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Abstract
We show that the recently introduced notion of round-by-round soundness for interactive proofs

(Canetti et al.; STOC 2019) is equivalent to the notion of soundness against state restoration attacks
(Ben-Sasson, Chiesa, and Spooner; TCC 2016). We also observe that neither notion is implied by the
random-oracle security of the Fiat-Shamir transform.

1 Introduction
The Fiat-Shamir transform [FS86] is a heuristic methodology for using a hash family ℋ to convert a public-
coin interactive protocol Π (either a proof or argument) into a non-interactive protocol FS[Π,ℋ]. In this
protocol, a hash function 𝐻 ← ℋ is first chosen as a public parameter. A proof for a claim 𝑥 then consists
of messages (𝛼1, . . . , 𝛼𝑟) such that with 𝛽𝑖 = 𝐻(𝛼1, 𝛽1, . . . , 𝛼𝑖), the transcript (𝛼1, 𝛽1, . . . , 𝛼𝑟, 𝛽𝑟) is accepted
on input 𝑥 in Π. It is also often convenient to model ℋ as a random oracle, in which case we will denote the
resulting random oracle protocol by FSRO[Π].

It is known that FSRO[Π] is sound for all constant-round protocols Π [PS96] and, more generally, for all
protocols Π that resist state restoration attacks [BCS16]. In a state restoration attack, a malicious prover
𝑃 * interacting with a verifier 𝑉 may at any point reset 𝑉 to a state that 𝑉 was previously in. Then, 𝑃 *

may continue to interact with 𝑉 , with 𝑉 using fresh randomness.
Returning our attention to the soundness of Fiat-Shamir in the plain model, the state of the art is

that FS[Π,ℋ] is (computationally) sound if Π is round-by-round sound [CCH+19] and ℋ is correlation
intractable [CGH04]. Round-by-round soundness stipulates that there is a way to label certain transcript
prefixes as “doomed” relative to an input 𝑥 such that:

∙ If 𝑥 is an input that represents a false claim, then the empty transcript ∅ is doomed relative to 𝑥.

∙ If 𝜏 is any transcript prefix (ending in a verifier message) that is doomed relative to 𝑥, then for all
choices 𝛼 of the prover’s next messages, it holds with overwhelming probability over 𝛽 that 𝜏 |𝛼|𝛽 is
also doomed relative to 𝑥.

∙ If 𝜏 is a complete transcript that is doomed relative to 𝑥, then the verifier on input 𝑥 will reject the
transcript 𝜏 .

These two results and two subclasses of public-coin interactive proofs naturally raise the question:

What is the relation between soundness against state-restoration attacks and round-by-round
soundness?

It was observed by [CCH+19] that if a protocol Π is round-by-round sound, then Π is also sound against
state restoration attacks. Proving the converse (or indeed instantiating Fiat-Shamir by any means for this
potentially broader class of protocols) was left as an open question.

In this work, we show that the converse holds.
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Theorem 1.1. For any public-coin protocol Π, if Π is sound against state restoration attacks, then Π is
round-by-round sound.

We also show that soundness against state restoration attacks is a strictly stronger notion for a protocol
Π than the soundness of FSRO[Π].

Theorem 1.2. There exists a public-coin interactive proof Π such that Π is unsound against state restoration
attacks, but FSRO[Π] is secure.

Our separation leverages the fact that in a state restoration attack a prover may rewind to the same
state multiple times, each time obtaining a freshly random verifier messages. On the other hand, in FSRO[Π],
verifier messages are deterministically generated as a function of the random oracle and the preceding partial
transcript.

2 Preliminary Definitions
2.1 Interactive Protocols
It will be convenient for us to consider separately from interactive proofs (which are associated with a
language ℒ, involve an input 𝑥, and have completeness / soundness properties depending on whether 𝑥 ∈ ℒ)
a notion of an interactive game, which has no input.

