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Abstract. In the pairing-based zero-knowledge succinct non-interactive
arguments of knowledge (zk-SNARK), there often exists a requirement
for the proof system to be combined with encryption. As a typical exam-
ple, a blockchain-based voting system requires the vote to be confidential
(using encryption), while verifying voting validity (using zk-SNARKs).
In these combined applications, a typical solution is to extend the zk-
SNARK circuit to include the encryption code. However, complex cryp-
tographic operations in the encryption algorithm increase the circuit size,
which leads to impractically large proving time and CRS size.
In this paper, we propose SNARK-friendly, Additively-homomorphic,
and Verifiable Encryption and decryption with Rerandomization or SAVER,
which is a novel approach to detach the encryption from the SNARK
circuit. The encryption in SAVER holds many useful properties. It is
SNARK-friendly : the encryption is conjoined with an existing pairing-
based SNARK, in a way that the encryptor can prove pre-defined proper-
ties while encrypting the message apart from the SNARK. It is additively-
homomorphic: the ciphertext holds a homomorphic property from the
ElGamal-based encryption. It is a verifiable encryption: one can ver-
ify arbitrary properties of encrypted messages by connecting with the
SNARK system. It provides a verifiable decryption: anyone without the
secret can still verify that the decrypted message is indeed from the given
ciphertext. It provides rerandomization: the proof and the ciphertext can
be rerandomized as independent objects so that even the encryptor (or
prover) herself cannot identify the origin.
For the representative application, we also propose a Vote-SAVER based
on SAVER, which is a novel voting system where voter’s secret key lies
only with the voter himself. The Vote-SAVER satisfies receipt-freeness
(which implies ballot privacy), individual verifiability (which implies non-
repudiation), vote verifiability, tally uniqueness, and voter anonymity.
The experimental results show that our SAVER with respect to the Vote-
SAVER relation yields 0.7s for zk-SNARK proving time and 10ms for
encryption, with the CRS size of 16MB.

Keywords: pairing-based zk-SNARK, verifiable encryption, verifiable decryp-
tion, public-key encryption, additively-homomorphic, rerandomization
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1 Introduction

Verifiable encryption (VE) [Ate04, CS03, CD00, LN17, YAS+12] is a crypto-
graphic system where the encrypted data provides a proof that can guarantee
publicly-defined properties. It can be a useful primitive in trust-based protocols,
such as group signatures or key escrow services. The verifiable property varies
depending on the nature of the application. For instance, in the group signature,
the verifiable encryption is used for the signer to encrypt and prove its iden-
tity commitment, which is evidence for detecting the malicious signer in case
of treachery. In the key escrow systems where users deposit their keys to the
trusted party, the verifiable encryption can let users prove their legitimacy of
encrypted keys to the others.

The zero-knowledge proof (ZKP) system is a primitive where one can prove
a knowledge for some pre-defined relation R, without revealing any other infor-
mation. As in previous definitions [CS03, LN17], the verifiable encryption can
be also viewed as an encryption scheme combined with the ZKP system, by
considering the encrypted message as an instance which satisfies the pre-defined
relation R. But until now, the ZKP was fixed for checking the validity of the
message, and it was sort of mixed in the encryption protocol as a limited design.
For example, in [CS03], the relation is pre-defined as discrete logarithm problem;
it only guarantees that the ciphertext is an encryption of (m1, . . . ,mk) such that
δ = γm1

1 · · · γmkk for common inputs (δ, γ1, · · · , γk).

Generic VE from zk-SNARKs. If we consider the ZKP with arbitrary re-
lations, it is possible to construct verifiable encryption with generic relations,
which can prove any desired properties of the message3. The ZKP for verifiable
encryption requires the following conditions:

1. The ZKP should be non-interactive, to be compatible with the ciphertext in
non-interactive public-key encryption.

2. The ZKP should guarantee knowledge-soundness of the message; it requires
at least zero-knowledge arguments of knowledge (zk-AoK).

3. The ZKP should guarantee that the instances for proving the relation are the
same as messages in the encryption, i.e., m = m′ for Prove(m) and Enc(m′).

Considering the fact that the proof size determines the ciphertext payload,
the most suitable primitive would be zero-knowledge succinct non-interactive ar-
guments of knowledge (zk-SNARK). Specifically, pairing-based zk-SNARKs [PHGR13,
Gro16, GM17, BG18, KLO20, Lip19] yields constant-sized proof, regardless of
the relation complexities. The pairing-based zk-SNARK can take any pre-defined
arithmetic circuit (e.g. quadratic arithmetic program) as an input so that the

3 For instance, assume a user who wants to encrypt his identity while proving that
his age is over 20. Since most of the existing verifiable encryptions only focus on the
validity of the ciphertext, it is difficult to support this type of specific properties.
On the other hand, generic verifiable encryption can easily output zero-knowledge
proof for the given flexible relation.
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prover can convince the verifier that the prover indeed evaluates the function
correctly. As for the verifiable encryption, if any desired property is included in
the zk-SNARK circuit, the proof ensures that the encrypted data satisfies the
property in the circuit.

Unfortunately, the naive combination of the zk-SNARK and encryption is
beyond practicality, because of the third condition. To satisfy the consistency
of m in the third condition, the entire encryption process must be included in
the zk-SNARK circuit to ensure that m is an input for both encryption and the
relation, which incurs large overhead. This problem has recently been studied
in [KZM+15b, KZM+15a], which focused on boosting the performance when
including the standard cryptographic protocols in the zk-SNARK circuit. They
designed the SNARK-friendly encryption with minimal multiplications since the
circuit size in pairing-based zk-SNARKs relies on the number of multiplications.
By optimizing the encryption circuit, their experiment result could boost the
zk-SNARK with RSA-OAEP public-key encryption up to the nearly-practical
level: 8.9s proving time and 216MB common reference string (CRS) size.

Necessity for an advanced VE. However, in real-world applications, we often
need to prove more than a simple RSA encryption. Due to the recent function-
ality requirements, the encryption schemes have evolved to more sophisticated
primitives such as identity-based encryption (IBE) [BBG05, KLLO18], attribute-
based encryption (ABE) [AHL+12], or rerandomizable encryption [PR07]. When
adopting these advanced schemes as generic verifiable encryption, they involve
heavy cryptographic operations like pairings or access tree comparisons. In case
of rerandomizable encryption which enables the encryption to be unlinkable, the
rerandomization needs to prove the verification process of the previous cipher-
text, which becomes impractically heavy due to multiple pairings.

If we build generic verifiable encryption by proving the whole encryption
process within the circuit (a.k.a. encryption-in-the-circuit), the efficiency be-
comes unrealistic when the encryption is a bit out of simplicity. For instance,
to cover the example of voting application described in 1.1, the circuit needs to
include additively-homomorphic encryption such as Paillier encryption [Pai99],
zk-SNARK verification, rerandomization, decryption procedure, etc. All these
properties require huge amount of work on the prover’s side.

Separating the encryption. An intriguing idea to deviate from this efficiency
problem is to separate the encryption from the zk-SNARK circuit. The main
purpose of including the encryption in the circuit is to ensure that the same
m is used for both Prove(m) and Enc(m′) within the relation. If we can prove
this consistency with some pre-published commitments, there is no need to in-
clude the entire encryption in the circuit anymore. This idea is well-addressed in
commit-and-prove system of LegoSNARK [CFQ19], which let the user commit
for the value ahead of time, and let the pre-published commitment be connected
to the zk-SNARK proof gadgets. If we commit CM for the message ahead of
time and design the encryption ciphertext CT to be compatible, it is possible to
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connect encryption to the zk-SNARK proof π by asserting two additional checks
on CT ↔ CM and CM ↔ π.

Still, the commit-and-prove approach cannot avoid including the encryption
in the circuit since there is no such scheme which can connect the ciphertext
and the commitment. To enable the commit-and-prove connectivity, candidate
systems to be connected should carry commitments; to connect an encryption
system, the encryption must output a commitment as well as the ciphertext
(a.k.a. commit-carrying encryption). Without commit-carrying encryption, the
commit-and-prove framework can only separate the encryption circuit and the
other circuit (which proves arbitrary properties of the message), which let the
encryption still be included in the SNARK circuit.

Enc-with-Prove, Enc-and-Prove. In the generic verifiable encryption, the
user encrypts a message and proves its properties at the same time. Therefore,
commit-carrying encryption is not necessary for the generic verifiable encryption;
it is sufficient to design an encrypt-with-prove scheme based on a fixed relation
for each key generation. The fixed relation indicates that the CRS is already
generated, which enables exploiting the existing CRS to work with the SNARK
verifying equation. If the encryption is specifically designed by embedding the
CRS parameters, it is possible to directly plug-in the connectivity check to the
zk-SNARK verification. In this case, verifying the proof will imply both the
soundness of relation and the connectivity between encryption and SNARK.

Nevertheless, when the user wants to encrypt a message ahead of time and
prove its arbitrary properties later, we require modularity in addition to the
verifiable encryption, similar to the commit-and-prove framework. To add mod-
ularity, we need to extend the encrypt-with-prove verifiable encryption to become
a commit-carrying encryption, which can be interpreted as designing an encrypt-
and-prove scheme. In the encrypt-and-prove style, the encryption must output a
commitment for the connectivity and the verification requires an additional con-
nectivity check (via commit-and-prove) between the encryption and SNARK.
We intend to capture both types by designing the commit-carrying, encrypt-
with-prove scheme so that the user can use the efficient encrypt-with-prove itself
or/and use the modular encrypt-and-prove (with the existing commitment) as
desired.

Generic SAVER. We propose a new commit-carrying encryption SAVER:
SNARK-friendly, Additively-homomorphic, and Verifiable Encryption and de-
cryption with Rerandomization, which detaches encryption from the zk-SNARK
circuit while maintaining the connectivity. SAVER is an efficient encrypt-with-
prove scheme which supports generic verifiable encryption without including
encryption in the circuit. At the same time, SAVER is also a commit-carrying
encryption: it can be used as a composable encrypt-and-prove (or LegoEncryp-
tion) scheme by providing a commitment compatible with the commit-and-prove
framework of LegoSNARK [CFQ19].

Moreover, the proposed SAVER supports more advanced functionalities than
just a simple encryption, which emphasizes the efficiency improvement compared
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to the encryption-in-the-circuit approach. Instead of including the entire compli-
cated encryption in the zk-SNARK circuit, SAVER provides verifiable encryp-
tion with various functionalities conjoined with the existing zk-SNARKs (e.g.
[Gro16, GM17, BG18, KLO20]) for a generic relation.

The proposed SAVER is generic verifiable encryption which satisfies zk-
SNARK connectivity (SNARK-friendly), additive homomorphism, rerandomiz-
ability, and verifiable decryption. We describe each property as follows:

– SNARK-friendly encryption: SAVER can be conjoined with zk-SNARK
supporting generic relations, which can be realized as generic verifiable en-
cryption. In the encryption, the encryptor can prove any arbitrary pre-
defined relation, while encrypting the message separately from the circuit.
Later, the proof and ciphertext are jointly verified to guarantee the relation
of the message in the ciphertext.

– Additively-homomorphic encryption: an additively-homomorphic en-
cryption is a well-known primitive that allows computations on ciphertexts.
SAVER is an additively-homomorphic encryption based on ElGamal encryp-
tion variants [CGS97], i.e., Gm1+m2 = Gm1 · Gm2 ; the ciphertext can be
merged by simple elliptic curve cryptography (ECC) multiplications.

– Verifiable decryption: a verifiable decryption [CS03] is a primitive which
can convince the verifier that the decrypted message is indeed from the corre-
sponding ciphertext. Likewise, the decryption in SAVER entails a decryption
proof, which is verified with message and ciphertext to guarantee the valid-
ity. This allows the decryptor to prove the correctness of decrypted messages
without revealing her secret key.

– Rerandomizable encryption: a rerandomizable encryption [PR07] is a
public-key encryption scheme where the ciphertext can be rerandomized,
which can be viewed as a newly-encrypted ciphertext. Likewise, ciphertext
in SAVER can be rerandomized as a new unlinkable ciphertext. Since SAVER
outputs a proof as verifiable encryption, the proof is also rerandomized along
with the ciphertext.

To justify the practicality, we implemented the proposed SAVER by applying
the voting relation in section 1.1. The experiment result yields 0.7s for the voting
time when assuming 216 total voters, which includes both encryption and zk-
SNARK proof. The encryption time takes less than 10ms, which indicates that
the additional encryption overhead to the zk-SNARK is almost negligible. The
CRS size for the voting relation is only 16MB, and the public key and verification
key for the verifiable encryption is from 1MB to 8MB, linearly depending on the
message size.

Our contributions. We summarize the contributions of the paper, from various
perspectives listed as follows:

– Generic verifiable encryption: the proposed SNARK-friendly, Additively-
homomorphic, and Verifiable Encryption and decryption with Rerandomiza-
tion (SAVER) is generic verifiable encryption. SAVER can be connected with
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zk-SNARKs such as [Gro16] with any generic relation. The ciphertext and
proof guarantee the message satisfies pre-defined relation from zk-SNARK.

– zk-SNARK connectivity: instead of including the encryption in the cir-
cuit for the generic verifiable encryption, SAVER detaches encryption from
the zk-SNARK circuit with providing connectivity. The verification in SAVER
guarantees a linkage between encryption and relation, as well as knowledge
soundness of the proof.

– Modularity: SAVER is a commit-carrying, encrypt-with-prove scheme. The
user can choose whether to deploy SAVER as an encrypt-with-prove scheme
to be a generic verifiable encryption, or/and an encrypt-and-prove scheme
to be compatible with the modular commit-and-prove framework.

– Functionalities: the proposed SAVER supports and satisfies many func-
tionalities. It is SNARK-friendly : the encryption is compatible with zk-
SNARK composition. It is additively-homomorphic: the ciphertext can be
merged additively from the homomorphic property. It is verifiable encryp-
tion: one can encrypt a message while proving any generic relation for the
message. It is verifiable decryption: the decryptor can convince the verifier
that the decrypted message is indeed from the ciphertext, without revealing
her secret key. It provides rerandomization: the ciphertext can be rerandom-
ized to be unlinkable to the original one.

– Vote-SAVER: to justify the functionalities in SAVER, we define an ideal
voting system and propose an efficient application Vote-SAVER (section 1.1)
based on the SAVER scheme. While existing voting systems let the authority
responsible for the key distribution, the Vote-SAVER let only the voter hold
its own secret key supporting non-repudiation.

– Implementation: we implement our SAVER with respect to the Vote-
SAVER relation on the real computer system to show the practicality of
the construction. The experiment result yields 0.7s for zk-SNARK proving
time and 10ms for encryption when assuming 216 total voters, with the CRS
size of 16MB for the voting relation.

– Security: the proposed SAVER requires many security notions: indistin-
guishability (IND-CPA), encryption knowledge soundness, rerandomizabil-
ity, perfect decryption soundness, and perfect zero-knowledge. We formally
define each property and provide security proof in a standard model. We also
provide a formal proof for the Vote-SAVER which satisfies various properties
described in section 1.1, based on the security of SAVER scheme.

