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Abstract

The RSA Probabilistic Signature Scheme (RSA-PSS) due to Bellare and Rogaway (EUROCRYPT
1996) is a widely deployed signature scheme. In particular it is a suggested replacement for the deter-
ministic RSA Full Domain Hash (RSA-FDH) by Bellare and Rogaway (ACM CCS 1993) and PKCS#1
v1.5 (RFC 2313), as it can provide stronger security guarantees. It has since been shown by Kakvi and
Kiltz (EUROCRYPT 2012, Journal of Cryptology 2018) that RSA-FDH provides similar security to that
of RSA-PSS, also in the case when RSA-PSS is not randomized. Recently, Jager, Kakvi and May (ACM
CCS 2018) showed that PKCS#1 v1.5 provides comparable security to both RSA-FDH and RSA-PSS.
However, all these proofs consider each signature scheme in isolation, where in practice this is not the
case. The most interesting case is that in TLS 1.3, PKCS#1 v1.5 signatures are still included for reasons
of backwards compatibility, meaning both RSA-PSS and PKCS#1 v1.5 signatures are implemented. To
save space, the key material is shared between the two schemes, which means the aforementioned security
proofs no longer apply. We investigate the security of this joint usage of key material in the context of
Sibling Signatures, which were introduced by Camenisch, Drijvers, and Dubovitskaya (ACM CCS 2017).
It must be noted that we consider the standardised version of RSA-PSS (IEEE Standard P1363-2000),
which deviates from the original scheme considered in all previous papers. We are able to show that
this joint usage is indeed secure, and achieves a security level that closely matches that of PKCS#1 v1.5
signatures and that both schemes can be safely used, if the output lengths of the hash functions are
chosen appropriately.

c©Author 2019. This is the author’s full version of the work. The definitive Version of Record was published in
2019 Security Standardisation Research Conference (SSR’19), http://dx.doi.org/10.1145/3338500.3360333.
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1 Introduction

The RSA PKCS#1 v1.5 signature algorithm dates back to 1991, when it was published at the NIST/OSI
Implementors’ Workshop (SEC-SIG-91-18). It was then first publically specified in 1998 in [RFC 2313]. The
scheme was, however, not accompanied by a security proof, which later raised some concerns: the accom-
panying PKCS#1 v1.5 encryption scheme from [RFC 2313] was shown to be completely insecure, mainly
based on the Bleichenbacher padding oracle attacks [Ble98]. While these attacks, which include but are not
limited to [CFPR96, CJNP00, KPR03, DLP+12, BFK+12, ZJRR14, JSS15a, JSS15b, MSW+14, BSY17],
did not directly break the PKCS#1 v1.5 signature schemes, they did expose some potential weaknesses. As a
response to this, the standard was expanded to include the RSA-Probabilistic Signature Scheme (RSA-PSS)
due to Bellare and Rogaway [BR96]. A variant of the original PSS scheme [IEEE 1363], was brought in as
a side-by-side alternative in version 2.1 [RFC 2437], but was later upgraded to the preferred algorithm in
version 2.2:

“Although no attacks are known against RSASSA-PKCS1-v1 5, in the interest of increased ro-
bustness, RSASSA-PSS is REQUIRED in new applications. RSASSA-PKCS1-v1 5 is included
only for compatibility with existing applications.” [RFC 8017, Sec. 8]

The standardised variant deviated sufficiently from the original proposal so that the proof no longer
holds. A discussion of the changes made and the rationale behind them, along with a proof of security
was presented by Jonsson [Jon01]. We briefly recap the changes made to the scheme, and the effect on the
security proof in Section 3.1.

While it was generally agreed that RSA-PSS should be adopted as the only RSA-based signature al-
gorithm, this was easier said than done. Most notably, when the topic was raised in the context of TLS
1.3 [RFC 8446], there was some discussion regarding this1. In the end, PKCS#1 v1.5 signatures were kept
in TLS 1.3 for backwards compatibility, as it is still widely deployed but RSA-PSS was to be the preferred
signature scheme. This is due to the fact that RSA-PSS comes with a (tight) proof of security, more or less
out of the box.

This meant that both algorithms had to be implemented side-by-side and while this might sound like piling
a secure signature scheme unto an insecure one, this is not the case. Recently, Jager et al. [JKM18a, JKM18b]
presented a security proof for some variants of the PKCS#1 v1.5 signatures, providing some confidence in
their use. At this point, one would hope that simply implementing both schemes in line with the known
security proofs would guarantee security, but that is not the case. The proofs assume that the schemes
are used in isolation, with no additional usage for the keys and/or hash functions. This would mean that
a secure implementation would require two independent RSA key-pairs and up to three independent hash
functions. The implementation overhead would be quite significant, particularly in terms of code complexity,
which could lead to errors that affect security. Additionally, the storage requirements for two independent
keys could be prohibitive in certain low resource environments. The common solution is to share the key
material and hash function(s) amongst the schemes.

It would be ideal to able to say that since the schemes are both secure then their composition must also
be secure, but this not clear in the case where the keys are shared. One might then think that the proofs
are somehow composable, but again this is not true. Indeed, as noted in the PKCS#1 standard:

“Suppose an RSA key pair is employed in both RSASSA-PSS (Section 8.1) and RSASSA-PKCS1-
v1 5. Then the security proof for RSASSA-PSS would no longer be sufficient since the proof does
not account for the possibility that signatures might be generated with a second scheme.” -
[RFC 8017, Sec. 6].

In fact there are two distinct problems that arise when trying to näıvely compose the two proofs. Firstly,
in the proof by Jager et al. [JKM18a, JKM18b], the modulus N is modified to allow the simulation of
signatures, where as the proofs for RSA-PSS do not. This problem can be easily overcome, as the RSA-PSS

1See https://www.ietf.org/mail-archive/web/tls/current/msg19360.html

2

https://www.ietf.org/mail-archive/web/tls/current/msg19360.html


proofs are agnostic of the prime factorisation of N . The second, and more critical problem is the sharing
of hash functions. Both proofs are in the Random Oracle Model (ROM) and program the oracle responses
according to their own needs, which are not compatible with each other and simply combining the proofs
would lead to inconsistencies in the oracle responses. This is especially critical given if both schemes employ
the Mask Generation Function MGF1 (cf. [RFC 2437, Sec. 10.2.1]), which uses repeated hash function calls
to provide a larger hash output. The reduction needs to take care that these repeated queries do not create
inconsistencies.

RSA-PSS has been well studied in the previous years, in particular there have been some improvements
upon the original proof by Coron [Cor02a] and Kakvi and Kiltz [KK12, KK18]. However, both these results
consider the original scheme as proposed by Bellare and Rogaway [BR96]. While some of the techniques sug-
gested by Coron [Cor02a] were incorporated into Jonsson’s proof of the standardized variant of PSS [Jon01],
the more recent advances [KK12, KK18] have not.

Given these factors, we find it to be of great interest to study and understand the security of RSA-
PSS and PKCS#1 v1.5 in light of these new developments. In particular, we are able to show security
when PSS is used with no randomness, making both schemes deterministic. This is quite desirable, as not
only can randomness generation be difficult in some scenarios, but it also makes the schemes subversion
resistant [AMV15].

1.1 Our Contribution

We present two proofs of security for the joint use of RSA-PSS and RSA-PKCS#1 v1.5 signatures schemes,
which we call RSA-TLS-Sibling Signatures. To do this, we first present a new proof for the standardised
variant of RSA-PSS, using the techniques of Kakvi and Kiltz [KK12, KK18] for RSA Full Domain Hash
(RSA-FDH) [BR93] and the original RSA-PSS [BR96] and give a security proof independent of the amount
of randomness used. We then show how one can combine our new proof with that of Jager et al [JKM18a,
JKM18b], to give security proofs for the joint use of RSA-PSS and RSA-PKCS#1 v1.5 signatures, again
where no randomness is required. We begin with a more idealized proof and then we move toward proving
a more practical variant. The first proof covers the “ideal case” where the schemes are implemented with
three independent hash functions. We also discuss how this ideal case could be realized in practice. After
this, we present a proof that is the closest to reality wherein the schemes are implemented with one shared
hash function. Our proofs are tightly secure in the ROM to the lossiness of the RSA permutation, based on
the ϕ-Hiding Assumption (ΦHA) [CMS99]. Both proofs inherit Jager et al.’s parameter expansion [JKM18a,
JKM18b]. This is of course to be expected, as it is clear that combining two schemes with disparate security
levels cannot result in something that is more secure than the least secure component. It should be noted
that all proofs do not depend on the randomness used, and in particular, no randomness can be used, which
would make the schemes subversion resistant [AMV15].

It should be noted that all our proofs are tightly secure in the Random Oracle Model. This is possible
due to the fact that we rely on the lossiness of the RSA permutation, and not its one-wayness. In particular,
this allows to circumvent Coron-style impossibility results [Cor00, Cor02a, BJLS16]. This follows from the
fact that RSA is only a certified trapdoor permutation [BY93, BY96] for “large” exponents [KKM12], but
we only consider the case where “small” exponents are used.

1.2 Related Work

The first proof for the original RSA-PSS scheme was presented by Bellare and Rogaway [BR96]. This proof
was later improved by Coron [Cor02a], who also showed the optimal bounds for the amount of randomness
needed. Kakvi and Kiltz [KK12, KK18] later showed that this optimality only applies when the RSA keys
define a certified trapdoor permutation [BY96, KKM12], but does not apply for small exponents, where RSA
is lossy [PW08]. Based on the lossiness, Kakvi and Kiltz [KK12, KK18] presented a proof for the original
RSA-PSS, which was tightly secure with no randomness.

On one hand, the security of the variant used in practice has only been studied by Jonsson [Jon01].
Jonsson reduces the proof of the PSS variant to the original PSS scheme and then further relies on the
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original proof of Bellare and Rogaway [BR96]. The proof of Jonsson is very general and presents several
parameters that can be selected according to one’s needs. This has the unfortunate side effect of making the
proof somewhat more cumbersome and difficult to parse.

On the other hand, the only known security proofs for PKCS#1 v1.5 were presented by Jager et
al. [JKM18a, JKM18b]. While they were able to achieve a tight reduction to lossiness, there is still a
parameter increase. This is due to the fact that Jager et al.’s proof must double the size of the modulus
in order to be able to simulate signatures. This means that the proof only holds with specific parameter
choices of PKCS#1 v1.5.

It must also be noted that the Rabin variant, with e being fixed to 2, of the PKCS#1 v1.5 and the ISO
9796-2 [ISO 9796-2] signatures were proven to be secure by Coron [Cor02b]. Interestingly enough, this proof
has similar restrictions to the one by Jager et al. [JKM18a, JKM18b].

Apart from the aforementioned works, lossiness of the RSA permutation and its applicability to security
proofs have been well studied in the literature [KOS10, LOS13, KPS13, Seu14, SZ15].

These types of related signatures are generally not considered in the literature, a first model was proposed
by Camenish et al. [CDD17], under the name of Sibling Signatures. We will follow their framework and
present a proof for joint use of PKCS#1 v1.5 and RSA-PSS signatures.

However, what has been considered in the literature is the use of single key for signing and encryption,
formalised by Haber and Pinkas [HP01]. While there have been several works in this direction, including a
revisit of the model by Paterson et al. [PSST11], two specific results are quite close to our results in spirit,
in that they prove security of an extant real life system. The first is the proof of this for the widely deployed
EMV Standard is indeed secure due to Degabriele et al. [DLP+12] and the second is a proof of the TLS
handshake by Bhargavan et al. [BFK+14]. It must be noted for the latter result, one also needs the concept
of cryptographic agility [ABBC10].

