
Updatable Oblivious Key Management for Storage Systems∗

Stanislaw Jarecki
University of California, Irvine

Hugo Krawczyk
Algorand Foundation

Jason Resch
Independent

November 3, 2019

Abstract

We introduce Oblivious Key Management Systems (KMS) as a more secure alternative to
traditional wrapping-based KMS that form the backbone of key management in large-scale
data storage deployments. The new system, that builds on Oblivious Pseudorandom Functions
(OPRF), hides keys and object identifiers from the KMS, offers unconditional security for
key transport, provides key verifiability, reduces storage, and more. Further, we show how to
provide all these features in a distributed threshold implementation that enhances protection
against server compromise.

We extend this system with updatable encryption capability that supports key updates
(known as key rotation) so that upon the periodic change of OPRF keys by the KMS server, a
very efficient update procedure allows a client of the KMS service to non-interactively update
all its encrypted data to be decryptable only by the new key. This enhances security with
forward and post-compromise security, namely, security against future and past compromises,
respectively, of the client’s OPRF keys held by the KMS. Additionally, and in contrast to tra-
ditional KMS, our solution supports public key encryption and dispenses with any interaction
with the KMS for data encryption (only decryption by the client requires such communication).

Our solutions build on recent work on updatable encryption but with significant enhance-
ments applicable to the remote KMS setting. In addition to the critical security improvements,
our designs are highly efficient and ready for use in practice. We report on experimental
implementation and performance.

1 Introduction

The ever expanding cloud storage infrastructure is one of the pillars of modern computing. Yet,
the key management systems (KMS) provisioning keys for the protection of the stored data have
not changed fundamentally in decades. This setting involves three separate parties: a client C, a
remote storage server StS (e.g., a cloud service) that stores client data in encrypted form, and a key
management server KmS that stores cryptographic keys for the client. The client uses the services
of KmS each time it needs to encrypt or decrypt the data. The idea is that KmS is better equipped
to keep keys secret and StS is better equipped to store large amounts of data reliably. Thus, KmS
is charged with protecting secrecy and StS with protecting availability.

The typical deployment of such systems in practice (including large cloud-based operations such
as AWS [2], Microsoft [40], IBM [27], Google [24]) uses the traditional wrap-unwrap approach for
managing data encryption keys (dek) as shown in Fig. 1. When client C needs to encrypt a data
object, it chooses a symmetric key dek with which it encrypts the object, then sends dek to key

∗This is a full version of [32] that appeared in the 2019 ACM SIGSAC Conference on Computer and
Communications Security (CCS’19). A preliminary treatment of the material in this paper appeared in
https://eprint.iacr.org/2018/733.

1

Parties: key management server KmS, storage server StS, client C (= data owner).

Functions: Symmetric authenticated encryption scheme Enc;
wrapping functions Wrap, Unwrap (used to to encrypt/decrypt data encryption keys).

Keys: KmS stores a client-specific wrapping key kc for each client.

Encryption of object (ObjId,Obj) by client C:
1. C chooses random Enc key dek (data encryption key);

2. C sends (ObjId, dek) to KmS;

3. KmS returns (ObjId,wrap = Wrapkc
(dek))

(Note: KmS authenticates C before using kc);

4. C sends (ObjId,wrap,Encdek(Obj)) to StS for storage.

Decryption of object ObjId by C:
1. C retrieves (ObjId,wrap,Encdek(Obj)) from StS;

2. C sends (ObjId,wrap) to KmS;

3. KmS returns (ObjId, dek = Unwrapkc
(wrap))

4. C decrypts Encdek(Obj)) using dek.

Figure 1: Traditional Wrapping-based Key Management

management server KmS who wraps (i.e., encrypts) dek under a client-specific (master) key kc stored
at KmS and returns the result, called a wrap, to C. Finally, C stores wrap and the data encrypted
under dek at the storage server StS. When C needs to retrieve an object, it gets the corresponding
ciphertext from StS, sends the attached wrap to KmS who unwraps (i.e., decrypts) it using kc and
sends dek back to C, who uses it for decryption.