The rest of the paper proceeds as follows. Section 1.1 provides a specific appli-
cation Vote-SAVER, to justify the functionalities in SAVER. Section 2 organizes
related works. In section 3, we describe some necessary preliminaries and formal
definitions. Section 4 presents insights and the formal construction of SAVER,
and section 5 provides formal security proofs. In section 6, we present a formal
protocol of the Vote-SAVER, and section 7 provides formal security proofs. Sec-
tion 8 shows experiment results of SAVER, with respect to the Vote-SAVER
application. In section 9, we draw a conclusion.
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1.1 Application: Vote-SAVER

Our proposed SAVER is generic verifiable encryption with many useful func-
tionalities - zk-SNARK connectivity, additive-homomorphism, rerandomizabil-
ity, and verifiable decryption. To strengthen the justifications on such complex
functionalities, we specify one of the interesting applications, voting, which is
mentioned as a representative example of verifiable encryption in the cryptog-
raphy encyclopedia [Sak11].

In the history of voting systems, the main focus was on capturing both privacy
and verifiability of the vote. The commonly accepted properties and related
works are well-described in BeleniosRF [CCFG16]: the security notion for privacy
has evolved from ballot privacy to receipt-freeness, and coercion-resistance. The
ballot privacy refers to the standard privacy of the vote, while receipt-freeness
extends the ballot privacy to where even the voter cannot reproduce the vote
for vote-buying. The coercion-resistance must allow the voter to vote for his
intended choice even when he is corrupted by the coercing adversary, which
essentially requires re-voting functionality. In general, the coercion-resistance
implies receipt-freeness4, which in turn implies ballot privacy.

The verifiability is another important property of the voting system; it is
recently proved that the lack of verifiability leads to a privacy leak [CL18].
The three commonly accepted properties are eligibility verifiability, individual
verifiability, and universal verifiability. The eligibility verifiability is often from
the authority’s view, which indicates it should be able to check that the vote is
from an eligible voting right. On the contrary, the individual verifiability is from
the voter’s view, which ensures that the voter should be able to verify that his
vote is included in the public ballot box. The universal verifiability is from the
observer’s view including voters, which ensures that the tally result is from the
public ballot box; sometimes it can be substituted with stronger notion called
tally uniqueness.

Since coercion-resistance is more theoretical than practical due to the re-
quirement of re-voting issue, it is commonly accepted that a reliable voting
system should provide non-interactive receipt-freeness along with the verifiabil-
ity. Among the existing proposals, BeleniosRF [CCFG16] is a well-known work
to successfully achieve both receipt-freeness and individual verifiability which
seemed like a contradiction; the voter should not be allowed to reproduce his
vote, but should still be able to check that his vote is included in the box.
BeleniosRF resolves this issue by combining rerandomizability to the verifiable
encryption. When the vote is rerandomized before enrollment, it can prevent the
voter from reproducing the vote, since he does not know the new random used
in the rerandomization. Nevertheless, he can still check the proof to verify that
at least his original message is preserved in the rerandomized vote.

4 The coercion-resistance does not directly imply receipt-freeness, since the coercion-
resistance is about generating indistinguishable real/fake keys, while receipt-
freeneess is about preventing the vote reproduction. But even if the vote is repro-
ducible in coercion-resistance, the adversary does not know if the vote is real or fake:
it satisfies the primary objective of the receipt-freeness at the end.
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The SK holder. However, in our observation, all existing voting systems in-
cluding BeleniosRF are missing a crucial requirement: the voter’s secret key must
not be originated from others, even from authority. If there exists an authority
responsible for the system setup and key distribution, the authority holds the
secret voting key of each voter. At the end, this leads to the authority discovering
the voter’s identity from the vote, or even allow authority to forge a malicious
proxy vote on behalf of the voter. Therefore, for the fundamental privacy, we
emphasize that it is important to let the voter be responsible for his own key
generation, which should not be compromised to any other entities. Therefore,
by adding new definitions based on this idea to typical definitions in the liter-
ature [JMP13, AM16], we organize the essential properties of a reliable voting
system listed as below:

– Board integrity: the voting system often requires a technical support where
the public bulletin board for ballot box is non-malleable.

– Receipt-freeness: the receipt-freeness implies ballot privacy; it ensures that
the ballot must guarantee the privacy of voting message while the voter
cannot reproduce his vote.

– Individual verifiability: the voter must be able to verify the inclusion of his
vote, and no others can convince the voter with a false ballot.

– Eligibility verifiability: the ballot can only be generated from an eligible voter
with a voting right.

– Tally uniqueness: the tally uniqueness implies universal verifiability; it en-
sures that the tally result is unique corresponding to the ballots in the public
board.

X Voter anonymity: we define a new security notion, which ensures that the
ballot does not reveal the voter’s identity to any entities, even from the
authority.

X Non-repudiation: we define another new security notion, indicating that the
ballot is unique only from the voter and there exists no proxy votes.

Note that BeleniosRF satisfies the typical properties (i.e. board integrity,
receipt-freeness, individual verifiability, eligibility verifiability, and unversal ver-
ifiability), but it cannot support voter anonymity and non-repudiation since the
key distributing authority knows the voting key of the voters.

Membership tests for voting. The zero-knowledge proof of membership is
a well-known technique to prove the membership with respect to the accumu-
lated value, while hiding the identity of the prover within the zero-knowledge;
it is often achieved by constructing Merkle tree or RSA accumulator inside the
zk-SNARK. The most representative example is Zerocash [BCG+14] which is an
anonymous blockchain cryptocurrency: for each transaction, a sender runs the
zk-SNARK to prove that the coin is a valid coin within the Merkle tree mem-
bership test. Intuitively, the public key for a coin is set as pk = H(sk) for any
collision-resistant hash H. When the sender proves the membership test in zk-
SNARK, the relation asserts pk = H1(sk), rt = MerkleTree(pk, copath), and
sn = H2(sk) with hiding the sk, pk, copath as witnesses (rt is the input, and sn
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is the output). The relation guarantees that the valid pk is included in the Merkle
tree of rt, and the deterministic serial number sn can prevent double-spending.

When observing the membership test in Zerocash, it is very similar to the
nature of voting. If we consider the coin as a voter, we can let the voter keep his
own sk and only publish pk = H(sk). When we build a Merkle tree of pk from
eligible voters, the voter can hold sk for himself but prove that he is within the
eligible membership with respect to the Merkle root rt. Also, the serial number
sn now prevents double-voting, equivalent to the detection of double-spending.
Therefore, if we let the voter prove his membership along with the vote, the
vote message now only contains the anonymous message while the property of
the message (i.e. voter’s membership) can be proved as zero-knowledge. In other
words, if we have a generic verifiable encryption from zk-SNARK described in
section 1, it is possible to design the voting system where the voting key belongs
only to the voter. Based on the idea, we describe how to capture the essential
properties by using the concept of generic verifiable encryption:

– blockchain for board integrity : the blockchain system is well-known for its
tamper-proof property based on the proof of work, which is a suitable plat-
form for the non-malleable board.

– rerandomizable encryption for receipt-freeness: similar to the BeleniosRF
approach, letting the blockchain node rerandomize the ballot can provide
receipt-freeness since the voter does not know the modified random.

– verifiable encryption for individual verifiability : by verifying the proof
with respect to the original statements, the voter can be convinced that his
vote statement remains in the ballot.

– zk-SNARK for eligibility verifiability : the membership test relation of the
zk-SNARK can guarantee that the ballot is from the eligible voter within
the Merkle tree of rt.

– homomorphism & verifiable decryption for tally uniqueness: if the bal-
lots can be merged with the additively-homomorphic encryption and the
message can be verified with the verifiable decryption, an observer can ver-
ify that the decrypted tally is indeed from the merged ciphertext.

– zk-SNARK for voter anonymity : the zero-knowledge of zk-SNARK can
guarantee that the voter’s identity is hidden within the membership test,
since sk and pk are zero-knowledge witnesses.

– zk-SNARK for non-repudiation: the ballot can be only generated from the
voter who holds the valid sk for the pk.

Overall, to satisfy all the given properties, it is required to design a generic
verifiable encryption from zk-SNARK, which also supports the functionalities
of rerandomizable encryption, additively-homomorphic encryption and verifiable
decryption. It justifies that we require an advanced verifiable encryption, which
is more complex than just a simple verifiable encryption.

Scenario. Figure 1 represents how to efficiently proceed a voting scenario by
utilizing the advanced verifiable encryption. The system works with a publicly
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Fig. 1: The Vote-SAVER framework from the advanced verifiable encryption with reran-
domizability, additive-homomorphism, and verifiable decryption

available blockchain, where the consensus block defines the relation R of mem-
bership test and message validity, with the corresponding common reference
string CRSR generated from zk-SNARK setup. There are two entities, voters
and an administrator, who interact mainly through the blockchain subscription.
We refer to the election committee as an administrator, rather than authority,
because the administrator does not distribute the secret key of the voters. The
administrator is only responsible for tallying the anonymous results; even when
corrupted, she holds no power to trace or manipulate the votes at any cost.

Before election. Our voting system let each user publish his own pk to the
public, where pk is generated from user’s secret value. For example, a simple
way is to let pk = H(sk) for collision-resistant hash H. Without knowing sk, no
one can make a valid ballot.

Initiating election. First, to open an election, the administrator makes the
pklist of the voters, which prescribes the selection of eligible voters who partici-
pate in the election. Then she generates a secret key SK, a public key PK, and a
verification key V K for the occasion, to publish PK, V K on the blockchain along
with the pklist and its Merkle root rt. This set of PK, V K and pklist, rt defines
each election; a new election can be initiated with a different set of PK ′, V K ′

and pklist′, rt′.

Casting votes. After the election is initiated, voters who are selected in the
list can cast a vote. Each voter must encrypt the vote and prove the relation
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(i.e. membership test and message validity) at the same time, via generic ver-
ifiable encryption from zk-SNARK. Similar to the membership test in Zero-
cash [BCG+14], the zk-SNARK circuit outputs a Merkle root rt to prove the
belonging within the pklist, and a serial number sn to prevent the duplication.
Note that the sn does not reveal the identity; it is only used for checking the
duplication. As a ballot, a set of serial number sn, proof π and ciphertext CT is
sent to the blockchain network as a transaction. The blockchain node checks if
sn already exists in the blockchain (then abort). If sn is unique, it first verifies
the proof, rerandomizes the vote from π, CT to π′, CT ′, and publishes (by min-
ing the block) the renewed vote sn, π′, CT ′ on the blockchain. The voter verifies
π′, CT ′ for his sn within the verifiable encryption, to be convinced that his vote
is included. This satisfies the individual verifiability, but the voter can only check
the existence of his vote; π′, CT ′ is unlinkable from π, CT , which also achieves
the receipt-freeness.

Tallying results. After all the votes from participants are posted on the blockchain,
the administrator closes the vote by declaring the tally result. Since the encryp-
tion scheme is additively-homomorphic, anyone can get the merged ciphertext
CT sum. The administrator is responsible for decrypting the CT sum with her own
SK, and publishing the corresponding vote result Msum along with the decryp-
tion proof ν. By verifying Msum, ν with the verifiable decryption, anyone can be
convinced that the result is tallied correctly (universal verifiability).

We define the relation for the voting scenario in section 8, and also provide
implementation results of the entire voting system on the real machine.

2 Related Work

A zero-knowledge succinct non-interactive argument of knowledge (zk-SNARK)
is introduced in [BCCT12], as a proof system where a prover can generate a
proof that they know a witness to an instance in a manner which is succinct :
proofs are short and verifier computation is small, and zero-knowledge: proofs
do not reveal the witness. Since Gennaro et al. [GGPR13] introduced a notion
of quadratic arithmetic program (QAP), a pairing-based zk-SNARKs (or pre-
processing SNARKs with trusted setup) [Gro16, GM17, BG18, Lip19, KLO20]
have received significant attention for their constant sized proof and verifica-
tion. Groth’s protocol [Gro16] set an efficient standard, by yielding three group
elements as a proof. Then there has been efforts to add modularity to these
zk-SNARK proof systems. Agrawal et al. [AGM18] proposed a proof system for
composite statements using Pinocchio [PHGR13], and LegoSNARK [CFQ19]
proposed a general commit-and-prove framework that provides a modular com-
position of commit-carrying proof systems. On the security side, Groth and
Maller [GM17] introduced a notion of simulation-extractability, to prevent mal-
leability in the proof of [Gro16]. However, to achieve simulation-extractability,
[GM17] requires a square arithmetic program (SAP) instead of QAP, which
doubles the circuit size - which sacrifices proving time and CRS size. To ad-
dress this issue, Bowe and Gabizon [BG18] applied random oracle to [Gro16],
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which can transform the [Gro16] to be simulation-extractable. However, this
compromises the proof size to five elements. Lipmaa [Lip19] proposed a QAP-
based simulation-extractable zk-SNARK with four elements, from the help of
more general assumption. Recently, Kim et al. [KLO20] devised the most ef-
ficient simulation-extractable zk-SNARK, which achieves both QAP and three
elements as a proof, compatible with non simulation-extractable [Gro16].

3 Preliminaries

3.1 Notations

In this section, we define some essential notations. For the simple legibility, we

define the term βui(x)+αvi(x)+wi(x)
γ in [Gro16] as yi(x). Then, we denote Gyi(x)

as Gi. We use x or {xi} for the list of elements, which is equivalent to a vector.
We also define JXK = span{X} as a linear combination of x ∈ X, i.e., JXK =
{
∑
xi∈X ηixi}. For any set JXK, we define JAK× JBK = {a · b | a ∈ JAK, b ∈ JBK}

and JAK−1 = {a−1 | a ∈ JAK}. For any given vectors, ◦ represents a Hadamard
product (i.e. let a = (a1, a2) and b = (b1, b2), then a ◦ b = (a1 · b1, a2 · b2)) and
� represents a Hadamard division(a� b = (a1/b1, a2/b2)).

3.2 Relations

Given a security parameter 1λ, a relation generator RG returns a polynomial
time decidable relation R ← RG(1λ). For (Φ,w) ∈ R we say w is a witness to the
statement (I/O) Φ being in the relation. The statement Φ in SAVER consists of
Φ = M∪Φ̂ for message statements {m1, . . . ,mn} by splitting M = (m1|| · · · ||mn)
and arbitrary statements Φ̂ = {φn+1, · · · , φl}, where l is the number of state-
ments.

3.3 Bilinear Groups

Definition 1. A bilinear group generator BG takes a security parameter as input
in unary and returns a bilinear group (p,G1,G2,GT , e, aux) consisting of cyclic
groups G1, G2, GT of prime order p and a bilinear map e : G1 × G2 → GT
possibly together with some auxiliary information (aux) such that:

– there are efficient algorithms for computing group operations, evaluating the
bilinear map, deciding membership of the groups, and for sampling the gen-
erators of the groups;

– the map is bilinear, i.e., for all G ∈ G1 and H ∈ G2 and for all a, b ∈ Z we
have

e(Ga, Hb) = e(G,H)ab;

– and the map is non-degenerate (i.e., if e(G,H) = 1 then G = 1 or H = 1).
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Usually bilinear groups are constructed from elliptic curves equipped with
a pairing, which can be tweaked to yield a non-degenerate bilinear map. There
are many ways to set up bilinear groups, both as symmetric bilinear groups,
where G1 = G2, and as asymmetric bilinear groups, where G1 6= G2. We will
be working in the asymmetric setting, in what Galbraith, Paterson, and Smart
[GPS08] call the Type III setting where there is no efficiently computable non-
trivial homomorphism in either direction between G1 and G2. Type III bilinear
groups are the most efficient type of bilinear groups and hence the most relevant
for practical applications.