2 Preliminaries

2.1 Notations and conventions

We denote our security parameter as λ ∈ N. For all n ∈ N, we denote by 0n and 1n the n-bit string of all
zeroes and all ones, respectively. We denote the concatenation of two bitstrings x and y as x||y. For any set
S, we use x ∈

R
S to indicate that we choose x uniformly random from S. All algorithms may be randomized.

For any algorithm A, we define x ←$ A(a1, . . . , an) as the execution of A with inputs a1, . . . , an and fresh
randomness and then assigning the output to x. For deterministic algorithms, we drop the $ from the arrow.
We denote the set of prime numbers by P and we denote the subset of κ-bit primes as P[κ]. Similarly, we
denote the set of κ-bit integers as Z[κ]. We denote by Z∗N the multiplicative group modulo N ∈ N. For
any a, b ∈ Z, with a < b we denote the set {a, a + 1, . . . , b − 1, b} with Ja, bK. For any n ∈ N and for any
a ∈ N[κ], with κ < n, we denote by 〈a〉n the binary representation of a padded to n bits, i.e. 〈a〉n = 0n−κ||a.
For any bit string x of sufficient length, we denote by MSBs(x, n) the n most significant (leading) bits of x
and LSBs(x, n) the n least significant (trailing) bits of x. We will use game based proofs and will denote
by GA ⇒ 1 the event that the adversary A wins game G. All code that is only in specific games with be
indicated with a comment preceded by two forward slashes e.g. //New code for G1.

2.2 Signature Schemes

We first recall the standard definition of a signature scheme, as well as its security.

Definition 1. A digital signature scheme Sig with message
space M and signature space S is defined as a triple of probabilistic polynomial time (PPT) algorithms
Sig = (KeyGen,Sign,Verify):

• KeyGen takes as an input the unary representation of our security parameter 1λ and outputs a signing
key sk and verification key pk.
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Game UF-CMA(ROM)
Initialize(1λ)

(pk, sk)←$ Sig.KeyGen(1λ)
return pk

Hash(m)

if (m, ·) ∈ H
fetch (m, y) ∈ H
return y

else
y ∈

R
{0, 1}`;

H ← H∪ {(m, y)}
return y

Sign(m)

M←M∪ {m}
return σ ←$ Sig.Sign(sk,m)

Finalize(m∗, σ∗)

if Sig.Verify(pk,m∗, σ∗) == 1 ∧m∗ 6∈ M
return 1

else
return 0

Figure 1: UF-CMA security game in the Random Oracle Model

• Sign takes as input a signing key sk, message m ∈M and outputs a signature σ ∈ S.

• Verify is a deterministic algorithm, which on input of a public key and a message-signature pair (m,σ) ∈
M× S outputs 1 (accept) or 0 (reject).

We say Sig is correct if for any λ ∈ N, all (pk, sk) ←$ KeyGen(1λ), all m ∈ M, and all σ ←$ Sign(sk,m) we
have that

Pr[Verify(pk,m, σ) = 1] = 1.

For signature security, we consider the notion of UnForgeability under adaptive Chosen Message Attack
in the Random Oracle Model (UF-CMA(ROM)). The security experiment is presented in Figure 1. It must
be noted that all hash function calls are replaced with a call the the random oracle. In the case where we
have multiple hash functions, we have multiple hash functions.

We say that Sig is (t, ε, qh, qs)-UF-CMA(ROM) secure if for any forger F running in time at most t,
making at most qh hash queries and making at most qs signature queries, we have:

Adv
UF-CMA(ROM)
F,Sig = Pr

[
1← Finalize(m∗, σ∗);

(m∗, σ∗)← FHash(·),Sign(·)(pk)

]
6 ε

We now recall the definition of a sibling signature scheme due Camenisch et al. [CDD17].

Definition 2. A sibling signature scheme SibSig with message spaces M1,M2 and signature spaces S1,S2

is defined as a hextuple of probabilistic polynomial time (PPT) algorithms
SibSig = (SibSetup,SibKeyGen,Sign1,Sign2,Verify1,Verify2):

• SibSetup takes as an input the unary representation of our security parameter 1λ and outputs the
system parameters sp.
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• KeyGen takes as input the system parameters sp and outputs the signing key sk and verification key
pk.

• Sign1 takes as input the signing key sk, message m ∈M1 and outputs a signature σ ∈ S1.

• Sign2 takes as input the signing key sk, message m ∈M2 and outputs a signature σ ∈ S2.

• Verify1 is a deterministic algorithm, which on input of the public key pk and a message-signature pair
(m,σ) ∈M1 × S1 outputs 1 (accept) or 0 (reject).

• Verify2 is a deterministic algorithm, which on input of the public key pk and a message-signature pair
(m,σ) ∈M2 × S2 outputs 1 (accept) or 0 (reject).

We say SibSig is correct if for i ∈ {1, 2}, for all λ ∈ N, all key pairs (pk1, pk2, sk1, sk2) ←$ KeyGen(1λ), all
message m ∈Mi, and all σ ←$ Signi(ski,m) we have that

Pr[Verifyi(pki,m, σ) = 1] = 1.

We now recall the security of Sibling Signatures. While it is never given an explicit name by Camenisch
et al.[CDD17], which we call SIBling UnForgeability under Chosen Message Attack in the Random Oracle
Model (SIB-UF(ROM)) in Figure 2.

We say that SibSig is (t, ε, qh, qs1 , qs2)-SIB-UF(ROM) secure if for any forger F running in time at most
t, making at most qh hash queries, making at most qs1 signature queries to Sign1 and making at most qs2
signature queries to Sign2, we have:

Adv
SIB-UF(ROM)
F,SibSig = Pr

[
1← Finalize(m∗, σ∗);

(m∗, σ∗)← FHash(·),Sign1(·),Sign2(·)(pk1, pk2)

]
6 ε

2.3 Computational Assumptions

We now recall the ϕ-Hiding Assumption by Cachin et al. [CMS99], which we denote as ΦHA[λ]2. The ΦHA[λ]
essentially states that given a modulus N and a sufficiently small exponent e, it is hard to decide if e|ϕ(N)

or not. In this case sufficiently small means that e < N
1
4 , as for larger exponents, Kakvi et al. [KKM12]

show how to decide this using Coppersmith’s method [Cop97].

Assumption 1 (The ϕ-Hiding Assumption. [CMS99]). The ϕ-Hiding Assumption, denoted by ΦHA[λ],
states that it is hard to distinguish between (N, einj) and (N, elos), where N is the product of 2 random (λ/2)-

bit primes and einj , elos > 3 ∈ P and and einj , elos,≤ N
1
4 , with gcd(einj , ϕ(N)) = 1 and gcd(elos, ϕ(N)) = elos,

where ϕ is the Euler Totient function. ΦHA[λ] is said to be (t, ε)-hard, if for all distinguishers D running in
time at most t, we have:

Adv
ΦHA[λ]
D = Pr [1← D(N, einj)]− Pr [1← D(N, elos)] 6 ε

Note that when gcd(elos, ϕ(N)) = elos, the function xelos mod N is exactly elos-to-1, i.e. it said to be
elos-regular lossy as defined by Kakvi and Kiltz [KK12, KK18].

3 The Probabilistic Signature Scheme

We now begin by recalling the RSA-Probabilistic Signature Scheme (RSA-PSS) as defined by Bellare and
Rogaway [BR96], which we will refer to as PSS96, for completeness. PSS96 is paramaterized by two integers
`R and `H. The value `R determines the size of the random salt, that is to say our randomness space is
{0, 1}`R . `H defines the output size of our first hash function H : M → {0, 1}`H , which implicitly determines

2We explicitly include the security parameter for clarity in the reductions.
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Game SIB-UF(ROM)
procedure Initialize(1λ)

sp←$ SibSig.SibSetup(1λ)
(pk, sk)←$ SibSig.KeyGen(sp)
return (pk)

procedure Hash(m)

if (m, ·) ∈ H
fetch (m, y) ∈ H
return y

else
y ∈

R
Domain;

H ← H∪ {(m, y)}
return y

procedure Sign1(m)

M1 ←M1 ∪ {m}
return σ ←$ Sign1(sk,m)

procedure Sign2(m)

M2 ←M2 ∪ {m}
return σ ←$ Sign2(sk,m)

procedure Finalize(m∗, σ∗, i∗)

if (i∗ == 1 ∧m∗ 6∈ M1)
if Verify1(pk,m∗, σ∗) == 1

return 1
if (i∗ == 2 ∧m∗ 6∈ M2)

if Verify2(pk,m∗, σ∗) == 1
return 1

else
return 0

Figure 2: SIB-UF-CMA Security Game in the Random Oracle Model
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Scheme PSS96[k, `R, `H] [BR96]
algorithm KeyGen(1λ)

N = 1, ϕ(N) = 1
for i ∈ J1, kK

pi ∈R P[λ/k]
N = N · pi
ϕ(N) = ϕ(N) · (pi − 1)

end for
e ∈

R
Z∗N , gcd(e, ϕ(N)) = 1

pick hash functions
H : M→ {0, 1}`H
G : {0, 1}`H → {0, 1}`G=λ−`H−1

return (pk = (N, e, H, G), sk = (p1, . . . , pk))

algorithm Sign(sk,m)

r ∈
R
{0, 1}`R

ω ← H(m||r)
r∗ ← G1(ω)⊕ r
y = 0||ω‖r∗‖G2(ω)
return σ = y1/e mod N

algorithm Verify(pk,m, σ)

y = σe mod N
parse y as 0||ω||r∗||γ
r = r∗ ⊕ G1(ω)
if (H(m||r) == ω ∧ G2(ω) == γ)

return 1
else

return 0

(a) The RSA Probabilistic Signature Scheme PSS96

Scheme PSS00[k, `R, `H] [IEEE 1363]
algorithm KeyGen(1λ)

N = 1, ϕ(N) = 1
for i ∈ J1, kK

pi ∈R P[λ/k]
N = N · pi
ϕ(N) = ϕ(N) · (pi − 1)

end for
e ∈

R
Z∗N , gcd(e, ϕ(N)) = 1

pick hash functions
H : M→ {0, 1}`H
G : {0, 1}`H → {0, 1}`G=λ−`H−9

return (pk = (N, e, H, G), sk = (p1, . . . , pk))

algorithm Sign(sk,m)

µ = H(m)
r ∈

R
{0, 1}`R

ω ← H(064||µ||r)
r∗ ← G2(ω)⊕ 1||r
y = 0||G1(ω)||r∗||ω||10111100
return σ = y1/e mod N

algorithm Verify(pk,m, σ)

y = σe mod N
parse y as 0||γ||r∗||ω||10111100
1||r = r∗ ⊕ G2(ω)
if (H(064||H(m)||r) == ω ∧ G1(ω) == γ)

return 1
else

return 0

(b) The RSA Probabilistic Signature Scheme PSS00.

Figure 3: The two version of the RSA-Probabilistic Signature Scheme RSA-PSS.

the input and output size of the second hash function G : {0, 1}`H → {0, 1}λ−`H−1. For consistency, we define
`G = λ− `H− 1. For simplicity, we define G1(x) = MSBs(G(x), `R) and G2(x) = LSBs(G(x), `G− `R). We extend
PSS96 to allow multi-prime moduli and we denotes the number of primes by k. We will use the notation
PSS96[k, `R, `H] to define the scheme with those parameters. We recall the scheme in Figure 3a.

Now we recall the modified variant of PSS96 that was standardised by the IEEE in the P1363-2000
standard [IEEE 1363] which we will refer to as PSS00. The changes from PSS96 to PSS00 are documented
in [Jon01] and briefly recalled in Section 3.1. While PSS00 has the same parameters are PSS96, there are
some differences. Firstly, we have that `G which is now defined as `G = λ − `H − 9. This is due to the 8
additional fixed bits that are appended after the hash function. Additionally, due to the changes in the order
of hash functions, we have G2(x) = LSBs(G(x), `R + 1) and G1(x) = MSBs(G(x), `G − `R − 1). We will use the
notation PSS00[k, `R, `H] to define the scheme with those parameters. We recall the scheme in Figure 3b.