We think of an interactive game as something that is played by a single player in 𝑟 rounds. At the
beginning of the 𝑖𝑡ℎ round, the player must specify a message 𝛼𝑖 ∈ {0, 1}*. Then, a message 𝛽𝑖 is sampled
uniformly from {0, 1}ℓ𝑖 for some ℓ𝑖 that is pre-specified independently of any of the player’s choices. At the
end of the 𝑟𝑡ℎ round, a predicate 𝑊 is applied to (𝛼1, 𝛽1, . . . , 𝛼𝑟, 𝛽𝑟) to determine whether the player wins.

More formally:

Definition 2.1 (Interactive Game). An (𝑟-round) public-coin interactive game is a tuple (ℓ1, . . . , ℓ𝑟, 𝑊 ),
where each ℓ𝑖 ∈ Z+ and 𝑊 ⊆ {0, 1}* is an “acceptance” set. A strategy is a function 𝑠 : {0, 1}* → {0, 1}*.

If 𝒢 = (ℓ1, . . . , ℓ𝑟, 𝑊 ) is a public-coin interactive game and 𝑠 is a strategy, then the value of 𝒢 with respect
to 𝑠 (alternatively the probability with which 𝑠 wins 𝒢) is

𝑣[𝑠](𝒢) def= Pr
𝛽1←{0,1}ℓ1

...
𝛽𝑟←{0,1}ℓ𝑟

[︀
(𝛼1, 𝛽1, . . . , 𝛼𝑟, 𝛽𝑟

)︀
∈𝑊

]︀
,

where each 𝛼𝑖 is defined to be 𝑠(𝛽1, . . . , 𝛽𝑖−1). The value of 𝒢, denoted 𝑣(𝒢), is sup𝑠 𝑣[𝑠](𝒢).

Definition 2.2 (Interactive Proof). An (𝑟(·)-round) public-coin interactive proof for a language ℒ with sound-
ness error 𝜖(·) is a pair (𝑃, 𝑉 ), where 𝑉 is a polynomial-time algorithm mapping any string 𝑥 ∈ {0, 1}* to an
𝑟(|𝑥|)-round single-player game with the following properties:

∙ (Completeness) If 𝑥 ∈ ℒ, then 𝑃 (𝑥) is a strategy that wins 𝑉 (𝑥) with probability 1.

∙ (Soundness) If 𝑥 /∈ ℒ, then all strategies 𝑃 * win 𝑉 (𝑥) with probability at most 𝜖(|𝑥|).

The interactive proof is said to be public-coin if each 𝑉 (𝑥) is public-coin.

Definition 2.3 (Game Transcript). If 𝒢 = (ℓ1, . . . , ℓ𝑟, 𝑊 ) is a public-coin interactive game, then a (complete)
transcript for 𝒢 is 𝛼1|𝛽1| · · · |𝛼𝑟|𝛽𝑟 with each 𝛽𝑖 ∈ {0, 1}ℓ𝑖 and 𝛼𝑖 ∈ {0, 1}*. An accepting transcript is one
that is contained in 𝑊 . A transcript prefix is any 𝛼1|𝛽1| · · · |𝛼𝑖|𝛽𝑖 for 𝑖 ∈ {0, . . . , 𝑟}.

Definition 2.4 (Game Suffix). If 𝒢 = (ℓ1, . . . , ℓ𝑟, 𝑊 ) is an 𝑟-round public-coin interactive game and
𝛼1|𝛽1| · · · |𝛼𝑖|𝛽𝑖 is a transcript prefix for 𝒢, we denote by 𝒢|𝜏 the game (ℓ𝑖+1, . . . , ℓ𝑟, 𝑊 |𝜏 ), where 𝑊 |𝜏 is
the set of strings of the form 𝛼𝑖+1|𝛽𝑖+1| · · · |𝛼𝑟|𝛽𝑟 for which 𝛼1|𝛽1| · · · |𝛼𝑟|𝛽𝑟 ∈𝑊 .