This key encapsulation mechanism, while effective and widely deployed, presents significant
potential vulnerabilities. First, encryption keys dek are exposed in the clear to KmS. Second, the
security of dek, hence the security of all encrypted data, relies on the channel between the client and
KmS. Such a channel, typically implemented by TLS, is vulnerable to a large class of attacks, from
implementation and configuration errors to certification and man-in-the-middle attacks. Third,
even in normal operation, the key dek is visible to any middlebox and endpoint where TLS traffic
is decrypted. Additionally, KmS can trace objects being encrypted/decrypted via the wrap values.
A further shortcoming is the cost of rotating a client key by KmS: Changing the value kc for a new
kc
′ requires the client (or StS) sending each wrap to KmS for unwrapping under kc and re-wrapping

under kc
′. This is not only a performance issue but a security one too (due to long period of time

till all wraps are updated and till kc can be safely erased).

Oblivious KMS. Our first contribution is a simple approach to key management based on Obliv-
ious Pseudorandom Functions (OPRF) [42, 22, 29], that addresses the above vulnerabilities and
offers additional features absent in traditional systems. OPRFs are interactive schemes between
a server holding a key to a PRF and a client holding an input. At the end of the interaction the
client learns the output of the PRF on its input and the server learns nothing (neither the input
nor the output of the function). OPRFs have found numerous applications and there are very
efficient OPRF implementations, e.g. based on the Diffie-Hellman (DH) problem in regular elliptic
curve groups [16, 48, 41, 26, 21] (see Fig. 3).

In our Oblivious Key Management System (OKMS) (see Fig. 2), a client C who requires a data
encryption key dek for encrypting a data object interacts with the OKMS server in an OPRF
protocol. C’s input is an identifier for the data object while the server’s input is an OPRF key

2

(typically unique per client and denoted kc), and C uses the output from the OPRF as the dek1.
In this way, the OKMS server does not learn dek (or even the object identifier). The system does
not rely on an external secure channel (e.g., TLS) to transport dek; instead dek is protected by the
security properties of the OPRF.2

This addresses two major vulnerabilities of traditional KMS systems: visibility of the dek to
the server and potential exposure of this key in transit between client and server. Moreover,
using the most efficient DH-based implementations of OPRFs, the protection against these threats
is unconditional. Even a computationally unbounded server (that knows the OPRF key) or a
network eavesdropper cannot learn anything about the dek, or about the object identifier input
into the OPRF. Note that in OKMS, the only way for an adversary to decrypt a ciphertext is by
impersonating the legitimate client or by learning the OPRF key kc and the corresponding ObjId
value. In contrast, in traditional systems, data encryption keys dek are potentially vulnerable even
if the KmS key is well protected (e.g., inside a hardware module) as the dek are transmitted outside
the protected zone.

The OPRF approach supports additional properties that enhance security even further and
beyond anything offered by the traditional solutions. First, it provides verifiability, namely, the
ability of KmS to prove to C that the returned dek is indeed the value that results from computing
the OPRF on the client-provided object identifier. This prevents data loss that occurs if the
returned dek is wrong (either due to computing error or to adversarial action); indeed, encrypting
data with an incorrect, or irrecoverable, key can lead to irreparable data loss. Second, the DH-
based OPRF, hence also the OKMS using it, is amenable to distribution as a multi-server threshold
scheme where the OPRF key is protected as long as less than a defined threshold of the servers
is corrupted. Finally, the described system can be adapted to also support updatability, namely,
periodic key rotation of the client master key kc by KmS with a very efficient (non-interactive)
procedure for updating ciphertexts to be decryptable by the new key and not by previous ones.
This procedure does not endangered the secrecy of the data and therefore can be performed by the
StS. The design of such system is the main technical contribution of our work and is discused next.