3.1 Transforming PSS96 to PSS00

We now discuss the changes made to PSS96 and their effect on the security proof. We stress that the order in
which we present the changes is not representative of the order in which the changes were made, but rather
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the order in which thought would be simplest to explain. If we write out the PSS96 signing algorithm, we
get:

Sign(sk,m; r) = (0||H(m||r)||(G(H(m||r))⊕ (r||0 . . . 0)))1/e mod N

The first change that is made is that G and H are swapped around. This change is quite small and only
requires a superficial change to the security proof. Our signing equation is now:

Sign(sk,m; r) = (0||(G(H(m||r))⊕ (r||0 . . . 0))||H(m||r))1/e mod N

The next change is that we now XOR our randomness with G2 instead of G1. As with the previous change,
only a superficial change is needed to the security proof. This gives the signing equation:

Sign(sk,m; r) = (0||(G(H(m||r))⊕ (0 . . . 0||r))||H(m||r))1/e mod N

The last change to our randomness is that we add a 1-bit delimiter before the randomness. Again, the
proof can be adapted with a minor change. This means the signing equation is:

Sign(sk,m; r) = (0||(G(H(m||r))⊕ (0 . . . 01||r))||H(m||r))1/e mod N

The next change is that we no longer hash the message, but a hash of the message. This change is
not quite as drastic as it first seems. The fact that we sign hashes of fixed-length inputs means we can
distinguish between queries to our oracle for signing vs. other queries, which actually helps us in our proof.
The changes required to fix this are more involved when we add all our other changes. Thus, our signing
equation becomes:

Sign(sk,m; r) = (0||(G(H(H(m)||r))⊕ (0 . . . 01||r))||H(H(m)||r))1/e mod N

The next change is for the option to use message recovery. We additionally encode the length of the
message to be recovered into the value being hashed. The current standard specifies a length field of length
64 bits. If there is no message to recover, the length is set to 0. This change, in combination with the other
changes, is where the proof starts to become more complicated. The change required here requires careful
treatment of all the cases. Concretely, the signing equation is:

Sign(sk,m; r) = (0||(G(H(064||H(m)||r))⊕ (0 . . . 01||r))||H(064||H(m)||r))1/e mod N

The final change is for compatibility reasons. In order to be compatible with the Integer Factorization
Signature Primitive using Rabin-Williams (IFSP-RW) [IEEE 1363, Sec 8.2.8], a 0xbc is concatenated to the
end of the hash. This now has an interesting effect on the proof, as we now have to resample until we have
a trailing 0xbc. This increases the running time of our reduction by an expected factor of 28, which means
we lose 8 bits of security. This gives us our final signing equation of:

Sign(sk,m; r) = (0||(G(H(064||H(m)||r))⊕ (0 . . . 01||r))||H(064||H(m)||r)||0xbc)1/e mod N

This security loss comes from the work factor of our reductions. The work factor (WF) of an adversary
A is defined as:

WF =
εA
tA

When we say we have κ-bit security, this translates to having a work factor of at least 2κ. Since the
reduction for PSS96 and PSS00 have the same advantage, but the time differs by 28, we have a loss of 7 bits
of security. Suppose for some parameters we have a work factor of 2κ, i.e. κ bits of security, for PSS96, then
we have:

εPSS00
tPSS00

=
εPSS96

28 · tPSS96
=

1

28
· εPSS96
tPSS96

2κ

28
= 2κ−8
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4 New Security Proofs for PSS

We now present our new proofs for the security of PSS00, following the lossy proof methodology of Kakvi and
Kiltz [KK12, KK18] and proving a result in a similar vein. Unlike the previous proof [Jon01], our proof is
independent of the size of the random salt `R. This means in particular, we can set `R = 0 and use PSS00 in
a deterministic manner without any loss in security. Furthermore, setting `R > 0 does not have any security
gain. We now present our proof, which follows the template of the proof of Kakvi and Kiltz [KK12, KK18].
First we show proofs for the case where we use two hash functions and then we show how one can use one
hash function and give a proof for this.

4.1 Proof with 2 Hash Functions

Theorem 1. Assume RSA is a regular (η, t′, ε′)-lossy trapdoor permutation for η ≥ 2. Then, for any
(qh, qg, qs, `R, `H), PSS00[2, λ, `R, `H] is (t, ε, qh, qg, qs)-UF-CMA secure in the Random Oracle Model, where

ε 6

(
2η − 1

η − 1

)
· ε′ + (qh + qs)

2

2`H

t′ ≈ t+ 28 · (qh + qs) · tRSA,

and tRSA is the time to compute one modular exponentiation.

Proof. We prove our games through a series of game hops, which we describe in Figures 4a and 4b. We move
from our standard EUF-CMA-ROM game to a game where the adversary has an advantage of 0. We show
that each transition from game to game is negligible via Lemmas 1-5

The first change we make is to move to Game G1, where we no longer generate the public key and signing
key, but we use an injective ΦHA[λ] instance as our public key and we program our random oracles to
simulate signatures. This works, unless we get a collision in one of our hash functions, which happens with
a small probability. This is captured by the following lemma.

Lemma 1. Pr[GF1 ⇒ 1] = Pr[GF0 ⇒ 1]− (qh+qs)
2

2`H
.

Proof. In G1 we modify the H oracle and the signing oracle. First we distinguish between “signable” queries
and “non-signable” queries. Only queries of the form 064||H(m)||r ∈ {0, 1}64+`H+`R will be signed. Thus
on these queries, the H oracle now works by sampling a random element σ(m,r) ∈ Z∗N and raises computes
a candidate message representative y = σe(m,r) mod N . This process is repeated until the trailing 16 bits

of y are equal to 101111003 This takes an expected 28 resamplings. Once a valid message representative
y is found, it is parsed as 0||γ(m,r)||r∗(m,r)||ω(m,r)||10111100. We now check if ω(m,r) has been previously
queried to the G oracle. If it has, then we abort, as this would lead to an inconsistent oracle state. If this
is not the case, we program the G oracles to return this value. The H oracle the stores the response ω(m,r)

and the signature σ(m,r). The signing oracle makes the requisite oracle calls, to ensure that all values are
defined and then simply retrieves the signature and returns σ(m,r). It is clear to see that this indeed a valid
signature. Since we are using the injective variant, the RSA function is a permutation, hence the response
of H oracle is also correctly distributed. Hence, the simulation of signatures is correct, unless the reduction

aborts. The probability of a collision is at most (qs+qh)2

2`H
, since the adversary makes at most qh + qs queries,

implicit or explicit, to the G-oracle, giving at most (qh+qs+1)2 possible collisions from a total of 2`H possible
choices. Furthermore, we do not abort if collision matches the value already set, which happens with a

probability 1− 1
2λ−`H

. Hence the total probability that we abort is
(
1− 1

2λ−`H

) ( (qh+qs+1)2

2`H

)
. Thus we have

Pr[GF1 ⇒ 1] = Pr[GF0 ⇒ 1]− (qh+qs+1)2

2`H
.

310111100 is the binary for 0xbc as specified in the standard [IEEE 1363].
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Game G0

Initialize(1λ)

(pk, sk)←$ PSS00[2, λ, `R, `H].KeyGen(1λ)
return pk

Oracle H(x)

if (x, ·) ∈ H
fetch (x, ωx) ∈ H
return ωx

else
ωx ∈R {0, 1}`H
set H[x] = (ω(m,r), σ(m,r))
return ωx

Oracle G(x)

if (x, ·) ∈ G
fetch (x, αx) ∈ G
return αx

else
αx ∈R {0, 1}`G
set G[x] = (αx)
return αx

Sign(m)

M←M∪ {m}
σ ←$ PSS00[2, `R, `H].Sign(sk,m)
return σ

Finalize(m∗, σ∗)

if (m∗ ∈M)
return 0

if (PSS00[2, `R, `H].Verify(pk,m∗, σ∗) == 1))
return 1

else
return 0

(a) Game G0 for Theorem 1

Games G1 − G4

Initialize(1λ)

(N, einj , elos)←$ ΦHA[λ]
e = einj //Injective keys for G1,G4

e = elos //Lossy keys for G2,G3

return pk = (N, ê)

Oracle H(x)

if (H[x] is defined)
fetch H[x] = (ωx, σx)
return ωx

else if (|x| = `H + `R + 64 and MSBs(x, 64) = 064)
parse x = 064||m||r
repeat

σ(m,r) ∈R ZN
y(m,r) = σe(m,r) mod N

until LSBs(y(m,r), 16) = 10111100
Parse y(m,r) = 0||γ(m,r)||r∗(m,r)||ω(m,r)||10111100

if (G[ω(m,r)] is defined)
return ⊥

αm,r = γm,r||(r∗(m,r) ⊕ 1||r)
set G[ω(m,r)] = (α(m,r))
set H[x] = (ω(m,r), σ(m,r))
return ω(m,r)

else
ωx ∈R {0, 1}`H
set H[x] = (ωx,⊥)
return ωx

Oracle G(x)

if (x, ·) ∈ G
fetch G[x] = (αx)
return αx

else
αx ∈R {0, 1}`G
set G[x] = (αx)
return αx

Sign(m)

M←M∪ {m}
call H(m)
fetch H[m] = (ωm, σm)
r ∈

R
{0, 1}`R

call H(064||ωm||r)
fetch H[064||ωm||r] = (ωm, σ(m,r))
return σm,r

Finalize(m∗, σ∗)

if m∗ ∈M
return 0

y = (σ∗)e mod N
if(LSBs(y, 16)! = 10111100)

return 0
parse y = 0||γ||r∗||ω||10111100
1||r = r∗ ⊕ LSBs(αω∗ , `R + 1)
fetch H[m∗] = (ωm∗), σm∗)
fetch H[064||ωm∗ ||r] = (ω∗, σ(m,r))
if (σ∗ = σ(m,r) then //Abort rule in G3,G4

return 0 //Abort rule in G3,G4

fetch G[ω∗] = (αω∗)
if (ω∗ == ω ∧ MSBs(αω∗ , `G − `R − 1) == γ)

return 1
else

return 0

(b) Games G1 − G4 for Theorem 1

Figure 4: Games G0 − G4 for proof of PSS00 with 2 Random Oracles.
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The next change to game G2, where we switch from an injective ΦHA[λ] instance to a lossy ΦHA[λ]
instance. This change should not be noticed by the forger. If the forger does notice this change, then we
can then use them to construct a distinguisher against the ΦHA[λ].

Lemma 2. There exists a distinguisher D1 against the ΦHA[λ], which runs in time t′ = t+ 28 · qh · tRSA and

such that
∣∣Pr[GF1 ⇒ 1]− Pr[GF2 ⇒ 1]

∣∣ = Adv
ΦHA[λ]
D1

.

Proof. From G1 to G2, we change the key generation from a normal key (N, e) to a lossy key (N, ê), however
the oracles are identical in both games. We now build a distinguisher D1 against the ΦHA[λ], using these
games. The distinguisher will run F and simulates the oracles H, G,Sign as described in games G1 and G2. Note
thatD1 does not require the signing key to simulate the oracles. After F calls Finalize, D1 returns the output
of Finalize. Thus we can see that Pr[1 ← D1(N, e)] = Pr

[
GF1 ⇒ 1

]
and Pr[1 ← D1(N, ê)] = Pr

[
GF2 ⇒ 1

]
Hence we have

∣∣Pr
[
GF1 ⇒ 1

]
− Pr

[
GF2 ⇒ 1

]∣∣ = |Pr [1← D1(N, e)]− Pr [1← D1(N, ê)]| = Adv
ΦHA[λ]
D1

.