We refer to 𝒢|𝜏 as the suffix of 𝒢 following 𝜏 .
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2.2 Notions of Soundness
Let ℒ be a language and let Π = (𝑃, 𝑉 ) be a public-coin interactive proof for ℒ. Recall the following
definition from [CCH+19]. Suppose without loss of generality that all verifier messages are of length ℓ.

Definition 2.5 (Round-by-Round Soundness Error [CCH+19]). Π has round-by-round soundness error 𝜖(·)
if there exists a “doomed set” 𝒟 ⊆ {0, 1}* such that the following properties hold:

1. If 𝑥 ̸∈ 𝐿, then (𝑥, ∅) ∈ 𝒟, where ∅ denotes the empty transcript.

2. If (𝑥, 𝜏) ∈ 𝒟 for a transcript prefix 𝜏 , then for every potential prover next message 𝛼, it holds that

Pr
𝛽←{0,1}ℓ

[︁(︀
𝑥, 𝜏 |𝛼|𝛽

)︀
/∈ 𝒟

]︁
≤ 𝜖(𝑛)

3. For any complete transcript 𝜏 , if (𝑥, 𝜏) ∈ 𝒟 then 𝑉 (𝑥, 𝜏) = 0.

Definition 2.6 (Asymptotic Round-by-Round Soundness [CCH+19]). Π is said to be round-by-round sound
if there is a negligible function 𝜖 such that Π has round-by-round soundness error 𝜖.

To define soundness of public-coin interactive proofs against state restoration attacks, we first define
corresponding notions for public-coin interactive games.

Definition 2.7. For any public-coin interactive game 𝒢 = (ℓ1, . . . , ℓ𝑟, 𝑊 ) and any query-bound 𝑞, we define
a corresponding 𝑞-query state restoration game SR𝑞(𝒢). We only informally describe how this game is played:

1. A referee initializes a set 𝑆 := {∅}, where ∅ denotes the empty transcript.

2. Up to 𝑞 times, 𝑃 * may specify a pair (𝜏, 𝛼) where 𝜏 = 𝛼1|𝛽1| · · · |𝛼𝑖|𝛽𝑖 ∈ 𝑆 and 𝛼 ∈ {0, 1}*. The referee
samples 𝛽 ← {0, 1}ℓ𝑖+1 , and adds 𝜏 |𝛼|𝛽 to 𝑆.

3. 𝑃 * wins if 𝑆 contains any 𝜏 ∈𝑊 .

In our notation, the notion of state restoration soundness from [BCS16] can be formulated as follows.

Definition 2.8 (State Restoration Soundness [BCS16]). For functions 𝑞 : Z+ → Z+ and 𝜖 : Z+ → R, a
public-coin interactive proof (𝑃, 𝑉 ) for ℒ is said to be (𝑞, 𝜖)-sound against state restoration attacks if for all 𝑛

and all 𝑥 ∈ {0, 1}𝑛 ∖ ℒ, the value of SR𝑞(𝑛)(︀𝑉 (𝑥)
)︀
≤ 𝜖(𝑛).

Π is said simply to be sound against state restoration attacks if for all polynomially bounded 𝑞 : Z+ → Z+,
there is a negligible function 𝜖 such that Π is (𝑞, 𝜖)-sound against state restoration attacks.

3 Proof of Theorem 1.1
Let ℒ be a language, and let Π = (𝑃, 𝑉 ) be an 𝑟(·)-round public-coin interactive proof for ℒ. For simplicity
suppose that all verifier messages are of length ℓ = ℓ(𝑛).

Proposition 3.1. Let 𝒢 be a public-coin interactive game, and let 𝜏 = 𝛼1|𝛽1| · · · |𝛼𝑖|𝛽𝑖 be a transcript prefix
for 𝒢.