Updatable Oblivious KMS. Traditional wrapping-based key management systems as those de-
scribed above (and in Fig. 1) require client keys kc to be updated periodically by the server KmS.
Such update, known as key rotation, is needed to limit the exposure of data upon the exposure of kc.
For traditional wrapping systems, changing kc with a new kc

′ involves unwrapping and re-wrapping
all of a client’s ciphertexts as well as transmitting all these wrap values between the storage server
and KMS server. Moreover, an old key kc cannot be erased until all ciphertexts are updated to the
new key kc

′, extending the exposure period of kc significantly.

This need to update clients’ keys in storage systems (and other applications) has led to the notion
of updatable encryption [9] whose goal is to provide more efficient and more secure solutions to this
key rotation problem. Many flavors of updatable encryption have been suggested [9, 10, 20, 37]. In
this work we investigate this notion in the context of our oblivious KMS approach leading to the
design of an Updatable Oblivious KMS (UOKMS).

In UOKMS, upon the rotation of a client’s key kc, server KmS computes a short update token ∆
as a function of the old and new keys kc, kc

′, and transmits ∆ to client C. Using ∆, C’s storage server
StS can transform all ciphertexts that were encrypted with keys derived from kc into ciphertexts
decryptable by the new kc

′ but not by the old kc. This operation preserves the security of the
data, it is performed locally at the storage server StS without any interaction with KmS, and it
only modifies a short component of the ciphertext (independent of the length of the encrypted
data) making the whole operation highly efficient. Security-wise it protects against future and past

1Alternatively, the output of the OPRF can be used as a key-encrypting key (kek) to locally encrypt dek.
2A TLS connection can be used to transport auxiliary information or client credentials but is not needed for

transporting data encryption keys.

3

compromises of the client’s key kc.

The above UOKMS scheme offers another major performance advantage compared to traditional
KMS and our own OKMS scheme: Encryption of data requires no interaction with the KMS server,
and an interaction is only needed to decrypt data. More generally, our UOKMS supports public key
encryption, so everyone can encrypt data for client C, but only C can decrypt it, via an interaction
with the KMS server.

Threshold Updatable OKMS. Both OKMS and UOKMS solutions can be implemented via
distributed servers so that clients’ OPRF keys are secure for as long as no more than a threshold
number of servers are compromised. These systems inherit the high efficiency of Threshold OPRF
constructions [30] (also in the case of the OPRF variant used in the UOKMS solution). In the
UOKMS setting, the update token ∆ is computed distributively among the servers through an
efficient multi-party computation. These solutions preserve the verifiability property of OPRFs
and they can be implemented in a client-transparent way, namely, the client’s operations and code
are identical regardless of the implementation as a single-server or multi-server. See Section 5.

Formal model and analysis. We formally analyze our UOKMS solution in an Updatable Obliv-
ious KMS security model that shares close similarities with recent models of updatable encryption
(or encryption with key rotation) [9, 10, 20, 37], but also has some significant differences. One crucial
difference comes from the key management setting treated here where the client interacts with two
outsourced remote services KmS and StS. In particular, this raises potential security vulnerabilities
arising from the communication channel between client and KmS. This major concern is absent
from previous updatable encryption models that treat the client and KmS essentially as collocated
entities. The other aspect that is unique to our solution and formal treatment is the obliviousness
of computation on the side of KmS. Yet another difference is that while the typical storage setting
does not require public key encryption, we naturally include this setting in our updatable model.

