{\tau})$, where $W|_{\tau}$ is the set of strings of the form $\alpha_{i+1}|\beta_{i+1}|\cdots|\alpha_r|\beta_r$ for which $\alpha_1|\beta_1|\cdots|\alpha_r|\beta_r \in W$.

We refer to $\mathcal{G}|_{\tau}$ as the suffix of \mathcal{G} following τ .

2.2 Notions of Soundness

Let \mathcal{L} be a language and let $\Pi = (P, V)$ be a public-coin interactive proof for \mathcal{L} . Recall the following definition from [CCH⁺19]. Suppose without loss of generality that all verifier messages are of length ℓ .

Definition 2.5 (Round-by-Round Soundness Error [CCH⁺19]). If has round-by-round soundness error $\epsilon(\cdot)$ if there exists a "doomed set" $\mathcal{D} \subseteq \{0, 1\}^*$ such that the following properties hold:

- 1. If $x \notin L$, then $(x, \emptyset) \in \mathcal{D}$, where \emptyset denotes the empty transcript.
- 2. If $(x,\tau) \in \mathcal{D}$ for a transcript prefix τ , then for every potential prover next message α , it holds that

$$\Pr_{\beta \leftarrow \{0,1\}^{\ell}} \left[\left(x, \tau |\alpha| \beta \right) \notin \mathcal{D} \right] \le \epsilon(n)$$

3. For any complete transcript τ , if $(x, \tau) \in \mathcal{D}$ then $V(x, \tau) = 0$.

Definition 2.6 (Asymptotic Round-by-Round Soundness [CCH⁺19]). Π is said to be round-by-round sound if there is a negligible function ϵ such that Π has round-by-round soundness error ϵ .

To define soundness of public-coin interactive proofs against state restoration attacks, we first define corresponding notions for public-coin interactive games.

Definition 2.7. For any public-coin interactive game $\mathcal{G} = (\ell_1, \ldots, \ell_r, W)$ and any query-bound q, we define a corresponding q-query state restoration game $SR^q(\mathcal{G})$. We only informally describe how this game is played:

- 1. A referee initializes a set $S := \{\emptyset\}$, where \emptyset denotes the empty transcript.
- 2. Up to q times, P^* may specify a pair (τ, α) where $\tau = \alpha_1 |\beta_1| \cdots |\alpha_i| \beta_i \in S$ and $\alpha \in \{0, 1\}^*$. The referee samples $\beta \leftarrow \{0, 1\}^{\ell_{i+1}}$, and adds $\tau |\alpha| \beta$ to S.
- 3. P^* wins if S contains any $\tau \in W$.

In our notation, the notion of state restoration soundness from [BCS16] can be formulated as follows.

Definition 2.8 (State Restoration Soundness [BCS16]). For functions $q : \mathbb{Z}^+ \to \mathbb{Z}^+$ and $\epsilon : \mathbb{Z}^+ \to \mathbb{R}$, a public-coin interactive proof (P, V) for \mathcal{L} is said to be (q, ϵ) -sound against state restoration attacks if for all n and all $x \in \{0, 1\}^n \setminus \mathcal{L}$, the value of $\mathsf{SR}^{q(n)}(V(x)) \leq \epsilon(n)$.

 Π is said simply to be sound against state restoration attacks if for all polynomially bounded $q : \mathbb{Z}^+ \to \mathbb{Z}^+$, there is a negligible function ϵ such that Π is (q, ϵ) -sound against state restoration attacks.

3 Proof of Theorem 1.1

Let \mathcal{L} be a language, and let $\Pi = (P, V)$ be an $r(\cdot)$ -round public-coin interactive proof for \mathcal{L} . For simplicity suppose that all verifier messages are of length $\ell = \ell(n)$.

Proposition 3.1. Let \mathcal{G} be a public-coin interactive game, and let $\tau = \alpha_1 |\beta_1| \cdots |\alpha_i| \beta_i$ be a transcript prefix for \mathcal{G} .

