
A Practical Model for Collaborative Databases:
Securely Mixing, Searching and Computing

Shweta Agrawal1?, Rachit Garg2??, Nishant Kumar3?, and Manoj Prabhakaran4

1 IIT Madras, India, shweta.a@cse.iitm.ac.in
2 UT Austin, US, rachit0596@gmail.com

3 Microsoft Research, India, nishant.kr10@gmail.com
4 IIT Bombay, India, mp@cse.iitb.ac.in

Abstract. We introduce the notion of a Functionally Encrypted Datastore which collects data anony-
mously from multiple data-owners, stores it encrypted on an untrusted server, and allows untrusted
clients to make select-and-compute queries on the collected data. Little coordination and no commu-
nication is required among the data-owners or the clients. Our notion is general enough to capture
many real world scenarios that require controlled computation on encrypted data, such as is required
for contact tracing in the wake of a pandemic. Our leakage and performance profile is similar to that
of conventional searchable encryption systems, while the functionality we offer is significantly richer.
In more detail, the client specifies a query as a pair (Q, f) where Q is a filtering predicate which selects

some subset of the dataset and f is a function on some computable values associated with the selected
data. We provide efficient protocols for various functionalities of practical relevance. We demonstrate
the utility, efficiency and scalability of our protocols via extensive experimentation. In particular, we
evaluate the efficiency of our protocols in computations relevant to the Genome Wide Association
Studies such as Minor Allele Frequency (MAF), Chi-square analysis and Hamming Distance.

1 Introduction

Many real world scenarios call for performing controlled computation on encrypted data belonging to multiple
users. A case in point is that of contact tracing to control the COVID-19 pandemic, where cellphone users
may periodically upload their (space, time) co-ordinates to enable tracing of infected persons, but desire the
assurance that this data will not be used for any other purpose. Another example is Genome Wide Association
Studies (GWAS), which look into entire genomes across different individuals to discover associations between
genetic variants and particular diseases or traits [10].

More generally, enabling controlled computation on large-scale, multi-user, encrypted cloud storage is of
much practical value in various privacy sensitive situations. Over the last several years, several tools have
emerged that offer a variety of approaches towards this problem, offering different trade-offs among security,
efficiency and generality. While theoretical schemes based on modern cryptographic tools like secure multi-
party computation (MPC), [63,25] fully homomorphic encryption (FHE) [24] or functional encryption (FE)
[51,8] can provide strong security guarantees, their computational and communication requirements are
often prohibitive for large-scale data (see Section 8.2, and Footnote 19). At the other end are efficient tools
like CryptDB [50], Monomi [58], Seabed [46] and Arx [49], which add a lightweight encryption layer under
the hood of conventional database queries, but offer only limited security guarantees and do not support
collaborative databases (see Table 1). While there also exist tools which seek to strike a different balance by
trading off some efficiency for more robust security guarantees and better support for collaboration – like
Symmetric Searchable Encryption (SSE) [56,20], and Controlled Functional Encryption (CFE) [43] – they
offer limited functionality.
Our Approach: We introduce Functionally Encrypted Datastores (FED), opening up new possibilities in
secure cloud storage. FED is a secure cloud-based data store that can collect data anonymously from multiple

? Part of work done at IIT Delhi
?? Work done primarily at IIT Madras

1

data-owners, store it encrypted on untrusted servers, and allow untrusted clients to make select-and-compute
queries on the collected data. Little coordination and no communication is required among the data-owners or
the clients. We obtain a performance and leakage profile similar to that of conventional searchable encryption
systems, but with additional anonymity guarantees to support multiple data-owners, and significantly richer
computation functionality along with searchability.

The “select and compute” functionality we support may be viewed as typical (relational) database opera-
tions on a single table. A query is specified as a pair (Q, f) where Q is a filtering predicate which selects some
rows of the table, and f is a function on the selected data. A key feature we seek is that the computation
overheads for a select-and-compute query should not scale with the entire database size, but only with the
number of selected records.
Some Motivating scenarios: There are many scenarios today where data is collected from users in a central-
ized database and made available to other users for querying.

– Census Data: governments use census data for administrative purposes, and also provide restricted access
to select researchers for select purposes [59,66],

– Contact tracing: Records which have a (space, time) pair from a set of high-risk pairs are filtered and
then used for notification for quick tracing.

– Customer data: private corporations can and do collect large amounts of information about their cus-
tomers, which could be legitimately useful in improving their customer service,

– Genetic Data: Genome Wide Association Studies (GWAS) look into entire genomes across different
individuals to discover associations between genetic variants and particular diseases or traits [10] (This
is the example we use in our experiments.)

In all such scenarios, individuals’ privacy is vulnerable, and in the absence of cryptographic measures,
entirely reliant on the central authority’s good intentions and security.

1.1 Our Model

Before we describe our model, we outline our desiderata:

– No central trusted authority. The data-owners should not be required to trust any central server with
their private data. However, they may rely on servers to facilitate collecting data and answering queries
(without learning the data or the queries).

– No coordination among offline data-owners. The data-owners should not be required to trust, or even
be aware of each other. Additionally, the data owners need not be online when queries arrive.

– Untrusted clients, oblivious to the data-owners. The data-owners should not be required to trust or even
be aware of the clients who will query the datastore in the future.

– Efficient on large scale data. Enable handling of large databases (e.g. genomic data from hundreds of
thousands of individuals, or census data) efficiently. This may be done by allowing some well-defined
leakage to the servers, as is common in the searchable encryption literature. Typically, the leaked infor-
mation pertains to whether the same piece of data matches multiple search queries (without revealing
what the search queries are). We shall settle for similar leakage in our system as well.

– Anonymity of data. As we allow multiple data-owners, the data items referenced in the leakage above
when obtained by a compromised server should not be traced back to the data-owners who contributed
those items.

A Necessary Relaxation. It is impossible to satisfy the first three requirements using a single (untrusted)
server – it may internally play the role of clients and make any number of arbitrary queries to the database,
violating security. Hence, we propose a solution with two servers: one with large storage that stores all
the encrypted data, and the other an auxiliary server that stores only some key material. Either server
by itself can be corrupt, but they will be assumed not to collude with each other. This model is well-
accepted in the literature for privacy-preserving computation on genomic data [32,16], justified by the fact
that in the real world, genomic data in the US [32] may be managed by distinct governmental organizations

2

within the National Institutes of Health and the World Health Organization which are expected not to
collude. More generally, this model has been used widely in the literature, including multi-server Private
Information Retrieval [17], CFE [43],5 Searchable Encryption [45], Secure Outsourced Computation [36]
(including specifically in the context of genomic data [57]), and even large-scale real-world systems like
Riposte [19] and Splinter [62].

1.2 Our Results

As discussed above, our first contribution is the notion of a Functionally Encrypted Datastore (FED),
which permits a data-owner to securely outsource its data to a storage server, such that, with the help of an
auxiliary server, clients can carry out select-and-compute queries efficiently. We emphasize that our database
is anonymously collaborative in the sense that it contains data belonging to multiple data owners but hides
the association of the (encrypted) data items with their owners. In addition to this, our contributions include:

– A general framework for instantiating FED schemes. The framework is modular, and consists of two
components, which may be of independent interest – namely, Searchably Encrypted Datastore (SED) and
Computably Encrypted Datastore (CED). We present several constructions to instantiate this framework
(see an overview in Section 1.3).

– We build a system6 for our proposed framework and demonstrate the utility, efficiency and scalability of
our protocols via extensive experimentation. In particular, we study Genome Wide Association Studies
(GWAS), and demonstrate that genomic records from 100,000 data owners (each contributing a single
record) can be securely setup in around 500s, while a client query that filters up to 12,000 records can be
answered in less than 15s with a maximum of 15 MB of total communication in the system. For standard
functionalities in GWAS, like Minor Allele Frequency (MAF) and Chi Square Analysis, our single data
owner based FED protocol has an overhead of merely 1.5×, compared to SSE schemes (which offer no
compute functionality).

To the best of our knowledge, no prior work achieves the features of collaborative databases, select and
compute functionality and efficiency that we achieve in this work. See Table 1 for a comparison.

1.3 Overview of Constructions

We present several modular constructions of FED (and the single data-owner version sFED), which can be
instantiated by plugging in different implementations of its components. Below we give a roadmap of how
the two simpler primitives, Searchably Encrypted Datastore (SED) and Computably Encrypted Datastore
(CED) can be securely dovetailed into a construction of FED.

The starting point of our constructions are single data-owner versions sSED and sCED. We show that
these components can be implemented by leveraging constructions from the literature, namely, the Multi-
Client SSE (MC-SSE) scheme due to Jarecki et al. [33] and CFE due to Naveed et al. [43]. The search query
family supported by our sSED constructions are the same as in [33]. For sCED, we support a few specialized
functions, as well as a general function family. The primitives sSED and sCED are of independent interest,
and they can also be combined to yield a single data-owner version of FED (called sFED).

To upgrade sSED and sCED constructions into full-fledged (multi data-owner) SED and CED schemes, we
require several new ideas. One challenge in this setting is to be able to hide the association of the (encrypted)
data items with their data-owners. A simple approach, wherein each data-owner sends encryptions/secret
shares of its data directly to the two servers, hence does not work. Our approach is to first securely merge
the data from the different data-owners in a way that removes this association, and then use the single
data-owner constructions on the merged data set. For this, both SED and CED constructions rely on onion
secret-sharing techniques. Onion secret-sharing is a non-trivial generalization of the traditional mix-nets [15].
In a mix-net, a set of senders D1, · · · ,Dm want to send their messages M1, · · · ,Mm to a server S, with the

5 In CFE, the storage server is implicit as it carries out no computations.
6 Implementation available at https://github.com/RachitG54/FED

3

https://github.com/RachitG54/FED

help of an auxiliary server A (who does not collude with S), so that neither S nor A learns the association
between the messages and the senders. We require the following generalization: each sender Di wants to
secret-share its message Mi between two servers S and A; that is, it sets Mi = σi ⊕ ρi, and wants to send ρi
to S and σi to A. While the senders want their messages to get randomly permuted in order to remove the
association of data with themselves, the association between σi and ρi needs to be retained. As described in
Section 6.2, onion secret-sharing provides a solution to this problem (and more).

In the case of CED, merging essentially consists of a multi-set union which can be solved using onion
secret-sharing. But in the case of SED, merging entails merging “search indices” on individual data sets
into a search index for the combined data set. A search index is a function that maps a keyword to a set
of records; merging such indices requires that for each keyword, the sets corresponding to it in the different
indices be identified and merged together. For this onion secret-sharing alone is not adequate. We propose
two approaches to merge the indices – one in the random oracle model using an Oblivious Pseudorandom
Function (OPRF) protocol, and another one with comparable efficiency in the standard model, relying on
2-party Secure Function Evaluation (SFE). Please see Section 6 for more details.

2 Related Work

We contrast our notion of FED with prior work in terms of various features. A detailed summary is tabularized
in Table 1.

– Multiple data owners: We allow encrypted data to be collected anonymously from multiple data-owners.
Prior works that allow this include multi-party computation [63], multi-input functional encryption [27],
and controlled functional encryption (CFE) [43], all of which suffer costs proportional to the entire
dataset. Multi-key/multi-user Searchable Encryption [29,60] is another line of work, which allows data
to be shared from multiple data owners to clients for searching of single keywords, but unlike our work,
does not hide the association of the data to its owner, nor allows data owners to be oblivious of the
clients.

– Rich functionality with strong security : Symmetric searchable encryption (SSE) [20,12,47] and its exten-
sions (including Structured Encryption [13]) support keyword searches and have performance sublinear
in the size of the dataset, but do not allow computation on the search results. In contrast, tools such as
CryptDB [50], Monomi [58] and Seabed [46] do allow full-fledged search-and -compute, but incur higher
leakage to the server and argue security in the “snapshot attacker model”, which has been criticized
for being unrealistically weak [44,28]. Moreover, their security analysis assumes fully trusted clients who
do not collude with the server(s). In contrast, we offer a stronger security model where clients may be
malicious, either server can collude with a subset of data owners and/or clients and the attacker is per-
sistent, i.e. has access to the view of the corrupt parties throughout the lifetime of the system. Leakage
to servers is limited to the leakage typical in SSE, and there is no leakage to data owners or clients.

– Computationally light clients: Our clients are very efficient and only perform work proportional to the
size of their query and the output they receive, typically independent of database size. In comparison, the
CryptDB family of constructions [50] require clients to download certain intermediate results, decrypt
them and perform the remaining computation. Similarly, the CFE scheme of [43] requires clients to
evaluate a garbled circuit on the entire dataset. While multi-client SSE has more lightweight clients than
the above, the clients still do work proportional to the size of the filtered data.

– Deployability : We allow clients to join the system dynamically – indeed, clients and data owners can be
oblivious of each others’ identity (or even number) in contrast with prior constructions [29,60], which
assume clients to be fixed at the start of the protocol and the data owner to know about all such clients.

GWAS from other primitives: Prior works have considered GWAS using cryptographic techniques like HE
[38,9] and MPC [57]. [32,16] study GWAS computation in a (non-colluding) servers model and MPC compu-
tation. However, these lines of work are fundamentally different from ours in that they do not allow clients
to search on the data before computing on it. This not only avoids the complex search functionality, but
also simplifies the computation task significantly, as securely computing statistics on a fixed data-set scales

4

independently of the actual number of data records. As such, we do not compare our efficiency the with
them in this paper.

Table 1: Comparison of related works

Functionality Security
Query-Phase
Efficiency∗∗

Search-
and-
Compute

Search
supports
Boolean
formulas

Compute
supports
general
functions

Multi
Data-
Owner

Multi
Client

Corruption Level
Notes/Additional Assumptions Client Server

Server(s) Client(s)
Data-
Owner(s)

CryptDB
[50]

Y Y Y (SQL) N N Passive Passive Passive
Trusted application server and pas-
sive DBMS server. No server-client
collusion. Only snapshot attacker.

O(1) O(t)

Seabed
[46]

Y Y Y (OLAP) N Y Passive Passive Passive
No server-client collusion. Clients
need a key given by the data owner.
Only snapshot attacker.

O(1) O(n)

Arx [49] Y Y N N N Passive Passive Passive
Trusted application server and pas-
sive DBMS server. No server-client
collusion. Only snapshot attacker.

O(1) O(t logn)

OXT [12] N Y NA N N Passive Passive Passive - O(t1k) O(t1k)

OSPIR
[33]

N Y NA N Y Passive Malicious Malicious
No server-client collusion. Also pro-
vides query privacy to clients assum-
ing no server-data owner collusion.

O(t1k) O(t1k)

BlindSeer
[47,23]

N Y NA N Y Passive Malicious Passive
No server-client collusion. Also pro-
vides query privacy to clients assum-
ing no server-data owner collusion.

O(t1 logn) O(t1 logn)

CFE [43] N NA Y (circuits) Y Y Passive Malicious Passive
No authority-client or authority-
storage collusion. Can provide query
privacy to clients.

O(n) O(n)

Multi-
key/user
SE [29,60]

N N N Y Y Passive Passive Malicious

File sharing setting. Server allowed
to collude with subset of data owners
or clients. DOs aware of clients (fixed
at start of protocol). Shared data can
be traced back to original DO.

O(1) O(n)

This
work

Y Y Y (circuits) Y Y Passive Malicious Passive

Two non-colluding servers. Either
server can collude with subset of
clients/data owners. Can provide
search/function query privacy to
clients, anonymity to data owners.
DOs oblivious of clients (can dynam-
ically join system).

O(1) O(t1k)

∗∗Based on a query of the form SELECT SUM(COL) WHERE COL1 = α1 AND COL2 = α2 · · · COLk = αk, where
COL and COLi are column names. If computation is not supported, SUM is omitted; if search is not supported
WHERE clause is omitted. n denotes the total number of records in the database and t denotes the number of
records matching the search condition. WLOG, assume COL1 = α1 filters the least number of records and t1 denotes
the number of records satisfying it. In each case, assume that all supported pre-processing has been done prior to the
query.

5

3 Preliminaries

A detailed index of the notation used in our paper is provided in Table 2. Below we give an overview of some
of the cryptographic primitives that we will use in our constructions.

Secure 2-party computation (2PC) Secure 2PC allows 2 parties to securely compute a joint function of
their private inputs, without revealing anything except the output to the other party. One of the ways to
achieve this is by using Yao’s Garbled Circuits (GCs) [63], which has been extensively studied [63,4,31,41]
and has moreover been optimized for performance by a host of recent works [39,5,65].