If 𝑣
(︀
SR𝑞(𝒢|𝜏 )

)︀
≤ 𝜖, then for all 𝑞′ < 𝑞, all 𝜖′ > 𝜖, and all 𝛼 ∈ {0, 1}*, it holds that

Pr
𝛽←{0,1}ℓ(|𝑥|)

[︁
𝑣
(︀
SR𝑞′

(𝒢|𝜏 |𝛼|𝛽)
)︀

> 𝜖′
]︁
≤ − ln(𝜖′ − 𝜖)

𝑞 − 𝑞′
. (1)

Proof. For any 𝛼, let 𝑝𝛼 denote the left-hand side of Eq. (1). Consider the following (informally specified)
strategy for SR𝑞(𝒢|𝜏 ).
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1. Specify (𝜏, 𝛼) repeatedly. Specifically, do so 𝑞 − 𝑞′ times. Let 𝑆 be the set as in the definition of
SR𝑞(𝒢|𝜏 ) (Definition 2.7).

2. Let 𝛽 be such that 𝜏 |𝛼|𝛽 ∈ 𝑆 and 𝑣
(︀
SR𝑞′

(𝒢|𝜏 |𝛼|𝛽)
)︀

is maximal.

3. From this point on, 𝑃 * plays according to an optimal strategy for SR𝑞′
(𝒢|𝜏 |𝛼|𝛽).

In order for this strategy to not contradict the assumption that 𝑣
(︀
SR𝑞(𝒢|𝜏 )

)︀
≤ 𝜖, it must hold with probability

at least 𝜖′ − 𝜖 that at the beginning of Step 2, for all 𝛽 with 𝜏 |𝛼|𝛽 ∈ 𝑆, 𝑣
(︀
SR𝑞′

(𝒢|𝜏 |𝛼|𝛽)
)︀
≤ 𝜖′. Because each

𝛽 is chosen independently, this is equivalent to saying that (1− 𝑝𝛼)𝑞−𝑞′ ≥ 𝜖′ − 𝜖. Thus

𝑝𝛼 ≤ 1− (𝜖′ − 𝜖)
1

𝑞−𝑞′ = 1− 𝑒
ln(𝜖′−𝜖)

𝑞−𝑞′ ≤ − ln(𝜖′ − 𝜖)
𝑞 − 𝑞′

.

Theorem 3.2. If Π is (𝑞, 𝜖)-sound against state-restoration attacks for 𝜖 < 1, then it has round-by-round
soundness error 𝑟

𝑞 · ln
(︁

2𝑟
1−𝜖

)︁
.

Proof. Define Δ𝜖 = 1−𝜖
2𝑟 and Δ𝑞 = 𝑞

𝑟 . Define the set 𝒟 ⊆ {0, 1}* such that if 𝜏 is an 𝑖-round transcript prefix
for 𝑉 (𝑥), then (𝑥, 𝜏) ∈ 𝒟 if and only if 𝑣

(︀
SR𝑞−𝑖·Δ𝑞(𝑉 (𝑥)|𝜏 )

)︀
≤ 𝜖 + 𝑖 ·Δ𝜖.

We now show that 𝒟 satisfies the requirements of Definition 2.5.

Claim 3.3. For 𝑥 /∈ ℒ, (𝑥, ∅) ∈ 𝒟 where ∅ denotes the empty transcript.

Proof. We have
𝑣
(︀
SR𝑞−0·Δ𝑞(𝑉 (𝑥)|∅)

)︀
= 𝑣

(︀
SR𝑞(𝑉 (𝑥))

)︀
,

which by assumption that Π is (𝑞, 𝜖)-sound, must be bounded by 𝜖. Thus (𝑥, ∅) ∈ 𝒟.

Claim 3.4. For all 𝑥, 𝜏 , if (𝑥, 𝜏) ∈ 𝒟 then for all 𝛼,

Pr
𝛽←{0,1}ℓ(|𝑥|)

[(𝑥, 𝜏 |𝛼|𝛽) /∈ 𝒟] ≤ 𝑟

𝑞
· ln

(︂
2𝑟

1− 𝜖

)︂
.