If $v(\mathsf{SR}^q(\mathcal{G}|_{\tau})) \leq \epsilon$, then for all q' < q, all $\epsilon' > \epsilon$, and all $\alpha \in \{0,1\}^*$, it holds that

$$\Pr_{\beta \leftarrow \{0,1\}^{\ell(|x|)}} \left[v \left(\mathsf{SR}^{q'}(\mathcal{G}|_{\tau|\alpha|\beta}) \right) > \epsilon' \right] \le -\frac{\ln(\epsilon' - \epsilon)}{q - q'}.$$
(1)

Proof. For any α , let p_{α} denote the left-hand side of Eq. (1). Consider the following (informally specified) strategy for $SR^{q}(\mathcal{G}|_{\tau})$.

- 1. Specify (τ, α) repeatedly. Specifically, do so q q' times. Let S be the set as in the definition of $SR^q(\mathcal{G}|_{\tau})$ (Definition 2.7).
- 2. Let β be such that $\tau |\alpha| \beta \in S$ and $v(\mathsf{SR}^{q'}(\mathcal{G}|_{\tau |\alpha|\beta}))$ is maximal.
- 3. From this point on, P^* plays according to an optimal strategy for $\mathsf{SR}^{q'}(\mathcal{G}|_{\tau|\alpha|\beta})$.

In order for this strategy to not contradict the assumption that $v(\mathsf{SR}^q(\mathcal{G}|_{\tau})) \leq \epsilon$, it must hold with probability at least $\epsilon' - \epsilon$ that at the beginning of Step 2, for all β with $\tau |\alpha|\beta \in S$, $v(\mathsf{SR}^{q'}(\mathcal{G}|_{\tau|\alpha|\beta})) \leq \epsilon'$. Because each β is chosen independently, this is equivalent to saying that $(1 - p_{\alpha})^{q-q'} \geq \epsilon' - \epsilon$. Thus

$$p_{\alpha} \le 1 - (\epsilon' - \epsilon)^{\frac{1}{q-q'}} = 1 - e^{\frac{\ln(\epsilon' - \epsilon)}{q-q'}} \le -\frac{\ln(\epsilon' - \epsilon)}{q-q'}.$$

Theorem 3.2. If Π is (q, ϵ) -sound against state-restoration attacks for $\epsilon < 1$, then it has round-by-round soundness error $\frac{r}{q} \cdot \ln\left(\frac{2r}{1-\epsilon}\right)$.

Proof. Define $\Delta \epsilon = \frac{1-\epsilon}{2r}$ and $\Delta q = \frac{q}{r}$. Define the set $\mathcal{D} \subseteq \{0,1\}^*$ such that if τ is an *i*-round transcript prefix for V(x), then $(x,\tau) \in \mathcal{D}$ if and only if $v(\mathsf{SR}^{q-i\cdot\Delta q}(V(x)|_{\tau})) \leq \epsilon + i\cdot\Delta\epsilon$.

We now show that \mathcal{D} satisfies the requirements of Definition 2.5.

Claim 3.3. For $x \notin \mathcal{L}$, $(x, \emptyset) \in \mathcal{D}$ where \emptyset denotes the empty transcript.

Proof. We have

$$v(\mathsf{SR}^{q-0\cdot\Delta q}(V(x)|_{\emptyset})) = v(\mathsf{SR}^{q}(V(x)))$$

which by assumption that Π is (q, ϵ) -sound, must be bounded by ϵ . Thus $(x, \emptyset) \in \mathcal{D}$.

Claim 3.4. For all x, τ , if $(x, \tau) \in \mathcal{D}$ then for all α ,

$$\Pr_{\beta \leftarrow \{0,1\}^{\ell(|x|)}} \left[(x,\tau|\alpha|\beta) \notin \mathcal{D} \right] \le \frac{r}{q} \cdot \ln\left(\frac{2r}{1-\epsilon}\right).$$

Proof. Suppose that τ is an *i*-round transcript prefix. Then by definition of \mathcal{D} we have $v(\mathsf{SR}^{q-i\cdot\Delta q}(V(x)|_{\tau})) \leq \epsilon + i\cdot\Delta\epsilon$. Then for any α , we have

$$\Pr_{\beta \leftarrow \{0,1\}^{\ell(|x|)}}\left[(x,\tau|\alpha|\beta) \notin \mathcal{D}\right] = \Pr_{\beta \leftarrow \{0,1\}^{\ell(|x|)}}\left[v\left(\mathsf{SR}^{q-(i+1)\cdot\Delta q}(V(x)|_{\tau|\alpha|\beta})\right) > \epsilon + (i+1)\cdot\Delta\epsilon\right].$$

By Proposition 3.1, this is bounded by $-\frac{\ln(\Delta\epsilon)}{\Delta q} = \frac{r}{q} \cdot \ln\left(\frac{2r}{1-\epsilon}\right)$.