We now move to Game G3, where we add an additional abort condition to Finalize procedure. Here we
reject any forgery that is the same as our simulated signature. Since we now have lossy signatures, there
are many valid signatures, thus the adversary may submit a forgery that is different from our simulated
signature. We show this in the following lemma.

Lemma 3. Pr[GF3 ⇒ 1] =
(
η−1
η

)
Pr[GF2 ⇒ 1].

Proof. In G3, we an additional abort condition, the reduction if the forgery σ∗ provided by F is the same
as the simulated signature σ(m∗,r) for the target message m∗, with the randomness r. If this is the case,
the reduction outputs 0 and terminates. Notice that the simulated signature σ(m∗,r) is independent of F ’s
view and is uniformly distributed in the set of valid signatures for m∗ under randomness r. Due to the
fact that the function xê mod N is η-regular lossy, with η = ê, the probability of a collision is 1/η. Thus
we see that this abort condition reduces the probability of the forger winning the game by 1/η, hence

Pr
[
GF3 ⇒ 1

]
=
(

1− 1
η

)
Pr
[
GF2 ⇒ 1

]
=
(
η−1
η

)
Pr
[
GF2 ⇒ 1

]
.

The last step in the proof is to move to Game G4. Here we switch back to an injective ΦHA[λ] instance,
which makes our RSA function once again a permutation. As with the change from G1 to G2, this is unnoticed
by the forger, or we can use the forger to build a distinguisher. Furthermore, the forger can never win this
final game, as any valid forgery will be rejected by our abort condition. This is captured in the following
two lemmas.

Lemma 4. There exists a distinguisher D2 against the ΦHA[λ], which runs in time t = t+ 28 · qh · tRSA and

such that |Pr[GF3 ⇒ 1]− Pr[GF4 ⇒ 1]| = Adv
ΦHA[λ]
D2

.

Proof. From G3 to G4, we change from a lossy key (N, ê) to a normal key (N, e), however the oracles are
identical in both games. We now build a distinguisher D2 against ΦHA[λ], using these two games. The
distinguisher runs F and simulates the three oracles H, G,Sign as described in games G3 and G4. Note that
D2 does not require the signing key to simulate the oracles. After F calls Finalize, D2 returns the output
of Finalize. Thus we can see that Pr[1 ← D2(N, e)] = Pr

[
GF4 ⇒ 1

]
and Pr [1← D2(N, ê)] = Pr

[
GF3 ⇒ 1

]
Hence we have

∣∣Pr
[
GF4 ⇒ 1

]
− Pr

[
GF3 ⇒ 1

]∣∣ = |Pr[1← D2(N, e)]− Pr[1← D2(N, ê)]| = Adv
ΦHA[λ]
D2

.

Lemma 5. Pr[G4 ⇒ 1] = 0.

Proof. In G4 we are now using an injective instance, i.e. xe mod N is a permutation. Since our signing
function is now injective, any forgery implies a collision. This now implies that for any message-randomness
pair, the simulated signature σ(m,r) is the only valid signature. Therefore whenever the forger is able to
produce a valid forgery, the game outputs 0 due to it failing the check, hence
Pr[G4 ⇒ 1] = 0.
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We now combine the results of Lemmas 1-5 and we get our final result

Pr[GF0 ⇒ 1] = Adv
ΦHA[λ]
D1

+

(
η

η − 1

)
Adv

ΦHA[λ]
D2

+
(qs + qh)2

2`H

Since D1 and D2 run in the same time, they have at most advantage of ε′, by assumption. This now gives us

Pr[GF0 ⇒ 1] 6 ε′ +

(
η

η − 1

)
ε′ +

(qs + qh)2

2`H

=

(
2η − 1

η − 1

)
· ε′ + (qh + qs)

2

2`H
.

The running comes from the expected running time required to sample a simulated signature. This
completes the proof.

Remark 1. Although at first reading it seems like the security of PSS00 matches that of PSS96, this is not
true. The increased running time means that PSS00 loses and additional 8 bits of security, which need to be
compensated for. This security loss comes from the work factor of our reductions. The work factor (WF)
of an adversary A is defined as WF = εA

tA
. When we say we have κ-bit security, this translates to having a

work factor of at least 2κ. Since the reduction for PSS96 and PSS00 have the same advantage, but the time
differs by 28, we have a loss of 8 bits of security. Suppose for some parameters we have a work factor of 2κ,
i.e. κ bits of security, for PSS96, then we have:

εPSS00
tPSS00

=
εPSS96

28 · tPSS96
=

1

28
· εPSS96
tPSS96

2κ

28
= 2κ−8.

While it is important to note this loss, it is also to be aware of the context and the effect it has on
currently deployed systems. It is indeed true that they are not as secure as we thought, but this loss in
security is in most cases not very severe, in fact most schemes still remain secure despite this.

4.2 Mask Generation Functions

A common practice, and indeed the recommendation in the PKCS#1 Standard [RFC 8017], is to not have
a separate hash function G with a large output size, but rather to take our hash function H and use a so-
calledMask generation Function (MGF). The MGF MGF1 was introduced in PKCS#1 Version 2.0 [RFC 2437,
Sec. 10.2.], and is still in use in Version 2.2 [RFC 8017, App B.2.1]. MGF1 work by repeatedly hashing the
same input with a 32-bit counter repeatedly until the total output size is reached. Consider a hash function

H with output length `H; to extend this to an `-bit hash function, we evaluate H Λ =
⌈
`
`H

⌉
many times and

take the ` most significant bits. we denote this as:

MGF1[H, `](x) = MSBs (H(x||〈0〉32)||H(x||〈1〉32)|| . . . ||H(x||〈ΛG〉32), `G) .

What this means of the case of PSS00 is that we have to evaluate H ΛG =
⌈
`G
`H

⌉
may times. We then take

the `G most significant bits of the output, i.e.

G(x) = MGF1[H, `G](x) = MSBs (H(x||〈0〉32)||H(x||〈1〉32)|| . . . ||H(x||〈Λ〉32), `) .

This complicates the proof slightly as we now have to program the same oracle multiple times for each
query, instead of programming two oracles once. Additionally, we need to make case distinctions as to if a
hash call is the “inner” hash, the “outer” hash or an MGF1 call and program the oracle appropriately. We
make the assumption that that the first octect of our message is non-zer0. We now present the proof of
PSS00 with one hash function. We believe this condition is quite reasonable, as it quite natural to use the
minimal encoding of any message, i.e. without any superfluous leading 0 bits.

13



4.3 Proof with 1 Hash function

Theorem 2. Assume RSA is a regular (η, t′, ε′)-lossy trapdoor permutation for η ≥ 2. Then, for any
(qh, qs, `R, `H), PSS00[2, λ, `R, `H] is (t, ε, qh, qs)-UF-CMA secure in the Random Oracle Model, where

ε 6

(
2η − 1

η − 1

)
· ε′ + (qh + qs)

2

2`H

t′ ≈ t+ 28 · (qh + qs) · tRSA,

and tRSA is the time to compute one modular exponentiation.

Proof. We prove our games through a series of game hops, which we describe in Figures 5a and 5b. We move
from our standard EUF-CMA-ROM game to a game where the adversary has an advantage of 0. We show
that each transition from game to game is negligible via Lemmas 6-10

The first change we make is to move to Game G1, where we no longer generate the public key and signing
key, but we use an injective ΦHA[λ] instance as our public key and we program our random oracles to
simulate signatures. This works, unless we get a collision in one of our hash functions, which happens with
a small probability. This is captured by the following lemma.

Lemma 6. Pr[G
F
1 ⇒ 1] = Pr[G

F
0 ⇒ 1]− (qh+qs)

2

2`H
.

Proof. In G1 we modify the H oracle and the signing oracle. First we distinguish between “signable” queries
and “non-signable” queries. Only queries of the form 064||H(m)||r ∈ {0, 1}64+`H+`R will be signed. Thus on
these queries, the H oracle now works by sampling a random element σ(m,r) ∈ Z∗N and raises computes a
candidate message representative y = σe(m,r) mod N . This process is repeated until the trailing 16 bits of

y are equal to 101111004 This takes an expected 28 resamplings. Once a valid message representative y is
found, it is parsed as 0||γ(m,r)||r∗(m,r)||ω(m,r)||10111100. We now check if ω(m,r) has been previously queried
to the H oracle, as an MGF1 query. If it has, then we abort, as this would lead to an inconsistent oracle state.
If this is not the case, we program the H oracle for each MGF1 block, including padding the last block with
a random value. The H oracle the stores the response ω(m,r) and the signature σ(m,r). The signing oracle
makes the requisite oracle calls, to ensure that all values are defined and then simply retrieves the signature
and returns σ(m,r). It is clear to see that this indeed a valid signature. Since we are using the injective
variant, the RSA function is a permutation, hence the response of H oracle is also correctly distributed.
Hence, the simulation of signatures is correct, unless the reduction aborts. The probability of a collision is

at most (qs+qh)2

2`H
, since the adversary makes at most qh+qs MGF1 queries, implicit or explicit, to the H-oracle,

as when we program one MGF1 block, we program them all. This means we have at most (qh + qs + 1)2

possible collisions from a total of 2`H possible choices. Furthermore, we do not abort if collision matches the
value already set, which happens with a probability 1− 1

2λ−`H
. Hence the total probability that we abort is(

1− 1
2λ−`H

) ( (qh+qs+1)2

2`H

)
. Thus we have Pr[G

F
1 ⇒ 1] = Pr[G

F
0 ⇒ 1]− (qh+qs+1)2

2`H
.

From this point the proof proceeds as the proof of Theorem 1, thus we omit the proofs for Lemmas 7-10,
as the proofs are close to that of Lemmas 2-5. As such, we find such a repetition non-instructive and we
simply describe the game transitions and state the Lemmas.

The next change to game G2, where we switch from an injective ΦHA[λ] instance to a lossy ΦHA[λ]
instance. This change should not be noticed by the forger. If the forger does notice this change, then we
can then use them to construct a distinguisher against the ΦHA[λ].

Lemma 7. There exists a distinguisher D1 against the ΦHA[λ], which runs in time t′ = t+ 28 · qh · tRSA and

such that
∣∣∣Pr[G

F
1 ⇒ 1]− Pr[G

F
2 ⇒ 1]

∣∣∣ = Adv
ΦHA[λ]

D1
.