Secret sharing Secret sharing [52,7] refers to methods of distributing a secret to multiple participants,
each of whom is given a share of the secret. An individual share reveals nothing, but when a group of
authorized particpants combine their shares, the secret may be reconstructed. For the purpose of our work,
additive-secret sharing suffices, whereby a secret value x is split into random shares x0 and x1 s.t. x0+x1 = x.

Symmetric Searchable Encryption (SSE) In SSE [56,20,35], a (single) client offloads storage of encrypted
data to an untrusted server such that it may later perform search queries on this data. Typically SSE permits
some principled leakage, like access and query patterns of the data, to the server. A multi-client version of
SSE was proposed by Jarecki et al. [33]: here, the data owner is separate from (and does not trust) the clients
and remains online throughout the protocol. Please refer to Appendix G for a summary of MC-OXT.

Oblivious PRF (OPRF) A pseudo-random function (PRF) FK(τ), where K is the key and τ is the input,
is called oblivious [42] if there is a two-party protocol in which the first party inputs τ , the second inputs K,
the first learns the value of FK(τ) and the second learns nothing. We make use of the OPRF construction
from [34], which is secure against active corruption of the receiver and passive corruption of the party with
the key, assuming the one-more Diffie Hellman Assumption (please see Appendix B.1 for details).

4 FED Framework

We use the notion of an ideal functionality [26] to specify our requirements from an FED system. An ideal
functionality is an (imaginary) trusted entity which interacts with all the players in the system, carrying out
various commands from them. A scheme is considered secure if it carries out the same tasks as this trusted
entity, with the same secrecy and correctness guarantees.

FED is formulated as a two stage functionality, involving an initialization stage and a query stage. Fig. 1
depicts the FED functionality schematically. The parties involved are:

– Data-owners Di (for i = 1, · · · ,m, say) who are online only during the initialization phase. Each data-
owner Di has an input Zi ⊆ W ×X , where for each (w, x) ∈ Zi, w form the searchable attributes and x
the computable values. Z =

⋃
i Zi denotes the multi-set union of their inputs.

– Storage Server S, which is the only party with a large storage after the initialization stage.
– Auxiliary Server A, assumed not to collude with S.
– Clients which appear individually during the query phase. A client C has input a query of the form

(Q, f) where Q : W → {0, 1} is a search query on the attributes, and f is a computation function on a
multi-set of values. It receives in return f(Q[Z]) where Q[Z] denotes the multi-set consisting of elements
in X , with the multiplicity of x being the total multiplicity of elements of the form (w, x) in Z, but
restricted to w that are selected by Q; i.e., µQ[Z](x) =

∑
w∈W:Q(w)=1 µZ(w, x), where µR(y) denotes the

multiplicity of an element y in multi-set R.

We instantiate our framework using protocols that provide security against active corruption of the clients
and passive corruption of the other entities, allowing any subset not involving both the servers to collude.
Our protocols provide different levels of (acceptable) leakage and are efficient on large scale data. We remark
that these protocols indeed satisfy the desiderata outlined in Section 1: The data owners are not required to
trust a single central authority or co-ordinate with each other, the clients are oblivious of data owners and
of each other, and anonymity of data is maintained modulo the leakage to the storage server and auxiliary
sever.

6

SEDCED

map & 
merge-map

OPRF-based
SFE-based

sFED
Section II  

(see Figure 2)

FED

Section IV  
(see Figure 3)

Section IV-D Section IV-B
(see Figure 4)

sCED

Value Retrieval
Summation
Summation (alt)
General

Section III-A
sSED

Section III-B

Section IV-C

Onion 
Secret-Sharing

Section IV-A

sFEDD C

A

S

Z Q, f

f(Q[Z])

sCED

D CSA

X

Q

f(δT[X])

sSED

W

f

Q[W]

T

Z Q, f

f(Q[Z])

CED

CSA

Xm

Q

f(δT[X])

SED

Wm

f

Q[W]

T

Q, f

f(Q[Z])
FED C

A

S

Z1

Q, f

f(Q[Z])

Dm

D1

Zm

..

. … DmD1
ZmZ1

X1

W1

A S

QW1 Wm

…

Q̂[Ŵ]

C

Ŵ Q̂

K"

Q[W]
map

SED

DmD1

K#

merge-
map

Fig. 1: FED functionality (dotted
lines show leakage)

Keyword Search Queries: The major search query families that
have received attention in the searchable encryption literature – and
also of interest to this work – are “keyword queries.”7 A keyword
query is either a predicate about the presence of a single keyword in
a record (document), or a boolean formula over such predicates. In
terms of the notation above, the searchable attribute for each record
is a set of keywords, w ⊆ K where K is a given keyword space. That
is, W = P(K), the power set of K. A basic search query could be
a keyword occurrence query of the form Qτ , for τ ∈ K, defined as
Qτ (w) = 1 iff τ ∈ w. A more complex search query can be specified as
a boolean formula over several such keyword occurrence predicates.

Composite Queries: We shall sometimes allow Q and f to
be more general than presented above. Specifically, we allow
Q = (Q1, · · · , Qd), where each Qi : W → {0, 1} and f =
(f0, f1, · · · , fd), where for i > 0, fi are functions on multi-sets of
values, and f0 is a function on a d-tuple; we define f(Q[Z]) :=
f0(f1(Q1[Z]), · · · , fd(Qd[Z])). (This could be further generalized to
recursively allow Qi and fi to have the same general structure.)

We note that our framework allows C to specify any query it
wants. Authorization of such queries by A is a separate question and we do not discuss it further in this
work8. Note that for the ideal functionality to be fully specified, we need to describe the leakage functions.

Security Model: We provide provable security guarantees in the Universally Composable (UC) security
framework — i.e., in the real-ideal paradigm [26], with straight-line, black-box simulation in the presence of
an arbitrary environment but with a customized corruption model. In our corruption model all the parties
can be passively corrupt, (i.e. honest-but-curious), but in addition the clients can be malicious or actively
corrupt. Furthermore, the storage server S and the auxiliary server A are assumed to not collude with each
other.

Our protocols will be modular: e.g., an FED scheme will be specified in terms of two simpler functional-
ities, which themselves will be implemented separately. To prove security, we can analyze the protocol while
retaining the simpler functionalities as ideal entities, thanks to the composability property of UC security.
(which holds also for mixed corruption models involving active and passive corruptions, like the one we use)
[11]. While the details of the analysis are routine, the important detail that falls out of this analysis that is
significant is the specification of the leakages, which we shall mention along with each of the protocols (along
with details on the computational complexity cost). More details on the security analysis of our protocols is
given in Section 7.

Notation Summary. For ease of reference, we provide a brief summary of our notation in Table 2.

5 Single Data-Owner Protocols

In this section we introduce a single data-owner version of FED, denoted by sFED, and also construct a sFED
scheme. The single data-owner setting is simpler as it avoids having to “mix” data records from different
data-owners. Our sFED scheme relies on two other new functionalities we introduce, namely, (single data-
owner versions of) Searchably Encrypted Datastore (sSED) and Computably Encrypted Datastore (sCED).
We begin by presenting these.

7 We remark that the concept of searchable encryption has been generalized to more expressive forms of search
[54,13,58,14,40,21]. Our general framework applies to all these notions as well.

8 One simple way of performing such an authorization for A is for A to check the specified queries against a policy
stored with it.

7

5.1 Searchably Encrypted Datastore

Recall that in an FED or sFED scheme, a query has two components – a search query Q and a computation
function f . The Searchably Encrypted Datastore functionality (SED or sSED) has a similar structure, but
supports only the search query; all the records that match the search query are revealed to the storage server
S9. Jumping ahead, the choice of S to be the party receiving the output rather than the client C is dictated
by our plan to use this functionality in protocols for FED and sFED.

The functionality sSED is depicted in Fig. 2: There is a single data-owner D with input W ⊆ W × I,
where each element in W has a unique identifier id ∈ I as its second coordinate; the output that S receives
when a client C inputs Q is the set of identities Q[W] ⊆ I.

In Section 5.5, we shall see that a multi-client version of Symmetric Searchable Encryption (MC-SSE)
from [33] can be used to construct an sSED scheme. The main limitations of MC-SSE compared to sSED
are that (1) in the former the data-owner D remains online throughout the protocol whereas in the latter
D can be online only during the initialization phase, and (2) in the former the output is delivered to both
S and C whereas in the latter it must be delivered only to S. In our construction in Section 5.5, we shall
leverage the auxiliary server A to meet these additional requirements.

5.2 Computably Encrypted Datastore

The second functionality we introduce – CED, or its single data-owner variant sCED – helps us securely
carry out a computation on an already filtered data set. The complexity of this computation will be related
to the size of the filtered data rather than the entire contents of the data set.

In sCED, as shown in Fig. 2, a single data-owner D (who is online only during the setup phase) has an
input in the form of X ⊆ I × X . Later, during the query phase, clients can compute functions on a subset
of data. More precisely, a client C can specify a function f from a pre-determined function family, and the
storage server S specifies a set T ⊆ I, and C receives f(δT [X]) where we define δT (id, x) = x if id ∈ T and
⊥ otherwise, and δT [X] is the multiset of x values obtained by applying δT (id, x) to all elements of X.

In Section 5.4, we present protocols for sCED, for various specialized function families, as well as for a
general function family.

5.3 sFED Protocol Template

Protocol sFED: This protocol is illustrated in Fig. 2. During the initialization phase, D maps its input Z to
a pair (W,X), where W ⊆ W × I and X ⊆ I × X such that (w, x) 7→ ((w, id), (id, x)) where id is randomly
drawn from (a sufficiently large set) I. Then, in the initialization phase of sFED, the parties D, S and A
invoke the initialization phase of sSED, and that of sCED (possibly in parallel). During the query phase of
sFED, S, A and C first invoke the query phase of sSED, so that S obtains T = Q[W] as the output; then they
invoke the query phase of sCED and C obtains f(δT [X]); note that δT [X] = Q[Z] if there are no collisions
when elements are drawn from I to construct (W,X) from Z.

Leakage LsFED: The protocol sFED leaks, for every query (Q, f) from C, the set T = Q[W] to S, and in
addition provides S and A with the leakage provided by the sSED and sCED functionalities (which depends
on how they are instantiated). Note that D chooses ids at random to define W and X and the leakage
functions of sSED and sCED are applied to these sets. Leaking T is what is known in the SSE literature
as the access pattern leakage, i.e. it amounts to leaking the pattern of T over multiple queries. Specifically,
since the ids are random, T1, · · · , Tn contains only the information provided by the intersection sizes of all
combinations of these sets. Formally, this leakage is given by

pattern(T1, · · · , Tn) := {
⋂
i∈R

Ti}R⊆[n] (1)

9 This is the access pattern leakage, which is already present in most SSE schemes [20,12].

8

SEDCED

map & 
merge-map

OPRF-based
SFE-based

sFED
Section II  

(see Figure 2)

FED

Section IV  
(see Figure 3)

Section IV-D Section IV-B
(see Figure 4)

sCED

Value Retrieval
Summation
Summation (alt)
General

Section III-A
sSED

Section III-B

Section IV-C

Onion 
Secret-Sharing

Section IV-A

sFEDD C

A

S

Z Q, f

f(Q[Z])

sCED

D CSA

X

Q

f(δT[X])

sSED

W

f

Q[W]

T

Z Q, f

f(Q[Z])

CED

CSA

Xm

Q

f(δT[X])

SED

Wm

f

Q[W]

T

Q, f

f(Q[Z])
FED C

A

S

Z1

Q, f

f(Q[Z])

Dm

D1

Zm

..

. … DmD1
ZmZ1

X1

W1

A S

QW1 Wm

…

Q̂[Ŵ]

C

Ŵ Q̂

K"

Q[W]
map

SED

DmD1

K#

merge-
map

Fig. 2: sFED functionality (left) and the protocol template. The dotted lines indicate leakage. The protocol
template is in terms of functionalities sSED and sCED (which are in turn instantiated using separate
protocols) and the parties do not communicate to each other outside of (the instantiation of) these two
functionalities.

5.4 sCED Protocols

We develop several sCED protocols for computing various functions on data filtered by a search query. All
our protocols could be seen as using secure multi-party computation (MPC) techniques to achieve their goals.
In particular, these protocols use, as appropriate, secret-sharing schemes, additive homomorphic encryption,
and Yao’s garbled circuits. The protocols have been adapted to the two-phase, two-server setting of sCED,
wherein A can hold only small amounts of data after the initialization phase.

In each of the protocols, D has an input X ⊆ I ×X during the initialization phase. It will be convenient
to define the set J ⊆ I as J = {id|∃x s.t. (id, x) ∈ X}. During each query, S has an input T ⊆ J and C
has an input f from the computation function family. The complexity of these protocols are summarized in
Appendix D.

Value Retrieval: This is the functionality associated with standard SSE, where the selected values, or
documents, are retrieved without any further computation on them. There is a single function in the corre-
sponding computation function family, given by f(δT [X]) = δT [X]. When the client C and the data owner
D are the same party (as is the case in the simplest version of SSE), this can be implemented in a straight-
forward fashion using a PRF. Below we give a simple scheme which relies on A to extend this to a setting
with (multiple) clients who do not communicate directly with D.
Protocol sValRet

– Initialization Phase: D picks a PRF key K, sets βid := xid ⊕ FK(id) and sends {(id, βid)}id∈J to S
and K to A, who store them.

– Computation Phase:
S picks a PRF key K1, computes a random permutation of T and sends these to A. Additionally, S
computes the same permutation of {βid ⊕ FK1(id) | id ∈ T} and sends this to C. A sends {FK(id) ⊕
FK1(id) | id ∈ T} to C. C outputs {ai ⊕ bi}i, where {ai}i and {b}i are the messages it received from S
and A.

– Leakage, LsValRet : On initialization, the ID-set J is leaked to S. On each query, T is leaked to A.

Recall that, in the overall sFED protocol template, ids will be chosen randomly. Hence leaking J amounts
to leaking only its size |X| (the data can be padded with dummy entries so that instead of |X|, only an
upper bound on it is leaked), and leaking T amounts to only leaking its pattern over multiple queries (called
access pattern leakage: see Equation 1).

9

We briefly sketch the elements in the protocol that help it achieve security. In the initialization phase
D secret-shares its data between the two non-colluding servers, so that an adversary corrupting either one
learns no information about the data. In the computation phase, C receives freshly randomized secret-shares
(using the key K1) of the answer to its query, with the elements randomly permuted. This is because, if C
does not collude with one of the servers it should receive no information other than the multi-set of retrieved
values, f(δT [X]). In particular, it may not learn whether an id selected by one query gets selected again under
another query. The permutation and fresh secret-sharing ensures that its view can be completely simulated
just based on the multi-set of retrieved values, f(δT [X]) = {xid|id ∈ T}. Note that if C colludes with one of
the servers, this rerandomization has no effect, but also, in that case, it is allowed to learn T and there is no
need for rerandomization.

Summation: The family FSum consists of the single function f such that f(S) =
∑
x∈S x, where the

summation is in a given abelian group which the domain of values is identified with. The following simple
and efficient protocol yields a sCED scheme for summation, with A learning only the size and the “pattern”
information about the input of S.
Protocol sSum

– Initialization Phase: D picks a PRF key K, sets βid := xid + FK(id) and sends {(id, βid)}id∈J to S
and K to A, who store them.

– Computation Phase: S defines the set R := {id | id ∈ T} and a random value ρ; it sends (ρ,R) to A
and γ := ρ+

∑
id∈T βid to C. A sends δ := ρ+

∑
α∈R FK(α) to C. C outputs γ − δ.

– Leakage, LsSum : On initialization, the ID-set J is leaked to S. On each query, T is leaked to A.

This protocol is a natural extension of the Value Retrieval scheme above, with the same initialization
phase. The client C receives a fresh additive secret-sharing of the single output value it seeks. The security
argument is similar to before; in particular, if C does not collude with either server, its view can be completely
simulated from its output without any leakage.

In Appendix C we present an alternate protocol for summation, using additive homomorphic encryption
(AHE), which has lower communication complexity and also avoids the leakage of the filtered set T to A.
However, owing to the usage of AHE, the protocol is much slower compared to the one above.

Value Retrieval and Summation for vectors: The above protocols can be easily extended to the setting
where each value x is a vector (x1, · · · , xm), and the function f acts on a subset of coordinates. C will send
the relevant coordinates to A (but not to S). The protocol could be seen as parallel executions of the original
protocol, one for each coordinate of interest. The execution is carried out for all coordinates at S, but at the
last step, A sends to C only the shares for coordinates included in f . In terms of leakage, the coordinates of
interest are leaked to A but not to S. Note that efficiency can be improved at the cost of leaking coordinates
of interest to S since then S need not carry out execution for coordinates that are not of interest.