3.4 Cryptographic Assumptions

We use Power Knowledge of Exponent (d-PKE) with Batch Knowledge Check
assumption [Gab19]. In [Gab19] (lemma 2.3), it is proven that the d-PKE can
be used to batch knowledge checks, stated as below:

Assumption 1. batch− PKE (Lemma 2.3 of [Gab19]): Assuming the d-PKE
the following holds. Fix k = poly(λ), a constant t and an efficiently computable
degree d rational map S : Ft+1 → FM . Fix any i ∈ [k]. For any efficient A
there exists an efficient χA such that the following holds. Consider the follow-
ing experiment. α1, . . . , αk, τ ∈ F and xxx ∈ Ft are chosen uniformly. A is given
as input [S(τ,xxx)] and {[αj · τ l]}j∈[k],l∈[0..d] and outputs a sequence of elements
([a1], . . . , [ak], [b]) in G. χA, given the same input as A together with the ran-
domness of A and {αj}j∈[k]\{i}, outputs A(X) ∈ F[X] of degree at most d such
that the probability that both

1. A ”succeeded”, i.e., b =
∑k
j=1 αj · aj. But,

2. χA ”failed”, i.e., ai 6= [A(τ)].

is Advbatch-PKE
R,A,χA (λ) = negl(λ).

We also introduce a decisional version of the polynomial (Poly) assumption,
which is originated from the computational Poly assumption adopted in [GM17].
In the univariate case, the Poly assumption states that for any G ∈ G1, given
Gg1(xxx), . . . , GgI(xxx), an adversary cannot compute Ggc(xxx) for a polynomial gc that
is linearly independent from g1, . . . , gI - even if it knows Hgc(xxx) for H ∈ G2.

We extend the computational Poly assumption to the decisional Poly as-
sumption (D-Poly). In the D-Poly game, the adversary acts similarly as in com-
putational Poly game, except that it queries a challenge polynomial and guesses
the nature of the output (i.e. whether the output is generated from the poly-
nomial or from an independent random). In this case, the restriction for the
challenge gc 6∈ JQ1K is not sufficient where Q1 = {g1, . . . , gI}. For example, the
adversary should not have Hgc(xxx); otherwise it can check whether the received
challenge T is Ggc(xxx) or a random group element by applying pairings (i.e. check
the nature of T by e(T,Hgc(xxx)))5. Thus, the restriction should be extended to

5 This problem is similar to the decisional BDH assumption: it cannot follow the
standard DDH as (ga, gb, T0 ← gz, T1 ← gab, b ← {0, 1} | b′ ← A(ga, gb, T )),

because the adversary can test if e(ga, gb)
?
= e(g, T ).
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H ∈ G2, to prevent the adversary from obtaining the span of gc(xxx) in G2. The
formal description of the D − Poly is as follows.

Assumption 2. D− Poly: Let A be a PPT adversary, and define the advantage
AdvD−PolyBG,d(λ),q(λ),A(λ) = Pr[GD−PolyBG,d(λ),q(λ),A]− 1

2 where GD−PolyBG,d(λ),q(λ),A is defined as

below and Q1, Q2 is the set of polynomials gi(X1, . . . , Xq), hi(X1, . . . , Xq) queried
to O1

G,xxx,O2
H,xxx.

MAIN GD−PolyBG,d(λ),q(λ),A(λ)

(p,G1,G2,GT , e, aux)← BG(1λ);

G← G1;H ← G2;xxx← (Z∗p)q

gc(X1, . . . , Xq)← AO
1
G,xxx,O

2
H,xxx(p,G1,G2,GT , e, aux)

where gc(xxx) 6∈ JQ1K× JQ2K× JQ2K−1

set T1 ← Ggc(xxx), T0
$← G1

b← {0, 1}, T = Tb

b′ ← AO
1
G,xxx,O

2
H,xxx(T )

return 1 if b = b′

else return 0

O1
G,xxx(gi)

assert gi ∈ Z∗p[X1, . . . , Xq]

assert deg(gi) ≤ d
return Ggi(xxx)

O2
H,xxx(hj)

assert hj ∈ Z∗p[X1, . . . , Xq]

assert deg(hj) ≤ d
return Hhj(xxx)

The (d(λ), q(λ))−D − Poly assumption holds relative to BG if for all PPT

adversaries A, we have AdvD−PolyBG,d(λ),q(λ),A(λ) is negligible in λ.

3.5 Zero-Knowledge Succinct Non-interactive Arguments of
Knowledge

For the paring-based zk-SNARK, we adopt the definitions from [Gro16, GM17].

Definition 2. A zero-knowledge succinct non-interactive arguments of knowl-
edge (zk-SNARK) for R is a set of four algorithms Πsnark = (Setup,Prove,Vfy,SimProve)
working as follows:

– (CRS, τ)← Setup(R): takes a relation R ← RG(1λ) as input and returns a
common reference string CRS and a simulation trapdoor τ .

– π ← Prove(CRS,Φ,w): takes a common reference string CRS, a relation R,
a statement and witness in the relation (Φ,w) ∈ R as inputs, and returns a
proof π.
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– 0/1 ← Vfy(CRS,Φ, π): takes a common reference string CRS, a statement
Φ, a proof π as inputs and returns 0 (reject) or 1 (accept).

– π ← SimProve(CRS, τ, Φ): takes a common reference string CRS, a simula-
tion trapdoor τ , a statement Φ as inputs and returns a proof π.

It satisfies completeness, knowledge soundness, zero-knowledge, and succinct-
ness described as below:

Completeness: Given a true statement, a prover with a witness can convince
the verifier. For all λ ∈ N, for all R and for all (Φ,w) ∈ R, Pr[(CRS, τ) ←
Setup(R), π ← Prove(CRS,Φ,w) : Vfy(CRS,Φ, π) = 1] = 1.

Computational Knowledge Soundness: Computational knowledge sound-
ness says that the prover must know a witness and such knowledge can be
efficiently extracted from the prover by a knowledge extractor. Proof of knowl-
edge requires that for every adversarial prover A generating an accepting proof,
there must be an extractor χA that, given the same input of A, outputs a valid
witness. Formally, an argument system Πsnark is computationally considered as
knowledge sound if for any PPT adversary A, there exists a PPT extractor χA,
such that AdvsoundΠsnark,A,χA(λ) is negligible.

AdvsoundΠsnark,A,χA(λ) = Pr[(CRS, τ)← Setup(R), (Φ∗, π∗)← A(CRS), w ← χA(transA) :

V fy(CRS,Φ∗, π∗) = 1 ∧ (Φ∗, w) 6∈ R] = negl(λ).

Perfect Zero-Knowledge: Perfect zero-knowledge states that the system does
not leak any information besides the truth of the statement. This is modelled by
a simulator that does not know the witness but has some trapdoor information
that enables it to simulate proofs.

Succinctness: Succinctness states that the argument generates the proof of
polynomial size in the security parameter, and the verifier’s computation time
is polynomial in the security parameter and in statement size.

3.6 Commit-Carrying SNARK and Commit-and-Prove SNARK

The commit-carrying SNARK (cc-SNARK) and the commit-and-prove SNARK
(CP-SNARK) are originally defined in LegoSNARK [CFQ19]. The main concept
of the LegoSNARK is to connect the modular SNARK systems and ensure the
same input between them via commitments.

The cc-SNARK is a proof system where the proof includes a commitment
to the portion of witnesses, which can be used for the connection. There is no
specific restriction for the commitment scheme, but it is convenient to consider

it as the Pedersen vector commitment c = ho · hu1
1 · · ·hunn for a random o

$← Z∗p,
messages u1, · · · , un and generators h, h1, · · · , hn.

Definition 3. (cc-SNARK: Definition 3.2 of [CFQ19]). A commit-carrying zk-
SNARKs for a relation R is a set of four of algorithms Πcc = (KeyGen,Prove,
VerProof,VerCommit) that works as follows:
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– (ck, ek, vk) ← KeyGen(R) : takes a relation R as inputs, and outputs a
commom reference string which includes a commitment key ck, an evaluation
key ek, and a verification key vk.

– (c, π; o)← Prove(ek, x, w) : takes an evaluation key ek, a statement x and a
witness w := (m,ω) such that the relation R holds as inputs, and outputs a
proof π, a commitment c and an opening o such that VerCommit(ck, c, u, o) =
1.

– 0/1 ← VerProof(vk, x, c, π) : takes a verification key vk, a statement x, a
commitment c, a proof π as inputs, and outputs 1 if x, c, π is within the
relation R, or 0 otherwise.

– 0/1← VerCommit(ck, c, u, o) : takes a commitment key ck, a commitment c,
a message u and an opening o as inputs, and outputs 1 if the commitment
opening is correct, or 0 otherwise.

which satisfies completeness, succinctness, knowledge soundness, zero knowl-
edge and binding (described in [CFQ19]).

The CP-SNARK is a proof system that can link existing cc-SNARKs by using
their commitments. The LegoSNARK defines the CP-SNARK framework and
provides a CP-SNARK scheme CP, that guarantees the connectivity between
multiple cc-SNARKs via Pedersen vector commitments.

Definition 4. (CP-SNARK: Definition 3.1 of [CFQ19]). Let {Rλ}λ∈N be a
family of relations R over Dx × Du × Dω such that Du splits over l arbi-
trary domains (D1 × · · · × Dl) for some arity parameter l ≥ 1. Let Com =
(Setup,Commit,VerCommit) be a commitment scheme (as per Definition 2.1)
whose input space D is such that Di ⊂ D for all i ∈ [l]. A commit and prove
zk-SNARK for Com and {Rλ}λ∈N is a zk-SNARK for a family of relations
{RCom

λ }λ∈N such that:

– every R ∈ RCom is represented by a pair (ck,R) where ck ∈ Setup(1λ) and
R ∈ Rλ;

– R is over pairs (x,w) where the statement is x := (x, (cj)j∈[l]) ∈ Dx × Cl,
the witness is w := ((uj)j∈[l], (oj)j∈[l], ω) ∈ D1×· · ·×Dl×Ol×Dω, and the
relation R holds iff∧

j∈[l]
VerCommit(ck, cj , uj , oj) = 1 ∧R(x, (uj)j∈[l], ω) = 1

We denote a CP-SNARK as a triple of algorithms CP = (KeyGen, Prove,
VerProof) as follows.

– (ek, vk) ← KeyGen(ck,R) : takes a commitment key ck, a relation R as
inputs, and outputs a commom reference string which includes an evaluation
key ek, and a verification key vk.

– π ← Prove(ek, x, (cj)j∈[l], (uj)j∈[l], (oj)j∈[l], ω) : takes an evaluation key ek,
a statement x, commitments cj, messages uj, randoms oj, witnesses ω, and
outputs the proof of correct commitment.

– 0/1 ← VerProof(vk, x, (cj)j∈[l], π) : takes a verification key vk, a statement
x, commitments cj, a proof π, and rejects or accepts the proof.
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3.7 Commit-Carrying Encryption

We define a new notion of encryption that can output a commitment which
shares a same format with the commit-carrying SNARKs. If the encryption
scheme is capable of outputting the Pedersen vector commitment from existing
ciphertexts, we say that it is a commit-carrying encryption. It can be formally
defined as follows:

Definition 5. Suppose a public-key encryption scheme Πenc which outputs a
ciphertext CT for the message input m. For the ciphertext CT and a Pedersen
vector commitment c = Ped.Commit(m) of the message m, if there exists an
efficient polynomial-time function fc(x) which satisfies fc(CT ) = c, we say that
the encryption scheme Πenc is a commit-carrying encryption.

The commit-carrying encryption follows the definition of standard public-
key encryption, but it also gains modular composability between other commit-
carrying systems via commit-and-prove SNARK (CP-SNARK).

3.8 Additively-Homomorphic Encryption

We adopt the definition of additively-homomorphic encryption from homomor-
phic ElGamal encryption [CGS97].

Definition 6. Suppose we have an encryption scheme Πenc which satisfies the
definition of standard public-key encryption. We say that Πenc is an additively-
homomorphic encryption ΠAH, if it additionally satisfies Completeness de-
scribed as follows:

Enc(Mi) ◦ Enc(Mj) = Enc(Mi +Mj)

Dec(CT i) + Dec(CT j) = Dec(CT i ◦ CT j)
for any messages Mi,Mj and any ciphertexts CT i, CT j.

3.9 Verifiable Encryption

We refine the definition of verifiable encryption by combining the previous defini-
tions in [CD00, LN17]. We mostly follow the definitions in [CD00], but separate
the verification phase individual from decryption as in [LN17].

Definition 7. Suppose we have an encryption scheme Πenc which satisfies the
definition of standard public-key encryption. We say that Πenc is a verifiable en-
cryption ΠVE, if it additionally includes the following polynomial-time algorithm
for some pre-defined relation R:

– π, CT ← Enc(PK,M) : the encryption of a message M under the public key
PK must output a proof π, along with the corresponding ciphertext CT .

– 0/1 ← Verify Enc(V K, π, CT ) : takes a verification key V K, an encryption
proof π, a corresponding ciphertext CT as inputs, and outputs 1 if π, CT is
within the relation R, or 0 otherwise.
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with satisfying completeness, encryption soundness, and perfect zero-knowledge
as described below:

Completeness: A proof π and a ciphertext CT must pass the verification if
they are honestly generated from a message M which satisfies M ∈ R, formally
as Pr[(π, CT )← Enc(PK,M),M ∈ R : Verify Enc(V K, π, CT ) = 1] = 1.

Encryption Soundness: The advantage of an adversary forging verifying π∗, CT ∗
where M 6∈ R is negligible.

AdvsoundΠVE,A(λ) = Pr[(SK,PK, V K)← KeyGen(λ), (CT ∗, π∗)← A(PK, V K) :

Verify Enc(V K, π∗, CT ∗) = 1 ∧ Dec(SK, CT ∗) 6∈ R] = negl(λ).

Indistinguishability: Assuming within a same relation R, a verifiable encryp-
tion should satisfy IND-CPA of the original public-key encryption, with provid-
ing additional information π to the adversary.

3.10 Verifiable Decryption

We refine the definition of verifiable decryption from [CS03]; the definition in
[CS03] represents the proof system and the encryption system separately, but we
intend to combine them as an encryption scheme with verifying phase. Plus, we
strengthen the security notion from decryption soundness to perfect decryption
soundness, and introduce a new security notion - perfect zero-knowledge.

Definition 8. Suppose we have an encryption scheme Πenc which satisfies the
definition of standard public-key encryption. We say that Πenc is a verifiable de-
cryption ΠVD, if it additionally includes the following polynomial-time algorithm:

– M,ν ← Dec(SK, CT ) : the decryption of a ciphertext CT outputs a message
M , along with the corresponding decryption proof ν.

– 0/1 ← Verify Dec(V K,M, ν, CT ) : takes a verification key V K, a message
M , a decryption proof ν, a ciphertext CT as inputs, and outputs 1 if M,ν is
a valid decryption for CT or 0 otherwise.

with satisfying completeness, and perfect decryption soundness, and indistin-
guishability as described below:

Completeness: A message M and a decryption proof ν must pass the verifica-
tion, if decrypting CT with SK outputsM , formally as Pr[(M,ν)← Dec(SK, CT ), CT =
Enc(PK,M) : Verify Dec(V K,M, ν, CT ) = 1] = 1.

Perfect Decryption Soundness: The advantage of an adversary forging ver-
ifying M∗, ν∗, CT ∗ where M∗ is not a decryption of CT is 0.
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AdvsoundΠVD,A(λ) = Pr[(M∗, ν∗, CT ∗)← A(SK,PK, V K) :

Verify Dec(V K,M∗, ν∗, CT ∗) = 1 ∧ Dec(SK, CT ∗) 6= M∗] = 0.