Proof. Suppose that 𝜏 is an 𝑖-round transcript prefix. Then by definition of 𝒟 we have 𝑣
(︀
SR𝑞−𝑖·Δ𝑞(𝑉 (𝑥)|𝜏 )

)︀
≤

𝜖 + 𝑖 ·Δ𝜖. Then for any 𝛼, we have

Pr
𝛽←{0,1}ℓ(|𝑥|)

[(𝑥, 𝜏 |𝛼|𝛽) /∈ 𝒟] = Pr
𝛽←{0,1}ℓ(|𝑥|)

[︁
𝑣
(︀
SR𝑞−(𝑖+1)·Δ𝑞(𝑉 (𝑥)|𝜏 |𝛼|𝛽)

)︀
> 𝜖 + (𝑖 + 1) ·Δ𝜖

]︁
.

By Proposition 3.1, this is bounded by − ln(Δ𝜖)
Δ𝑞 = 𝑟

𝑞 · ln
(︁

2𝑟
1−𝜖

)︁
.

Claim 3.5. For any 𝑥 and any complete transcript 𝜏 , if (𝑥, 𝜏) ∈ 𝒟, then 𝑉 (𝑥, 𝜏) = 0.

Proof. This follows from the fact that for any complete transcript 𝜏 , either 𝜏 is an accepting transcript for
𝑉 (𝑥) or it is not, and the definition of 𝒟 implies that the probability that 𝜏 is accepting for 𝑉 (𝑥) is at most
𝜖 + 𝑟 ·Δ𝜖 = 1+𝜖

2 < 1.

This completes the proof of Theorem 3.2.

Theorem 1.1 follows as a corollary, also using Proposition 3.6 below.

Proposition 3.6. If Π is sound against state restoration attacks, then there exists a super-polynomial 𝑞
and a negligible function 𝜖 such that Π is (𝑞, 𝜖)-sound against state restoration attacks.
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Proof. Suppose that Π is sound against state restoration attacks. This implies that there exist 1 = 𝑁0 <

𝑁1 < 𝑁2 < · · · such that for all 𝑛 ≥ 𝑁𝑐 and all 𝑥 ∈ {0, 1}𝑛 ∖ ℒ, 𝑣
(︁

SR𝑛𝑐

(𝑉 (𝑥))
)︁
≤ 𝑛−𝑐.

Define 𝑞 : Z+ → Z+ as follows. For any 𝑛, let 𝑐 be such that 𝑁𝑐 ≤ 𝑛 < 𝑁𝑐+1 and define 𝑞(𝑛) = 𝑛𝑐. It
follows by definition that 𝑞(𝑛) ≥ 𝑛𝜔(1) and max𝑥∈{0,1}𝑛∖ℒ

{︁
𝑣

(︁
SR𝑞(𝑛)(𝑉 (𝑥))

)︁}︁
≤ 𝑛−𝜔(1).

We remark that Proposition 3.6 is very similar to an observation of Bellare [Bel02] that there is no
difference between the following two types of security definition:

∙ For every polynomial-time adversary 𝒜, there exists a negligible function 𝜖 bounding 𝒜’s advantage in
breaking the primitive.

∙ There exists a negligible function 𝜖 such that for all polynomial-time adversaries 𝒜, 𝜖 bounds the
advantage of 𝒜 in breaking the primitive.

4 Proof of Theorem 1.2
Let 𝑟(·) be any function with 𝑟(𝑛) = 𝜔(1), and consider the 𝑟-round public-coin interactive proof Π = (𝑃, 𝑉 )
for the empty language in which all verifier messages are log 𝑛-bit strings. The verifier accepts if the prover
sent only empty strings, and all of the verifier’s messages were the all-zero string. It is easy to see that
FS[Π,ℋ] has soundness error equal to

Pr
𝐻←ℋ

[︁
∀𝑖 ∈ [𝑟(𝑛)], 𝐻(0(𝑖−1)·log 𝑛) = 0log 𝑛

]︁
,

which is negligible if ℋ is replaced by a random oracle.
However, because each verifier message has only log 𝑛 bits, Π can only possibly have round-by-round

soundness error 𝜖 if 𝜖 ≥ 1
𝑛 .
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