General Functions: Our sCED scheme for general functions could be seen as an adaptation of the CFE
scheme of [43] for general functions, despite some important differences between the two models.10

A client C who wishes to evaluate a function f sends a circuit representation of f to A. The inputs to
this circuit are the values {xid}id∈T which none of the participants in the query phase (C, A nor S) knows.
At a high-level, the idea is that A will construct a garbled circuit for f and sends it to S. For each input bit
for this circuit, there are two labels, which will both be encrypted by A using keys that are derived from a
master key that the data-owner D gives it (as described below). All these encrypted labels are sent along
with the garbled circuit. To evaluate the garbled circuit, S needs to know how to decrypt one out of the two
labels corresponding to each input position. To enable the evaluation, D would have provided S with the
decryption key for the labels corresponding to each bit of xid, for each id (during the initialization phase).
A detailed description of this scheme is given in Fig. 3.

The leakage can be further reduced by allowing C to specify any part of the function as a private input to
the circuit computing f (rather than being hardwired into the circuit). For each of the wires corresponding

10 In particular, the model of CFE conflates the client C and the storage server S; also, it does not allow the data-
owner D to directly communicate with the auxiliary sever A (resulting in the use of public-key encryption in [43],
which we avoid).

10

to this private input, the two labels will be provided by C to A, and C will send one of these two labels to S
(so that neither S nor A by itself learns this input). The formal security proof uses the security of the garbled
circuits (similar to the argument in [43]):

Protocol sCktEval: A sCED scheme for general functions:
The values computed over (i.e., elements in X) are represented as bit strings of the same size, say |x| = t. We shall
refer to a Symmetric Key Encryption scheme (SKE) with algorithms (SKE.Gen, SKE.Enc,SKE.Dec) (denoting Key
Generation, Encryption and Decryption algorithms respectively).

– Initialization Phase: The data-owner D picks a PRF key K. For each (id, xid) ∈ X, where xid = (xid1 , · · · , xidt),
it computes {ωid,i, λ

0
id,i, λ

1
id,i}ti=1, where ωid,i = xid,i ⊕ νid,i, with νid,i being a pseudorandom bit, and λbid,i (for

b = 0, 1) are two encryption keys generated by SKE.Gen, all computed using FK(id, i) as the source of randomness.

D sends {id, {λx
id
i

id,i, ωid,i}ti=1}id∈X to S, and it sends K to A, for storing.
– Computation Phase: C’s input is a function f defined on a multi-set (order of the inputs not being important).

We assume that given a number n, a circuit representation of f can be efficiently computed corresponding the
input being a multi-set of size n. The storage server S’ input is a set T ⊆ X.

1. S sends T to A (randomly permuted). Then, for each id ∈ T , A computes {νid,i, λ0
id,i, λ

1
id,i}ti=1 using

{FK(id, i)}ti=1.
2. C sends f to A. Then, A constructs a garbled circuit for f specialized for |T | inputs. The input wires of this
circuit are indexed by {(id, i)}id∈T,i∈[t]. Let (τ0id,i, τ

1
id,i) be the pair of wire-labels used for each such input wire.

Then, for each (id, i), and b ∈ {0, 1}, it defines the ciphertext

cbid,i ← SKE.Enc
λ
b⊕νid,i
id,i

(τ
b⊕νid,i
id,i).

Note that c
ωid,i

id,i is the encryption of τ
xidi
id,i using the key λ

xidi
id,i.

A sends to S {(c0id,i, c1id,i)}id∈T,i∈[t], along with the garbled circuit except the output decoding map. It sends the
output decoding map to C.

3. For each (id, i), S decrypts c
ωid,i

id,i using λ
xidi
id,i, to get τ

xidi
id,i . It uses these labels for the input wires to evaluate the

circuit, and obtains the output labels. It sends these output labels to C.
4. C uses the output decoding map from A, and output labels from S to calculate the output.

– Leakage, LsCktEval : On initialization, the ID-set J is leaked to S. On each query, T and f are leaked to A, and
the circuit structure of f (as revealed by the garbled circuit) is leaked to S.

– Complexity: timeinit
D = O(|X|). Suppose the circuit for f is of size s, and its output has m bits. Then,

timequery
A ,timequery

S = O(|T |(s)); timequery
C = O(m).

Fig. 3: Protocol details for sCktEval.

Composite Queries: Recall that a composite query consists of Q = (Q1, · · · , Qd) and f = (f0, f1, · · · , fd)
such that f(Q[Z]) := f0(f1(Q1[Z]), · · · , fd(Qd[Z])). As we shall see in Section 8, composite queries are very
useful in practice since they enable confining expensive parts of the computation, for instance using garbled
circuits, to smaller size sets obtained by performing inexpensive computation on filtered results. We note that
the sSED protocol for non-composite queries directly generalizes to composite queries, by simply running d
instances of the original sSED functionality to let S learn Ti = Qi[W] for each i. But we need to adapt the
sCED protocol to avoid revealing each fi(Qi[Z]) to C.

Towards adapting the above discussed non-composite queries sCED protocols, we observe that in all our
protocols, the last step has S and A sending secret shares for the output to C. The reconstruction operation
to calculate the final output from these secret shares is simple and efficient. We use this common theme in
our protocols to allow calculation of composite queries.
Protocol sComposite: We modify our sCED protocols as follows: Instead of S and A sending the shares to
C, they carry out a secure 2-party computation of f0 with each input being secret-shared as above. This can

11

be implemented for a general f0 using Yao’s garbled circuits and oblivious transfer (OT) [63], or for special
functions like linear combinations using standard and simpler protocols.
Leakage, LsComposite : Leakage includes the composed leakage of running d instances to compute (f1, . . . , fd).
Also, the function f0 is leaked to A and S (if f0 is evaluated using Yao’s garbled circuits, only the circuit
structure used to evaluate f0 is leaked to S).

5.5 sSED Protocols

In this section, we discuss how to instantiate the building block of sSED used in our sFED protocols
by adapting constructions of symmetric searchable encryption (SSE) [12] from the literature. Though the
standard setting for SSE is described in terms of keyword searches in a collection of documents, it extends to
searches over a table in a relational database as follows: each row in the table is interpreted as a document,
consisting of “keywords” of the form (attribute, value), one for each attribute (column) in the table. Then
a search query that is specified as a formula over attribute-value equality predicates can be encoded as a
formula over keyword predicates.

Recall the Jarecki et al. [33] extension of SSE, which involves a data owner in addition to a client and
server. There the data owner is assumed to remain online throughout, as the untrusted server cannot serve
client queries itself. In sSED, we further separate the roles of the data owner and the query-phase assistant,
by introducing an untrusted auxiliary server. This allows the data owner to be present only at the initial
phase when the database is constructed. More importantly, in the multiple data owner setting (in which no
one data owner can be trusted with access to all the data), it is crucial to avoid relying on any one data
owner to control clients’ access to the entire database. Finally, in sSED, we seek to handle active corruption
of clients.

We outline some approaches on how to adapt the MC-OXT protocol of [33] to account for the above
requirements of sSED. We sketch these in more detail below (Fig. 4). As a lightweight modification, we can
simply let the auxiliary server A play the role of the data owner during the query phase, as well as the client
in the MC-OXT protocol. This incurs some leakage to A, namely the search queries Q and the search outcome
T . Note that since sSED is instantiated with random IDs, when used in the sFED protocol template (Fig. 2),
only the pattern of the search outcomes (i.e. the access pattern leakage, as in Equation 1), is revealed to A and
S. Also, since many of the sCED protocols already leak this information to A, this provides an appropriate
level of security for sSED protocols to be used in the sFED protocol template. We also present two security-
efficiency tradeoffs relative to the above protocol (see Fig. 4 for a detailed description of the tradeoffs and
the modifications, see Appendix G for a summary of MC-OXT and Appendix A for the notation).

Security - Efficiency Tradeoffs:

– We can avoid leaking the search outcome to A, but only leak an upper bound on the size of the outcome,
by using an additive homomorphic encryption instead of plain public-key encryption used in the SSE
scheme of [33] to encrypt the ids. This solution could be seen as an instance of onion secret-sharing
(Section 1.3) that supports reusability.

– We can retain the original efficiency of the SSE scheme, but slightly increase the leakage to S (only if
the keyword query involves a boolean condition over multiple keyword predicates) and avoid leaking the
search outcome to A by simply omitting the above mentioned layer of encryption.

– Further, if we start with the OSPIR-OXT protocol in [33] (discussed in Appendix G) that handles
actively corrupt clients and prevents leakage of client query to D through the use of OPRF evaluations,
while maintaining query authorization through the use of access policies, then we can also avoid leaking
the client search query to A. We leave this for future work.

6 FED Protocols

Our FED protocol template is identical to that of the sFED protocol, except that the functionalities sSED
and sCED are replaced by the analogous multiple data-owner versions, SED and CED (see Fig. 5).

12

13
High Level Overview of query phase of MC-OXT in [33]:

1. C inputs a conjunctive query and sends this to D.
2. D performs computation and sends tokens as authorization to C.
3. C performs additional computation over these tokens and sends them to S.
4. S uses the tokens by C to perform search and returns the encrypted set of document indices to C.
5. C locally decrypts these indices to obtain output of the MC-OXT protocol.
6. C requests the corresponding documents from S.

Modification to an sSED protocol:

– Initialization phase: The initialization phase proceeds exactly as in the MC-OXT protocol, except, at the end,
the keys for authorizing a query are now sent to A instead of D.

– Query phase:
1. C inputs a conjunctive query and sends this to A.
2. A performs the computation intended by D and C (above in steps 2,3) and sends tokens to S.
3. S uses the tokens by A to perform search and returns the encrypted set of document indices to A.
4. A decrypts the indices to obtain output of the MC-OXT protocol and sends this to S.

Leakage, LMC−OXT−mod : Leakage to A is equivalent to leakage to D during query phase of MC-OXT. A has an
additional leakage of the filtered set of id’s and the size of documents matching least frequent keyword. C does not
learn the filtered set of id’s, the size of the documents matching to least frequent keyword or the pattern of the least
frequent keyword. In other words, C does not incur any leakage in this modification. Leakage to S stays same as in
MC-OXT.
Complexity: timeinit

D = O(
∑
w∈K |DB(w)|); timequery

A ,timequery
S = O(|SP|); timequery

C = O(1).

Modification using Additive Homomorphic Encryption:
Notation 〈〈M〉〉PK denotes additive homomorphic encryption of M using a public-key PK. Let time per encryption be
timeHomEnc and decryption be timeHomDec.

– Initialization Phase:
1. A and S create a public/secret key-pair (PKA, SKA) and (PKS, SKS) for the homomorphic encryption scheme

and publish PKA and PKS respectively.
2. D proceeds exactly similar as in MC-OXT. Whenever D encrypts the database in MC-OXT. It stores an additive

homomorphic encryption of id instead of a symmetric key encryption, i.e. Enc(K, id) is replaced by 〈〈id〉〉PKA .
– Query Phase:

1. C inputs a conjunctive query and sends this to A.
2. A performs the computation intended by D and C (above in steps 2,3) and sends tokens to S.
3. S uses the tokens by A to perform search and returns the encrypted set of document indices to A, i.e. S receives
{cid}id∈T where cid = 〈〈id〉〉PKA . For each id, it chooses a random value and adds the random value to the
ciphertext. i.e. γid = 〈〈rid〉〉PKA + cid and δid = 〈〈−rid〉〉PKS . S sends {(γid, δid)}id∈T to A.

4. A decrypts using SKA to reveal {(id + rid, δid)}id∈T . A encrypts using PKS and calculates {ηid}id∈T where
ηid = 〈〈id+rid〉〉PKS + δid. It permutes this set and sends to S. (Note:ηid = 〈〈id+rid〉〉PKS + 〈〈−rid〉〉PKS = 〈〈id〉〉PKS)

5. S decrypts using SKS to reveal {id}id∈T .

Leakage, LMC−OXT−mod−adhom : Leakage to A is equivalent to leakage to D during query phase of MC-OXT. A
additionally leaks the cardinality of the filtered set of id’s and the size of documents matching least frequent
keyword. C does not incur any leakage in this modification. Leakage to S stays same as in MC-OXT.
Complexity: timeinit

DO = O((
∑
w∈K |DB(w)|)timeHomEnc); timequery

A ,timequery
S = O(|SP| + |T |(timeHomEnc +

timeHomDec)); time
query
C = O(1).

Modification by Removing Encryption:

– Initialization Phase: D proceeds as in MC-OXT, it stores the plaintext in clear, i.e. Enc(K, id) is replaced by id.
– Query Phase:

1. C inputs a conjunctive query and sends this to A.
2. A performs the computation intended by D and C (above in steps 2,3) and sends tokens to S.
3. S uses the tokens by A to perform search and learns the set of filtered indices i.e. {id}id∈T

Leakage, LMC−OXT−mod−noenc : Leakage to A is equivalent to leakage to D during query phase of MC-OXT. A
learns the size of documents matching least frequent keyword and nothing else. C does not incur any leakage in this
modification. Leakage to S increases when compared to the leakage of S in MC-OXT. S learns each id in the least
frequent keyword and is also able to learn intersection patterns between each id in the least frequent keyword and
other queried keywords. However, if performing single keyword search, the leakage in this protocol exactly matches
leakage in MC-OXT.
Complexity: timeinit

D = O(
∑
w∈K |DB(w)|); timequery

A ,timequery
S = O(|SP|); timequery

C = O(1).

Fig. 4: Security-Efficiency tradeoffs in modified MC-OXT in [33].

Protocol FED: Each data-owner Di maps its input Zi to a pair (Wi, Xi), where Wi ⊆ W×I and Xi ⊆ I×X
such that (w, x) 7→ ((w, id), (id, x)) where id is randomly drawn from (a sufficiently large set) I.11 After that,
all the parties proceed exactly as in sFED, but with the parties accessing SED and CED instead of sSED
and sCED, and with each data-owner using (Wi, Xi) as its input and X =

⋃
iXi.

Leakage LFED: The leakage is similar to LsFED, but with leakage from sSED and sCED schemes replaced
by those from SED and CED respectively. Specifically, on a client query (Q, f), the leakage consists of the
pattern information of the set T = Q[W] to S (also called as access pattern leakage), where W =

⋃
iWi; also

the leakages from SED and CED are provided to S and A.
The main challenge then is in realizing the functionalities SED and CED, for reasonable leakage functions.

We present our protocols for realizing these functionalities next.

6.1 Protocol Template for SED

We describe a general protocol template to realize the SED functionality, using access to the sSED function-
ality. The high-level plan is to let A create a merged database so that it can play the role of D for sSED.
However, since we require privacy against A, the merged database should appear shorn of all information
(except statistics that we are willing to leak). Hence, during the initialization phase, we not only merge the
databases, but also replace the keywords with pseudonyms and keep other associated data encrypted. We use
pseudonyms for keywords (rather than encryptions) to support queries: during the query phase, the actual
keywords will be mapped to these pseudonyms and revealed to A. These two tasks at the initialization and
query phases are formulated as two sub-functionalities — merge-map and map— collectively referred to as
the functionality mmap, as described below.

Functionality Pair mmap = (merge-map, map)

– Functionality merge-map takes as inputs Wi from each Di; it generates a pair of “mapping keys”
Kmap = (KS,KA) (independent of its inputs), and creates a “merged-and-mapped” input set, Ŵ . Merg-
ing simply refers to computing the (multi-set) union W =

⋃
iWi; mapping computes the multi-set

Ŵ = {(ŵ, îd)|(w, id) ∈W, ŵ = MKmap(w), and îd = MKmap(id)}, where the mapping function M is to be

specified when instantiating this template.12 It outputs KS to S and (Ŵ ,KA) to A. (Since KA will be
stored by A, we require that it be short, independent of the data size.)

– Functionality map takes KS and KA as inputs from S and A respectively, and a query Q from a client
C; then it outputs a new query Q̂ to C. We shall require that there is a decoding function D such that
Q[W] = {DKS

(îd)|îd ∈ Q̂(Ŵ)}, where Ŵ is as described above.

These functionalities may specify leakages to S and/or A, but not to the data-owners or clients. Note that
since map gives an output Q̂ to C, we shall require that it can be simulated from Q.

The protocol SEDsSED,mmap is shown in Fig. 6. In this protocol, sSED is invoked with A playing the role
of the data-owner as well. The invocation of merge-map is part of the initialization phase and that of map
is part of the query phase. As shown in the figure, S uses DKS

(decoding function) to compute its output

Q[W] from Q̂(Ŵ).
Note that A does not store any additional information between the two phases (other than what the

implementation of sSED requires).