Indistinguishability: A verifiable decryption should satisfy IND-CPA of the
original public-key encryption, with providing additional information ν to an
adversary A, for A’s chosen messages.

3.11 Rerandomizable Encryption

We adopt the definition of rerandomizable encryption from [PR07].

Definition 9. Suppose we have an encryption scheme Πenc which satisfies the
definition of standard public-key encryption. We say that Πenc is a rerandom-
izable encryption ΠRR, if it additionally includes the following polynomial-time
algorithm:

– CT ′ ← Rerandomize(PK, CT ) : a randomized algorithm which takes a public
key PK and a ciphertext CT and outputs another ciphertext CT ′.

which satisfies completeness and rerandomizability described as below:

Completeness: For every ciphertext CT and every CT ′ in the support of Rerandomize(PK, CT ),
we must have Dec(SK, CT ′) = Dec(SK, CT ).

Rerandomizability: For every plaintext M and every ciphertext CT in the
support of Enc(PK,M), the distribution of Rerandomize(PK, CT ) is identical to
another round of Enc(PK,M).

3.12 Definition of SAVER

We represent the definition of our SAVER: SNARK-friendly, Additively-homomorphic,
and Verifiable Encryption and decryption with Rerandomization - which satis-
fies the properties of zk-SNARK Πsnark, additively-homomorphic encryption ΠAH,
verifiable encryption ΠVE, verifiable decryption ΠVD and rerandomizable encryp-
tion ΠRR altogether.

Definition 10. For any arbitrary zk-SNARK relation R (also noted as relation),
the SAVER consists of seven polynomial-time algorithms as follows:

– CRS ← Setup(relation) : takes an arbitrary relation R as an input, and
outputs the corresponding common reference string CRS.

– SK,PK, V K ← KeyGen(CRS) : takes a CRS as an input, and outputs the
corresponding secret key SK, public key PK, verification key V K.

– π, CT ← Enc(CRS,PK,M, Φ̂;w) : takes CRS, a public key PK, a message
M = m1, . . . ,mn, a zk-SNARK statement Φ̂ = {φn+1, . . . , φl}, and a witness
w as inputs, and outputs a proof π and a ciphertext CT = (c0, · · · , cn, ψ).
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– π′, CT ′ ← Rerandomize(PK, π, CT ) : takes a public key PK, a proof π, a
ciphertext CT as inputs, and outputs a new proof π′ and a new ciphertext
CT ′ with fresh randomness.

– 0/1 ← Verify Enc(CRS, π, CT , Φ̂) : takes CRS, a proof π, a ciphertext CT ,
and a statement Φ̂ = {φn+1, . . . , φl} as inputs, and outputs 1 if CT , Φ̂ is in
the relation R, or 0 otherwise.

– M,ν ← Dec(CRS, SK, V K, CT ) : takes CRS, a secret key SK, a verification
key V K, and a ciphertext CT = (c0, · · · , cn, ψ) as inputs, and outputs a
plaintext M = m1, . . . ,mn and a decryption proof ν.

– 0/1← Verify Dec(CRS, V K,M, ν, CT ) : takes CRS, a verification key V K,
a message M , a decryption proof ν, and a ciphertext CT as inputs, and
outputs 1 if M is a valid decryption of CT , or 0 otherwise.

It satisfies completeness, indistinguishability, encryption knowledge soundness,
rerandomizability, decryption soundness, perfect zero-knowledge as described be-
low:

Completeness: The completeness of SAVER must satisfy the completeness of
Πsnark, ΠAH, ΠVE, ΠVD and ΠRR altogether.

Indistinguishability: The indistinguishability is also known as semantic se-
curity (IND-CPA). The IND-CPA of the SAVER should be indistinguishability
of ΠVE and ΠVD, which is defined by an adversary A and a challenger C via
following game.

Setup: The challenger C runs Setup(relation) to obtain CRS, τ , and share CRS, τ
and statements Φ̂ to A. Note that the adversary A is given the trapdoor τ =
{α, β, γ, δ} as an additional information, since ability to simulate the proof does
not affect the security of the ciphertext indistinguishability.

KeyGen: C runs KeyGen(CRS) to obtain a secret key SK, a public key PK, and
a verification key V K. Then, C gives PK,V K to A.

Oν phase 1: If the message is decrypted, the decryption proof ν is also revealed.
Therefore, A may request decryption proof for M as an additional information
since knowing M may indicate it is already decrypted. For the polynomial-
time, A may issue decryption proof query as Mi, to obtain the correspond-
ing ciphertext CT i and a decryption proof νi. C generates πi, CT i by running
Enc(CRS,PK,Mi, Φ̂;w), generates νi by running Dec(CRS, SK, V K, CT i), and
returns (πi, CT i, νi) to A.

Challenge: For the challenge, A outputs two messages M0 and M1. C picks b ∈
{0, 1} to choose Mb, generates π, CT by running Enc(CRS,PK,Mb, Φ̂;w), and
returns π, CT to A.

Oν phase 2: A can continue to issue encryption queries Mj , same as Oν phase 1.
The only restriction is that Mj 6∈ {M0,M1}.

Guess: A outputs its guess b′ ∈ {0, 1} for b, and wins the game if b = b′.
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Let AdvindSAVER,A(λ) be the advantage of A winning the above game. For a neg-
ligible function ε, it is IND-CPA secure if for any adversary A we have that
|AdvindSAVER,A(λ)− 1/2| < ε.

Encryption Knowledge Soundness: The encryption knowledge soundness
is a combined definition of computational knowledge soundness in Πsnark and
encryption soundness in ΠVE. It is formally defined as follows:

AdvsoundSAVER,A,χA(λ) = Pr[(CRS, τ)← Setup(R), (PK,SK, V K)← KeyGen(CRS),

(π∗, CT ∗, Φ̂∗)← A(CRS,PK, V K), (M,w)← χA(transA) :

Verify Enc(CRS, π∗, CT ∗, Φ̂∗) = 1 ∧ (Dec(CT ∗) 6= M ∨ (M, Φ̂∗, w) 6∈ R)] = negl(λ).

Rerandomizability: The rerandomizability is extended from ΠRR, to include
π as follows: for all M and π, CT in the support of Enc(CRS,PK,M, Φ̂;w),
the distribution of Rerandomize(PK, π, CT ) is identical to another round of
Enc(CRS,PK,M, Φ̂;w).

Perfect Decryption Soundness: Equivalent to the perfect decryption sound-
ness in ΠVD.

Perfect Zero-Knowledge: Equivalent to the perfect zero-knowledge in Πsnark.

4 Proposed SAVER

In this section, we represent the formal construction of the proposed SAVER:
SNARK-friendly, Additively-homomorphic, and Verifiable Encryption and de-
cryption with Rerandomization. In section 4.1, we provide some intuitive ideas
on designing SAVER. Then we show the construction in section 4.2, which is
a commit-carrying encrypt-with-prove scheme. In section 4.3, we show that the
construction in section 4.2 also satisfies the encrypt-and-prove framework by
using the commitment ψ included in the ciphertext CT .

4.1 Main Idea

Before presenting the construction, we provide some intuitive ideas on design-
ing the proposed SAVER. For the voting application in section 1.1, the main
objective is to design generic verifiable encryption with additional functional-
ities: additive-homomorphism, rerandomizability, and verifiable decryption. A
naive approach to achieve this is to include the entire encryption algorithm in
the zk-SNARK circuit along with the generic relation (to ensure the consistency
of m between Prove and Enc), which we refer to as encryption-in-the-circuit
method [KZM+15a, KZM+15b].

Algorithm 1 represents zk-SNARK relations required when applying the
encryption-in-the-circuit approach. We need three individual relations of relationenc,
relationrerand, and relationdec to satisfy the desired properties. In relationenc, a
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Algorithm 1 Encryption-in-the-circuit

relationenc(PK, CT , φn+1, . . . , φl;M):

CT ← ΠRR,AH.Enc(PK,M)
· · ·

relationrerand(PK, CT ′, φn+1, . . . , φl;π, CT ):

Πsnark.Verify(π, PK, CT , φn+1, . . . , φl)
CT ′ ← ΠRR,AH.Rerandomize(PK, CT )

relationdec(CT ,M ;SK)

M ← ΠRR,AH.Dec(SK, CT )

rerandomizable homomorphic encryption ΠRR,AH like Paillier [Pai99] is combined
with the arbitrary relation to satisfy the verifiable additively-homomorphic en-
cryption. In relationrerand for rerandomizability, the relation includes the verifi-
cation of proof π to check the relation of CT , along with the rerandomization of
the ciphertext. For example, in the voting application, the administrator must
first verify the vote before rerandomizing it, to check that the vote is gener-
ated honestly from an eligible user. In relationdec, the decryption algorithm is
included to provide verifiable decryption property. When proceeding the ver-
ifiable encryption with these relations, the construction becomes very ineffi-
cient: Enc should include Πsnark.Prove(relationenc), Rerandomize should include
Πsnark.Prove(relationrerand), and Dec should include Πsnark.Prove(relationdec).

To avoid the inefficiency, we separate encryption from the zk-SNARK relation
and provide connectivity between them, similar to the Hash&Prove [FFG+16] or
Commit&Prove in LegoSNARK [CFQ19]. Naively binding the encryption and
zk-SNARK via commitments as in [FFG+16] may require additional verifications
for the linkage. Instead of verifying the linkage separately, we let the ciphertext
blend into the original zk-SNARK verification, by replacing the statement (In-
puts/Outputs). Intuitively, since zk-SNARK statements are constructed as linear
encodings, it is possible to extend the statement as an ElGamal ciphertext.

Let us observe the zk-SNARK verification in [Gro16] as follows:

e(A,B) = e(Gα, Hβ) · e(
l∏
i=0

Gφii , H
γ) · e(C,Hδ)

In the equation, (φ1, . . . , φl) can be not only a statement and but also a plaintext.
Suppose that φ1 should be encrypted. Let a plaintext message M = φ1. Then
we may construct a ciphertext CT = GM1 similar to the ElGamal encryption,
which maintains the original verification format as following:

e(A,B) = e(Gα, Hβ) · e(CT ·
l∏
i=2

Gφii , H
γ) · e(C,Hδ)

However, it is obvious that CT should include additional blinding factors
mixed to GM1 . When we denote the blinding factor as Xr, i.e., CT = Xr ·GM1 ,
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the pairing e(Xr·GM1 ·
∏l
i=2G

φi
i , H

γ) generates unintended γr term in e(Xr, Hγ),
which breaks equality of the equation. To resolve this problem, we include G−γ

in the CRS. The prover modifies the proof element C as C = C · G−γr so that
the γr term can be eliminated with respect to the δ from e(C,Hδ). As a result,
the verification of zk-SNARK can ensure the existence of M in the ciphertext,
as well as the soundness of M within the relation.

Another interesting fact is that the form of GMi can be plugged into the
additive-homomorphism based on the ElGamal encryption. As introduced in
[CGS97], it is easy to transform the ElGamal encryption by encrypting GMi
instead of M , to achieve additive-homomorphism as GM1

i · GM2
i = GM1+M2

i . In
this case, the decryption requires finding the short discrete log of GMi , which
restricts the message space to be short enough. Therefore, we split the message
M into short message spaces as M = (m1|| . . . ||mn) (e.g. |mi| = 4bits), and
encrypt each block mi in the form of Xr

i · G
mi
i where Xr

i is a blinding factor.
The decryptor who can remove the blinding factor can obtain mi by the simple
brute-forcing (less than 24 for |mi| = 4bits).

4.2 SAVER Construction

We now represent a formal construction of the proposed SAVER: SNARK-
friendly, Additively-homomorphic, and Verifiable Encryption and decryption
with Rerandomization. To be an encrypt-with-prove scheme, SAVER utilizes
a zk-SNARK Πsnark as a building block; we used Groth’s protocol [Gro16] as a
standard. It is possible to adopt other pairing-based zk-SNARKs such as [GM17]
and [KLO20], with some adjustments on Verify Enc and Rerandomize to assem-
ble the verification and proof format6. SAVER is also a commit-carrying en-
cryption (encrypt-and-prove) at the same time; the ciphertext CT includes a
commitment ψ which can be connected to the commit-and-prove framework of
LegoSNARK [CFQ19].

In SAVER, a message M is split into n blocks as M = (m1|| · · · ||mn), to
form a vector M = {m1, . . . ,mn}. A ciphertext CT consists of n + 2 blocks as
CT = {c0, · · · , cn, ψ}, where c0 contains the random, ψ contains a commitment,
and the remaining ci contains an encryption of mi for 1 ≤ i ≤ n. Within the
construction, we work with {m1, . . . ,mn}, assuming that M is already parsed
to M = (m1|| · · · ||mn).

Algorithm 2 represents the formal construction of SAVER. The term relation
denotes an arbitrary relation R for the zk-SNARK, and the terms of α, β, γ,
and δ within the functions come from CRS (common reference string) of the
adopted zk-SNARK scheme [Gro16]. In case of encrypt-and-prove, there is a
possibility that the relation has not been determined yet (when encrypting only

6 Rerandomization of the proof can be viewed as a manipulation, which is prohibited
in the simulation-extractable zk-SNARKs. Providing additional terms (for example,
Gaδ to rerandomize [KLO20]) can resolve this by allowing one-time rerandomization
in a restricted manner.
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Algorithm 2 SAVER construction

relation(m1, . . . ,mn, φn+1, . . . , φl;w) :

· · ·

Setup(relation) :
ˆCRS ← Πsnark.Setup(relation)

CRS ← ˆCRS ∪ {G−γ}
return CRS

KeyGen(CRS) :

{si}ni=1, {vi}ni=1, {ti}ni=0, ρ
$← Z∗p

PK ← (Gδ, {Gδsi}ni=1, {Gtii }
n
i=1, {Hti}ni=0, G

δt0
∏n
j=1G

δtjsj , G−γ·(1+
∑n
j=1 sj))

SK ← ρ
V K ← (Hρ, {Hsivi}ni=1, {Hρvi}ni=1)
return (SK,PK, V K)

Enc(CRS,PK,m1, . . . ,mn, φn+1, . . . , φl;w) :

let PK = (X0, {Xi}ni=1, {Yi}ni=1, {Zi}ni=0, P1, P2)

r
$← Z∗p

CT = (Xr
0 , X

r
1G

m1
1 , . . . , Xr

nG
mn
n , ψ = P r1 ·

∏n
j=1 Y

mj
j )

π̂ = (A,B,C)← Πsnark.Prove(CRS,m1, . . . ,mn, φn+1, . . . , φl;w)
π ← (A,B,C · P r2 )
return (π, CT )

Rerandomize(PK, π, CT ) :

parse π = (A,B,C) and CT = (c0, . . . , cn, ψ)
let PK = (X0, {Xi}ni=1, {Yi}ni=1, {Zi}ni=0, P1, P2)

r′, z1, z2
$← Z∗p

CT ′ ← (c0 ·Xr′
0 , . . . , cn ·Xr′

n , ψ · P r
′

1 )

π′ ← (Az1 , Bz
−1
1 ·Hδ·z2 , C ·Az1z2 · P r

′
2 )

return (π′, CT ′)

Verify Enc(CRS,PK, π, CT , φn+1, · · · , φl) :

parse π = (A,B,C) and CT = (c0, . . . , cn, ψ)
let PK = (X0, {Xi}ni=1, {Yi}ni=1, {Zi}ni=0, P1, P2)
assert

∏n
i=0 e(ci, Zi) = e(ψ,H)

assert e(A,B) = e(Gα, Hβ) · e(
∏n
i=0 ci ·

∏l
i=n+1G

φi
i , H

γ) · e(C,Hδ)

ahead of time); in this case, the relation can be assumed as an empty circuit (i.e.