Our updatability model allows attacks on both KmS and StS, including exposure of client keys
kc, update values ∆, and the attacker’s ability to see and write ciphertexts into StS. Security
is provided against future and past attacks, namely, forward and post-corruption security, with a
simulation-based security model. Obviously, the model disallows attack combinations that would
lead to trivial wins for the attacker (e.g., decrypting a challenge ciphertext in a period for which
it learns the KMS key kc). The model accommodates the oblivious setting where an attacker that
communicates with KmS (and is in possession of C’s credentials) can decrypt any q ciphertexts after
q interactions with KmS, but all other ciphertexts remain secure. This, together with the attacker’s
capability to access a ciphertext-update oracle and the use of authenticated encryption, achieves
CCA-like security for oblivious and updatable encryption. The security proof for our UOKMS
scheme, presented in Section 4, carries in the random oracle model under a strengthened variant
of the Gap One-More Diffie-Hellman assumption [5, 33] that we show to hold in the generic group
model.

Implementation and performance. In Section 6 we present performance information from our
implementation of both OKMS and UOKMS solutions showing the practicality of our techniques,
in particular the ability of servers to support a large number of operations and clients per second.
In OKMS, client time is approximately 0.4 msec for a wrap and 0.2 msec for an unwrap. For
the UOKMS system, performance is even better: a client can sustain over 41000/6000/14000 for
wrap/unwrap/update operations per second respectively, with a single-thread and single CPU core,
and server operations are only needed for unwrapping. We also demonstrate good throughput and
latency results from a prototype implementation of the (U)OKMS Server deployed to an Amazon
EC2 instance. We find this implementation capable of answering over 30,000 requests per second
in both single-server and multi-server deployments. Finally, we discuss implementation experience
managing KmS keys in Hardware Security Modules (HSM).

4

1.1 Comparison to previous work

We are the first to present a comprehensive updatable solution to the central problem of key
management in cloud-based (and other) storage systems that exploits the power of oblivious com-
putation, and the first to develop a security model for such setting. Our motivation and modeling
bear similarities with recent models of Updatable Encryption (UE) [9, 10, 20, 37, 35], but also
has some significant differences. Most prominent is the use of obliviousness as a way to address
potential vulnerabilities arising from a remote key management system, as opposed to one that is
collocated with the client as was asssumed in all the above works on updatable encryption. Other
novel features of our solution include unconditional hiding of data encryption keys and object iden-
tifiers from KmS, and building a distributed UOKMS service via a threshold implementation. Our
updatability solution is ciphertext-independent (namely, the update token is of size independent
from the number of ciphertexts and size of data to be updated) as in several prior UE schemes
[9, 20, 37, 35]. Among those, our scheme is the most efficient, requiring a single short update value
∆ from the KmS server and a single exponentiation per object for the update operation, compared
e.g. to two exponentiations per ciphertext block in the schemes of [37, 35]. Our UOKMS scheme can
be extended to provide ciphertext indistinguishability and unlinkability similarly to e.g. [37, 35],
but it would inherit the inefficiency of such solution making it impractical in any large-scale data
storage deployment.3 Finally, our model and solution are the first to support public key encryp-
tion, including CCA-like security in the setting of oblivious encryption. We elaborate further on
the relation to prior updatable encryption work in Section 3.2.

Updatable encryption is closely related to proxy re-encryption (PRE), in particular, the Diffie-
Hellman techniques at the center of our implementation directly relate to the PRE scheme of Blaze
et al. [7]. Recently, [18, 17] treat forward secrecy and post-corruption security in the context of PRE
for which they define evolutionary keys as in our context. However, the requirements of PRE, par-
ticularly as set forth in [17], are more stringent than needed in our case. These include generating
update values using the delegatee’s public key rather than on input its secret key, achieving unidirec-
tionality, supporting general DAG delegation graphs, ensuring ciphertext indistinguishability, and
more. As a result, they require more involved and less efficient techniques; in particular, [18] builds
on pairing-based constructions and HIBE [14, 8] while [17] uses lattice-based fully-homomorphic
techniques from [11, 47]. On the other hand, in spite of their stronger properties, none of these
schemes support oblivious computation.