Leakage: Since this protocol delivers the merge-mapped data Ŵ to A, it leaks certain statistical information
about the merged data W (not individual datasets Wi) to A. The exact nature of the leakage depends on
the mapping-function M13.We note that an adversary corrupting A after the initialization phase will not

11 I should be large enough so that we may assume that each (honest) data-owner will use a unique id for each record
(w, x), disjoint from the set of IDs used by the others, except with negligible probability.

12 For notational simplicity, we have specified the mapping using a single function M over W ∪ I. Typically, this
function acts differently on W and I, using different parts of the key Kmap.

13 This leakage can be avoided by relying on secure two-party computation of a certain function between A and S
during initialization, but with high communication costs. Other implications of this leakage include A being able

14

obtain this leakage, since A deletes this merged data and retains only the short keys.14 This leakage is also
removed if we base our sSED scheme on simpler SSE schemes supporting only single keyword queries (please
see Appendix B.3 for this discussion). Leakages from merge-map, map and sSED (the latter on the merged
dataset) will also be included in the leakage of this protocol.

SEDCED

map & 
merge-map

OPRF-based
SFE-based

sFED
Section II  

(see Figure 2)

FED

Section IV  
(see Figure 3)

Section IV-D Section IV-B
(see Figure 4)

sCED

Value Retrieval
Summation
Summation (alt)
General

Section III-A
sSED

Section III-B

Section IV-C

Onion 
Secret-Sharing

Section IV-A

sFEDD C

A

S

Z Q, f

f(Q[Z])

sCED

D CSA

X

Q

f(δT[X])

sSED

W

f

Q[W]

T

Z Q, f

f(Q[Z])

CED

CSA

Xm

Q

f(δT[X])

SED

Wm

f

Q[W]

T

Q, f

f(Q[Z])
FED C

A

S

Z1

Q, f

f(Q[Z])

Dm

D1

Zm

..

. … DmD1
ZmZ1

X1

W1

A S

QW1 Wm

…

Q̂[Ŵ]

C

Ŵ Q̂

K"

Q[W]
map

SED

DmD1

K#

merge-
map

Fig. 5: FED protocol template

A S

QW1 Wm

…

Q̂[Ŵ]

C

Ŵ Q̂

K𝖲

Q[W]
map

sSED

DmD1

K𝖠

merge-
map

Fig. 6: MDSE protocol template using three func-
tionalities sSED, merge-map and map.

Following the template, to instantiate a FED protocol, we instantiate SED and CED protocols in this
section (see Table 3 for a quick summary). To do so, we first introduce the primitive of onion-secret sharing,
which we will use in our constructions.

6.2 Onion Secret-Sharing

To illustrate onion secret-sharing, let us first consider the following simplified task: Each sender Di wants to
share its message Mi between two servers S and A; that is, it sets Mi = σi ⊕ ρi, and wants to send σi to
S and ρi to A. While the senders want their messages to get randomly permuted, removing the association
of the data with themselves, the association between σi and ρi needs to be retained. Onion secret-sharing
provides a solution to this problem, as follows. Below, let PKS be the public-key of S for a semantically
secure public-key encryption scheme (PKA is defined analogously), and let JMKPK denote encryption of M
using a public-key PK. Now, each Di sends J(ρi, ζi)KPKS

to A, where ζi is of the form JσiKPKA
. A mixes these

ciphertexts and forwards them to S, who decrypts them to recover pairs of the form (ρi, ζi). Now, S reshuffles
(or sorts) these pairs, stores ρi and sends ζi (in the new order); A recovers σi from ζi (in the same order as
ρi are maintained by S).

This can be taken further to incorporate additional functionality. As an example of relevance to us,
suppose A wants to add a short, private tag to the messages being secret-shared so that the tag persists
even after random permutation. Among the messages which were assigned the same tag, A should not be
able to link the shares it receives after the permutation to the ones it originally received; S should obtain no
information about the tags. Looking ahead, this additional functionality will be required in one of our SED
constructions. One solution is for A to add encrypted tags to the data items, and then while permuting the
data items, S would rerandomize the ciphertexts holding the tags. We present an alternate approach, which

to link the retrieved records with the ones in Ŵ , and further, if it collues with a client, being able to deanonymize
the queried keywords.

14 More formally, assuming adaptive corruption of A after the setup phase (with reliable erasures), the adversary
doesn’t get this leakage.

15

does not require additional functionality from the public-key encryption scheme, but instead augments onion
secret-sharing with extra functionality:

– Di holds input Mi and shares it as Mi = σi ⊕ ρi. It creates a 3-way additive secret sharing of 0 (the all
0’s string), as αi ⊕ βi ⊕ γi = 0, and sends (αi, Jβi, ρi, Jγi, σiKPKA

KPKS
) to A.

– A assigns tags τi for each of them, and sends (in sorted order)
(τi ⊕ αi, Jβi, ρi, Jγi, σiKPKA

KPKS
) to S.

– S sends (τi ⊕ αi ⊕ βi, Jγi, σiKPKA
) to A, in sorted order; it stores ρi (in the same sorted order).

– A recovers (τi ⊕ αi ⊕ βi ⊕ γi, σi) = (τi, σi).

This allows S and A to receive all the shares (in the same permuted order); S learns nothing about the tags;
A cannot associate which shares originated from which Di, except for what is revealed by the tag. (Even if
S or A collude with some Di, the unlinkability is retained for the remaining Di). In Section 6.3, we use a
variant of the above scheme.

6.3 Instantiating SED Protocol Template

We give two constructions, with different efficiency-security trade-offs. Recall that each data-owner Di has
an input Wi ⊆ W × I. In both the solutions, Di shall use a representation of Wi as a set W̃i ⊆ K × I such
that (w, id) ∈ Wi iff w = {τ |(τ, id) ∈ W̃i}. In the two solutions below, the mapping function M maps the

keywords differently; but in both the solutions, an identity id that occurs in W̃i is mapped to ζ idi ← JidKPKS

(an encryption of id under S’s public-key). In one scheme, we use an oblivious pseudorandom function
(OPRF) protocol to calculate M, while the other relies on a secure function evaluation for equality. While an
OPRF protocol is more complex than secure equality evaluation, access to OPRF allows us to construct a
simpler protocol. On the other hand, this presents a tradeoff in security: suitably efficient OPRF protocols are
known only in the heuristic Random Oracle model [33], whereas very efficient secure evaluation of equality
is possible in the standard model. The details of the protocols follow. Their complexity is summarized in
Appendix D.

Construction mmap-OPRF The pair of protocols for the functionalities merge-map and map, collectively
called mmap-OPRF, is shown in Fig. 7. In this solution, the mapping key KA is empty, and KS consists
of a PRF key K, in addition to a secret-key for a PKE scheme, SKS. M maps each keyword τ using a
pseudorandom function with the PRF key K. This is implemented using an oblivious PRF execution with
S, in both merge-map and map protocols. That is, for w ⊆ K we have MKmap(w) = {FK(τ)|τ ∈ w}, where F
is a PRF.

Note that mmap-OPRF uses two a priori bounds (or, includes such bounds as part of leakage) for each

data-owner, Ni and Li such that |W̃i| ≤ Ni and |Ki| ≤ Li, where Ki = {τ |∃id s.t. (τ, id) ∈ W̃i} is the set of

keywords in Di’s data (recall that W̃i is a representation of Di’s data as keyword-identity pairs).
We point out the need for OPRF evaluations. If we allowed S to simply give the key K to every data-

owner to carry out the PRF evaluations locally, then, if A colludes with even one data-owner Di, it will be
able to learn the actual keywords in the entire data-set. As described below, using an OPRF considerably
improves on this.

Leakage, LOPRF
mmap : S learns the bounds Ni and Li for each i, and A learns

∑
iNi; from the map phase, S

learns the number of keywords in the query.
We also include in LOPRF

mmap what the output Ŵ to A reveals (being an output, this is not “leakage” for

mmap-OPRF; but it manifests as leakage in the SED protocol that uses this functionality). Ŵ reveals an
anonymized version of the keyword-identity incidence matrix of the merged data,15where the actual labels
of the rows and columns (i.e., the keywords and the ids) are absent. If A colludes with some data-owners,

15 This is a 0-1 matrix with 1 in the position indexed by (τ, id) iff (τ, id) ∈
⋃
i W̃i. The rows and columns may be

considered to be ordered randomly.

16

Protocol mmap-OPRF

merge-map:

– Keys. S generates a keypair for a CPA-secure PKE scheme, (PKS, SKS), and similarly A generates (PKA, SKA).
The keys PKS and PKA are published. S also generates a PRF key K.

– Oblivious Mapping. Each data-owner, for each τ ∈ Ki, Di engages in an Oblivious PRF (OPRF) evaluation
protocol with S, in which Di inputs τ , S inputs K and Di receives as output τ̂ := FK(τ). Di carries out Li − |Ki|
more OPRF executions (with an arbitrary τ ∈ Ki as its input) with S.

– Shuffling. Each data-owner Di computes ζ idi ← JidKPKS , for each id such that there is a pair of the form (τ, id) ∈
W̃i. All the data-owners use the help of S to route the set of all pairs (τ̂ , ζ idi) to A, as follows:

• Each Di, for each (τ, id) computes ξidi,τ ← J(τ̂ , ζ idi)KPKA , and sends it to S. Further Di computes Ni−|W̃i| more
ciphertexts of the form J⊥KPKA .

• S collects all such ciphertexts (Ni of them from Di, for all i), and lexicographically sorts them (or randomly
permutes them). The resulting list is sent to A.

• A decrypts each item in the received list, and discards elements of the form ⊥ to obtain a set consisting of
pairs of the form (τ̂ , îd), where îd = ζ idi . Ŵ is defined as the set of pairs of the form (ŵ, îd) where ŵ contains
all τ̂ values for each îd.

– Outputs. A’s outputs are Ŵ and an empty KA; S’s output is KS = (SKS,K).

map: A client C has an input Q which is specified using one or more keywords. For each keyword τ appearing in Q, C
engages in an OPRF execution with S, who inputs the key K that is part of KS. The resulting query is output as τ̂ .

Fig. 7: Protocol mmap-OPRF implementing functionality mmap.

it learns the actual keyword labels of all the corresponding keywords held by the colluding data-owners. As
we remarked in the leakage description of SED and Footnote 14, this leakage doesn’t occur if A is corrupted
after the setup phase or if we use SSE schemes based on single keyword queries for constructing sSED.

Construction mmap-SFE Our next protocol avoids OPRF evaluations. The idea here is to allow each data
owner to send secret-shared keywords between S and A, and rely on secure function evaluation (SFE) to
associate the keywords with pseudonymous handles, so that the same keyword (from different data owners)
gets assigned the same handle (but beyond that, the handles are uninformative). Further, neither server
should be able to link the keyword shares with the data owner from which it originated, necessitating a
shuffle of the outputs. Due to the complexity of the above task, a standard application of SFE will be very
expensive. Instead, we present a much more efficient protocol that relies on secure evaluation only for equality
checks, with the more complex computations carried out locally by the servers; as a trade-off, we shall incur
leakage similar to that of the OPRF-based protocol above. Below, we sketch the ideas behind the protocol,
with the formal description in Fig. 8.

Consider two data owners who have shared keywords τ1 and τ2 among A and S, so that A has (α1, α2) and
S has (β1, β2), where τ1 = α1⊕β1 and τ2 = α2⊕β2. Note that τ1 = τ2 ⇔ α1⊕β1 = α2⊕β2 ⇔ α1⊕α2 = β1⊕β2.
So, for A to check if τ1 = τ2, A and S can locally compute α1⊕α2 and β1⊕β2 and use a secure evaluation of the
equality function to compare them (with only A learning the result). By comparing all pairs of keywords in
this manner, A can identify items with identical keywords and assign them pseudonyms (e.g., small integers),
while holding only one share of the keyword.

We note that using securely pre-computed correlations, secure evaluation of the equality function can be
carried out very efficiently, simply by exchanging a pair of values in a sufficiently large field. The strings to
check for equality will be mapped using a collision resistant hash to, say 128 bits, and interpreted as elements
in a field, say F = GF (2128). The protocol uses a pre-computed correlation: Alice holds (a, p) ∈ F2 and Bob
holds (b, q) ∈ F2 such that a+ b = pq and p, q and one of a, b are uniformly random. Alice sends u := x+ p
to Bob, where x is her input. Bob replies with v := q(u− y)− b, where y is his input. Alice concludes x = y
iff a = v.

17

The data shared by the data owners to the servers includes not just keywords, but also the records
(document identifiers) associated with each keyword. To minimize the number of comparisons needed, each
data owner packs all the records corresponding to a keyword τ into a single list that is secret-shared along
with the keyword (rather than share separate (τ, id) pairs). However, after handles have been assigned to
the keywords, such lists should be unpacked and shuffled to erase the link between multiple records that
came from a single list (and hence the same data owner). Each entry in each list can be tagged by A using
the keyword handle assigned to the list, but then the entries need to be shuffled while retaining the tag
itself. This is accomplished using the onion secret-sharing technique discussed in Section 1.3. The protocol
described there considered a one-bit tag (“marked” or not), but it directly generalizes for bit-strings as tags.

The full protocol involves a few other details: the initial secret sharing of the keywords are delivered to
the two servers using onion secret-sharing (so that while adding the tags, A cannot link the data items to
the data owners); the number of entries in individual lists for each keyword ; the dummy entries in a list are
culled jointly by the two servers. We refer the reader to the detailed description of the protocol in Fig. 8.

Efficiency. We note that this construction uses O((
∑
i Li)

2) secure equality checks, where Li is an upper
bound on the total number of keywords in Di’s data. In comparison, the previous construction needed
O(

∑
i Li) OPRF evaluations. Even though secure equality checks have a low online cost, when the number

of keywords involved is large, the quadratic complexity can offset this advantage. Hence, in Appendix B.2,
we provide a mechanism to improve the efficiency of this construction, using a partition of the keyword space
into bins.
Leakage, LSFE

mmap : The leakage includes LOPRF
mmap above, with the following additions: during the merge-map

phase S learns an upper bound L ≥ |
⋃
iKi|; from the map phase, A learns the pattern of the keywords in a

query. During the query phase, the number of keywords in each query are leaked to A.
Please see Section 7 for a detailed analysis of security.

6.4 CED Protocols

Upgrading an sCED protocol to a CED protocol is simpler than the sSED to SED transformation: Since
there are no indices to be computed as part of a sCED protocol, we do not need to reconstruct a merge-
mapped dataset. Indeed, instead of using sCED functionality as a blackbox, we can directly modify the
initialization phase of the sCED protocol. Since the sCED protocols tend to keep all the data records secret-
shared between S and A, we need only have the data owners route their data shares to the two servers using
onion secret-sharing. We show how the sCED schemes in Section 5.4 are modified in this manner.

Value Retrieval and Summation: Below we describe how the sCED scheme in Section 5.4 for Value
Retrieval is adapted into a CED scheme. Adaptation of the Summation scheme is similar.

In the sCED scheme for Value Retrieval, every value xid was secret-shared between A and S as xid =
αid ⊕ βid, where αid = FK(id), with K being a PRF key that the data-owner and A shared (and S did not
have access to). However, this is not viable in a multi data-owner setting, because if S colludes with any
one data-owner it will learn this key; alternatively, if each data-owner uses a different key, this would let A
collect the different data-items as coming from different data-owners, revealing additional statistics about
that data as well as about the answer to queries, beyond what a merged data-set reveals. To prevent such
leakage, we delink the key to the data owner and link it to each record, i.e. we generate a new key for each
record (xid) that Di sends. The modified protocol is below. The complexity of this protocol is summarized
in Appendix D.
Protocol ValRet

– Modified Initialization Phase:
1. S generates key-pairs (PKS, SKS) for a CPA-secure PKE scheme, and publishes the public-keys.
2. For each (id, x) ∈ Xi, Di picks a PRF key Kid and calculates βid = FKid

(id)⊕xid (where F is a PRF
with appropriate input and output lengths). Di sends {JδidKPKA

}id to S, where δid = (JKidKPKS
, (id, βid)).

(This is possibly padded with random entries, where δid = ⊥).
3. S collects all the data from different data owners, sorts them lexicographically and sends them to

A.