Claim 3.5. For any x and any complete transcript τ , if $(x, \tau) \in \mathcal{D}$, then $V(x, \tau) = 0$.

Proof. This follows from the fact that for any complete transcript τ , either τ is an accepting transcript for V(x) or it is not, and the definition of \mathcal{D} implies that the probability that τ is accepting for V(x) is at most $\epsilon + r \cdot \Delta \epsilon = \frac{1+\epsilon}{2} < 1$.

This completes the proof of Theorem 3.2.

Theorem 1.1 follows as a corollary, also using Proposition 3.6 below.

Proposition 3.6. If Π is sound against state restoration attacks, then there exists a super-polynomial q and a negligible function ϵ such that Π is (q, ϵ) -sound against state restoration attacks.

Proof. Suppose that Π is sound against state restoration attacks. This implies that there exist $1 = N_0 < N_1 < N_2 < \cdots$ such that for all $n \ge N_c$ and all $x \in \{0,1\}^n \setminus \mathcal{L}, v\left(\mathsf{SR}^{n^c}(V(x))\right) \le n^{-c}$.

Define $q: \mathbb{Z}^+ \to \mathbb{Z}^+$ as follows. For any n, let c be such that $N_c \leq n < N_{c+1}$ and define $q(n) = n^c$. It follows by definition that $q(n) \geq n^{\omega(1)}$ and $\max_{x \in \{0,1\}^n \setminus \mathcal{L}} \left\{ v \left(\mathsf{SR}^{q(n)}(V(x)) \right) \right\} \leq n^{-\omega(1)}$. \Box

We remark that Proposition 3.6 is very similar to an observation of Bellare [Bel02] that there is no difference between the following two types of security definition:

- For every polynomial-time adversary \mathcal{A} , there exists a negligible function ϵ bounding \mathcal{A} 's advantage in breaking the primitive.
- There exists a negligible function ϵ such that for all polynomial-time adversaries \mathcal{A} , ϵ bounds the advantage of \mathcal{A} in breaking the primitive.

4 Proof of Theorem 1.2

Let $r(\cdot)$ be any function with $r(n) = \omega(1)$, and consider the *r*-round public-coin interactive proof $\Pi = (P, V)$ for the empty language in which all verifier messages are log *n*-bit strings. The verifier accepts if the prover sent only empty strings, and all of the verifier's messages were the all-zero string. It is easy to see that $\mathsf{FS}[\Pi, \mathcal{H}]$ has soundness error equal to

$$\Pr_{H \leftarrow \mathcal{H}} \left[\forall i \in [r(n)], H(0^{(i-1) \cdot \log n}) = 0^{\log n} \right],$$

which is negligible if \mathcal{H} is replaced by a random oracle.

However, because each verifier message has only $\log n$ bits, Π can only possibly have round-by-round soundness error ϵ if $\epsilon \geq \frac{1}{n}$.

Acknowledgments

We thank Fermi Ma and Ron Rothblum for helpful comments on an early draft of this work.

References

- [BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner, *Interactive oracle proofs*, TCC (B2), Lecture Notes in Computer Science, vol. 9986, 2016, pp. 31–60.
- [Bel02] Mihir Bellare, A note on negligible functions, J. Cryptology 15 (2002), no. 4, 271–284.
- [CCH⁺19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Rothblum, and Daniel Wichs, *Fiat-shamir: from practice to theory*, STOC, ACM, 2019, pp. 1082–1090.
- [CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi, The random oracle methodology, revisited, J. ACM 51 (2004), no. 4, 557–594.
- [FS86] Amos Fiat and Adi Shamir, How to prove yourself: Practical solutions to identification and signature problems, Conference on the Theory and Application of Cryptographic Techniques, Springer, 1986, pp. 186–194.
- [PS96] David Pointcheval and Jacques Stern, Security proofs for signature schemes, EUROCRYPT, Lecture Notes in Computer Science, vol. 1070, Springer, 1996, pp. 387–398.