Gδ, Gi, G
γ $← G1).

SAVER receives any relation which consists of two I/O statements. State-
ments m1, . . . ,mn will be encrypted while statements φn+1, . . . , φl will be used
as normal I/O statements in plaintext. For the given relation, Setup generates
CRS using the adopted zk-SNARKs scheme, with additional G−γ . KeyGen gen-
erates a private key, a public key, and a verification key. Enc encrypts messages
m1, . . . ,mn and generates a proof π of statement Φ = (m1, . . . ,mn, φn+1, . . . , φl).
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Dec(CRS, SK, V K, CT ) :

parse SK = ρ, V K = (V0, {Vi}ni=1, {Vi}2ni=n+1), and CT = (c0, . . . , cn, ψ)
for i = 1 do to n

e(ci,Vn+i)

e(c0,Vi)ρ
= e(Gi, Vn+i)

mi

compute a discrete log of e(Gi, Vn+i)
mi to obtain mi

end for
ν ← cρ0
return (m1, . . .mn, ν)

Verify Dec(CRS, V K,m1, . . .mn, ν, CT ) :

parse V K = (V0, {Vi}ni=1, {Vi}2ni=n+1) and CT = (c0, . . . , cn, ψ)
assert e(ν,H) = e(c0, V0)
for i = 1 do to n

assert
e(ci,Vn+i)

e(ν,Vi)
= e(Gi, Vn+i)

mi

end for

To check the truth of statement Φ, Verify Enc takes π and CT as inputs for verifi-
cation. Rerandomize does rerandomization of the given ciphertext and the proof.
Note that the rerandomized proof is a valid proof of the statement. Dec decrypts
the ciphertext CT by performing decryption for each block c1, . . . , cn, to output
m1, . . . ,mn and a decryption proof ν. The original message M can be restored
as M = (m1|| . . . ||mn). The honest decryption of CT can be proved by calling
Verify Dec with a message M and a decryption proof ν.

The ciphertext CT in SAVER satisfies additive-homomorphic property. Given

CT = (Xr
0 , {Xr

i G
mi
i }ni=1, P

r
1

∏n
j=1 Y

mj
j ) and CT ′ = (Xr′

0 , {Xr′

i G
m′i
i }ni=1, P

r′

1

∏n
j=1 Y

m′j
j ),

it is easy to see that CT ·CT ′ = (Xr+r′

0 , {Xr+r′

i G
mi+m

′
i

i }ni=1, P
r+r′

1

∏n
j=1 Y

mj+m
′
j

j ),
which satisfies additive-homomorphism.

4.3 Encrypt-and-Prove

The encrypt-with-prove construction in section 4.2 is also a commit-carrying
encryption: it includes an encrypt-and-prove scheme which allows modular com-
position to other commit-carrying systems. In this section, we show that the
commitment ψ in the ciphertext CT is identical to the Pedersen vector com-
mitment c in LegoSNARK [CFQ19]’s commit-and-prove, which implies that the
SAVER construction (algorithm 2) is a commit-carrying encryption as defined in
section 3.7. Then we briefly show that CT and ψ can be the inputs of CP-SNARK
CPlink described in 3.6.

Commit-carrying encryption. When observing algorithm 2, it is obvious
that SAVER is a commit-carrying encryption since the ciphertext CT already
includes a commitment ψ. We show that ψ is identical to the Pedersen vector
commitment of the commit-carrying SNARKs. Recall that the Pedersen vector
commitment described in section 3.6 is constructed as c = ho · hu1

1 · · ·hunn for

a random o
$← Z∗p, messages u1, · · · , un, and random generators h, h1, · · · , hn.
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The commitment ψ in SAVER is constructed as ψ = P r1 ·
∏n
j=1 Y

mj
j . Notice that

P1 = Gδt0
∏n
j=1G

δtjsj can be viewed as a random generator h with respect to the

randoms ti and si, and {Yi = Gtii }ni=1 can be also viewed as random generators
h1, · · · , hn with respect to the random ti. Since the message m1, · · · ,mn and
random r for the encryption correspond to the message u1, · · · , un and random
o for the commitment, ψ = P r1 ·

∏n
j=1 Y

mj
j can be considered as Pedersen vector

commitment c = ho ·
∏n
j=1 h

uj
j by matching h = P1, o = r, hj = Yj , uj = mj .

CP-SNARK composability. We briefly show how to connect algorithm 2 as
a commit-carrying system for the CP-SNARK CP. Recall that the CP protocol
let the prover prove the relation with the commitment key ck as follows:

crs := (ek, vk)← KeyGen(ck,R)

π ← Prove(ek, x, (cj)j∈[l], (uj)j∈[l], (oj)j∈[l], ω)

For the ck, we may assume P1 and {Yi}ni=1 as the commitment key ck since
they are the ingredients for constructing the commitments {ψj}j∈[l]. Also, in
Prove and VerProof, notice that we already showed the commitments {cj}j∈[l]
and random o are identical to the commitment {ψj}j∈[l] and random {rj}j∈[l]
from SAVER systems (or other cc-SNARK systems). Therefore, it is straight-
forward to run the CP by matching the inputs as {cj = ψj}, {oj = rj}, {uj =
(m1, · · · ,mn)} for j ∈ [l].

Conceptual Benefits. In the viewpoint of commit-and-prove, encrypt-and-
prove can provide more general extension of selective disclosure. In the encrypt-
and-prove, the encrypted ciphertext can also work as a commitment since the
commit-carrying encryption has an efficient function fc(x) that can output com-
mitment c. Therefore, when the prover outputs the commit-carrying ciphertext,
it can disclose whole data to the secret key holder, while only disclosing proved
statements to the other public the same as commit-and-prove. As a simple ex-
ample, assume a blockchain contract management system where Alice and Bob
encrypt a contract to each other. Alice wants to let Bob (who has a secret key) see
the whole data, but she also wants to prove some restricted statements publicly.
In this case, Alice can upload the ciphertext as a commitment of commit-and-
prove; Bob can decrypt the ciphertext, and Alice can use the ciphertext as a
commitment later for proving various statements.

5 Security Proof: SAVER

To satisfy the definition of SAVER, the scheme should satisfy completeness, indis-
tinguishability, encryption knowledge soundness, rerandomizability, and perfect
zero-knowledge. The completeness is easy to verify in algorithm 2. For the per-
fect zero-knowledge, it is sufficient to show that the proof π in SAVER maintains
the perfect zero-knowledge of zk-SNARK [Gro16].

Lemma 1. The proof π generated in SAVER is within the same distribution
from the proof π̂ of Πsnark.
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Proof. Since π̂ is in a random distribution and P r2 is in a random distribution
from r, C · P r2 is also within a same random distribution.

5.1 Indistinguishability

In this section, we prove the standard IND-CPA security of our SAVER.

Theorem 1. Suppose the Decisional (d(λ), q(λ))-Poly assumption holds in BG.
Then SAVER is IND-CPA secure.

Proof. Suppose that A has an advantage ε in attacking the SAVER. Using A, we
build an algorithm B that solves the D-Poly problem in BG. We first describe
the overall sketch of our proof as follows.

The game starts with selecting the generator G,H and the D-Poly secret vec-
tor xxx = {x, t0, . . . , tn, s1, . . . , sn, v1, . . . , vn, ρ} from Z∗p. As a challenger in the D-
Poly game, algorithm B can query polynomials gi(X1, · · · , Xq) and hj(X1, · · · , Xq)
to the oracles O1

G,xxx and O2
H,xxx to receive corresponding Ggi(xxx) and Hhj(xxx), within

a polynomial time.
With the help of these oracles, B simulates the decryption proof oracle Oν

for A’s encryption queries; B receives query Mi from A within the polyno-
mial time to return corresponding ciphertext, proof and its decryption proof
as (CT i, πi, νi).

Then for the challenge, B outputs gc(X1, · · · , Xq) which satisfies gc(x) 6∈
JQ1K × JQ2K × JQ2K−1, to receive T = Tb from the D-Poly game where Tb is

randomly chosen from T1 = Ggc(xxx) or T0
$← G1. The goal of algorithm B is to

guess b, outputting b′ = 1 if the T is generated from Ggc(xxx) and b′ = 0 otherwise.
Algorithm B works by interacting with A in an IND-CPA game as follows:

Setup: To generate the CRS, B runs a Setup(relation) in [Gro16] with selecting
trapdoors τ = {α, β, γ, δ} and using D-Poly oracles for the CRS generation.
By querying gi(X1, · · · , Xq) to the corresponding oracle O1

G,xxx or O2
H,xxx, B can

generate all CRS parameters (Gα, Gβ , Gδ, · · · ) without the knowledge of the
secret vector xxx.

KeyGen: Algorithm B can run the original KeyGen(CRS) by utilizing the existing
CRS generated from above. B returns (PK, V K) to initialize A. Additionally, B
generates the tag key ν̂ = Gδρ by querying δρ to O1

G,xxx.

Oν phase 1: After the initialization, A may query B for the decryption proof of
the message Mi = (m1|| · · · ||mn), to obtain the corresponding ciphertext and de-
cryption proof CT i, νi. For A’s query Mi, B generates a ciphertext CT i by calling
Enc(CRS,PK,Mi) with picking fresh random ri, and creates encryption proofs
πi by calling SimProvesnark(CRS, τ,m1, . . . ,mn, φn+1, . . . , φl) with trapdoor τ
and given statement (m1, . . . ,mn, φn+1, . . . , φl) where SimProvesnark generates
a simulated proof available in every zk-SNARK scheme since the zk-SNARK
scheme is zero knowledge. Then, B crafts the decryption proof νi = ν̂ri , and
returns πi, CT i, νi as a response to A.



28 Jiwon Lee, Jaekyoung Choi, Jihye Kim, and Hyunok Oh

Challenge: When A outputs M0 and M1 for the IND-CPA challenge, B picks
b ∈ {0, 1} for Mb then challenges the D-Poly game to receive T and create the

ciphertext CT by implicitly setting r = xd+1 · r′ (r′
$← Z∗p). To describe B’s

response on Mb = (m1|| . . . ||mn), we first define two events on generating CT =
(c0, . . . , ψ): REAL and FAKE. Among the blocks c1, . . . , cn which are supposed
to contain the encrypted message (excluding c0 and ψ which are not related to
the message), two events are defined for each block ci as follows:

1. REAL: The block ci is crafted honestly with a real message as Gδsi·rGmii , by
querying g(xxx) to O1

G,xxx.

2. FAKE: The block ci is crafted with a random message µi
$← Z∗p as Gδsi·rGµii ,

by querying g(xxx) to O1
G,xxx.

When creating c1, . . . , cn, B picks j ∈ {1, . . . , n} to use the challenge response T
in cj , and let c1, . . . , cj−1 generated from REAL while cj+1, . . . , cn are generated
from FAKE. B gains advantage of winning the game only when A guesses b
exactly from the challenge. If A can already distinguish b without the challenge
cj , the game fails because A will always distinguish b regardless of the nature of
T . On the other hand, if A requires cj′ for j′ > j to distinguish b, the game fails
because A always fails to distinguish b regardless of the nature of T since cj′ is
from FAKE. More specifically, from A’s view, there exists j′ ∈ {1, . . . , n} where
A cannot distinguish b when c1, . . . , cj′−1 are from REAL, but can distinguish
b when c1, . . . , cj′ are from REAL. Therefore, by choosing j, B is guessing j′; if
B’s guess is correct, i.e., j = j′ with the probability of 1

n , B can win the D-Poly
game since A works differently depending on the nature of T .

To prepare the challenge, B picks r′
$← Z∗p and interacts with the D-Poly

oracle O1
G,xxx by implicitly setting r as xd+1 · r′. B first queries δ · xd+1 to receive

ĉ0. Next, B prepares the random parts for all the blocks except j-th block by
querying {gi(x) = δsi · xd+1}ni=1,6=j to receive {ĉi}ni=1,6=j . Then B prepares the

ingredient for ψ, by querying xd+1 · (δt0
∑n
i=1 δtisi) to receive ψ̂1 and querying∑j

i=1 yi(x) · timi +
∑n
i=j+1 yi(x) · tiµi to receive ψ̂2. For the encryption proof

π, B use the trapdoor τ to simulate the proof with SimProvesnark(CRS, τ) as
π = (A,B,C). Note that B is required to simulate the proof since it does not
know the random r, which is a witness for the relation.

When {ĉi}ni=1, 6=j , ψ̂1, ψ̂2 and π are ready, B outputs a challenge query for the

j-th block g(x) = δsj · xd+1 to receive T . Notice that the challenge query g(x)
satisfies g(x) 6∈ JQ1K× JQ2K× JQ2K−1, since sj is independent. Then B generates
the ciphertext CT for Mb = (m1|| . . . ||mn) by exploiting the received elements

as c0 = ĉ0
r′ , {ci = ĉi

r′Gmii }
j−1
i=1 , cj = T r

′
G
mj
j (REAL), and {ci = ĉi

r′Gµii }ni=j+1

(FAKE). Finally, B computes ψ by computing as ψ = ψ̂1
r′

· ψ̂2, and returns
CT = {ci}ni=1, ψ and π to A.

Oν phase 2: B can respond to A’s queries same as Oν phase 1.
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Guess: Finally, A outputs a guess b′ ∈ {0, 1}. Algorithm B concludes its own
game by outputting a guess as follows. If b = b′ then B outputs 1 meaning
T = Ggc(xxx). Otherwise, it outputs 0 meaning T is random in GT .

When the input tuple is sampled from T1 = Ggc(xxx), and B’s guess with the
probability of 1

n is correct as j = j′, then A’s view is identical to its view in a
real attack game and therefore A satisfies 1

n · |Pr[b = b′] − 1/2| ≥ ε. When the

input tuple is sampled from T0
$← G1, then Pr[b = b′] = 1/2. Therefore, with

G,H uniform in BG, xxx uniform in Z∗p, and T uniform in GT we have that

|Pr[B(BG, qi(xxx), Ggc(xxx)) = 0]

− Pr[B(BG, qi(xxx), T ) = 0]| ≥ |(1/2 + nε)− 1/2| = nε

as required, which completes the proof of the theorem.

5.2 Encryption Soundness

In this section, we prove the soundness of π and CT in Verify Enc, indicating that
the M which is encrypted to CT is indeed included in the I/O of the conjoined
pairing-based SNARK [Gro16]. Formally, we show that the probability of any
adversary forging (π∗, CT ∗, Φ̂∗) where Φ̂∗ = {φn+1, · · · , φl} which passes the
V erify Enc but Dec(CT ∗) 6= M or (M, Φ̂∗, w) 6∈ R is negligible.

Theorem 2. Suppose the batch − PKE assumption holds, and the soundness
of conjoined pairing-based zk-SNARK [Gro16] holds. Then SAVER satisfies the
encryption knowledge soundness.

Proof. To prove the theorem, we show that any adversary which breaks the
soundness of the SAVER can break the batch-PKE assumption or SNARK-snd,
i.e., soundness of the conjoined SNARK [Gro16]. Formally, for all PPT adver-
saries A there exists a PPT algorithm B, C and a PPT extractor χB such that

Advsound
SAVER,A(λ) = Pr[(CRS, τ)← Setup(R), (PK,SK, V K)← KeyGen(CRS),

(π∗, CT ∗, Φ̂∗)← A(CRS,PK, V K), (M,w)← χA(transA) :

Verify Enc(CRS, π∗, CT ∗, Φ̂∗) = 1 ∧ (Dec(CT ∗) 6= M ∨ (M, Φ̂∗, w) 6∈ R)]

≤ Advbatch-PKE
R,B,χB (λ) + Advsound

Πsnark,C,χC (λ).