18

Protocol mmap-SFE

merge-map:

1. Keys. S generates a keypair for PKE, (PKS, SKS), and similarly A generates (PKA, SKA). A generates a PRF key
K. The keys PKS and PKA are published.
2. Shuffled Sharing. At the end of this phase, for each (i, τ) such that τ ∈ Ki:

- S holds (αi,τ , tagi,τ), where αi,τ ∈ {0, 1}λ is a random string (as long as a keyword), and tagi,τ is a unique
(random) index for each (i, τ);

- A holds (βi,τ , Γi,τ , Θi,τ , tagi,τ), where:
• βi,τ := τ ⊕ αi,τ
• Γi,τ := {Γ id

i,τ |(τ, id) ∈ W̃i} (padded as explained below). Here Γ id
i,τ := (ξidi,τ , γ

id
i,τ , Jηidi,τ , Jµid

i,τ KPKAKPKS) with:
◦ ξidi,τ ← JJζ idi KPKAKPKS (fresh encryptions for each (i, id, τ)), where ζ idi ← JidKPKS (a single encryption per

(i, id)),
◦ γid

i,τ , η
id
i,τ , µ

id
i,τ being a random additive secret-sharing of 0λ (i.e., γid

i,τ ⊕ ηidi,τ ⊕ µid
i,τ = 0λ).

Γi,τ is padded with additional entries of the form Γ⊥i,τ – which is defined identically as Γ id
i,τ except that

ζ idi ← J⊥KPKS – so that |Γi,τ | is an a priori fixed value.
• Θi,τ := (θi,τ , Jφi,τ KPKS) for a random φi,τ ; and θi,τ := τ ⊕ φi,τ .

This phase proceeds as follows:

– Each Di, for each τ ∈ Ki picks two random masks αi,τ and φi,τ and computes πi,τ := (βi,τ , Γi,τ , Θi,τ), as defined
above. Then it sends (αi,τ , Jπi,τ KPKA) to S. (The number of elements sent by each Di is padded up to an a priori
bound, with dummy entries of the form (α, J⊥KPKA).)

– S collects entries of the form (αi,τ , ρi,τ) from all Di, and randomly permutes them. Let tagi,τ denote the serial
number of these elements in the permuted order. S stores (αi,τ , tagi,τ) and communicates (ρi,τ , tagi,τ) to A.

– A decrypts the entries to obtain (πi,τ , tagi,τ). (It will discard the entries where π = ⊥.)

3. Grouping Keywords Using Equality Checks. At the end of this phase, there is a (hidden) injective mapping
h :

⋃
iKi → [L] (where L equals |

⋃
iKi|, or an upper-bound thereof). For each (i, τ) with τ ∈ Ki, A will hold a tuple

(h(τ), Γi,τ , Θi,τ).

– Below we index the entries held by S and A as αt, πt etc., t being the tag value. For every two tags, t, t′, S and A
engage in a 2-party secure equality check protocol to check if αt ⊕ αt′ = βt ⊕ βt′ . Note that this equality holds iff
τt = τt′ . A learns the results.
(If πt = ⊥, A uses an arbitrary string instead of βt in the equality check protocol.)

– A partitions the set of tags into equivalence classes T1, · · · , TL, such that for all k ∈ [L], and t, t′ ∈ Tk, the equality
test above was positive. (Hence there is some keyword τk corresponding to all the elements in Tk. This implicitly
defines the mapping h : τk 7→ k.)

4. Culling Dummy Entries. At the end of this phase, for each (i, τ, id) with (τ, id) ∈ W̃i, A obtains a tuple (h(τ), ζ idi).

– A sends to S (in random order) entries of the form (h(τ)⊕γid
i,τ , Jηidi,τ , Jµid

i,τ KPKAKPKS , ξ
id
i,τ) where some of the entries

may have id = ⊥ (in which case, ξidi,τ = J⊥KPKS).
– From each such triple, where the last two items are ciphertexts under PKS, S extracts (ηidi,τ , Jµid

i,τ KPKA) from the
first ciphertext and either Jζ idi KPKA or ⊥ from the second one. It discards all entries where ⊥ is obtained from the
second ciphertext. It then permutes and sends back entries of the form (h(τ)⊕ γid

i,τ ⊕ ηidi,τ , Jµid
i,τ KPKA , Jζ

id
i KPKA) to

A.
– From each tuple received, A decrypts the second item to obtain µid

i,τ , and the third item to receive ζ idi ; combining
former with first item, A recovers h(τ)⊕ γid

i,τ ⊕ ηidi,τ ⊕ µid
i,τ = h(τ).

5. Sharing the Mapped Keywords. At the end of this phase:
- For each (i, τ, id) with (τ, id) ∈ W̃i, A obtains a tuple (h(τ), τ̂) where τ̂ = FK(h(τ)), and
- S obtains {(k, σk)|k ∈ [L]} where, when k = h(τ), σk = τ ⊕ τ̂ .

– For each k ∈ [L], A sets τ̂k = FK(k) Then, it chooses a representative t∗k ∈ Tk and sends (θt∗
k
⊕ τ̂k, Jφt∗

k
KPKS) to

S (sorted by k). (If there are fewer than L equivalence classes, randomly generated θ and φ values are used to
generate dummy messages.)

– S receives an ordered list of L pairs (δk, JφkKPKS), and it computes σk = δk ⊕ φk.

6. Outputs. A outputs KA = K and Ŵ consisting of elements (τ̂ , ζ idi). S outputs KS = (Z, SKS), where Z is the set
{(k, σk)|k ∈ [L]} = {(h(τ), σh(τ))|τ ∈

⋃
iKi}.

map: A client C has an input Q which is specified using one or more keywords. For each keyword τ appearing in Q,
C engages in a protocol with S and A to compute τ̂ . The protocol is as follows:

– C sends additive secret-shares γ, δ to S and A respectively, where γ ⊕ δ = τ .
– For k = 1, · · · , L, S and A carry out an equality check protocol to check if (γ ⊕ σk) = (δ ⊕ FK(k)). The output is

revealed to A. There will be at most one value k∗ such that the equality holds.
– A sends FK(k∗) to C, who takes it as τ̂ . (If no such k∗ exists, A sends a random value, or alternately, if permitted,

may reveal to C that there is no match.)

Fig. 8: Protocols implementing merge-map and map functionalities for instantiating the template for SED protocols,
based on SFE.

4. A receives the data, decrypts it to calculate {JKidKPKS
, (id, βid)}id. It then picks a PRF key K.

Let γid = βid ⊕ FK(id). It sends {(JKidKPKS
, (id, γid))}id to S.

5. S, for each id, decrypts to calculate Kid. It defines θid ← γid ⊕ FKid
(id). (Note that θid = xid ⊕

FK(id)).

6. S stores {(id, θid)}id while A stores K.

The computation phase proceeds exactly as before.

Leakage, LValRet : The modified initialization phase leaks (an upper bound on) |Xi| for each data-owner

to S and the combined ID-set J to both A and S. (We remark that, in the FED protocol which uses this
functionality, the IDs are chosen randomly and hence leaking the ID-set J only amounts to leaking the size
|X| of the combined data set.)

CED Scheme for General Functions: The sCED scheme for general functions can be easily adapted to
the multi data-owner setting. The only essential modification needed in this case is to route the data from
the data-owners to S anonymously (with the help of A). Also, in the modified scheme the data-owners do not
provide keys to A to facilitate computation of the keys used to encrypt the labels for each id, but instead the
requisite keys will be kept encrypted with S. The modifications are shown in Fig. 9. There is no additional
leakage to S compared to the single data-owner version, and A learns an upper bound on the size of the
individual ID sets |Ji| for each data-owner Di.

Protocol CktEval: A CED scheme for general functions:

– Modified Initialization Phase: Each data-owner Dj , for each (id, xid) ∈ Xj , generates νid,i and λbid,i (for
b = 0, 1) randomly (instead of using a key shared with A). It computes ζid = {J(νid,i, λ0

id,i, λ
1
id,i)KPKA}

t
i=1, and

γid = (id, ζid, {λ
xidi
id,i, ωid,i}ti=1), where ωid,i = xid,i⊕νid,i as before. It sends {JγidKPKS}id∈Jj to A who collects them

from all the data-owners, sorts them lexicographically, and sends them to S. S decrypts them to obtain {γid}id∈J ,
where J =

⋃
j Jj .

– Modification of the Computation Phase: Step (1) is modified as follows:
1. S sends {ζid}id∈T to A (randomly permuted), and A decrypts them to obtain, for each id ∈ T ,
{νid,i, λ0

id,i, λ
1
id,i}ti=1.

The rest of the computation phase proceeds as above.
– Leakage, LCktEval : On initialization, the ID-set J =

⋃
j Jj is leaked to S, and the sizes {|Jj |}j = {|Xj |}j are

leaked to A. On each query, T (or rather, its pattern) and f are leaked to A, and the circuit structure of f (as
revealed by the garbled circuit) is leaked to S.

– Complexity: timeinit
Di

= O(|Xi|timeEnc); timeinit
A = O(|X| log |X|); timeinit

S = O(|X|timeDec). Suppose the
circuit for f is of size s, and its output has m bits. Then, timequery

A = O(|T |(s) + |T |timeDec); timequery
S =

O(|T |(s) + |T |timeEnc); time
query
C = O(m).

Fig. 9: Protocol details for CktEval.

7 Analysis

Our security model (Section 4) states that all the parties (D’s,A,S) can be passively corrupt and the clients
can be actively corrupt. We remark that our protocols can be slightly modified to accommodate actively
corrupt data-owners as well, but we do not explore/evaluate this extension in our work. This is because,
even given the ideal FED functionality, one actively corrupt data-owner can choose to supply arbitrary data
to the database, potentially invalidating the results from the entire database. To adequately handle active
corruption of the data-owners, the FED functionality should be augmented with the ability for the servers
to enforce policies on the data being collected from the data-owners.

20

Further we assume that the storage server S and the auxiliary server A do not collude. If the data-owners
collude with one of the servers, we still preserve anonymity of data among the remaining data owners.
If clients collude with any of the other parties (except both S and A simultaneously), leakage revealed is
equivalent to the combined leakages of the involved entities.

7.1 Correctness

We note that correctness of most of our schemes are apparent from the correctness properties of the underlying
primitives used to construct them. We briefly discuss them below

– sSED depends on properties of the parent SSE scheme chosen. In case of MC-OXT [33], the protocols
are correct, except with negligible probability.

– sCED- sValRet, sSum, sCktEval, sComposite are perfectly correct from the perfect correctness of PRF’s
and garbled circuits. Correctness for sAlt-Sum depends on the underlying additive homomorphic scheme
used.

– In our FED protocols, onion secret sharing is used on top of the base sFED schemes. Onion secret
sharing is correct based on the correctness of the public-key encryption used. SED can run two different
protocols - mmap-OPRF, mmap-SFE.
Correctness for mmap-OPRF depends on the correctness of the underlying OPRF scheme (see Appendix B.1).
Correctness for mmap-SFE depends on the correctness of our equality checks protocol for secure function
evaluation. As the strings are first hashed to an appropriate field, we can have false positives in this
protocol. If false positive occur, then during the merge-map functionality, we can group keywords incor-
rectly and during the map functionality, we can send an incorrect FK(k∗) to C. This occurs with a very
small probability from the security of our collision resistant hash function. From the birthday bound, a

false positive occurs with probability (for large output spaces) e
−k(k−1)

2N where N is the size of the output
space and k is the number of evaluations performed. Assuming 128 bit hashes, N = 2128 and an upper
bound for k = (

∑
i Li)

2 +Q × L where Q =
∑
i |{τ : τ ∈ Qi}| is the combined number of keywords in

all queries and the rest of the notation is according to Fig. 8. Assuming reasonable parameters for big
databases and large amount of queries, the probability here is very low.

7.2 Security

We first provide a detailed security analysis of our SED protocols. The security analysis of the sFED and
FED templates are similar to (and somewhat simpler than) that of the SED protocol template discussed
below.

We focus on the instantiation of the SED protocol template (Section 6.1) using the components developed
in Section 6.3. The analysis of the full SED protocol breaks down into the analysis of the template protocol
(Section 6.1) and the protocols for merge-map, map and sSED separately. Note that to enable this modular
analysis, it is crucial that these three functionalities are fully specified, including their leakages.

First we analyze merge-map, in Fig. 7. Instead of directly using the random oracle model, we assume
an ideal OPRF functionality (which is then UC-securely realized against active corruption of the receiver
in the random oracle model Appendix B.1). Given the ideal OPRF functionality, the view of S consists of
Li invocations of OPRF by data-owner Di, followed by Ni ciphertexts encrypted under PKA. These can
be simulated knowing Ni, Li which are part of the leakage, assuming semantic-security of the public-key
encryption scheme. (Note that we assume that all the keywords are encoded into bit-strings of the same
length.) The view of A consists of a set of ciphertexts (permuted to disassociate with the data-owners who
created it) which can be perfectly simulated knowing only

∑
iNi (which is part of the leakage) and Ŵ (which

is part of the output). For this, we rely on the semantic security of the public-key encryption scheme. The
protocol for map in Fig. 7 is easily seen to be a UC-secure realization of the corresponding functionality as
it directly uses the OPRF functionality.

Finally, we turn to the analysis of the SED template protocol (see Fig. 6). This relies on the fact that the
leakages from SED to A and S are defined to include the corresponding leakages from merge-map, map and

21

sSED, as well as the information required to simulate the intermediate output (namely Ŵ) that A receives,
namely the keyword-identity incidence matrix of the merged data. (Here we rely on the pseudorandomness
guarantee of the OPRF to ensure that by learning Ŵ , A learns nothing more than the unlabeled keyword-
identity incidence matrix of the merged data, except for the labeling of keywords held by corrupt data-
owners.) Also,KS which is output to S is sampled independently of the inputs (and hence perfectly simulated),
and the information revealed to S by Q̂[Ŵ] can be perfectly simulated from Q[W] and KS. In this protocol,
if the functionality sSED and merge-map are implemented to handle actively corrupt clients, the overall
protocol can also be seen to be admit active corruption of clients. merge-map, as mentioned above, relies
on the OPRF protocol for this, and as discussed in Section 5.5, we can modify the searchable encryption
protocols from the literature to handle actively corrupt clients.

The analysis of the merge-map and map protocols in Fig. 8 is more tedious, but the simulation is not
much more complicated than above. In particular, the ciphertexts received by the servers S and A throughout
the protocol (encrypted using the other server’s public-key) can be simulated only knowing the number of
ciphertexts (by relying on the semantic secuity of public-key encryption). These protocols also rely on a
2-party equality-check protocol, which can be replaced for the purposes of analysis using an ideal equality-
check functionality 16. By carefully inspecting the protocol one can verify that the view of either server
(colluding with data-owners or clients, but not with each other) can be entirely simulated using the leakage
information specified in Section 6.3. As this analysis is not particularly enlightening, we omit the details
and point the reader to the discussion on onion secret-sharing (Section 6.2) for the intuition underlying the
construction and the analysis.

8 Implementation and Experimental Results

We show the feasibility and performance of our protocols on realisitically large-scale computations by running
tasks representative of Genome Wide Association Studies (GWAS), which is widely used to study associations
between genetic variations and major diseases [10].
Implementation/Setup details. The system was implemented in C++11 using open-source libraries (like
libPaillier [6], JustGarble [5], Obliv-C [64], NTL [55] and OpenSSL). The MC-OXT protocol of Jarecki et
al. [33] was reimplemented for use in our SED protocols. Experiments were performed on a Linux system
with 32 GB RAM and a 8-core 3.4GHz Intel i7-6700 CPU. The network consisted of a simulated local area
network (simulated using linux tc command), with an average bandwidth of 620 MBps and ping time of 0.1
ms.
Our Functionalities. The specific functions we choose as representative of GWAS were adapted from the
iDash competition [1] for secure outsourcing of genomic data. Each record in a GWAS database corresponds
to an individual, with fields corresponding to demographic and phenotypic attributes (like sex, race etc.), as
well as genetic attributes. In a typical query, the demographic and phenotypic attributes are used for filtering
, and statistics are computed over the genetic information. In our experiments, the following statistics were
computed. Additional details about the implementation/GWAS experimentation are in Appendix E.

– Minor Allele Frequency (MAF): This can be described using the formula f0(f1(Q[Z]), f2(Q[Z])),
where f1 computes N = |Q[Z]|, f2 computes the summation function, and f0 computes the following

formula: f0(x, y) = min(y,2x−y)
2x . We implement f2 using our sSum protocol, while f0 is implemented using

our sComposite protocol (using GC for f0).
– Chi-square analysis (ChiSq): Using two search filters for queries Q and Q′, χ2 statistic can be ab-

stractly described using the formula
f0(f1(Q[Z]), f2(Q[Z]), f3(Q′[Z]), f4(Q′[Z])), where f1, f3 are summation functions, f2 and f4 compute

|Q[Z]| and |Q′[Z]| respectively, and f0(a, b, c, d) = (b+d)(ad−bc)2
bd(a+c)((b+d)−(a+c)) . As previously, f1, f3 are imple-

mented using our sSum protocol and f0 implements the above formula using our sComposite protocol.
– Average Hamming Distance: Hamming distance between 2 genome sequences, often used as a metric

for genome comparison[61,48], is defined fx∗(Q[Z]) =
∑
x∈Q[Z]∆(x,x∗)

|Q[Z]| , where ∆ stands for the hamming

16 As collisions occur with negligible probability.

22

distance of two strings. Here, we consider the entire genotype vector x for each individual (rather than
the genotype at a given locus). We implement this using our general functions protocol sCktEval.