410111100 is the binary for 0xbc as specified in the standard [IEEE 1363].
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Game G0

Initialize(1λ)

(pk, sk)←$ PSS00[2, λ, `R, `H].KeyGen(1λ)
return pk

Oracle H(x)

if (x, ·) ∈ H
fetch (x, ωx) ∈ H
return ωx

else
ωx ∈R {0, 1}`H
H ← H∪ {(x, ωx)}
return ωx

Sign(m)

M←M∪ {m}
σ ←$ PSS00[2, `R, `H].Sign(sk,m)
return σ

Finalize(m∗, σ∗)

if (PSS00[2, `R, `H].Verify(pk,m∗, σ∗) == 1) ∧ (m∗ 6∈ M)
return 1

else
return 0

(a) Game G0 for Theorem 2

Games G1 − G4

Initialize(1λ)

(N, einj , elos)←$ ΦHA[λ]

e = einj //Injective keys for G1,G4

e = elos //Lossy keys for G2,G3

return pk = (N, ê)

Oracle H(x)

if (H[x] is defined)
fetch H[x] = (ωx, σx)
return ωx

else if (|x| = `H + `R + 64 and MSBs(x, 64) = 064)
//PSS00 singing query

parse x = 064||m||r
repeat

σ(m,r) ∈R Z∗N
y(m,r) = σe mod N̂

until LSBs(y(m,r), 16) = 10111100
parse y(m,r) = 0||γ(m,r)||r∗(m,r)||ω(m,r)||10111100

if (H[ω(m,r)||〈0〉32] is defined)
return ⊥ //MGF1 collision abort

α(m,r) = γ(m,r)||(r∗(m,r) ⊕ 1||r)
parse α(m,r) = α0|| . . . ||αΛG−1||βΛG

//αi ∈ {0, 1}`H , βΛG
∈ {0, 1}`G−`H(ΛG−1)

β′ ∈
R
{0, 1}`H·ΛG−`G

αΛG
= βΛG

||β′
for(i ∈ J0,ΛGK)

set H[ω(m,r)||〈i〉32] = (αi, σm,r)
set H[x] = (ω(m,r),⊥, σm,r)
return ω(m,r)

else if(LSBs(x, 32) ∈ {〈0〉32, . . . 〈ΛF〉32}) then
//MGF1 query

parse x = m||〈κ〉32

zm1
∈
R
{0, 1}`G

if (H[(m1||〈0〉32] is defined)
return ⊥

parse zm1
= z0|| . . . ||zΛG−1||ζΛG

ζ ′ ∈
R
{0, 1}`H·ΛG−`G

zΛG
= ζΛG

||ζ ′
for(i ∈ J0,ΛFK)

set H[m1||〈i〉32] = (zi,⊥)
return zκ

else //Non-critical query
ωx ∈R {0, 1}`H
set H[x] = (ωx,⊥)

Finalize(m∗, σ∗)

if m∗ ∈M
return 0

y = (σ∗)e mod N
if(LSBs(y, 16)! = 10111100)

return 0
parse y = 0||γ||r∗||ω||10111100
fetch G[ω∗] = (αω∗)
1||r = r∗ ⊕ LSBs(αω∗ , `R + 1)
fetch H[m∗] = (ωm∗ , σm∗)
fetch H[064||ωm∗ ||r] = (ω∗, σ(m,r))

if (σ∗ = σ(m,r)) then //Abort rule in G3,G4

return 0 //Abort rule in G3,G4

if (ω∗ == ω ∧ MSBs(αω∗ , `G − `R − 1) == γ)
return 1

else
return 0

(b) Games G1-G4 for Theorem 2

Figure 5: Games G0 − G4 for Proof of PSS00 with 1 Random Oracle.
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The next change to game G2, where we switch from an injective ΦHA[λ] instance to a lossy ΦHA[λ]
instance. This change should not be noticed by the forger. If the forger does notice this change, then we
can then use them to construct a distinguisher against the ΦHA[λ].

We now move to Game G3, where we add an additional abort condition to Finalize procedure. Here we
reject any forgery that is the same as our simulated signature. Since we now have lossy signatures, there
are many valid signatures, thus the adversary may submit a forgery that is different from our simulated
signature. We show this in the following lemma.

Lemma 8. Pr[G
F
3 ⇒ 1] =

(
η−1
η

)
Pr[G

F
2 ⇒ 1].

The last step in the proof is to move to Game G4. Here we switch back to an injective ΦHA[λ] instance,
which makes our RSA function once again a permutation. As with the change from G1 to G2, this is unnoticed
by the forger, or we can use the forger to build a distinguisher. Furthermore, the forger can never win this
final game, as any valid forgery will be rejected by our abort condition. This is captured in the following
two lemmas.

Lemma 9. There exists a distinguisher D2 against the ΦHA[λ], which runs in time t = t+ 28 · qh · tRSA and

such that |Pr[G
F
3 ⇒ 1]− Pr[G

F
4 ⇒ 1]| = Adv

ΦHA[λ]

D2
.

Lemma 10. Pr[G4 ⇒ 1] = 0.

We now combine the results of Lemmas 6-10 and we get our final result

Pr[G
F
0 ⇒ 1] = Adv

ΦHA[λ]

D1
+

(
η

η − 1

)
Adv

ΦHA[λ]

D2
+

(qs + qh)2

2`H

Since D1 and D2 run in the same time, they have at most advantage of ε′, by assumption. This now gives
us

Pr[G
F
0 ⇒ 1] 6 ε′ +

(
η

η − 1

)
ε′ +

(qs + qh)2

2`H

=

(
2η − 1

η − 1

)
· ε′ + (qh + qs)

2

2`H
.

The running comes from the expected running time required to sample a simulated signature. This
completes the proof.

5 The PKCS#1 v1.5 Signature Scheme

The PKCS#1 v1.5 signature scheme (PKCS1) was first publicly defined in Version 1.5 of the RSA PKCS#1
Standard [RFC 2313]. It is used in countless important applications, such as X.509 Certificates [RFC 4055],
Secure/Multipurpose Internet Mail Extensions (S/MIME) [RFC 3770], PGP [RFC 4880], IPSec [RFC 4359],
all TLS versions up to 1.2 [RFC 2246, RFC 4346, RFC 5246], JSON Web Signature [RFC 7515], W3C’s XML
Signature [RFC 3275] and many more. However, as previously stated, due to the lack of a security proof,
PSS00 was recommended as an alternative.

Unlike PSS96 or PSS00, PKCS1 is deterministic and it requires only a single hash function, which we will
for convenience call F and we denote its output size with `F. While it is standard to only use two prime
factors, the standard allows for an arbitrary number of prime factors. The only know security proof due to
Jager et al. [JKM18a, JKM18b] only holds for PKCS1 with at least three prime factors. As with PSS96 and
PSS00, we denote the number of prime factors as k and we incorporate these parameters into our signatures
name, i.e. PKCS1[k, `F]. We now recall the PKCS1 scheme as presented by Jager et al. [JKM18a, JKM18b] in
Figure 6a.

For completeness, we briefly recall the theorem of Jager et al. [JKM18a, JKM18b], for a detailed proof
and discussion of the results, we refer the reader to the original paper [JKM18a, JKM18b].
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Scheme PKCS1 [k, `F]
KeyGen(1λ)

N = 1, ϕ(N) = 1
for i ∈ J1, kK

pi ∈R P[λ/k]
N = N · pi
ϕ(N) = ϕ(N) · (pi − 1)

end for
e ∈

R
Z∗N , gcd(e, ϕ(N)) = 1

pick hash function F : M→ {0, 1}`F
Look up identifier IDF for F
PAD = 015||1λ−`F−|IDF|−23||08||IDF
return (pk = (N, e, PAD, F), sk = (p1, . . . , pk))

Sign(sk,m)

z ← F(m)
y = PAD||z
return σ = y1/e mod N

Verify(pk,m, σ)

y′ = σe mod N
z′ ← H(m)
if (PAD||z′ == y′)

return 1
else

return 0

(a) RSA PKCS#1 v1.5

Scheme RSA-TLS-SIB[k, `R, `H, `F]
algorithm KeyGen(1λ)

N = 1, ϕ(N) = 1
for i ∈ J1, kK

pi ∈R P[λ/k]
N = N · pi
ϕ(N) = ϕ(N) · (pi − 1)

end for
e ∈

R
Z∗N , gcd(e, ϕ(N)) = 1

pick hash functions
H : M2 → {0, 1}`H
G : {0, 1}`H → {0, 1}`G=λ−`H−9

F : M1 → {0, 1}`F
Look up identifier IDF for F
PAD = 015||1λ−`F−|IDF|−23||08||IDF
pk1 = (N, e, PAD, F), pk2 = (N, e, G, H)
sk1 = sk2 = (p1, . . . , pk)
return ((pk1, sk1), (pk2, sk2))

Sign1(sk1,m)

z ← F(m)
y = PAD||z
return σ = y1/e mod N

Verify1(pk1,m, σ)

y = σe mod N
z ← F(m)
if (PAD||z == y)

return 1
else

return 0

algorithm Sign2(sk2,m)

µ = H(m)
r ∈

R
{0, 1}`R

ω ← H(064||µ||r)
r∗ ← G2(ω)⊕ 1||r
y = σe mod N
parse y = 0||G1(ω)||r∗||ω||10111100
return σ = y1/e mod N

algorithm Verify2(pk2,m, σ)

y = σe mod N
parse y as 0||γ||r∗||ω||10111100
r = r∗ ⊕ G2(ω)
if (H(064||H(m)||r) == ω ∧ G1(ω) == γ)

return 1
else

return 0

(b) RSA-TLS-Sibling Signatures

Figure 6: The PKCS1 and RSA-TLS-SIB signature schemes.
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Theorem 3. [JKM18a, JKM18b] Assume that ΦHA[λ] is (t′, ε′)-hard and defines a η-regular lossy function.
Then for any (qf , qs), PKCS1[3, 2λ] is (t, ε, qf , qs)-UF-CMA secure in the Random Oracle Model, where

ε 6
2η − 1

η − 1
· ε′

t′ ≈ t+ qf · tEnc.

Where tEnc is the running time of the Encode algorithm.

We also recall the Encode algorithm by Jager et al. in Figure 7, as we will use it in our proofs. The
Encode algorithm allows us to simulate PKCS1 signatures. For a detailed discussion of the algorithm and its
properties, we refer the reader to the original paper [JKM18a, JKM18b].

Encode (N, e, y, `F, PAD, p̃)

ν = dlog2Ne, ρ = dlog2Re
z := 2`F, k := 0
while (z ≥ 2`F) and (k < n · 2n−`F):
k := k + 1

s
$← ZN

z := yse − 2`F · PAD mod N
ŷ := 2`F · PAD + z
if z < 2`F then

return (ŷ, s, z)
else

return ⊥.

Figure 7: The Encode algorithm due to Jager et al. [JKM18a, JKM18b]

Recall that the running time of the Encode algorithm is O(2λ−`F · λ3 · log e) = O(λ4). We denote this
running time as tEnc.

6 Security proof of RSA-TLS-Sibling Signatures

Now that we have a security proof for PSS00 and we have recalled the PKCS1, we can turn our attention to
the RSA-TLS-Sibling Signatures (RSA-TLS-SIB)5 We will consider several possible cases in order to not only
cover the current practices, but also potential future practices. The first case we consider is the ideal case,
where the schemes are implemented with three independent hash functions in Section 6.1. This covers both
the theoretical perspective and potential future usage. Our second proof in Section 6.2 covers the case where
both schemes are implemented using only one hash function. We discuss the relevance of each proof after
the proof itself. Finally in Section 6.3 we provide proofs for the case when we use 2 hash functions. To the
best of our knowledge, this is not a common practice and its inclusion is simply for the sake of completeness.

6.1 Proof with 3 Hash Functions

We first consider the ideal case where have 3 hash functions, which we will call H, G, F. We will use H, G for
PSS00 and F for PKCS1, which we present in Figure 6b. While this proof seems relatively straight forward, it
is a novel combination of our proof from Section 4.1 and the proof of Jager et al. (cf. Theorem 3) [JKM18a,
JKM18b]. While it is possible that a PSS00 signature could trivially give a PKCS1 forgery, or indeed vice-
versa, this is not a serious issue for our proof. This follows from the fact that we do not actually embed our
challenges in the signatures, but in the public keys. Furthermore, our final game is one where the adversary
has a success probability of 0, thus negating any trivial forgeries. We now present our result.

5We drop the Gen algorithm, for compactness, as we have very few system parameters beyond our keys.
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Theorem 4. Assume RSA is a regular (η, t′, ε′)-lossy trapdoor permutation for η ≥ 2. Then, for any
(qh, qg, qf , qs1 , qs2 , `R, `H, `F), RSA-TLS-SIB[3, λ, `R, `H] is (t, ε, qh, qg, qf , qs1 , qs2)-SIB-UF secure in the Random
Oracle Model, where

ε 6

(
2η − 1

η − 1

)
· ε′ + (qh + qs)

2

2`H

t′ ≈ t+ 28 · (qh + qs1) · tRSA + (qf + qs2) · tEnc,

and tRSA is the time to compute one modular exponentiation and tEnc is the time to compute the Encode
algorithm.