First, since SAVER requires additional G−γ in the CRS, it is necessary to
assure that the soundness of the zk-SNARK [Gro16] still holds with the extended
CRS. Fortunately, this issue is resolved instantly from the fact that the security
proof in [Gro16] also considers γ term, according to the affine prover strategy. In
the statistical knowledge soundness of [Gro16], the element A is demonstrated
as:

A = Aαα+Aββ +Aγγ + aδδA(x) +

l∑
i=0

Ai
yi(x)

γ
+

m∑
i=l+1

Ai
yi(x)

δ
+Ah(x)

t(x)

δ
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Observe that the Aγγ is included, indicating that the Gγ is within the con-
sideration of ingredients. Since the Aγ term is eliminated in the proof, adding
G−γ in the CRS of [Gro16] does not affect the soundness of the SNARK. Similar
to [Gro16], we now view the verification equations as an equality of multi-variate
Laurent polynomials. By the Schwartz-Zippel lemma the prover has negligible
success probability unless both verification equations hold.

Since π∗, CT ∗, Φ̂∗ passes the verification, it passes the two equations in Ver-
ify Enc as stated below:

e(c1, H
t1)× · · · × e(cn, Htn) = e(ψ,H) (1)

e(A,B) = e(Gα, Hβ)× e(
n∏
i=0

ci ·
l∏

i=n+1

Gφii , H
γ)× e(C,Hδ) (2)

When we see the equation 1, there always exists ti, since they are fixed in the
expression itself as Hti . Therefore, ψ must consist of yi(x)ti and δt0+

∑n
j=1 δtjsj

since the only terms which include ti in the CRS and PK are Gt11 , · · · , Gtnn and

Gδt0+
∑n
j=1 δtjsj . Let us express auxiliary indeterminate for each variable as X,

which is yet ambiguous. Then, the exponents linearly satisfy the equation below:

Xt0 +Xt1+ · · ·+Xtn =

Xy1(x) · t1 + · · ·+Xyn(x) · tn +X(δt0 +

n∑
j=1

δtjsj)
(3)

When observing equation 3 above, note that the terms with yi(x) · ti and
δt0+

∑n
j=1 δtjsj must both exist, since they are the only terms which can balance

the t1, · · · , tn and t0 on the left of equal sign. Then, to meet the terms with
y1(x), · · · , yn(x), there must also exist yi(x) in each term with t1, · · · , tn on the
left of equal sign. For the unknown coefficients η′i, this leads to:

Xt0 + (X+η′1y1(x)) · t1 + · · ·+ (X + η′nyn(x)) · tn =

Xy1(x) · t1 + · · ·+Xyn(x) · tn +X(δt0 +

n∑
j=1

δtjsj)
(4)

Since only δt0 +
∑n
j=1 δtjsj includes δt0, the t0 term on the left must only

include δ to generate δt0. Finally, there remains δtjsj in
∑n
j=1 δtjsj ; X in each

tj term must be related to δsj to generate δtjsj . For the unknown coefficients
η′0 and η′′i , this leads to:

(η′0δ)t0 + (η′1δs1 + η′′1 y1(x))t1 + · · ·+ (η′nδsn + η′′nyn(x))tn =

Xy1(x) · t1 + · · ·+Xyn(x) · tn +X(δt0 +

n∑
j=1

δtjsj)
(5)
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Now we can complete the equation with filling up each auxiliary X on the
right side with unknown coefficients η′0, {η′i, η′′i }ni=1. Especially, since the term
with δt0 +

∑n
j=1 δtjsj is unique, the coefficients for δt0 and δsiti (i.e. η′0, · · · , η′n)

must be same as η′. Therefore, for the unknown coefficients η′ and η′′i , the equa-
tion can be arranged as:

(η′δ)t0 + (η′δs1 + η′′1 y1(x))t1 + · · ·+ (η′δsn + η′′nyn(x))tn =

η′′1 y1(x) · t1 + · · ·+ η′′nyn(x) · tn + η′(δt0 +

n∑
j=1

δtjsj)
(6)

When representing the coefficients of t0, · · · , tn on the left as a0, · · · , an (i.e.
a0t0 + a1t1 + · · ·+ antn), each ai can be viewed as a value from a multi-variate
polynomial fi(xxx) which consists of coefficients η′0 and η′′i . Let us represent C
from π∗ as Gb. Putting this into the verifying equation 1 gives us:

e(Ga1 , Ht0)× · · · × e(Gan , Htn) = e(Gb, H) (7)

Observe that equation 6 above is equivalent to the check in batch-PKE where
ti corresponds to αi: therefore there exists an extractor χB which can extract
all the coefficients η′0 and η′′i from ai = fi(xxx). With the knowledge of η′0, η

′′
i in

equation 6, it is obvious that η′ is equivalent to r and η′′i is equivalent to mi,
since the equation is in the same form as the original scheme with c0 = Gδr, c1 =
Gδs1r ·Gy1(x)m1 , · · · , cn = Gδsnr ·Gyn(x)·mn . If Dec(CT ∗) 6= M , then there exists
m∗i = η′′i 6= mi; the extractor failed as η′′i 6= [A(τ)] which breaks the batch-PKE.

∴ Pr[Dec(CT ∗) 6= M ] = Advbatch-PKE
R,B,χB (λ) (8)

The remaining case is where (M, Φ̂∗, w) 6∈ R. In this case, we start with the
fact that π∗, CT ∗, Φ̂∗ passes equation 2, revisited as follows.

e(A,B) = e(Gα, Hβ)× e(
n∏
i=0

ci ·
l∏

i=n+1

Gφii , H
γ)× e(C,Hδ) (2)

Since equation 8 let CT ∗ satisfy Dec(CT ∗) = M , we can write CT as a
original form, i.e., c0 = Gδr, ci = Gδsir ·Gmi . Putting this into equation 2 gives
us:

e(A,B) = e(Gα, Hβ)

× e(Gδr ·
n∏
i=1

(Gδsir ·Gyi(x)·mi) ·
l∏

i=n+1

Gφii , H
γ)× e(C,Hδ)

(9)

Observe that e(Gδr·
∏n
i=1(Gδsir·Gyi(x)·mi)·

∏l
i=n+1G

φi
i , H

γ) always generates
γδsi term. To neutralize γδsi, the only possible way is either by also generating
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γδsi in e(A,B) on the left of equal sign, or by generating the same term in
e(C,Hδ) on the right to eliminate γδsi.

Case 1 - generating γδsi in e(A,B) = e(Ga, Hb) on the left:

When considering the term with αβ which exists in e(Gα, Hβ) on the right
side, a must include α and b must include β, since there are no Hα in the G2

of CRS,PK, V K. From the fact that there are no δsi in G2, the only way to
generate the γδsi term is to include δsi in a and include γ in b as follows:

a = Xαα+Xδsiδsi + · · · , b = Xββ +Xγγ + · · ·

However, this let e(Ga, Hb) create αγ and βδsi, which does not exist in
equation 9. Therefore, γ cannot exist in a nor b, which indicates that Case 1
cannot exist.

Case 2 - generating γδsi in e(C,Hδ) = e(Gc, Hδ) on the right:

The remaining case is where c includes γsi to generate γδsi in e(Gc, Hδ) and

eliminate the γδsi term. The only term which includes γsi isR = G−γ·(1+
∑n
j=1 sj),

and therefore c must include −γ(1+
∑n
j=1 sj). We can write c as c = η · (−γ(1+∑n

j=1 sj) +Ax), where η is an unknown coefficient, and Ax is a remaining aux-
iliary polynomial. Putting this into equation 9 gives us:

e(A,B) = e(Gα, Hβ)

× e((Gδr ·G
∑n
i=1 δsir ·G

∑n
i=1 yi(x)·mi) ·

l∏
i=n+1

Gφii , H
γ)

× e(Gη·(−γ(1+
∑n
j=1 sj)) ·GAx , Hδ)

(10)

To balance γδsi, the
∑n
i=1 δsir term must meet η · (−γ(1 +

∑n
j=1 sj)) to

cancel out, and therefore η = r. This leads to:

e(A,B) = e(Gα, Hβ)

× e(G
∑n
i=1 yi(x)·mi ·G

∑
i=n+1lyi(x)·φi , Hγ)× e(GAx , Hδ)

(11)

When observing equation 11 above, G
∑n
i=1 yi(x)·mi · G

∑
i=n+1lyi(x)·φi can

be combined into G
∑
i=1naiyi(x), since m1, · · · ,mn and φn+1, · · · , φl are Φ∗ =

{a1, · · · , al}. This let equation 11 equivalent to the verification of the original
pairing-based SNARK [Gro16] for the proof elements (A,B,C = GAx) and Φ∗.
If (M, Φ̂∗, w) 6∈ R, then there exists mi or φi which is not in the relation, but
passes the verification of [Gro16]. This breaks the soundness of the SNARK,
which concludes the proof as below:

∴ Pr[(M, Φ̂∗, w) 6∈ R] = Advsound
Πsnark,C,χC (λ)
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5.3 Rerandomizability

In this section, we show that a new rerandomized proof and ciphertext π′, CT ′
takes a same distribution as the original proof and ciphertext π, CT with a fresh
random, which can assure the security of rerandomized proofs.

Proof. The rerandomization of CT to CT ′ is as follows:

CT = (Xr
0 , X

r
1G

m1
1 , · · · , Xr

nG
mn
n , P r1

n∏
j=1

Y
mj
j )

r′
$← Z∗p

CT ′ = (Xr
0 ·Xr′

0 , X
r
1G

m1
1 ·Xr′

1 , · · · , Xr
nG

mn
n ·Xr′

n , P
r
1

n∏
j=1

Y
mj
j · P r

′

1 )

∴ CT ′ = (Xr+r′

0 , Xr+r′

1 Gm1
1 , · · · , Xr+r′

n Gmnn , P r+r
′

1

n∏
j=1

Y
mj
j )

It is easy to see that CT ′ is a valid ciphertext with a fresh random r + r′.

For the rerandomization of π = (A,B,C) to π′ = (A′, B′, C ′), it is nec-
essary to show that the original proof and the rerandomized proof are both
within a uniform distribution. Let us decompose the proof elements (A,B,C) to
(Ga, Hb, Gc) as its original form (random r from SAVER denoted as r∗ to avoid
the duplication):

a = α+

m∑
i=0

aiui(x) + rδ b = β +

m∑
i=0

aivi(x) + sδ

c =

∑m
i=l+1 aiyi + h(x)t(x)

δ
+As+Br − rsδ − γ · (1 +

n∑
j=1

sj)r
∗

Observe that the randomness of a depends on r, and the randomness of b
depends on s. The randomness of c is determined by a and b; if a and b is gener-
ated appropriately, c is automatically determined within a uniform distribution.
Therefore, it is sufficient to show that a′ and b′ from the rerandomized proof are
appropriate randoms. When representing (A,B,C) as (Ga, Hb, Gc), the a′, b′, c′

in the rerandomized proof (Ga
′
, Hb′ , Gc

′
) are:

a′ = a · z1 b′ = b · z−11 + δ · z2 c′ = c+ a · z1z2 − γ · (1 +

n∑
j=1

sj)r
∗′

It is straightforward that a′ and b′ are within a uniform distribution, where
a′ depends on a fresh random z1, and b′ depends on a fresh random z2. Since
a′ and b′ are appropriate randoms, we can conclude that c′ is also determined
within a uniform distribution.
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5.4 Decryption Soundness

In this section, we prove the soundness of the decryption proof ν in Verify Dec,
indicating that there cannot exist any ν∗ which is connected to the wrong ci-
phertext but still passes the Verify Dec.

Theorem 3. In our SAVER scheme, there cannot exist any (M∗, ν∗, CT ∗) where
ν∗ verifies, but Dec(CT ∗) 6= M∗.

Proof. Let us violate the theorem and assume that there exists (M∗, ν∗, CT ∗)
where ν∗ verifies, but Dec(CT ∗) 6= M∗. More specifically, for CT ∗ = (c∗0, · · · , ψ∗)
and M∗ = (m∗1, · · · ,m∗n) there exists a block c∗j which is not decrypted to m∗j
for any j ∈ {1, · · · , n} while ν∗ passes the verifications in Verify Dec.

Since the decryption proof ν∗ verifies, the 2nd equation of Verify Dec holds
as follows:

e(c∗j , Vn+j)

e(ν∗, Vj)
= e(Gj , Vn+j)

m∗j (12)

However, since Dec(CT ∗) 6= M∗,

e(c∗j , Vn+j)

e(c∗0, Vj)
ρ
6= e(Gj , Vn+j)

m∗j (13)

When comparing equations 12 and 13, the only difference between two equa-
tions are e(ν∗, Vj) and e(c∗0, Vj)

ρ: therefore ν∗ 6= (c∗0)ρ.
However, this contradicts the first equation of Verify Dec:

e(ν∗, H) = e(c∗0, V0)

∴ ν∗ = (c∗0)ρ
(14)

Therefore, we conclude that there cannot exist any (m∗, ν∗, CT ∗) where ν∗

verifies and Dec(CT ∗) 6= M∗.

6 Vote-SAVER

We present a formal protocol for the voting system application in section 1.1,
named as Vote-SAVER. As described in the scenario, the Vote-SAVER con-
sists of series of interactions between multiple administrators and multiple vot-
ers, with utilizing SAVER in section 4 as a building block. For the additional
building blocks, we use the publicly-available BlockChain, a collision-resistant
hash function H, membership test functions MerkleTree, GetMerklePath,
GetMerkleRoot from Zerocash [BCG+14]. Note that sn, rt,path are also from
the membership test, where sn is a serial number, rt is a Merkle root, and path
is a vector of co-paths for constructing the Merkle tree. We use ID for each
user’s identity, and eid to distinguish each individual election.

Algorithm 3 represents a series of functions for the voter’s side, algorithm 4
represents a function (possibly smart-contract) for the BlockChain nodes, and
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Algorithm 3 Voting system voter

GenKey(1κ, ID) :

sk
$← {0, 1}κ

skID ← ID||sk
pkID = H(skID)
return skID to voter
publish pkID

Vote(CRS,PKeid, eid, rt,pklist,M, pkID, skID) :

parse M = (m1|| · · · ||mn)
path← GetMerklePath(pkID,pklist)
sn← H(eid ‖ skID)
π, CT ← ΠSAVER.Enc(CRS,PKeid,m1, · · · ,mn, eid, sn, rt;path, skID)
send ballot = {eid, sn, π, CT } to BlockChain network

VerifyVote(CRS, π′ID, CT ′ID, eid, rt) :

sn← H(eid ‖ skID)
assert SAVER.Verify Enc(CRS, π′ID, CT ′ID, eid, sn, rt) = true

VerifyTally(CRS,PKeid, V Keid, {CT ′IDi}
N
i=1,Msum, ν) :

CT ′sum = CT ′ID1
◦ · · · ◦ CT ′IDN

assert SAVER.Verify Dec(CRS,PKeid, V Keid,Msum, ν, CT ′sum) = true

Algorithm 4 Voting system nodes

PostVote(CRS,PKeid, rt, ballot) :

parse ballot = {eid, sn, π, CT }
assert sn 6∈ BlockChain
assert SAVER.Verify Enc(CRS, π, CT , eid, sn, rt) = true
π′, CT ′ ← SAVER.Rerandomize(PKeid, π, CT )
upload (eid, sn, π′, CT ′) on BlockChain

algorithm 5 represents functions for the administrator. For the scenario, the
election proceeds as follows.