– Genome retrieval: This is a retrieval task, involving retrieval of genomic data at a locus for individuals
selected by a search criteria. This is implemented using our sValRet protocol.

Dataset and Queries. We used synthetic data inspired by real-world applications [30], with 10,000-100,000
records and 50 SNPs, and with the number of filtered records ranging 2,000-12,000. For Hamming distance,
which we implemented using our protocol for general functions (sCktEval) and costlier than our other
protocols, we used 5,000-25,000 records with 600-3500 filtered records. The experimentation parameters
were chosen to showcase the observations described below. Effects of changing the experimental setting (e.g.,
a WAN instead of a LAN model, bigger datasets and keyword spaces, etc.) are discussed in the full version.

Metrics. Our results are reported over two metrics – the total time taken and the total communication
size, across all entities. These metrics are reported separately for the initialization and query phases. Also,
the costs incurred by the SED component of the protocols are shown separately, as this could serve as the
baseline search cost against which the FED cost can be compared. We performed experiments in both the
single (sFED) and multiple data owner (FED) setting, and in the latter case with both the OPRF-based
and SFE-based SED protocols.

20000 60000 100000
#(input records)

0

100

200

300

400

Ti
m

e
(s

ec
)

MAF Init Time

20000 60000 100000
#(input records)

0

100

200

300

400

500

ChiSq Init Time

20000 60000 100000
#(input records)

0

100

200

300

GenomeRet Init Time

5000 15000 25000
#(input records)

0

20

40

60

80

Av. Hamming Init Time

3000 6000 9000 12000
#(filtered records)

0

2

4

6

8

10

Ti
m

e
(s

ec
)

MAF Query Time

3000 6000 9000 12000
#(filtered records)

2.5

5.0

7.5

10.0

12.5

15.0

ChiSq Query Time

3000 6000 9000 12000
#(filtered records)

0

2

4

6

8

10
GenomeRet Query Time

800 1600 2400 3200
#(filtered records)

0.0
2.5
5.0
7.5

10.0
12.5
15.0

Av. Hamming Query Time

sFED sSED FED
OPRF

SED
OPRF

FED
SFE

SED
SFEsFED sSED FED

OPRF
SED
OPRF

FED
SFE

SED
SFEsFED sSED FED

OPRF
SED
OPRF

FED
SFE

SED
SFEsFED sSED FED

OPRF
SED
OPRF

FED
SFE

SED
SFE

Fig. 10: Initialization and query-phase time plots for our four applications. (See Fig. 13 for communication
costs.)

8.1 Observations

Linear in Data. In Fig. 10, we plot the initialization and query times (summed over all parties, with serial
computation and LAN communication) for various functions, each one using our different protocols. The
experiment runs on a single data-owner (even for FED) and the initialization times are plotted against the
total number of records, while query times are plotted against the number of filtered records. As expected,
all the times are linear in the number of records. Comparing the different versions of the protocols, we note

23

that for initialization, the multiple data-owner protocols (FED-OPRF and FED-SFE) are slower that the
single data-owner protocol (sFED) by a factor of about 10-12x and 15-18x respectively. The overhead in the
query phase is a more modest 5x factor.

Efficiency of query phase. From our experimental results in Fig. 10, we observe that the query time for our
CED and SED protocols is linearly proportional to the number of filtered records. This is as expected for our
CED and sCED protocols, however, for our SED and sSED protocols, the complexity for S is proportional
to the number of documents matching the least frequent keyword17.

0 2 4 6 8 10
Total time (in sec)

MAF

ChiSq

Genome
Retrieval

Av.
Hamming

sFED vs sSED query time comparison
sSED
sCED

Fig. 11: Break-up of sFED cost.

20000 60000 100000
#DOs

100

200

300

400

500

To
ta

l t
im

e
(s

ec
)

OPRF

400 1200 2000
#DOs

0

200

400

600
SFE

FED
time
SED
time

Fig. 12: Scaling of initialization time of FED/SED
with increasing number of data-owners (each hold-
ing one record)

Comparison to SSE. We show a breakup of our sFED cost between search and compute components in
Fig. 11. While the cost for Av. Hamming includes a dataset of 15,000 records and a filtered set of around
1800 records, other protocols involve a dataset of 20,000 records and a filtered set of around 2500 records.
As can be observed, the overhead for supporting computation in addition to search ranges between 1.2-1.7x,
except for Av. Hamming, which as a result of computing a large function using the protocol sCktEval,
involves an overhead of 22x. Nevertheless, the computation remains feasible: we evaluate Hamming distance
between strings as large as 1.25k bits in 10 seconds.

Scalability with Number of Data-Owners.
The setup phase of our protocols scale well with the number of data-owners participating in the system (see
Fig. 12). Each data owner provides one record. As can be seen from the plot, our OPRF based protocol
scales to 100,000 data owners in under 10 minutes. The SFE-based protocol (which scales qudratically, but
avoids the use of random oracles) scales only up to 2000 owners in a similar time.18 In our experiments data
owners were serviced serially by S, but we estimate a drop of 100-200 sec for our largest benchmarks if we
exploited parallelism. Our protocols’ performance in the query phase only depend on the total number of
records input by the data-owners i.e. a single data owner contributing 10,000 records will have the same
query performance as 10,000 data owners contributing 1 record.

Light-weight / Efficient Clients. As is apparent from the complexity analysis of our protocols, our clients are
extremely efficient and light-weight, typically only performing computation proportional to size of queries
and outputs. Indeed, in all our experiments, client’s computation time never exceeded 3 milliseconds.

17 These results can be seen as a consequence of our dataset construction, where the frequency of any keyword
is proportional to the size of the filtered dataset. This restriction helps us simplify the comparison of the FED
protocols with their SED components and holds true for datasets in the real world (eg. enron database) [12].

18 The cost for generating correlated inputs to the server was not included, as this can be done ahead of time even
before the setup phase in an efficient manner [37]. Here, the size of the field elements used for the secure equality
check was aggressively set to 64 bits, which is adequate to avoid hash collisions for a modest number of data owners
and distinct keywords.

24

8.2 Comparison with Generic MPC Approaches

While MPC techniques cannot be directly deployed in our setting, as the data-owners cannot interact with
each other during the query phase, they can be adapted to our 2-server architecture (assuming they do not
collude with each other). The two servers could use generic semi-honest secure 2-party computation (2PC)
on data that is kept secret-shared between them. However, as we note below, such a solution is significantly
less efficient than our constructions.

We focus on the “Genome Retrieval” functionality for a single keyword match with a single data owner, as
a minimalistic task for comparison. Note that for each query, the servers must engage in a joint computation
proportional to the entire database size. To ensure a fair comparison, we allow the servers to obtain a similar
leakage as our constructions do; this significantly simplifies the functions being securely computed, and
reduces the costs.19

There are essentially 3 families of generic 2PC protocols which are relevant for the comparison: i) Garbled
Circuits (GC) [22], ii) GMW [22] and iii) Fully Homomorphic Encryption (FHE) [2]. For the query phase, GC
and GMW suffer heavily in communication cost, since communication between the servers is proportional
to the circuit size. For instance, in the case of GC, we can lower bound the communication by restricting
to the filtering step in the computation, and then calculating the size of the garbled circuit and oblivious
transfers (OT) performed. Concretely, for 100,000 records, this implies a minimum communication size of
576 MB (for details on calculations, please refer to Appendix F). For GMW, for simplicity, we omit the cost
of generation of OT correlations (even though, in steady state, they need to be incurred as more queries
come in). Then, considering merely 4 bits of communication per AND gate, for the same setting as above, we
lower bound the communication during the query phase by 3.6 MB. On the other hand, for the same 100,000
records and a query for filtering around 12, 000 records, our solution incurs only 2.8 MB of communication.
For FHE based implementations, the bottleneck is homomorphic computation. A simple lower bound on
execution time may be obtained by bounding the number of multiplications performed and considering the
cost of a single homomorphic multiplication. For instance, for the smallest size parameters in the Microsoft
SEAL homomorphic encryption library [2], the time for a single homomorphic multiplication is the order of
milliseconds. Thus a simple estimate for execution time is at least 7 seconds, whereas for the same parameters,
we achieve a time of 2.4 seconds. We note that our performance gains increase substantially with increase
in the number of records in the database (indeed for 10 million records and a filtered set size of around
500, while we incur 112KB of communication in < 1.7 seconds , GC/GMW require 57.6GB/360MB and
FHE is at least of the order of hundreds of seconds). For more details on these calculations, please refer to
Appendix F.

9 Conclusion and Future work

In this work, we introduced the primitive of Functionally Encrypted Datastores (FED), which collects data
from multiple data-owners, stores it encrypted on an untrusted server, and allows untrusted clients to perform
select-and-compute queries on the collected data. There is no leakage of information to clients or data-
owners and principled leakage to the servers involved. We provided modular constructions of FED based on
constructions of SED and CED, our constructions are summarized in Table 3. Our protocols have leakage and
efficiency similar to SSE, but significantly richer functionality. We implemented and tested our protocols on
tasks from GWAS, which show that our candidate constructions are quite practical: databases with 100,000
data owners (each contributing a single record) can be securely setup in a few hundred seconds, and a client
query that filters up to 12,000 records can be answered in less than 15s with a few MB of total communication
in the system.

In the future, we would like to extend our work for broader use cases and stronger security guarantees.
We mention some of these ideas below:

19 To avoid such leakage in this task, a top-k sorting network would be included in the computation circuit to collect
selected items. A bitonic sorting network for selecting k items out of n has Θ(n log2 k) comparators [53]; selecting
a thousand items from a database of a million items (each a few bytes long), would require billions of gates.

25

– Dynamic Updates: Our current framework allows for data owners to join only at the beginning of the
protocol. Extending this to allow for dynamic addition/updation of data and data-owners is an interesting
direction and would increase the scope of applicability of our work.

– Security Model: Our current security model (Section 4) assumes the data-owners to only be honest-but-
curious and not actively corrupt. Malicious data-owners can introduce data which can force the protocols
to abort or arbitrarily corrupt the computation of the data. Extending our current framework to prevent
this would be an interesting future direction.

– Contact tracing application: Extending our solution to a full-fledged contact tracing application seems
to be a useful and non-trivial work item. Our suggested solution keeps in mind the coarsely quantized
space and time coordinates for the “filtering step”. As an example, given a set of coarsely-quantized
space-time coordinates of positive cases (possibly expanded to include spatial neighbors), one can run
a filtering query for exact matches in that set. Once the filtering is done, one can carry out additional
computation using auxiliary information like finer space/time coordinates. Alternatively, one could also
use bluetooth contacts for filtering (each phone could cycle through a set of pseudonyms (keywords) it
would emit, and finding which phones came into contact with it would involve keyword matching).

– Differential privacy: Techniques from the literature on Differential Privacy could be leveraged to prevent
the client-computed statistics to leak information about the identity of the data-owners.

Acknowledgements

We would like to thank our shepherd Marina Blanton and anonymous reviewers for their insightful comments.
We would also like to thank Trivikrama Reddy, Kapil Vaidya, Rohan Kadekodi and Deevashwer Rathee for
helpful discussions.

S. Agrawal was supported by a DST Indo-Israel grant, a CEFIPRA Indo-French grant, the NSCS Na-
tional Blockchain project, a Microsoft Research Virtual Centre in Cryptography and the Uchchatar Avishkar
Yojana. M. Prabhakaran was supported by SERB with a Ramanujan Fellowship, by DST with an Indo-Israeli
grant and by a Microsoft Research Virtual Centre in Cryptography.

References

1. IDASH Privacy & Security Workshop’15. http://www.humangenomeprivacy.org/2015/competition-tasks.

html (2015)
2. Microsoft SEAL. https://github.com/Microsoft/SEAL (2019)
3. Baker, J.: Comparing two populations. http://grows.ups.edu/curriculum/Comparing%20Two%20Population1.

htm

4. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of Garbled Circuits. In: CCS (2012)
5. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a fixed-key blockcipher. In: IEEE

S&P (2013)
6. Bethencourt, J.: Paillier library (2006), http://acsc.cs.utexas.edu/libpaillier/
7. Blakley, G.R., et al.: Safeguarding cryptographic keys. In: Proceedings of the national computer conference (1979)
8. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges. In: TCC (2011)
9. Bonte, C., Makri, E., Ardeshirdavani, A., Simm, J., Moreau, Y., Vercauteren, F.: Privacy-preserving genome-wide

association study is practical. IACR Cryptology ePrint Archive (2017)
10. Bush, W.S., Moore, J.H.: Genome-wide association studies. PLoS computational biology (2012)
11. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS (2001)
12. Cash, D., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M., Steiner, M.: Highly-scalable searchable symmetric

encryption with support for boolean queries. In: CRYPTO (2013)
13. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Asiacrypt (2010)
14. Chase, M., Shen, E.: Substring-searchable symmetric encryption. Privacy Enhancing Technologies (2015)
15. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM (1981)
16. Cho, H., Wu, D.J., Berger, B.: Secure genome-wide association analysis using multiparty computation. Nature

biotechnology (2018)

26

http://www.humangenomeprivacy.org/2015/competition-tasks.html
http://www.humangenomeprivacy.org/2015/competition-tasks.html
https://github.com/Microsoft/SEAL
http://grows.ups.edu/curriculum/Comparing%20Two%20Population1.htm
http://grows.ups.edu/curriculum/Comparing%20Two%20Population1.htm
http://acsc.cs.utexas.edu/libpaillier/

17. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: FOCS (1995)
18. Clarke, G.M., Anderson, C.A., Pettersson, F.H., Cardon, L.R., Morris, A.P., Zondervan, K.T.: Basic statistical

analysis in genetic case-control studies. Nature protocols (2011)
19. Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: An anonymous messaging system handling millions of

users. In: IEEE S&P (2015)
20. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and

efficient constructions. In: ACM CCS (2006)
21. Demertzis, I., Papadopoulos, S., Papapetrou, O., Deligiannakis, A., Garofalakis, M.: Practical private range search

revisited. In: ACM SIGMOD (2016)
22. Demmler, D., Schneider, T., Zohner, M.: ABY - A Framework for Efficient Mixed-Protocol Secure Two-Party

Computation. In: 22nd Annual Network and Distributed System Security Symposium, NDSS (2015)
23. Fisch, B.A., Vo, B., Krell, F., Kumarasubramanian, A., Kolesnikov, V., Malkin, T., Bellovin, S.M.: Malicious-

client security in blind seer: a scalable private dbms. In: IEEE S&P (2015)
24. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC (2009)
25. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC (1987)
26. Goldreich, O.: Foundations of Cryptography: Basic Applications. Cambridge University Press (2004)
27. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F., Sahai, A., Shi, E., Zhou, H.: Multi-input

functional encryption. In: EUROCRYPT (2014)
28. Grubbs, P., Ristenpart, T., Shmatikov, V.: Why your encrypted database is not secure. In: Proceedings of the

16th Workshop on Hot Topics in Operating Systems (2017)
29. Hamlin, A., Shelat, A., Weiss, M., Wichs, D.: Multi-key searchable encryption, revisited. In: PKC (2018)
30. Hirokawa, M., Morita, H., Tajima, T., Takahashi, A., Ashikawa, K., Miya, F., Shigemizu, D., Ozaki, K., Sakata, Y.,

Nakatani, D., et al.: A genome-wide association study identifies plcl2 and ap3d1-dot1l-sf3a2 as new susceptibility
loci for myocardial infarction in japanese. European Journal of Human Genetics (2015)

31. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using garbled circuits. In:
Proceedings of the 20th USENIX Conference on Security. SEC’11

32. Jagadeesh, K.A., Wu, D.J., Birgmeier, J.A., Boneh, D., Bejerano, G.: Deriving genomic diagnoses without re-
vealing patient genomes. Science (2017)

33. Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M., Steiner, M.: Outsourced symmetric private information retrieval.
In: ACM CCS (2013)

34. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: Highly-efficient and composable password-protected secret sharing
(or: How to protect your bitcoin wallet online). In: 2016 IEEE European Symposium on Security and Privacy
(EuroS&P) (2016)

35. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In: Proceedings of the
2012 ACM conference on Computer and communications security (2012)

36. Kamara, S., Raykova, M.: Secure outsourced computation in a multi-tenant cloud. In: IBM Workshop on Cryp-
tography and Security in Clouds (2011)

37. Keller, M., Orsini, E., Scholl, P.: Mascot: Faster malicious arithmetic secure computation with oblivious transfer.
Cryptology ePrint Archive, Report 2016/505 (2016), https://eprint.iacr.org/2016/505

38. Kim, M., Lauter, K.: Private genome analysis through homomorphic encryption. BMC medical informatics and
decision making (2015)

39. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free xor gates and applications. In: International Collo-
quium on Automata, Languages, and Programming (2008)

40. Li, R., Liu, A.X., Wang, A.L., Bruhadeshwar, B.: Fast range query processing with strong privacy protection for
cloud computing. Proc. VLDB Endow. (2014)

41. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party computation system. In: In USENIX
Security Symposium (2004)

42. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. J. ACM (2004)
43. Naveed, M., Agrawal, S., Prabhakaran, M., Wang, X., Ayday, E., Hubaux, J.P., Gunter, C.: Controlled functional

encryption. In: CCS (2014)
44. Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving encrypted databases. In: CCS.