Proof. We prove our theorem through a series of game hops. These game hops are captured in Lemmas 11-
16. For compactness, we will only show the proof of Lemmas 11 & 12, as the proofs for Lemmas 13-15 are
very close to that of Lemmas 2-5, thus including them here would not be instructive.

The fist change we make is that we now program our random oracles so that we are able to simulate
Sign2 (PSS00) signatures without needing the signing key. This is similar to how we simulate signatures in
Lemma 1, with the additional issue of making sure that Sign1 queries are unchanged.

Lemma 11. Pr[ĜF1 ⇒ 1] = Pr[ĜF0 ⇒ 1]− (qh+qs)
2

2`H
.

Proof. In Ĝ1 we modify the H oracle and the Sign2 oracle such that Sign2 Oracle no longer needs the signing
key. First we distinguish between “signable” queries and “non-signable” queries. Only queries of the form
064||H(m)||r ∈ {0, 1}64+`H+`R will be signed. Thus on these queries, the H oracle now works by sampling a
random element σ(m,r) ∈ Z∗N and raises computes a candidate message representative y = σe(m,r) mod N .

This process is repeated until the trailing 16 bits of y are equal to 101111006 This takes an expected 28

resamplings. Once a valid message representative y is found, it is parsed as 0||γ(m,r)||r∗(m,r)||ω(m,r)||10111100.
We now check if ω(m,r) has been previously queried to the G oracle. If it has, then we abort, as this would
lead to an inconsistent oracle state. If this is not the case, we program the G oracles to return this value.
The H oracle the stores the response ω(m,r) and the signature σ(m,r). The signing oracle makes the requisite
oracle calls, to ensure that all values are defined and then simply retrieves the signature and returns σ(m,r).
It is clear to see that this indeed a valid signature. Since we are using the injective variant, the RSA function
is a permutation, hence the response of H oracle is also correctly distributed. Hence, the simulation of

signatures is correct, unless the reduction aborts. The probability of a collision is at most (qs+qh)2

2k1
, since the

adversary makes at most qh + qs queries, implicit or explicit, to the G-oracle, giving at most (qh + qs + 1)2

possible collisions from a total of 2`H possible choices. Furthermore, we do not abort if collision matches the
value already set, which happens with a probability 1− 1

2λ−`H
. Hence the total probability that we abort is(

1− 1
2λ−`H

) ( (qh+qs+1)2

2`H

)
. Thus we have Pr[ĜF1 ⇒ 1] = Pr[ĜF0 ⇒ 1]− (qh+qs+1)2

2`H
.

The next change we make is to program the random oracle so that we can simulate Sign1 (PKCS1) queries
without need the signing key. This is similar to the first step in the proof by Jager et al. [JKM18a, JKM18b].

Lemma 12. Pr[ĜF2 ⇒ 1] = Pr[ĜF1 ⇒ 1].

Proof. We now modify the Initialize procedure, so that we no longer uses the RSA-TLS-Sibling Signature
generation, but we get an injective ΦH instance. We bring this up a 3-prime modulus by sampling an
appropriate prime number r and multiplying our modulus with that. Notices that the Sign2 oracle does not
need to be changed and still performs correctly. Now we need to take care of the Sign1 oracle, which we
do by modifying the F oracle. In Ĝ2 we modify the F oracle such that on any m, it now “precomputes” a
signature for m using the Encode algorithm. It can be seen that all our signatures will verify due to the
fact that σem = PAD||zm for all m. Thus our simulation of the signatures is correct. Since Encode gives us

610111100 is the binary for 0xbc as specified in the standard [IEEE 1363].
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Game Ĝ0

procedure Initialise
(pk, sk)←$ RSA-TLS-SIB[2, `R, `H, `F].KeyGen(1λ)
return pk
Oracle H(x)

if (H[x] is defined)
fetch H[x] = (ωx)
return ωx

else
ωx ∈R {0, 1}`H
set H[x] = (ωx)

Oracle G(x)

if (G[x] is defined)
fetch G[x] = (αx)
return αx

else
αx ∈R {0, 1}`H
set H[x] = (αx)

Oracle F(x)

if (F [x] is defined)
fetch F [x] = (zx)
return zx

else
zx ∈R {0, 1}`F
set F [x] = (zx)

Sign1(m)

M1 ←M1 ∪ {m}
σ ← RSA-TLS-SIB.Sign1(sk,m)
return σ

Sign2(m)

M2 ←M2 ∪ {m}
σ ← RSA-TLS-SIB.Sign2(sk,m)
return σ

Finalize(m∗, σ∗, i∗)

if(i∗ = 1) then
if (RSA-TLS-SIB.Verify1(pk,m∗, i∗) == 1 ∧m∗ 6∈ M1) then

return 1
else

return 0
else if(i∗ = 2) then

if (RSA-TLS-SIB.Verify2(pk,m∗, i∗) == 1 ∧m∗ 6∈ M2) then
return 1

else
return 0

else
return 0

Figure 8: Game Ĝ0 for proof of RSA-TLS-SIB with 3 hash functions (Theorem 4)
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Game Ĝ1

Initialise
(pk, sk)←$ RSA-TLS-SIB[2, `R, `H, `F].KeyGen(1λ)
return pk

Oracle H(x)
if (H[x] is defined)

fetch H[x] = (ωx, σx)
return ωx

else if (|x| = `H + `R + 64 and MSBs(x, 64) = 064)
parse x = 064||m||r
repeat

σ(m,r) ∈R ZN
y(m,r) = σe(m,r) mod N

until LSBs(y(m,r), 16) = 10111100
Parse y(m,r) = 0||γ(m,r)||r∗(m,r)||ω(m,r)||10111100

if (G[ω(m,r)] is defined)
return ⊥

αm,r = γm,r||(r∗(m,r) ⊕ 1||r)
set G[ω(m,r)] = (α(m,r))
set H[x] = (ω(m,r), σ(m,r),⊥)
return ω(m,r)

else
ωx ∈R {0, 1}`H
set H[x] = (ωx,⊥,⊥)
return ωx

Sign1(m)
M1 ←M1 ∪ {m}
σ ← RSA-TLS-SIB.Sign1(sk,m)
return σ

Sign2(m)
M2 ←M2 ∪ {m}
call H(m)
fetch H[m] = (ωm)
r ∈

R
{0, 1}`R

call H(064||ωm||r)
fetch H[064||ωm||r] = (ω, σ1, σ2)
return σ2

Oracle G(x)
if (G[x] is defined)

fetch G[x] = (αx)
return αx

else
ωx ∈R {0, 1}`H
set H[x] = (ωx)

Oracle F(x)
if (F [x] is defined)

fetch F [x] = (zx)
return zx

else
zx ∈R {0, 1}`F
set F [x] = (zx)

Finalize(m∗, σ∗, i∗)
y = (σ∗)e mod N
if(i∗ = 1) then

if (RSA-TLS-SIB.Verify1(pk,m∗, i∗) == 1 ∧m∗ 6∈ M1)
then

return 1
else

return 0
else if (i∗ = 2) then

if m∗ ∈M2

return 0
if(LSBs(y, 16)! = 10111100)

return 0
fetch H[m∗] = (ωm∗ ,⊥,⊥)
parse y = 0||γ||r∗||ω∗||10111100
fetch G[ω∗] = (αω∗)
parse 1||r = r∗ ⊕ LSBs(αω∗ , `R + 1)
fetch H[064||ωm∗ ||r] = (ω, σ1, σ2)
if (ω∗ == ω ∧ MSBs(αω∗ , `G − `R − 1) == γ)

return 1
else

return 0
else

return 0

Figure 9: Game Ĝ1 for proof of RSA-TLS-SIB with 3 hash functions (Theorem 4)
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Game Ĝ2

Initialise
(N, einj , elos)←$ ΦHA[λ]
p̃ ∈

R
P [λ] ; gcd(einj , p̃− 1) = gcd(elos, p̃− 1) = 1

N̂ = N · p̃
e = einj //Injective keys for Ĝ2, Ĝ5

e = elos //Lossy keys for Ĝ3, Ĝ4

pick IDF
PAD = 015||12λ−`−|IDF|−23||08||IDF
return (N̂ , e, PAD)

Oracle H(x)
if (H[x] is defined)

fetch H[x] = (ωx, σx)
return ωx

else if (|x| = `H + `R + 64 and MSBs(x, 64) = 064)
parse x = 064||m||r
repeat

σ(m,r) ∈R ZN
y(m,r) = σe(m,r) mod N

until LSBs(y(m,r), 16) = 10111100
Parse y(m,r) = 0||γ(m,r)||r∗(m,r)||ω(m,r)||10111100

if (G[ω(m,r)] is defined)
return ⊥

αm,r = γm,r||(r∗(m,r) ⊕ 1||r)
set G[ω(m,r)] = (α(m,r))
set H[x] = (ω(m,r), σ(m,r))
return ω(m,r)

else
ωx ∈R {0, 1}`H
set H[x] = (ωx,⊥)
return ωx

Sign1(m)
M1 ←M1 ∪ {m}
call F(m)
fetch F [m] = (zm, σ1)
return σ1

Sign2(m)
M2 ←M2 ∪ {m}
call H(m)
fetch H[m] = (ωm,⊥)
r ∈

R
{0, 1}`R

call H(064||ωm||r)
fetch H[064||ωm||r] = (ω, σ2)
return σ2

Oracle G(x)
if (G[x] is defined)

fetch G[x] = (αx)
return αx

else
ωx ∈R {0, 1}`H
set H[x] = (ωx)

Oracle F(x)
if (F [m] is defined)

fetch F [x] = (zx)
return zx

else
(ŷ, σx, zx)←$ Encode(N, e, 1, PAD, p̃)
set F [x] = (zx, σx)
return zx

Finalize(m∗, σ∗, i∗)
y = (σ∗)e mod N
if (i∗ = 1) then

if m∗ ∈M1

return 0
if(MSBs(y, |PAD|)! = PAD) then

return 0
fetch F(m∗) = (zm, σ1)

if (σ∗ = σ1) then //Abort rule for Ĝ4, Ĝ5

return 0 //Abort Rule for Ĝ4, Ĝ5

parse y = PAD||z
if (z = zm) then

return 1
else

return 0
else if (i∗ = 2) then

if m∗ ∈M2

return 0
if(LSBs(y, 16)! = 10111100)

return 0
fetch H[m∗] = (ωm∗ ,⊥,⊥)
parse y = 0||γ||r∗||ω∗||10111100
fetch G[ω∗] = (αω∗)
parse 1||r = r∗ ⊕ LSBs(αω∗ , `R + 1)
fetch H[064||ωm∗ ||r] = (ω, σ2)

if (σ∗ = σ2) then //Abort rule for Ĝ4, Ĝ5

return 0 //Abort Rule for Ĝ4, Ĝ5

if (ω∗ == ω ∧ MSBs(αω∗ , `G − `R − 1) == γ)
return 1

else
return 0

else
return 0

Figure 10: Games Ĝ2-Ĝ4 for proof of RSA-TLS-SIB with 3 hash functions (Theorem 4)

22



uniformly distributed values s, z, the distribution of our hash queries in Ĝ2 is identical to the distribution in
Ĝ1. Thus we have Pr[ĜF2 ⇒ 1] = Pr[GF0 ⇒ 1].

The next change to game Ĝ3, where we switch from an injective ΦHA[λ] instance to a lossy ΦHA[λ]
instance. This change should not be noticed by the forger. If the forger does notice this change, then we
can then use them to construct a distinguisher against the ΦHA[λ].