Phase 0: init system. Before running the system, the CRS should be generated
from InitSystem. To be more accurate, this should be done by a trusted third
party or by a general consensus, rather than an individual administrator. Then,
every voter who participates in the system runs GenKey to generate his own
skID and publish his pkID.

Phase 1: open election. If an administrator wants to open an election, she first
selects a list of participants for the election by collecting pkID of each voter.
Then she opens an election distinguished as eid, by calling Election.

Phase 2: cast vote. After the election eid is initiated, a voter can run Vote to
cast a vote, by sending the transaction ballot to the BlockChain network. The
BlockChain node runs PostVote to verify the proof, rerandomize the ballot, and
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Algorithm 5 Voting system administrator

relation(m1, . . . ,mn, eid, sn, rt; path, skID) :

pkID ← H(skID)
rt←MerkleTree(path, pkID)
sn← H(eid ‖ skID)
assert mi ∈ {0, 1} for i = 1 to n
assert

∑n
i=1mi = 1

InitSystem(relation) :

CRS ← SAVER.Setup(relation)
upload CRS on BlockChain

Election(CRS, 1κ, {pkIDi}Ni=1) :

pklist← {pkIDi}Ni=1 for total N voters
rt← GetMerkleRoot(pklist)

eid
$← {0, 1}κ

SKeid, PKeid, V Keid ← SAVER.KeyGen(CRS)
return SKeid to admin
upload pklist, PKeid, V Keid, eid, rt on BlockChain

Tally(CRS, SKeid, V Keid, {CT ′i}Ni=1) :

CT ′sum = CT ′1 ◦ · · · ◦ CT ′N
Msum, ν ← SAVER.Dec(CRS, SKeid, V Keid, CT ′sum)
publish (Msum, ν)

post the rerandomized ballot on the BlockChain (the posting can be realized
as mining of the block). Then, the voter runs VerifyVote with taking the posted
ballot of sn as an input, to ensure the individual verifiability.

Phase 3: tally results. When the election is over, the administrator runs Tally
with collecting posted ballots as inputs, to publish the result of the election eid.
Then all the observers can run VerifyTally to ensure the universal verifiability of
the result.

6.1 Midterm Audit

In the proposed Vote-SAVER, the administrator can decrypt the ballots and
audit the ongoing election results. In certain circumstances, it may even be nec-
essary to prevent such midterm audits. This problem occurs because there is a
single administrator who fully holds the decryption key ρ. It can be prohibited
by introducing multi-administrators. Unless all administrators collude, auditing
the ongoing result is not possible. For the ciphertext for which all administra-
tors provide the decryption information or ν in algorithm 2, the decryption is
applicable.

Assume that there are c administrators. Each administrator ADi chooses
ρi randomly at KeyGen. And then each ADi publishes V Ki which is based on
ρi instead of ρ. Then V K becomes

∏c
i=1 V Ki. At Dec, each ADi publishes



SNARK-friendly, Additive, Verifiable Enc/dec with Rerandomization 37

νi = (
∏q
j=p ci,0)ρi . By combining νi, everyone computes ν =

∏c
i=1 νi. Using ν,

the plaintext is decrypted from the summed ciphertext.

7 Security Proof: Vote-SAVER

In this section, we represent formal security properties of the Vote-SAVER, and
provide formal proof for each property based on the security of SAVER scheme.

Board integrity: the board integrity indicates non-malleability, which defines
that the result on the public board is tamper-proof.

Proof. It is easily satisfied by the nature of blockchain, which is utilized as a
public bulletin board of the whole system.

Receipt-freeness: the receipt-freeness is a security notion for the ballot where
even the voter cannot reproduce or distinguish his own vote, which is a stronger
notion that implies the ballot privacy. Formally, the ballot privacy can be defined
by GameBP between adversary A and challenger C, and the receipt-freeness is
defined by GameRF which is extended from GameBP. In both games, C is
running as a role of administrator, while A is an observer who controls the
entire voters for C’s election. A’s objective is to distinguish which of the two
voting sets it submitted was encrypted.

Figure 2 shows the formal security game for both ballot privacy and receipt-
freeness. The main purpose of the game is to let the adversary A construct two
different voting sets with a full control on the entire voters: the ballot privacy
should guarantee that A cannot distinguish between two sets after they are
encrypted as ballots. This should be intact even with A looking at the tally
result, so the restriction is that the sum of two sets must be same to prevent the
tallied sum of message revealing the difference.

The difference between ballot-privacy and receipt-freeness depends on who
generates the encrypted ballots: in GameBP, C generates the ballots on behalf
of A (A provides the voting key skIDi), while in GameRF A generates the
ballots for itself (A does not need to provide skIDi). Therefore, in GameRF, A
even knows its own ballots; even with the ability to reproduce its own ballots, A
should not be capable of distinguishing the encrypted set of ballots. It is easy to
see that GameRF implies GameBP, which indicates the receipt-freeness implies
the ballot privacy. The formal definitions of ballot privacy and receipt-freeness
are stated as follows:

Definition 11. Let AdvGameBPV−SAVER,A(λ) be the advantage of A winning the GameBP.
For a negligible function ε, the voting system satisfies ballot privacy if for any
PPT adversary A we have that |AdvGameBPV−SAVER,A(λ)− 1/2| < ε.

Definition 12. Let AdvGameRFV−SAVER,A(λ) be the advantage of A winning the GameRF.
For a negligible function ε, the voting system satisfies receipt-freeness if for any
PPT adversary A we have that |AdvGameRFV−SAVER,A(λ)− 1/2| < ε.
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Fig. 2: Security games for ballot privacy (GameBP) and receipt-freeness (GameRF)

Theorem 4. If Gamemulti−indSAVER is IND-CPA-secure, then the Vote-SAVER scheme
satisfies receipt-freeness.

Proof. For the sketch of the proof, we first extend the SAVER indistinguishabil-
ity game Gamesingle−indSAVER to the multi-encryption game Gamemulti−indSAVER , where
the encryption is batch-processed for a vector of multiple messages. Then we
show that both GameBP and GameRF can be reduced to Gamemulti−indSAVER ,
where GameBP and GameRF is computationally indistinguishable due to the
rerandomizability of SAVER. Formally, we prove: Advsingle−indSAVER,A (λ) ≈ Advmulti−indSAVER,A (λ) =

AdvGameBPV−SAVER,A(λ) ≈ AdvGameRFV−SAVER,A(λ).

§ Gamesingle−indSAVER ≈ Gamemulti−indSAVER

Gamesingle−indSAVER is the original IND-CPA game of SAVER, where the chal-

lenger C accepts two single messages. On the other hand, Gamemulti−indSAVER is an
extended game where the challenger C accepts two multiple messages, i.e., two
N -length vectors.

Lemma 2. If Gamesingle−indSAVER is (ε)-IND-CPA-secure, then Gamemulti−indSAVER is
(Nε)-IND-CPA-secure for vector length N .
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It is well-known that CPA message indistinguishability implies indistinguisha-
bility for multiple messages, via hybrid arguments that swaps the message in
vector one by one.

§ Advmulti−indSAVER,A (λ) = AdvGameBPV−SAVER,A(λ)

As a main step, we show that the SAVER indistinguishability implies the
ballot privacy, by reducing GameBP to the Gamemulti−indSAVER .

Lemma 3. If Gamemulti−indSAVER is IND-CPA-secure, then the Vote-SAVER scheme
satisfies ballot privacy.

Let AdvGameBPV−SAVER,A(λ) be the advantage of A winning the GameBP. Us-

ing A, we build an algorithm B which attempts to win Gamemulti−indSAVER . As
an overall sketch, B will simulate an election to A, by using the encryption of
Gamemulti−indSAVER . As defined in GameBP, A will challenge B by submitting two
sets of plain votes V0 = {M1, · · · ,MN} and V1 = {M ′1, · · · ,M ′N} for N total

voters. B will use the sets V0 and V1 as a challenge to Gamemulti−indSAVER , to receive
challenge ciphertexts CT ∗. Then B will construct the challenge set of ballots
{eid, sni, πi, CT ∗i }Ni=1 and return it to A, to let A guess b depending on the CT .
B also has to provide tally result Msum, ν to A after the challenge, which can
be helped from the decryption proof oracle Oν in Gamemulti−indSAVER . Formally, the
game proceeds as following steps (see figure 2):

Init system: B first begins with Gamemulti−indSAVER , and receives CRS, τ and PK, V K
for the SAVER encryption system. Then, B initializes the Vote-SAVER system
by outputting CRS to A. A constructs N voters by running GenKey(1κ, IDi)
and outputs {pkIDi , skIDi}Ni=1 to B.

Open election: based on the voter set {pkIDi , skIDi}Ni=1, B constructs pklist and

its merkle tree root rt. Then, B chooses a random eid
$← {0, 1}κ and opens an

election by outputting pklist = {pkIDi}Ni=1, rt, PKeid = PK, V Keid = V K, eid.

Challenge: for the challenge of GameBP, A submits two plain vote sets V0 =
{M1, · · · ,MN} and V1 = {M ′1, · · · ,M ′N}. When receiving two sets, B first checks
if
∑

V0 =
∑

V1. If the sum is equal, B submits the same {M1, · · · ,MN} and
{M ′1, · · · ,M ′N} as a challenge to Gamemulti−indSAVER , and receives the challenge
ciphertext CT ∗ = {π∗i , CT

∗
i }Ni=1.

At this point, if B gives this CT ∗ to A as it is, B cannot simulate the upcom-
ing tally since it does not know the decryption proof ν for the CT ∗. Therefore,
before responding A’s challenge, B queries

∑N
i=1Mi to Oν in Gamemulti−indSAVER ,

and receives the corresponding ciphertext and decryption proof of the sum
π, CT , ν. But still, ν is a decryption proof with respect to the random r used in
CT , which is independent of CT ∗, so it cannot pass Verify Dec(CT ∗, ν) in the
VerifyTally.

To give a tweak on this problem, B will use the additively-homomorphic
property of the CT to craft the random. Let us represent the auxiliary random
r used in the ciphertext CT as CT [r]. Then, when multiplying two ciphertexts
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CT a = Enc(a) and CT b = Enc(b), due to the homomorphic property of SAVER
we have CT a [r1] ◦ CT b [r2] = CT a+b [r1+r2].

By using this property, B first computes a zero ciphertext CT ∅ = CT �(CT ∗1◦
· · ·◦CT ∗N ), which will be used to cancel out the random inside the challenge which
B does not know. The message of CT ∅ is zero, since the sum of messages are
guaranteed to be same. For the random part, the challenge ciphertext set CT ∗

is listed with unknown corresponding randoms r1, . . . , rN as follows:

π∗1 , CT
∗
1 [r1] · · · π∗N , CT

∗
N [rN ]

Therefore, with denoting the random in CT as r, the random in CT ∅ =

CT [r]�(CT ∗1 [r1]◦· · ·◦CT
∗
N [rN ]) is transformed into r−

∑N
i=1 ri. After computing

CT ∅ [r−
∑N
i=1 ri]

, B replaces CT ∗1 [r1] as:

CT ∗1 [r1] ← CT
∗∗
1 [r1+r−

∑N
i=1 ri]

= CT ∗1 [r1] ◦ CT ∅ [r−
∑N
i=1 ri]

Now when the ciphertext is gathered into a sum as CT ∗sum [r] = CT ∗∗1 [r1+r−
∑N
i=1 ri]

◦
CT ∗2 [r2] ◦ · · · ◦ CT

∗
N [rN ], the random is transformed into r from r +

∑N
i=1 ri −∑N

i=1 ri. Therefore, CT ∗sum [r] shares the same random r with ν[r], which can

pass Verify Dec(CT ∗sum,
∑N
i=1Mi, ν).

A remaining task is that B also needs to deal with the π∗1 : when CT ∗1 [r1] is
changed to CT ∗∗1 [r1+r−

∑N
i=1 ri]

, the π∗1 fails the Verify Enc(π∗1 , CT
∗∗
1 ) in VerifyVote

since the proof in SAVER is constructed as π∗1 = (A,B,C · P r12 ) for the PKeid

element P2 = G−γ·(1+
∑n
j=1 sj) where r1 should be canceled out from the cipher-

texts. Thus, to let the proof pass the verification, B should generate a new proof

for the new random as π∗∗1 = (A,B,C · P r1+r−
∑N
i=1 ri

2 ).

To deal with P
r1+r−

∑N
i=1 ri

2 = G−γ(1+
∑n
j=1 sj)·(r1+r−

∑N
i=1 ri), B uses the trap-

door family τ = {α, β, γ, δ}. First, B computes the sum of original challenge ci-
phertexts as CT ∗sum [

∑N
i=1 ri]

= CT ∗1 [r1]◦· · ·◦CT
∗
N [rN ]. When observing CT ∗sum [

∑N
i=1 ri]

for Msum = (msum,1|| · · · ||msum,n), the elements inside take the form of:

csum,0 = Gδ·
∑N
i=1 ri , {csum,i = Gδ·si·

∑N
i=1 ri ·Gmsum,ii }ni=1, ψ1 = P

∑N
i=1 ri

1 ·
n∏
j=1

Y
msum,j
j

B does not know si and
∑N
i=1 ri, but it knows the sum of messages Msum =

(msum,1|| · · · ||msum,n) and the trapdoor γ, δ. So B can compute P
∑N
i=1 ri

2 by
using γ, δ on the CT sum as follows:
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P
∑N
i=1 ri

2 = c
− γδ
sum,0 ·

n∏
j=1

(csum,j ·G
−msum,j
j )−

γ
δ

= Gδ
∑N
i=1 ri·−

γ
δ ·

n∏
j=1

(Gδsj
∑N
i=1 ri ·Gmsum,jj ·G−msum,jj )−

γ
δ

= G−γ
∑N
i=1 ri ·G−γ

∑N
i=1 ri

∑n
j=1 sj = G−γ(1+

∑n
j=1 sj)·

∑N
i=1 ri

In a similar way, B does not know si and r, but it can compute P r2 from CT
for

∑N
i=1Mi = (m∑

,1|| · · · ||m∑
,n) which consists of c0, {ci}ni=1, ψ as follows:

P r2 = c0
− γδ ·

n∏
j=1

(cj ·G
−m∑

,j

j )−
γ
δ

= Gδr·−
γ
δ ·

n∏
j=1

(Gδsjr ·Gm
∑
,j

j ·G−m
∑
,j

j )−
γ
δ

= G−γr ·G−γr
∑n
j=1 sj = G−γ(1+

∑n
j=1 sj)·r

Using P
∑N
i=1 ri

2 and P r2 , B computes P
r−

∑N
i=1 ri

2 = P r2 /P
∑N
i=1 ri

2 . Finally, B
modifies the proof π∗1 = (A∗, B∗, C∗) as π∗∗1 = (A∗, B∗, C∗·P r−

∑N
i=1 ri

2 ). Since the
original π∗1 takes a form of (A,B,C · P r12 ) from the zk-SNARK proof (A,B,C),

π∗∗1 will take a form of (A,B,C ·P r1+r−
∑N
i=1 ri

2 ), as desired. Now, the new proof

π∗∗1 passes the Verify Enc(π∗∗1 , CT ∗∗1 ) since the random r1 + r −
∑N
i=1 ri can be

canceled out in the equation with respect to CT ∗∗1 [r1+r−
∑N
i=1 ri]

.