ACM (2015)
45. Orencik, C., Selcuk, A., Savas, E., Kantarcioglu, M.: Multi-keyword search over encrypted data with scoring and

search pattern obfuscation. International Journal of Information Security (2016)
46. Papadimitriou, A., Bhagwan, R., Chandran, N., Ramjee, R., Haeberlen, A., Singh, H., Modi, A., Badrinarayanan,

S.: Big data analytics over encrypted datasets with seabed. In: OSDI (2016)

27

https://eprint.iacr.org/2016/505

47. Pappas, V., Krell, F., Vo, B., Kolesnikov, V., Malkin, T., Choi, S.G., George, W., Keromytis, A., Bellovin, S.:
Blind seer: A scalable private dbms. In: IEEE S&P (2014)

48. Pilcher, C.D., Wong, J.K., Pillai, S.K.: Inferring hiv transmission dynamics from phylogenetic sequence relation-
ships. PLoS medicine (2008)

49. Poddar, R., Boelter, T., Popa, R.A.: Arx: A strongly encrypted database system. IACR Cryptology ePrint Archive
(2016)

50. Popa, R.A., Redfield, C., Zeldovich, N., Balakrishnan, H.: Cryptdb: protecting confidentiality with encrypted
query processing. In: In Symposium on Operating Systems Principles (2011)

51. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: EUROCRYPT (2005)

52. Shamir, A.: How to share a secret. Communications of the ACM (1979)

53. Shanbhag, A., Pirk, H., Madden, S.: Efficient top-k query processing on massively parallel hardware. In: Pro-
ceedings of the 2018 International Conference on Management of Data. pp. 1557–1570 (2018)

54. Shi, E., Bethencourt, J., Chan, T.H., Song, D., Perrig, A.: Multi-dimensional range query over encrypted data.
In: IEEE S&P’07 (2007)

55. Shoup, V.: NTL: A library for doing number theory. https://www.shoup.net/ntl/

56. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: IEEE S&P, 2000

57. Tkachenko, O., Weinert, C., Schneider, T., Hamacher, K.: Large-scale privacy-preserving statistical computations
for distributed genome-wide association studies. In: Asia CCS (2018)

58. Tu, S., Kaashoek, M.F., Madden, S., Zeldovich, N.: Processing analytical queries over encrypted data. In
PVLDB’13 (2013)

59. US Government: http://www.census.gov/ces/dataproducts/index.html

60. Van Rompay, C., Molva, R., Önen, M.: Secure and scalable multi-user searchable encryption. IACR Cryptology
ePrint Archive 2018 (2018)

61. Wang, C., Kao, W.H., Hsiao, C.K.: Using hamming distance as information for snp-sets clustering and testing in
disease association studies. PloS one (2015)

62. Wang, F., Yun, C., Goldwasser, S., Vaikuntanathan, V., Zaharia, M.: Splinter: Practical private queries on public
data. In: {NSDI} 17 (2017)

63. Yao, A.C.C.: How to generate and exchange secrets. In: FOCS (1986)

64. Zahur, S., Evans, D.: Obliv-c: A language for extensible data-oblivious computation. IACR Cryptology ePrint
Archive (2015)

65. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques (2015)

66. Zelin, A.: https://www.mrs.org.uk/pdf/Andrew_Zelin_presentation.pdf

A Notation

We rely on some standard mathematical notation, like [n] to denote the set {1, ...n}. Below in Table 2 we
summarize additional notation and symbols used across the paper.

B SED protocols: Additional Details

B.1 Actively secure OPRF

In this section, we describe the UC-secure OPRF protocol of [34] which we use in our constructions and
which allows active corrution of the receiver and passive corruption of the party with the key.

Let G a cyclic group of prime order m and g be a generator of the group. The receiver, whose input
is x, samples r ∈ [m] uniformly and sends a = H0(x)r to the key-holder, where H0 is a random oracle
that maps into the group. The key-holder replies with b = aK , where K ∈ [m] is the key. The receiver
outputs H1(x, b1/r), where H1 is another random oracle. Formally, then the PRF is described as fK(x) =
H1(x,H0(x)K).

The protocol described above UC-securely implements the ideal OPRF functionality assuming that the
(N,Q)-one more Diffie-Hellman Assumption holds for the group. For completeness, we reproduce the as-
sumption (as described in [34]) here, but refer the the reader to Theorem 1 of [34] for further details.

28

https://www.shoup.net/ntl/
http://www.census.gov/ces/dataproducts/index.html
https://www.mrs.org.uk/pdf/Andrew_Zelin_presentation.pdf

Table 2: Notation index

Notation Meaning Notation Meaning

FED Functionally Encrypted Datastore sFED
Single Data-Owner Functionally Encrypted Data-
store

SED Searchably Encrypted Datastore sSED
Single Data-Owner Searchably Encrypted Datas-
tore

CED Computably Encrypted Datastore sCED
Single Data-Owner Computably Encrypted Data-
store

S Storage Server A Auxilliary Server

D Data Owner C Client

W Universe of search-attributes in the data records W Input of D to SED functionality; W ⊆ W × I
I Universe of identifiers used for the data records Z Input of D to FED functionality; Z ⊆ W ×X
X Universe of compute-attributes in the data records X Input of D to CED functionality; X ⊆ I × X
(Q, f) Input of C to FED; T Set of id’s selected by a query; T ⊆ I; T = Q[W]

J
The set of unique identifiers for each record in the
CED database; J ⊆ I; J = {id|∃x s.t. (id, x) ∈
X}

DB(w)
For any w ∈ K, the set of document indices that
contain the keyword w

L Leakage function K Universe of keywords

JMKPK Public key encryption of M using a public-key PK
timeinit

party,

timequery
party

Time taken during the initialization and query
phases, by a party

〈〈M〉〉PK
Additive Homomorphic encryption of M using a
public-key PK

timetool Time taken by a cryptographic tool or operation.

SP
Size Pattern: the number of documents matching
the first keyword in a query

timeKOPRF,
timeOPRF

Time taken in the 2-party OPRF protocol by
party with and without a key respectively

(N,Q)-one more Diffie Hellman Assumption. For any poly time adversary A,

Prk←RZm,gi←RG[A(·)k,DDH (·)(g, gk, g1, g2, ...gN) = S]

is negligible, where S = {(gjs , gkjs)|s = 1, ..., Q+ 1}, Q is the number of A’s queries to the (·)k oracle, and
js ∈ [N] for s ∈ [Q+ 1].

B.2 Improving Efficiency

Suppose the keyword space partitions as K = B1 ∪ · · · ∪ B`, such that there is an upperbound Lij on
|Ki ∩ Bj |, for each data-owner Di and each bin Bj . Given appropriate statistics on the data domain, such
upper bounds can often be derived for easy to compute partitions (e.g., a bin may contain keywords in
the English vocabulary that start with a certain set of letters or short prefixes). Then, the protocol can be
easily modified so that the equality-checks step (Step 3 in Fig. 8 can be repeated for each bin separately,
without having to compare keywords across bins. The total number of equality checks needed, becomes
O(

∑
j(
∑
i Lij)

2); when ` bins are used and if each Lij = O(Li/`), this becomes O((
∑
i Li)

2/`), providing
a saving of up to factor ` over the original construction. (The assumption that we can take Lij = O(Li/`)
would hold only when ` is not too large, placing a limit on the efficiency gain possible using binning.)

B.3 Reducing SED Leakage Further

The template used in Section 6.1 reveals the merge-mapped data-set Ŵ to A. The mapping ensures that
the search results Q[W] are not linked to Ŵ , and can be simulated independently given only their pattern
information. Nevertheless, Ŵ itself reveals the entire keyword-identity incidence matrix, as mentioned in

29

Table 3: Summary of protocols

Protocol Instantiation Reference Functionality Security Assumptions Leakage(S) Leakage(A)

Family

sSED MD-MC-OXT Section 5.5 Search

Non-collusion (A and
S), Decision Diffie-
Hellman, Random
Oracle Model, Secure
PRFs

Access pattern, Size Pat-
tern, Equality Pattern,
Conditional Intersection
Pattern, Total Database
Size

Access Pattern, Query

sCED sValRet Section 5.4
Value Re-
trieval

Non-collusion (A and
S), Secure PRFs

Randomly Chosen IDset
(J)

Access Pattern

sCED sSum Section 5.4 Summation
Non-collusion (A and
S), Secure PRFs

Randomly Chosen IDset
(J)

Access Pattern

sCED sComposite Section 5.4
f0(f1(Q1[Z]),

· · · , fd(Qd[Z]))

Non-collusion (A and
S), Oblivious Trans-
fer

Circuit for f0 (only circuit
structure if using Yao’s GC)
and respective leakages for
f0, . . . , fd

Circuit for f0 and respec-
tive leakages for f1, . . . , fd

sCED sCktEval Section 5.4
Poly-time
computable
functions

Non-collusion (A and
S), Secure PRFs

Randomly Chosen IDset
(J), Circuit Structure for f

Access Pattern, Circuit for
f

SED
∗∗mmap-OPRF,

MD-MC-OXT
Section 6.3

Multiple D’s +
Search

∗∗One More Diffie-
Hellman, Public Key
Encryption

∗∗Upper bound for fre-
quency of each keyword
sent by Di (called as Ni),
Upper bound for number of
keywords sent by Di (called
as Li), Number of keywords
in the query

∗∗∑
iNi, Ŵ (erased after

initialization is complete,
can be removed if consider-
ing alternate SSE schemes)

SED
∗∗mmap-SFE,

MD-MC-OXT
Section 6.3

Multiple D’s +
Search

∗∗Random Oracle
Model∗, Public Key
Encryption

∗∗Include leakage from
above entry, Upper bound
for total number of key-
words (L)

∗∗Include leakage from
above entry, Number of
keywords in the query

CED ∗∗ValRet Section 6.4
Multiple D’s
+ Value
Retrieval

∗∗Public Key En-
cryption

∗∗Upper bound on comput-
ing data of Di (formally
|Xi|)

∗∗Randomly Chosen IDset
(J)

CED ∗∗Sum Section 6.4
Multiple D’s +
Summation

∗∗Public Key En-
cryption

∗∗Upper bound on comput-
ing data of Di (formally
|Xi|)

∗∗Randomly Chosen IDset
(J)

CED ∗∗CktEval Section 6.4

Multiple D’s
+ Poly-time
computable
functions

∗∗Public Key En-
cryption

∗∗N/A

∗∗Upper bound on com-
puting data of Di (formally
|Xi|)

∗Random Oracle needed for MC-OXT-mod, but not mmap-SFE. ∗∗In addition to the assumption/leakage in the single data owner analogue.

the leakage description in Section 6.3. This may be acceptable if the statistics of the overall matrix are not
private; further, by adding noise in the form of dummy keywords and identities one can further limit the
accessible information in Ŵ . In addition, as mentioned in the leakage description of our SED protocols in
Section 6.1, the adversary also doesn’t obtain this leakage if A is corrupted after the setup phase.

However, there may be scenarios where it would be desirable to almost completely eliminate the leakage
from Ŵ to A. We present a modification of the earlier two constructions which achieves this, as long as the
search queries are individual keyword queries (rather than predicates over such keyword queries). Observe
that in the case of individual keyword queries, we may map an id used by a data-owner Di to multiple values
îdτ , for each τ such that (τ, id) ∈ W̃i. Then, on a keyword query, at most one such value will be recovered
(corresponding to the queries keyword); we shall require that on decoding any such value is mapped back
to the same id. Then, instead of the (unlabelled) keyword-identity incidence matrix, A learns only the total
number of keywords and their “degree distribution” (i.e., the histogram showing, for each n, the number of

30

keywords that appear in n documents in the merged dataset). A does not even learn the total number of ids.
For the constructions in Section 6.3 and Section 6.3, this is easily implemented by replacing the ciphertext
ζ idi by ζ idi,τ ← JidKPKS

(i.e., fresh encryptions for each (τ, id) ∈ W̃i).
Therefore, if we base our construction on SSE schemes which deal with single keyword queries (as opposed

to schemes which work with predicates over such keywords), we can prevent Ŵ from leaking the keyword-
identity incidence matrix.

C Alternate Protocol for Summation

Our protocol for summation in Section 5.4 uses additive secret sharing to compute FSum. In this section we
describe an alternative protocol that uses an additive homomorphic scheme to achieve the same functionality.
The advantage of using such a scheme is that we can prevent the leakage of the filtered set T to A and reduce
the asymptotic communication overheads. However, there is tradeoff in efficiency; the initialization phase is
slower as there are additive homomorphic encryptions that need to be computed.

The scheme relies on an additive homomorphic encryption scheme (like Paillier’s scheme), which supports
rerandomization of ciphertexts (or more specifically, homomorphically adding a random ciphertext (of a
random value) to any given ciphertext results in a random ciphertext). The domain of the values X is
identified with a finite group that forms the message space of the homomorphic encryption scheme.

Protocol sAlt-Sum
– Initialization Phase: D creates a public/secret key-pair (PK,SK) for the homomorphic encryption

scheme. It then sends SK to A and (PK, {cid}id) to S, where cid ← HomEncPK(xid). A and S store the
values they receive.

– Computation Phase: S first picks a random value y ∈ X and computes ρ ← HomEncPK(y); it then
computes c = ρ +

∑
id∈T cid, where the summation notations (+ and

∑
) represent the homomorphic

addition of ciphertexts supported by the encryption scheme. It sends y to C and c to A. A computes
z ← HomDecSK(c) and sends z to C, who outputs z − y.

– Leakage:, LsAlt-Sum On initialization, the ID-set J is leaked to S.
– Complexity: Let timeHomEnc and timeHomDec be the time for one public key additive homomorphic

encryption and decryption respectively. timeinitD = O(|X|timeHomEnc); timequeryA = O(timeHomDec);
timequeryS = O(|T |+ timeHomEnc); time

query
C = O(1).

The main advantage of the scheme is that this prevents the leakage of the set T to A, as S can aggregate
the values (under a layer of encryption) without involving A. However, this comes at the cost of efficiency. In
particular, the initialization phase here is much slower as it involves public key encryptions for each element
in X.

Security against S relies on the semantic security of the homomorphic encryption scheme. In particular,
the view of S (during the initialization phase) merely involves ciphertexts. Security against A and C (if not
colluding with S) are information-theoretic: during the computation phase A sees only a random ciphertext
of a random value, and the view of C consists of a fresh secret-sharing of the final output.

We adapt the protocol above to the multi data-owner setting. The modified scheme has the same com-
putation phase as before, but the initialization phase changes as follows:

Protocol Alt-Sum
– Modified Initialization Phase: A creates a public/secret key-pair (PK,SK) for the homomorphic

encryption scheme, and publishes PK. Each Di, for each id in its data-set sends {J(id, cid)KPKS
}id to A,

where cid ← HomEncPK(xid) (possibly padded with dummy entries). A gathers these sets from all Di,
sorts them, and sends them to S. S recovers the set {id, cid}id.

– Leakage, LAlt-Sum The modified initialization phase leaks (an upper bound on) |Xi| for each data-owner
to A. (Leakage to S remains the same, namely the ID-set J .)

– Complexity: timeinitDi
= O(|Xi|(timeHomEnc+timeEnc)); time

init
A = O(|X| log |X|); timeinitS = O(|X|timeDec);

timequeryA = O(timeHomDec); time
query
S = O(|T |+ timeHomEnc); time

query
C = O(1).

The protocol relies on the same security analysis as the single data-owner version. Secure routing through
A ensures that S does not know about the composition of the data from each data-owner.