Lemma 13. There exists a distinguisher D1 against the ΦHA[λ], which runs in time t′ = t+ 28 · (qh + qs1) ·
tRSA + (qf + qs2) · tEnc and such that

∣∣∣Pr[ĜF2 ⇒ 1]− Pr[ĜF3 ⇒ 1]
∣∣∣ = Adv

ΦHA[λ]
D1

.

We now move to Game Ĝ4, where we add an additional abort condition to Finalize procedure. Here we
reject any forgery that is the same as our simulated signature. Since we now have lossy signatures, there
are many valid signatures, thus the adversary may submit a forgery that is different from our simulated
signature. We show this in the following lemma.

Lemma 14. Pr[ĜF4 ⇒ 1] =
(
η−1
η

)
Pr[ĜF3 ⇒ 1].

Note that since the same key is used for both signature schemes, regardless of which scheme the adversary
forges, he will still lose with a probability of 1/e, which is the probability that the forger finds exactly the
root the simulation chose.

The last step in the proof is to move to Game Ĝ5. Here we switch back to an injective ΦHA[λ] instance,

which makes our RSA function once again a permutation. As with the change from Ĝ2 to Ĝ3, this is unnoticed
by the forger, or we can use the forger to build a distinguisher. Furthermore, the forger can never win this
final game, as any valid forgery will be rejected by our abort condition. This is captured in the following
two lemmas.

Lemma 15. There exists a distinguisher D2 against the ΦHA[λ], which runs in time t = t + 28 · (qh + qs1) ·
tRSA + (qf + qs2) · tEnc and such that |Pr[ĜF4 ⇒ 1]− Pr[ĜF5 ⇒ 1]| = Adv

ΦHA[λ]
D2

.

Lemma 16. Pr[Ĝ5 ⇒ 1] = 0.

We now combine the results of Lemmas 11-16 and we get our final result

Pr[ĜF0 ⇒ 1] = Adv
ΦHA[λ]
D1

+

(
η

η − 1

)
Adv

ΦHA[λ]
D2

+
(qs + qh)2

2`H

Since D1 and D2 run in the same time, they have at most advantage of ε′, by assumption. This now gives us

Pr[ĜF0 ⇒ 1] 6 ε′ +

(
η

η − 1

)
ε′ +

(qs + qh)2

2`H

=

(
2η − 1

η − 1

)
· ε′ + (qh + qs)

2

2`H
.

The running comes from the expected running time required to sample a simulated signature. This
completes the proof.

The question remains if this is in any way representative of reality, to to which the answer is currently
no, but there is hope. This proof requires the use of 3 prime moduli, which is not the standard. This is of
course fixed by assuming that 2 prime moduli are indistinguishable from 3 prime moduli. All that remains
is the issue of having three hash functions. The main argument for having a single hash function (and two
Mask Generation Functions) is code complexity. This argument could be circumvented if the standards were
expanded to allow the customisable SHA-3 [BDPA11] eXtendible Output Functions (XOFs) cSHAKE128 and
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cSHAKE256 [SP 800-185, FIPS 202]. In particular, one could simply implement one cSHAKE variant and then
use the customisation string [SP 800-185, Sec 3.5] to get two, or even three, independent hash functions.
This would be achieved by setting the hash functions, we use as below:

H(x) = cSHAKE(x, `H, “”, “Hash function H”)

G(x) = cSHAKE(x, `G, “”, “Hash function G”)

F(x) = cSHAKE(x, `F, “”, “Hash function F”)

6.2 Proof with 1 Hash Function

We now move to the proof of the more complicated situation, that most closely mirrors reality. Firstly
we assume that the eight most significant bits of any message are non-zero, or to put it another way, the
first octet of our message is non-zero. This condition is quite reasonable, as it is more natural to use the
minimal encoding of any message, but it also provides us with a good distinguishing criteria for our proofs.
Furthermore, we consider the situation where we have only one hash function and this is reused to build all
three has functions. This is achieved using the Mask Generation Function MGF1 from Section 4.2.

We now define G(x) = MGF1[H, `G](x), as in Section 4.3, and additionally, F(x) = MGF1[H, `F](x), which we
plug into the construction in Figure 6b. This now gives us the closest scheme to reality that we can prove.
The technical difficulty with this proof is that we now have one single random oracle instead of the multiple
oracles previously. This leads to complications as where previously we were able to simply assign random
values, we now need to take extra steps in our simulation to ensure internal consistency of the oracle. As
with the proofs for PSS00 in Sections 4.1 and 4.3, we again attempt to partition our hash queries and deal

with them in this manner. We will use ΛG =
⌈
`G
`H

⌉
− 1 and ΛF =

⌈
`F
`H

⌉
− 1, and assume wlog that ΛG > ΛF.

This means that F(x) = MSBs(G(x), `F), thus when we program one oracle we will have to implicitly program
the other oracle. Additionally this means that any query to our H oracle can produce a “collision” in the
functions wherein we wish to assign a value that has already been programmed.

Another issue to consider is what happens when we have a collision in message representatives, that
is to say we have a message µ, where for some j ∈ J1,ΛGK,m ∈ {0, 1}`H , r ∈ {0, 1}`R , we have µ||〈j〉32 =
064||m||r ∈ {0, 1}`H+`R+64. This would lead to some issues in the programming of the H-oracle, not least of
which is that we need to fix ΛF many signatures in advance to answer a single hash query. However, since
we assume that all message start with a non-zero octet, this case can be ruled out. This case becomes an
issue when we wish to use PSS00 with message recovery, but that discussion is out of scope for this article.

Theorem 5. Assume RSA is a regular (η, t′, ε′)-lossy trapdoor permutation for η ≥ 2. Then, for any
(qh, qs1 , qs2 , `R, `H, `F), RSA-TLS-SIB[3, λ, `R, `H, `F] is (t, ε, qh, qs1 , qs2)-SIB-UF secure in the Random Oracle
Model, where

ε 6

(
2η − 1

η − 1

)
· ε′ + (qh + qs1 + qs2)2

2`H

t′ ≈ t+ (O(qh) + qs1) · tRSA + (O(qh) + qs2) · tEnc,

and tRSA is the time to compute a modular exponentiation and tEnc is the time to run the Encode algorithm.

Proof. We prove our theorem through a series of game hops. These game hops are captured in Lemmas 17-
21. For compactness, we will only show the proof of Lemma 17, as the proofs for Lemmas 18-21 are very
close to that of Lemmas 2-5, thus including them here would not be instructive.

The first change we make is that we now program our random oracles so that we are able to simulate
Sign2 (PSS00) and Sign1 (PKCS1) signatures without needing the signing key. This is a careful combination
to how we simulate signatures in Lemma 6 and the first step in the proof by Jager et al. [JKM18a, JKM18b].
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Game G̃0

procedure Initialise
(pk, sk)←$ RSA-TLS-SIB[2, `R, `H, `F].KeyGen(1λ)
return pk

Oracle H(x)

if (H[x] is defined)
fetch H[x] = (ωx)
return ωx

else
ωx ∈R {0, 1}`H
set H[x] = (ωx)

Sign1(m)

M1 ←M1 ∪ {m}
σ ← RSA-TLS-SIB.Sign1(sk,m)
return σ

Sign2(m)

M2 ←M2 ∪ {m}
σ ← RSA-TLS-SIB.Sign2(sk,m)
return σ

Finalize(m∗, σ∗, i∗)

if(i∗ = 1) then
if (RSA-TLS-SIB.Verify1(pk,m∗, i∗) == 1 ∧m∗ 6∈ M1) then

return 1
else

return 0
else if(i∗ = 2) then

if (RSA-TLS-SIB.Verify2(pk,m∗, i∗) == 1 ∧m∗ 6∈ M2) then
return 1

else
return 0

else
return 0

Figure 11: Game G̃0 for proof of RSA-TLS-SIB with 1 hash function (Theorem 5)
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Games Ĝ1-Ĝ4

Sign1(m)
M1 ←M1 ∪ {m}
call H(m||〈0〉32)
fetch H[m||〈0〉32] = (ωm||〈0〉32 , σ1, σ2)
return σ1

Sign2(m)
M2 ←M2 ∪ {m}
call H(m)
fetch H[m] = (ωm, σm)
r ∈

R
{0, 1}`R

call H(064||ωm||r)
fetch H[064||ωm||r] = (ω(m,r), σ1, σ2)
return σ2

Finalize(m∗, σ∗, i∗)
y = (σ∗)e mod N
if(i∗ = 1) then

if (m∗ ∈M1)
return 0

if(MSBs(y, |PAD|)! = PAD) then
return 0

parse y = PAD||z
fetch H(m∗||〈0〉32) = (z0, σ1, σ2)
zm = z0

if (σ∗ = σ1) then //Abort rule for G̃3, G̃4

return 0 //Abort Rule for G̃3, G̃4

for(i ∈ J1,ΛFK)
fetch H(m||〈0〉32) = (zi, σ1, σ2)

zm = zm||zi
if (z = MSBs(zm, `F)) then

return 1
else

return 0
else if (i∗ = 2) then

if (m∗ ∈M2)
return 0

if(LSBs(y, 16)! = 10111100)
return 0

fetch H[m∗] = (ωm∗ , σ1, σ2)
parse y = 0||γ||r∗||ω||10111100
for (i ∈ J1,ΛGK)

fetch H[ω∗||〈i〉32] = (αω∗i )
αω∗ = αω∗ ||αω∗i

1||r = r∗ ⊕ LSBs(αω∗ , `R + 1)
fetch H[064||ωm∗ ||r] = (ω∗, σ1, σ2)

if (σ∗ = σ2) then //Abort rule for G̃3, G̃4

return 0 //Abort Rule for G̃3, G̃4

if (ω∗ == ω ∧ MSBs(αω∗ , `G − `R − 1) == γ)
return 1

else
return 0

else
return 0

procedure Initialise
(N, einj , elos)←$ ΦHA[λ]
p̃ ∈

R
P [λ] ; gcd(einj , p̃− 1) = gcd(elos, p̃− 1) = 1

N̂ = N · p̃
pick IDF
PAD = 015||12λ−`−|IDF|−23||08||IDF
e = einj //Injective keys for G̃1, G̃4

e = elos //Lossy keys for G̃2, G̃3

return pk = (N̂ , e, PAD)

Oracle H(x)
if (H[x] is defined)

fetch H[x] = (ωx, σx)
return ωx

else if (|x| = `H + `R + 64 and MSBs(x, 64) = 064)
//PSS00 singing query

parse x = 064||m2||r
repeat

σ(m2,r) ∈R Z∗N
y(m2,r) = σe mod N̂

until LSBs(y(m2,r), 16) = 10111100
parse y(m2,r) = 0||γ(m2,r)||r∗(m2,r)

||ω(m2,r)||10111100

if (H[ω(m2,r)||〈0〉32] is defined)
return ⊥ //MGF1 collision abort

α(m,r) = γ(m2,r)||(r∗(m2,r)
⊕ 1||r)

parse α(m2,r) = α0|| . . . ||αΛG−1||βΛG

//αi ∈ {0, 1}`H , βΛG
∈ {0, 1}`G−`H(ΛG−1)

β′ ∈
R
{0, 1}`H·ΛG−`G

αΛG
= βΛG

||β′
for(i ∈ J0,ΛGK)

set H[ω(m2,r)||〈i〉32] = (αi,⊥, σm2,r)
set H[x] = (ω(m2,r),⊥, σm2,r)
return ω(m2,r)

else if(LSBs(x, 32) ∈ {〈0〉32, . . . 〈ΛF〉32}) then
//PKCS1 signing query

parse x = m1||〈κ〉32

(ym1 , σm1 , zm1)
$← Encode(N, e, 1, PAD, `F, p̃)

if (H[(m1||〈0〉32] is defined)
return ⊥

parse zm1
= z0|| . . . ||zΛF−1||ζΛG

ζ ′ ∈
R
{0, 1}`H·ΛF−`F

zΛG
= ζΛG

||ζ ′
for(i ∈ J0,ΛFK)

set H[m1||〈i〉32] = (zi, σm1
,⊥)

return zκ

else //Non-critical query
ωx ∈R {0, 1}`H
set H[x] = (ωx,⊥,⊥)

Figure 12: Games Ĝ1-Ĝ4 for prof of RSA-TLS-SIB with 1 hash function (Theorem 5)
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Lemma 17. Pr[G̃F1 ⇒ 1] = Pr[G̃F0 ⇒ 1]− (qh+qs)
2

2`H
.