For the challenge, B uses the voting key {skIDi}Ni=1 to generate the serial
number as {sni = H(eid||skIDi)}Ni=1, and completes the ballots as ballot1 =
(eid, sn1, π

∗∗
1 , CT ∗∗1 ) and {balloti = (eid, sni, π

∗
i , CT

∗
i )}Ni=2. Then B returns the

set of ballots S = ballot1 ∪ {balloti}Ni=2 to A as a response to the challenge.

Tally: B gives the tally result as
∑N
i=1Mi and ν to A. When A tries Verify Dec

(S,
∑N
i=1Mi, ν), the verification passes; when the ciphertexts are gathered into

a sum CT ∗sum [r] = CT ∗∗1 [r1+r−
∑N
i=1 ri]

◦ CT ∗2 [r2] ◦ · · · ◦ CT
∗
N [rN ], it shares the

same random with ν[r].

Guess: A outputs its guess b′ to B, distinguishing whether S is from V0 or V1. B
outputs the same b′ as a guess for Gamemulti−indSAVER ; if CT ∗ was encryption of the
set {Mi}Ni=1, then A will output 0, or if CT ∗ was encryption of the set {M ′i}Ni=1,
then A will output 1. Therefore, we have Advmulti−indSAVER,A (λ) = AdvGameBPV−SAVER,A(λ),
which completes the proof of lemma.

§ GameBP = GameRF Now, we show that the game for ballot-privacy and
receipt-freeness is identical from theA’s view, which can complete the theorem as
Advsingle−indSAVER,A (λ) ≈ Advmulti−indSAVER,A (λ) = AdvGameBPV−SAVER,A(λ) = AdvGameRFV−SAVER,A(λ).

Lemma 4. From the adversary’s view, GameBP and GameRF is identical.



42 Jiwon Lee, Jaekyoung Choi, Jihye Kim, and Hyunok Oh

The only difference between GameBP and GameRF is that in GameRF,
A submits the encrypted ballots S0 and S1 in addition to V0 and V1, while
keeping the {skIDi}Ni=1 for itself. Similar to the algorithm B in the reduction of
GameBP, let us build an algorithm B′ which attempts to win Gamemulti−indSAVER

using the receipt-freeness attacker A′ with the advantage of AdvGameRFV−SAVER,A′(λ).
Then, B′ proceeds the same process as B, except it uses the serial number sni
as received from A′ in the challenge response since B′ no longer possesses skIDi .

When observing the game between B′ and A′, the challenge response of B′

consists of a new encryption CT ∗, which can be viewed as Enc(Dec(Sb)). In
the original GameRF, C was supposed to rerandomize the ballots by running
PostVote(balloti). However, by the rerandomizability of SAVER, we have that
Rerandomize(Sb) = Enc(Dec(Sb)). Therefore, from A′’s view, the re-encrypted
Sb is identical to the rerandomized S̃b. This ensures that A′ behaves the same as
A, which guarantees that algorithm B′ can have the same advantage on winning
Gamemulti−indSAVER as Advmulti−indSAVER,A (λ) = AdvGameRFV−SAVER,A(λ).

Individual verifiability & non-repudiation: the individual verifiability refers
to the soundness of blockchain node’s vote post from the voter’s view, which en-
sures that the posted vote contains the voter’s original message. In the voter’s
view, the adversary (blockchain node) may forge the serial number to imperson-
ate as the voter, or manipulate the existing vote to let the ciphertext decrypt
to a different message: the individual verifiability must be secure from both at-
tempts. This indicates that the individual verifiability implies non-repudiation
as well as soundness, since preventing the impersonation can be understood as
non-repudiation.

Definition 13. Suppose we have an election E constructed from the relation R,
hash function H ∈ R of length l, CRS ← InitSystem(R), {skIDi , pkIDi}Ni=1 ←
GenKey(1κ, IDi), and pklist, SKeid, PKeid, V Keid, eid, rt← Election(CRS, 1κ, {pkIDi}Ni=1).
For any secret key skID for pkID ∈ pklist, the voting system satisfies individual
verifiability, if for any adversary A the following advantage AdvIndV erV−SAVER,A(l, λ)
is negl(λ).

Pr


eid, sn, π, CT ← Vote(skID,M, rt, · · · ),
eid, sn, π∗, CT ∗, sk∗ID ← A(eid, sn, π, CT , H,pklist, rt) :

Verify Vote(π∗, CT ∗, eid, sn, rt) = true ∧
(Dec(CT ∗) 6= M ∨
(sk∗ID 6= skID ∧H(skID||eid) = H(sk∗ID||eid) = sn))


Theorem 5. If SAVER satisfies the encryption soundness and the hash func-
tion H is collision-resistant, then the Vote-SAVER scheme satisfies individual
verifiability.

Proof. To prove the theorem, we show that any adversary which breaks the indi-
vidual verifiability can break the collision-resistant hash or the encryption sound-
ness of SAVER. If A has a non-negligible advantage on AdvIndV erV−SAVER,A(l, λ),



SNARK-friendly, Additive, Verifiable Enc/dec with Rerandomization 43

it outputs a ballot (eid, sn, π∗, CT ∗) with respect to skID∗ which passes the
Verify Vote(π∗, CT ∗, eid, sn, rt), where the ciphertext CT ∗ does not decrypt to
original M (Dec(CT ∗) 6= M) or the pre-image of sn is not skID (sk∗ID 6=
skID ∧H(skID||eid) = H(sk∗ID||eid) = sn).

If sk∗ID 6= skID ∧ H(skID||eid) = H(sk∗ID||eid) = sn, it indicates that we
found a new sk∗ID which satisfies H(skID||eid) = H(sk∗ID||eid), which can break
the collision-resistant hash. Otherwise, if Dec(CT ∗) 6= M , it can break the en-
cryption soundness of SAVER since the encryption soundness must guarantee
(Dec(CT ) = M ∧ (M, Φ̂, w) ∈ R) for the verifying proof. Therefore, for the
advantage of l-length collision-resistant hash AdvCRHash(l) and the advantage of
encryption soundness AdvsoundSAVER,A(λ), formally we have AdvIndV erV−SAVER,A(l, λ) ≤
AdvCRHash(l) + AdvsoundSAVER,A(λ).

Eligibility verifiability: the eligibility verifiability refers to the soundness of
voter’s vote from the blockchain node’s view, which ensures that the voter’s
vote is from an eligible voting right, i.e., the vote is within the valid relation
(membership test). In the node’s view, the adversary (voter) may forge a ballot
that does not satisfy the relation of SAVER but still passes the Verify Vote,
which must be prevented by the eligibility verifiability.

Proof. It is straightforward to see that the eligibility verifiability is implied by
the encryption soundness of SAVER, since the verification process of PostVote
(CRS,PKeid, rt, eid, sn, π, CT ) is identical to the Verify Enc(CRS,PK, π, CT , rt, eid, sn)
with rt, eid, sn as normal I/O statements φ in SAVER.

Tally uniqueness: the tally uniqueness [BCG+15] refers to the perfect univer-
sal verifiability of the tally result, which ensures that anyone can verify that the
result is generated from the ballots in the public board.

Proof. It is straightforward to see that the uniqueness of the tally is implied by
the decryption soundness of SAVER, since the output of Tally and the process of
Verify Tally in Vote-SAVER is identical to the Dec and Verify Dec in SAVER.

Voter anonymity: the voter anonymity is a new security notion, which defines
that the voter’s identity must be hidden from any observers, even from the ad-
ministrator. In standard voting systems, the trusted authority was responsible
for distributing the voting keys, which cannot satisfy the voter anonymity. How-
ever, in the Vote-SAVER, the ballot does not reveal the identity of the voter;
even the administrator can only see the plaintext of the vote, but cannot distin-
guish the identity since the membership information is hidden as witnesses in
the zk-SNARK.

Suppose we have an election E constructed from the relation R. The voter
anonymity is defined by a simple GameVA between the adversary A and the
challenger C as below:
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1. C initializes the game by running CRS ← InitSystem(R) and generating
voter lists {skIDi , pkIDi}Ni=1 ← GenKey(1κ, IDi).

2. C opens an election by running pklist, SKeid, PKeid, V Keid, eid, rt← Election
(CRS, 1κ, {pkIDi}Ni=1). Then C passes pklist, PKeid, V Keid, eid, rt to A.

3. from pklist, A selects two voters as pk0, pk1 ∈ pklist and send them to C
as a challenge.

4. C picks b ∈ {0, 1}, finds the skb for pkb, and generates the ballot from pkb as
Vote(skb,M, rt, · · · ). Then C returns the ballot (eid, sn, π, CT ) to A.

5. A guesses b′, guessing which voter the ballot was made from, and wins if
b = b′.

Definition 14. Let AdvGameVAV−SAVER,A(λ) be the advantage of A winning the above
GameVA. For a negligible function ε, the voting system satisfies voter anonymity
if for any adversary A we have that |AdvGameVAV−SAVER,A(λ)− 1/2| < ε.

Theorem 6. If SAVER satisfies perfect zero-knowledge, then the Vote-SAVER
scheme satisfies voter anonymity.

Proof. The perfect zero-knowledge defines that for the same relation, a simu-
lated proof is indistinguishable from a real proof. This can be constructed into
a simple game GamezkSAVER, where the adversary sees π∗ and output 0 if it is a
simulated proof and output 1 if it is a real proof. Let AdvGameVAV−SAVER,A(λ) be the
advantage of A winning the GameVA. We build an algorithm B has an advan-
tage AdvzkSAVER,A(λ) on distinguishing the nature of the proof in GamezkSAVER.

For A’s challenge, B always set b = 1 to pick pk1. Next, B generates the
ballot with running (eid, sn, π, CT ) ← Vote(sk1,M, rt, · · · ), and challenges the
GamezkSAVER with respect to (eid, sn, CT ; sk1) to receive π∗. Then, B replaces π
in the ballot to π∗, and returns (eid, sn, π∗, CT ) to A. B bypasses A’s guess b′

to GamezkSAVER.
When observing the ballot (eid, sn, π∗, CT ), the only possible way A can

distinguish b is by the existance of an extractor χA for the witnesses, since sn is
random in A’s view. Therefore, if π∗ was a real proof, A will operate normally
by extracting the sk1 and success identifying the voter as outputting b′ = 1.
However, if π∗ was a simulated proof, A cannot operate normally, which will
guess b′ with a probability of 1/2. Hence, for AdvzkSAVER,A(λ) = ε = 0, B’s

advantage AdvGameVAV−SAVER,A(λ) can be concluded as ε/2: since the perfect zero-

knowledge defines the ε as 0, we conclude that AdvGameVAV−SAVER,A(λ) = ε/2 = 0.

8 Experiment

We implement the proposed SAVER, with respect to the Vote-SAVER relation
described in section 6. In the relation, Ajtai hash function is adopted as a hash
function [Ajt96, KZM+15a] and the tree height is 16 (up to 216 voters). The
experiment results are measured on the Ubuntu 18.04 machine with Intel-i5
(3.4GHz) quad-cores and 24GB memory. For the zk-SNARK, we utilized the
libsnark [SL14] library.
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Table 1: Execution time and parameter size in Vote-SAVER, for total 216 voters. The
|M | determines the number of candidates available (ex: assuming each candidate as
4byte, 16 candidates for 256 bits).

time
|M | (bits)

size
|M | (bits)

256 512 1024 2048 256 512 1024 2048

Setup 2.67s 2.67s 2.69s 2.72s CRS 16MB 16MB 16MB 16MB

KeyGen 0.01s 0.02s 0.04s 0.09s SK 32B

Enc (sep) 1.6ms 2.4ms 7.4ms 8.8ms PK 1246B 2321B 4465B 8753B

Πsnark.Prove 0.73s 0.73s 0.73s 0.74s V K 1126B 2184B 4296B 8520B

Verify Enc 8.2ms 12.7ms 21.7ms 39.8ms CT 477B 749B 1293B 2381B

Dec 37.7ms 75.2ms 149.7ms 300.4ms π 128B

Verify Dec 14.8ms 28.3ms 55.5s 110.1ms ν 32B

Rerandomize 0.02ms 0.03ms 0.04ms 0.06ms

∗ |M | = message size, |m| = 4 bits, Πsnark = [Gro16]

Table 1 shows the execution time for each algorithm, and size for the param-
eters. We vary the message size from 256 bits to 2048 bits, where the message is
a ballot for list of candidates. For instance, an integer vote in which 4 bytes data
is used for each candidate can represent 8 candidates. We fix the message block
size as |m| = 32bits for all message spaces. For example, 256-bit M consists of 8
blocks of messages. The block size determines the ciphertext size and decryption
time. A larger block size can yield less number of total blocks, which leads to
less number of ciphertext blocks to decrease the ciphertext size. However, as a
trade-off, it increases the decryption time due to the increased computation of
discrete log search. Since we fix the block size, the decryption time is strictly
linear to the message size which determines the number of message blocks.

The Enc in SAVER consists of a normal encryption and Πsnark.Prove for the
voting relation (i.e. membership tests and range checks); Enc (sep) is a separated
time for the normal encryption. The zk-SNARK proving time takes 0.74s, which
is dominant in the total encryption time, while the normal encryption takes less
than 8ms for |M | = 2048bits. In SAVER, the number of elements for PK, V K
and CT is determined by the number of message blocks. Therefore it is shown
in the result that PK, V K, CT size increases along with the message size. For
the fixed relation, CRS size remains as 16MB for all message sizes, which is
practical to be stored in the portable devices.

9 Conclusion

This paper proposes SAVER: SNARK-friendly, Additively-homomorphic, and
Verifiable Encryption and decryption with Rerandomization, which is generic
verifiable encryption achieved from connecting zero-knowledge succinct non-
interactive arguments of knowledge (zk-SNARK) and verifiable encryption. The
proposed SAVER provides modular composition with other proof systems by
supporting commit-and-prove connection from LegoSNARK. SAVER also satis-
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fies many useful functionalities. It is snark-friendly, to be compatible with the
pairing-based zk-SNARKs. It is additively-homomorphic, so that the ciphertexts
can be merged additively. It is a verifiable encryption, which can prove arbitrary
properties of the message. It is a verifiable decryption, which can prove validity of
the decryption. It provides rerandomization, where the ciphertext can be reran-
domized as a new encryption. The security of the proposed SAVER is formally
proved.

This paper also represents a Vote-SAVER achieved by applying the pro-
posed SAVER, which is a novel voting system where only the voter holds its
own voting key, not distributed from the authority. The Vote-SAVER satisfies
board integrity, receipt-freeness, individual verifiability, vote verifiability, and
voter anonymity, where receipt-freeness implies ballot privacy and individual
verifiability implies non-repudiation. The experiment results show that the pro-
posed SAVER yields the encryption time of 8.8ms excluding proving time and
the CRS size of 16MB for 2048-bit message, which is very practical compared to
the encryption-in-the-circuit approach.
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[CCFG16] Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer, and David Galindo.
Beleniosrf: A non-interactive receipt-free electronic voting scheme. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1614–1625, 2016.

[CD00] Jan Camenisch and Ivan Damg̊ard. Verifiable encryption, group encryp-
tion, and their applications to separable group signatures and signature
sharing schemes. In International Conference on the Theory and Appli-
cation of Cryptology and Information Security, pages 331–345. Springer,
2000.

[CFQ19] Matteo Campanelli, Dario Fiore, and Anäıs Querol. Legosnark: Modular
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