31

D Time Complexity

Here we summarize the time complexity of our various protocols.
sCED Protocols of Section 5.4

1. Protocol sValRet: timeinit
D = O(|X|); timequery

A ,timequery
S = O(|T |); timequery

C = O(1).

2. Protocol sSum: timeinit
D = O(|X|); timequery

A ,timequery
S = O(|T |); timequery

C = O(1).

3. Protocol sComposite (for general f0 with n input bits and circuit of size s): timeinit
D = O(|X|);

timequery
A ,timequery

S = O(
∑d
i |Ti|+ s+ n · timeOT); timequery

C = O(1).

SED Protocols of Section 6.3

1. mmap-OPRF: Let time taken by a 2-party OPRF protocol by a party with and without a key be
timeKOPRF and timeOPRF respectively. Let timeEnc and timeDec be the time for one public key encryption
and decryption respectively.

– timeinit
Di

= O(Li · timeOPRF +Ni · timeEnc)

– timeinit
A = O((

∑
iNi)timeDec)

– timeinit
S = O((

∑
iNi) log(

∑
iNi) + (

∑
i Li)time

K
OPRF)

– timequery
C = O(|Q|timeOPRF)

– timequery
S = O(|Q|timeKOPRF)

2. mmap-SFE:
– timeinit

Di
= O(|W̃i|timeEnc);

– timeinit
A = O((

∑
i |W̃i|)timeDec + (

∑
i Li)

2 + L · timeEnc);

– timeinit
S = O((

∑
i |W̃i|) log(

∑
i |W̃i|) + (

∑
i Li)

2 + (
∑
i |W̃i|)timeDec + L · timeDec);

– timequery
A ,timequery

S = O(L).

CED Protocols of Section 6.4

1. ValRet:
– timeinit

Di
= O(|Xi|+ |Xi|timeEnc);

– timeinit
S = O(|X|+ |X| log |X|+ |X|timeDec);

– timeinit
A = O(|X|+ |X|timeDec);

– timequery
A ,timequery

S = O(|T |); timequery
C = O(1).

E Implementation / Experimentation: Additional Details

Implementation The following opensource libraries and codebases were used in our implementation.

– OpenSSL library (version 1.0.2) was used for implementing Symmetric Key Encryption (SKE) (based on
AES-256) and Public Key Encryption (PKE) (implemented using RSA-OAEP, using hybrid encryption
where appropriate). For group operations in the MC-OXT protocol of [33], we used NIST-224p elliptic
curves.

– MC-OXT scheme of [33] was reimplemented and ensured that the performance is comparable to that
reported in [33].

– Additive Homomorphic scheme was implemented using the Paillier Cryptosystem using the Libpaillier
library [6].

– JustGarble [5] was used to implement the CED scheme for general function evaluation.
– Two-party computation for CED for composite queries was implemented using Obliv-C [64]. This pro-

vided an implementation of Oblivious Transfer and Yao’s Garbled Circuit.20

– NTL (Number Theory Library) [55] version 11.3.0 was used to implement the field operations in our
construction using secure equality checks.

GWAS Functionalities

20 Obliv-C provides a high-level interface for implementing a secure 2-party computation protocol. But it is not suited
for generating garbled circuits outside the framework of a protocol, for which we relied on JustGarble.

32

– Minor Allele Frequency (MAF): In what is called a biallelic setting, each locus of interest has one of
three genotypes – say AA, BB or AB (corresponding to two “alleles” A and B, and two chromosomes).
Given a set of N individuals (selected using a search filter) and a locus of interest, the total allele counts
are defined as nA = 2nAA + nAB and nB = 2nBB + nAB , where nAA, nBB and nAB are the number of
individuals of the three genotypes. Then, MAF for that locus is defined [38] as the real number

min(nA, nB)

nA + nB
=
min(nA, 2N − nA)

2N
.

– Chi-square analysis (ChiSq): To quantify the association between an allele and a disease, often a chi-
square (χ2) statistic defined below is employed [18]. Two groups of individuals – case and control groups
– are selected using two search filters Q and Q′ (with and without a disease). Defining (nA, nB) and
(n′A, n

′
B) as above, but for Q and Q′ respectively, the χ2 statistic [38,3] can be formulated as

χ2 =
(N +N ′)(nAN

′ − n′AN)2

NN ′(nA + n′A)((N +N ′)− (nA + n′A))

where N = (nA + nB) and N ′ = (n′A + n′B). Computing this quantity corresponds to a composite query
f0(f1(Q[Z]), f2(Q[Z]), f3(Q′[Z]), f4(Q′[Z]), where f1, f2, f3, f4 compute nA, N, n

′
A, N

′ respectively, and
f0 implements the above formula (up to finite precision).

20000 60000 100000
#(input records)

0

200

400

600

800

Co
m

m
un

ica
tio

n
(M

B)

MAF Init Comm. Size

20000 60000 100000
#(input records)

0

200

400

600

800

1000

1200
ChiSq Init Comm. Size

20000 60000 100000
#(input records)

0

200

400

600

800
GenomeRet Init Comm. Size

5000 15000 25000
#(input records)

0

200

400

600

800

Av. Hamming Init Comm. Size

3000 6000 9000 12000
#(filtered records)

2

4

6

8

Co
m

m
un

ica
tio

n
(M

B)

MAF Query Comm. Size

3000 6000 9000 12000
#(filtered records)

2

4

6

8

10

12

14
ChiSq Query Comm. Size

3000 6000 9000 12000
#(filtered records)

2

4

6

8

GenomeRet Query Comm. Size

800 1600 2400 3200
#(filtered records)

0

200

400

600

800

1000

1200
Av. Hamming Query Comm. Size

sFED sSED FED
OPRF

SED
OPRF

FED
SFE

SED
SFEsFED sSED FED

OPRF
SED
OPRF

FED
SFE

SED
SFEsFED sSED FED

OPRF
SED
OPRF

FED
SFE

SED
SFEsFED sSED FED

OPRF
SED
OPRF

FED
SFE

SED
SFE

Fig. 13: Total communication across all entities in the initialization/query phases for single/multi data owner
(contrasting two SED protocols in Section 6.4, OPRF and SFE) for our different applications.

F Comparison with generic MPC approaches: more details

In this section we provide further details on comparing our work with more generic MPC approaches. As
stated in Section 8.2, we consider 3 families of generic 2PC protocols - Garbled Circuits (GC), GMW and
Fully Homomorphic Encryption (FHE). Since GC and GMW are known to be communication heavy, we lower
bound their communication for purposes of this comparison, while for FHE we lower bound its computation

33

time. More details of each family of protocol is discussed below. For convinience, we let N denote the number
of records, q the size of the field over which the search attributes are defined and λ the security parameter.

– Garbled Circuits: We lower bound our communication by restricting to only the filtering step of the
computation and estimating the size of the Garbled Circuits and OTs performed. For OTs, we make use
of OT extension as used in ABY [22]. For our current task of Genome Retrievel, to ensure fair comparison,
we let one of servers learn the indices of the filtered records. A lower bound on the number of AND gates
and input wires in the resultant circuit is then given by qN . Assuming 2λ bits of communication/AND
gate for the garbled circuit, λ bits of communication/input wire from garbler to evaluator and 2λ bits
for the OT performed using OT extension between the garbler and the evaluator, we lower bound the
total communication by 5qNλ. For N = 100, 000 records, q = 72 (as used in our implementation) and
λ = 128, this gives us a total communication for 576 MB. For the same parameters, but for 10 million
records, this is 57.6GB. In comparison, for 100, 000 records and filtered set size of 12, 000 our solution
only incurs 2.8MB of communication, while for 10 million records and filtered set size of 500, we incur
only 112KB of communication.

– GMW: We use the latest optimizations from ABY [22] to lower bound the communication here. However,
we omit the cost associated with generating the OT correlations, even though in steady state where
clients keep sending queries, generating such OT correlations would nevertheless incur some cost. Then
considering only 4 bits of communication per AND gate of the circuit and a crude lower bound on the
number of AND gates as qN , we estimate a total communication of 4qN . For N = 100, 000 records and
q = 72 (as used in our implementation), this gives us 3.6MB, while for the same parameters and filtered
set size of 12, 000 records we incur only 2.8MB. On the other hand, for 10 million records and filtered set
size of 500, while we incur only 112KB of communication, this estimate lower bounds the communication
by 360MB.

– FHE: Here we assume that one of the servers involved stores the decryption key, while the other one
stores all the encrypted data. During the query phase, the client sends an encrypted query to the server,
which performs homomorphic computation to compute the result and finally decyrpt it using the key
stored with the other server. To lower bound the dominant homomorphic computation cost here, we lower
bound the number of multiplications performed by restricting to only the search part of the computation
and lower-bounding the time of each ciphertext-ciphertext multiplication by taking the time for such
multiplications from Microsoft SEAL [2]. For the latter, we use the smallest set of parameteres supported
and for this we found the time to be order of milliseconds, with a polynomial ring of degree 1024. For
filtering, we assume binary circuits and lower bound the number of multiplications by qN . Assuming
a packing factor given by the degree of the polynomial ring, we lower bound the computation time by
(qN/1024) ∗ 1msec. For N = 100, 000 records and q = 72 (as used in our implementation), this accounts
to a computation cost of at least 7 seconds. For 10 million records, this is at least of the order of hundreds
of seconds. On the other hand, for 100, 000 records and filtered set size of 12, 000 we achieve a time of
2.4 seconds, while for 10 million records and filtered set size of 500 we achieve < 1.7seconds.

G Overview of SSE in literature

G.1 MC-OXT

In this section, we give a brief overview of the multi-client SSE scheme (MC-OXT) of [33]. In this setting,
we have a data owner D who processes a large database DB to produce an encrypted database EDB and
a master key MSK, of which it sends EDB to the server S. The model allows for multiple clients C, who
may request D for tokens corresponding to certain queries Q, which D constructs using its MSK. It provides
the client with a key corresponding to Q, along with a signature so that S may verify that C is authorized
to make this query. The client transforms the received token into search tokens by doing computation and
sends these search tokens with their corresponding signatures to S, who verifies the signature, and executes a
search protocol. Finally, it obtains encrypted id values from the server who is in possession of the decryption
key.

34

The MC-OXT protocol of [33] is designed to support arbitrary Boolean queries but for ease of exposition
here, we will consider the special case where the client makes conjunctive queries of the form w1∧w2∧. . .∧wn
where ∀ i, wi ∈ K (wi are keywords in the document, and conjunction means that we wish to query the
document with all the keywords w1, . . . , wn). The least fequent word, w1 (say) is known as s-word, while
the remaining words w2, . . . , wn are called x-words. It is assumed that the data owner maintains information
that lets it compute the s-word for any query of a client.

Setup of MC-OXT: Pick PRFs Fτ and Fp with the appropriate ranges, and key KS for Fτ and two keys
KX ,KI for Fp. The keys KS and KX are used to generate pseudorandom handles of keywords w ∈ K, denoted
by strap = Fτ (KS , w) and xtrap = gFp(KX ,w) respectively. The key KI is used to generate a pseudorandom
handle of document indices id ∈ DB as xind = Fp(KI , id). Next, the protocol computes xtag = gFp(KX ,w)·xind

for all “valid” (w, id) pairs, i.e. pairs such that the document id contains the keyword w, and adds xtag
to construct a set called XSet. The idea of constructing a set such as XSet is that if we can query for all
documents containing the word w1 (our s-word) using a list Tw1

. Then we can check ∀ id ∈ Tw1
if id contains

the keyword w2 by computing if gFp(KX ,w2)·Fp(KI ,id) ∈ XSet. To construct the list Tw1
securely, we construct

another set called TSet. More formally, for w ∈ K, the data owner generates a fresh pair of keys (Kz,Ke)
using strap(w) and encrypts list of id’s containing keyword w by e = Enc(Ke, id). Next, for c ∈ [|Tw|], it
blinds the |Tw| representatives xind1, . . . , xindTw as follows: set zc = Fp(Kz, c) and y = xind · zc−1. It stores
(e, y) in TSet(w). Note that (e, y) are constructed using keys that are specific to s-word w. It then chooses a
key KM for AuthEnc - an authenticated encryption scheme, and this key is shared with the server. The keys
(KS ,KX ,KI ,KT ,KM) are retained by D as the master secret.

Query of MC-OXT: When the client requests a token for the query w1 ∧ w2 ∧ . . . ∧ wn, the data owner
computes the s-word, computes stag using KT , strap using KS as well as xtrap2, . . . , xtrapn corresponding
to w2, . . . , wn using KX . Next, it blinds the xtrap values as bxtrapi = gFp(KX ,wi)·ρi where ρi are chosen
randomly from Z∗p. Then it creates an authenticated encryption env← AuthEnc(KM , (stag, ρ2, . . . , ρn)) and
returns SK = (env, strap, bxtrap2, . . . , bxtokenn) to the client.

The client uses SK to construct search tokens as follows. It uses strap to compute Kz and for c ∈ [Tw] it
computes zc = Fp(Kz, c). Now, it sets bxtoken[c, i] = bxtrapzci and sends env along with all the bxtoken[c, i] to
the server. The server verifies the authenticity of env using KM , and decrypts it to find stag and ρ2, . . . , ρn.
It uses stag to obtain TSet(w1) and a list of {(e, y)}. Then for i ∈ {2, . . . , n} and ∀y ∈ TSet(w1), it checks
if bxtoken[c, i]y/ρi ∈ XSet (Thus checking if document id ∈ Tw1

contains the keyword w2 or not). If the
membership succeeds, it retrieves the corresponding encrypted document index e and sends it to the client
who decrypts it and requests the corresponding document from the server.

Leakage, LMC-OXT : We summarize the leakage analysis for all queries that are non-adaptive and are
for conjunctions of two keywords only. Please refer to [33] for the complete analysis.

Let Q be a sequence of non-adaptive 2-conjunction queries, where ∀i, Q[i] = (s, x) where an individual
query is a 2-term conjunction s[i] ∧ x[i] which we write as Q[i] = (s[i], x[i]). For w ∈ K, let DB(w) be the
document indices that contain the keyword w. The leakage to S is shown below:

– LTSet,LXSet, this is given by, Σw∈K|DB(w)|. The total number of appearances of keywords in documents.
(Leaked during the setup phase of the protocol).

– The results pattern(RP) of the queries, which are the indices of documents matching the entire conjunc-
tion. Formally, a vector of size |Q| with RP[i] = DB(s[i]) ∩DB(x[i]).

– The number of documents matching the first keyword in the query, denoted by Size Pattern(SP). For-
mally, a vector of size |Q| with SP = |DB(s[i])|.

– The number of queries which have equal first terms (s-words), denoted by Equality Pattern.

– The conditional intersection pattern(IP), which is formally a |Q| by |Q| table defined by IP[i, j] =
DB(s[i]) ∩DB(s[j]), if (i 6= j and x[i] = x[j]), otherwise φ.

Additionaly, we leak Q to D and SP to C. Complexity of the protocol is D (Setup) - O(
∑
w∈K |DB(w)|);

D, C and S (Query) - O(|SP|). Please refer to [33] for a complete formal analysis.

35

G.2 OSPIR-OXT

[33] also describes the OSPIR-OXT protocol, which seeks to reduce the leakage to D using OPRF evaluations
and policy based access controls. The primary change to enable this in the MC-OXT protocol is to change
the query authorization process. To prevent leakage of the query Q to D and still enable authorization, a
two-party OPRF evaluation takes place between D and C. We refer to [33] for the complete details of this
protocol.

36

	A Practical Model for Collaborative Databases: Securely Mixing, Searching and Computing
	1 Introduction
	1.1 Our Model
	1.2 Our Results
	1.3 Overview of Constructions

	2 Related Work
	3 Preliminaries
	4 FED Framework
	5 Single Data-Owner Protocols
	5.1 Searchably Encrypted Datastore
	5.2 Computably Encrypted Datastore
	5.3 sFED Protocol Template
	5.4 sCED Protocols
	5.5 sSED Protocols

	6 FED Protocols
	6.1 Protocol Template for SED
	6.2 Onion Secret-Sharing
	6.3 Instantiating SED Protocol Template
	6.4 CED Protocols

	7 Analysis
	7.1 Correctness
	7.2 Security

	8 Implementation and Experimental Results
	8.1 Observations
	8.2 Comparison with Generic MPC Approaches

	9 Conclusion and Future work
	A Notation
	B SED protocols: Additional Details
	B.1 Actively secure OPRF
	B.2 Improving Efficiency
	B.3 Reducing SED Leakage Further

	C Alternate Protocol for Summation
	D Time Complexity
	E Implementation / Experimentation: Additional Details
	F Comparison with generic MPC approaches: more details
	G Overview of SSE in literature
	G.1 MC-OXT
	G.2 OSPIR-OXT