Proof. In G̃1 we modify the H oracle and the signing oracle. First we distinguish between “signable” queries
and “non-signable” queries, for both PSS00 and PKCS1. Only queries of the form 064||m2||r ∈ {0, 1}64+`H+`R

will be signed by the PSS00 oracle, Thus on these queries, the H oracle now works by sampling a random
element σ(m,r) ∈ Z∗N and raises computes a candidate message representative y = σe(m,r) mod N . This process

is repeated until the trailing 16 bits of y are equal to 101111007 This takes an expected 28 resamplings. Once
a valid message representative y is found, it is parsed as 0||γ(m,r)||r∗(m,r)||ω(m,r)||10111100. We now check if

ω(m,r)||〈0〉32 has been previously queried to the H oracle, which would give us an inconsistency, in which case
we abort. If this is not the case, we program the H oracle for all the values for ω(m,r)||〈0〉32, . . .ω(m,r)||〈ΛG〉32,
taking care to pad the last entry to `H bits long. Note that each entry will have two ⊥ symbols to indicate
these queries are non-signable for both schemes. Finally, the oracle stores (ω(m2,r),⊥, σ(m2,r)) and returns
ω(m,r).

If the query is not a PSS00 signable query, but it is a PKCS1 singable query, we run the Encode algorithm
to get a signature σm1

. We then check if we have a collision in the MGF1 with our F function query, in
which case we abort. If not, then we take the hash value from our Encode algorithm and split it into the
corresponding MGF1 blocks, taking care to pad the final block. We store these hash values, along with the
signature that we get from our Encode algorithm. Finally, we return the appropriate hash block.

Finally, if the query does not satisfy either criteria, then we consider it to be a non-signable query. The
adversary will indeed make these queries to get the inner hash value of message. Since we do not have to
simulate anything here, we can simply pick a random `H-bit string. We store this random value, a long with
two ⊥ symbols to indicate that this query is non-signable. We then return our randomly sampled value.

Now we can discuss the changes to the signing oracles. Both signing oracles make the requisite oracle
calls, to ensure that all values are defined and then simply retrieves the signature and returns σ1 for a PKCS1

signature and σ2 for a PSS00 signature. It is clear to see that these are indeed a valid signatures, due the
manner in which we computed our hash values. Since we are using the injective variant, the RSA function is a
permutation, hence the response of H oracle is also correctly distributed. Hence, the simulation of signatures

is correct, unless the reduction aborts. The probability of a collision is at most
(qh+qs1+qs2 )2

2`H
, since the

adversary makes at most qh + qs1 + qs2 queries, implicit or explicit, to the H-oracle, which could lead to a
collision in the MGF1 states for either G or F, giving at most (qh+ qs1 + qs2)2 possible collisions from a total of
2`H possible choices. Furthermore, we do not abort if collision matches the value already set, which happens

with a probability 1− 1
2λ−`H

. Hence the total probability that we abort is
(
1− 1

2λ−`H

) ( (qh+qs1+qs2 )2

2`H

)
. Thus

we have Pr[G̃F1 ⇒ 1] = Pr[G̃F0 ⇒ 1]− (qh+qs1+qs2 )2

2`H
.

The next change to game G̃2, where we switch from an injective ΦHA[λ] instance to a lossy ΦHA[λ]
instance. This change should not be noticed by the forger. If the forger does notice this change, then we
can then use them to construct a distinguisher against the ΦHA[λ].

Lemma 18. There exists a distinguisher D1 against the ΦHA[λ], which runs in time t′ = t+ 28 · qh · tRSA and

such that
∣∣∣Pr[G̃F1 ⇒ 1]− Pr[G̃F2 ⇒ 1]

∣∣∣ = Adv
ΦHA[λ]
D1

.

We now move to Game G̃3, where we add an additional abort condition to Finalize procedure. Here we
reject any forgery that is the same as our simulated signature. Since we now have lossy signatures, there
are many valid signatures, thus the adversary may submit a forgery that is different from our simulated
signature. We show this in the following lemma.

Lemma 19. Pr[G̃F3 ⇒ 1] =
(
η−1
η

)
Pr[G̃F2 ⇒ 1].

710111100 is the binary for 0xbc as specified in the standard [IEEE 1363].
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The last step in the proof is to move to Game G̃4. Here we switch back to an injective ΦHA[λ] instance,

which makes our RSA function once again a permutation. As with the change from G̃1 to G̃2, this is unnoticed
by the forger, or we can use the forger to build a distinguisher. Furthermore, the forger can never win this
final game, as any valid forgery will be rejected by our abort condition. This is captured in the following
two lemmas.

Lemma 20. There exists a distinguisher D2 against the ΦHA[λ], which runs in time t = t+ 28 · qh · tRSA and

such that |Pr[G̃F3 ⇒ 1]− Pr[G̃F4 ⇒ 1]| = Adv
ΦHA[λ]
D2

.

Lemma 21. Pr[G̃4 ⇒ 1] = 0.

We now combine the results of Lemmas 17-21 and we get our final result

Pr[G̃F0 ⇒ 1] = Adv
ΦHA[λ]
D1

+

(
η

η − 1

)
Adv

ΦHA[λ]
D2

+
(qs + qh)2

2`H

Since D1 and D2 run in the same time, they have at most advantage of ε′, by assumption. This now gives us

Pr[G̃F0 ⇒ 1] 6 ε′ +

(
η

η − 1

)
ε′ +

(qs + qh)2

2`H

=

(
2η − 1

η − 1

)
· ε′ + (qh + qs)

2

2`H
.

What remains is to show the running time of our reduction. To simulate a PSS00 signature, we need
expected time 28 · tRSA and to simulate a PKCS1 signature we need expected time tEnc. For each signature
query, we need to make one hash call, which could potentially lead to a full signature simulation, for which
we need time qs1 · tEnc + qs2 · 28 · tRSA = (qs1 + qs2) · tEnc. To compute the time needed to simulate the
hash queries is more complicated, as we cannot say in advance how may hash queries will lead to a PSS00

simulation and how many will lead to a PKCS1 simulation. However, since we know there are O(qh) queries
of each type, we can cover this with the term O(qh)(tRSA + tEnc)). Combining the two terms gives us a final
running time of (O(qh) + qs1) · tRSA + (O(qh) + qs2) · tEnc. This completes the proof.

6.3 Proofs with 2 Hash functions

For completeness, we now consider what one might call an intermediate case, where RSA is implemented with
two hash function. This case is possibly the furthest from reality and has its own interesting complications.
The first is that there are several possible combinations of which hash functions are used in which case. We
will now give a brief overview, but omit the proofs, as once we describe how to program the Random Oracles,
we simply apply the same technique as in the previous proofs. Repetition of the proof methodology would
be non-instructive at this point.

Note that when we need to reduce the size of a hash function output, we take the most significant bits,
so as to be consistent with MGF1. To the best of our knowledge, this would work equally well with the least
significant bits.

Hash functions H and F

The first case is the simplest to deal with and is the case where we use one hash function per scheme. That
is to say the we implement PSS00 using only one hash function H and a Mask Generation Function (as in
Section 6.2) and we implement PKCS1 with another hash function F. This case can be shown to be secure by
a simple combination of the proofs. We do not present the proof here as it would be non-instructive.

Theorem 6. Assume that ΦHA[λ] is (t′, ε′)-hard and defines a η-regular lossy function. Then for any
(qh, qg, qs1 , qs2), RSA-sibling is (t, ε, qh, qg, qs1 , qs2)-sibling secure in the Random Oracle Model, where

ε 6

(
2η − 1

η − 1

)
· ε′ + (qh + qf + qs2)2

2`H

t′ ≈ t+ (qf + qs1) · tEnc + 28 · (qh + qs2) · tRSA.
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Hash functions H and G

The second case, which is more interesting is when we instantiate PSS00 with two hash functions H, G and
then we use G to instantiate PKCS1. Here we must take care of the disparity in the parameters as generally
speaking `G > `F, thus we implicitly define a hash function F(x) = MSBs(G(x), `F). In the proof however, we
simply model the G random oracle. In this case, instead of uniformly sampling the values of G, the are chosen
using the Encode function. This way we can produce a PKCS1 signature for anything queried to the G oracle.
Once we have this, the proof then continues as before.

Theorem 7. Assume that ΦHA[λ] is (t′, ε′)-hard and defines a η-regular lossy function. Then for any
(qh, qg, qs1 , qs2), RSA-sibling is (t, ε, qh, qg, qs1 , qs2)-sibling secure in the Random Oracle Model, where

ε 6

(
2η − 1

η − 1

)
· ε′ + (qh + qg + qs2)2

2`H

t′ ≈ t+ (qg + qs1) · tEnc + (qh + qs2) · tRSA.

Hash functions G and F

The last case, which is more interesting is when we instantiate PSS00 with two hash functions G and F and
then we use F to instantiate PKCS1. Here we must take care of the disparity in the parameters as generally
speaking `F > `H, thus we implicitly define a hash function H(x) = MSBs(F(x), `H). Whenever a query is made
to the F oracle, we do not randomly sample values, but use the Encode method and store the most significant
bits. This allows us to also produce a PKCS1 signature for this message. Once we have this, the proof then
continues as before.

Theorem 8. Assume that ΦHA[λ] is (t′, ε′)-hard and defines a η-regular lossy function. Then for any
(qh, qg, qs1 , qs2), RSA-sibling is (t, ε, qh, qg, qs1 , qs2)-sibling secure in the Random Oracle Model, where

ε 6

(
2η − 1

η − 1

)
· ε′ + (qg + qf + qs2)2

2`H

t′ ≈ t+ qf · tEnc + qg · tRSA.

7 Conclusions

This paper presents the first security proofs for the joint use of the PSS00 and PKCS1 signatures under
plausible cryptographic hardness assumptions. In particular, we prove full Sibling Unforgeability in the
Random Oracle Model and give a tight security proof under the ΦHA[λ]. This matches the known security
proofs of the underlying schemes, including our new proof for PSS00. Our proofs do inherit the parameter
expansion from the PKCS1 proofs, but as discussed by Jager et al. [JKM18a, JKM18b], using an additional
assumption, one can lift our results from our variant to the more standard two prime modulus instantiations
of PKCS1 and PSS00. Thus, the current joint usage in practice is indeed secure, provided the parameters are
chosen appropriately.

This paper also presents a more idealized proof, that while not in standard usage, could potentially be
adopted in the future. This is given that it relies on the new SHA-3 XOFs, which one can expect to be
integrated into standards in the future. If, or indeed when, this is the case, moving to the idealized case,
without having the code expansion normally associated with it.
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[Cor02a] Jean-Sébastien Coron. Optimal security proofs for PSS and other signature schemes. In Lars R.
Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture Notes
in Computer Science, pages 272–287, Amsterdam, The Netherlands, April 28 – May 2, 2002.
Springer, Heidelberg, Germany. doi:10.1007/3-540-46035-7_18. (Cited on page 3.)
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