Our use of OPRF function can be seen as an “OPRF-as-a-service” application, a term coined
in [19]. We borrow the notion of updatable oblivious PRF from that work, but their application
was targeted to password verification protocols, while ours is a general encrypted storage system.
(Moreover, the protocol of [19] is significantly less efficent as it uses groups with bilinear maps
to obtain the stronger notion of updatable “partially oblivious” PRF, which we do not require.)
OPRF’s are also used in “password-protected secret sharing” [28] which can implement distributed
password-secured storage but without the ability to update the master encryption key. Moreover,
both of these solutions are specialized for password-authenticated clients while UOKMS accommo-
dates any client-to-KMS or client-to-StS authentication mechanisms.

Comparison to U-PHE. The goals of UOKMS bear some similarity to Updatable Password-Hardened
Encryption (U-PHE) of [36]. In the U-PHE setting a server S stores encrypted data on behalf of its
clients. The encryption and decryption of data require S to hold the client’s password and involve an
interaction of S with an additional server R, called the rate limiter. In particular, an attacker who
learns S’s state (but not the stored client password), cannot decrypt client’s data without guessing

3 Several prior works, e.g. [37, 35], consider ciphertext unlinkability (over update periods) as a major design goal,
but achieve it at the cost of requiring O(n) exponentiations to update a ciphertext of length n. We believe that in
most practical settings, linkability would still be possible via metadata, object identifiers, etc., hence not worth the
high computational cost it entails.

5

Functions: OPRF F and symmetric authenticated encryption scheme Enc.

OPRF Keys: KmS stores a client-specific OPRF key kc for each client.

Encryption of object Obj by client C: C runs OPRF protocol with KmS where C inputs
object identifier ObjId and KmS inputs key kc. C sets dek = Fkc(ObjId) and stores the pair
(ObjId,Encdek(Obj)) at storage server StS.

Decryption of encrypted object ObjId by client C: As in the encryption case, C interacts
with KmS to compute dek = Fkc(ObjId) and decrypts Obj using dek.

Verification of correct computation of dek: Use a verifiable OPRF [28].

Figure 2: Oblivious KMS (OKMS)

the client’s password and interacting with the rate limiter R. The solution offers verifiability and
updatability similarly to our case, and in terms of our UOKMS model one can think of S as the
storage server StS and R as the key management server KmS. However, in contrast to UOKMS,
in U-PHE the server S learns both the client’s decrypted message and the client’s password (in
particular, one relies on TLS for transmitting the password), while in UOKMS only the client en-
crypts and decrypts data and neither server learns it. Moreover, the U-PHE decryption protocol
is not oblivious, i.e. server R, i.e., KmS, can identify the decrypted ciphertext. Also, as in the case
of [19, 28] above, PHE is specialized to the password authentication case, while UOKMS is inde-
pendent of the means of authentication used by clients, allowing any form of client authentication
credentials. Additionally, the U-PHE scheme of [36] is less efficient than our UOKMS, specifically
their encryption is interactive while ours is not, their decryption and update are both roughly twice
more expensive than ours, and a threshold implementation of the rate-limiter server of [36] would
be significantly more expensive than our threshold KmS.

2 Updatable Oblivious KMS

We present our main scheme, UOKMS (for Updatable Oblivious KMS), that builds on the general
approach to Oblivious KMS described in the introduction and recalled next.

2.1 Oblivious Key Management System

Figure 2 specifies the Oblivious KMS (OKMS) protocol that serves as a basis for our Updatable
scheme in the next section. OKMS is described and motivated in the Introduction as a much more
secure alternative to the wrapping-based approach (Fig. 1) in wide use today in storage systems,
particularly in large cloud deployments. When implemented with the DH-based OPRF scheme
dh-op from Fig. 3, one obtains an OKMS that is highly efficient (see Sec. 6) and accommodates
extensions to verifiability and distributed implementation (Sec. 5). The security of the OKMS
scheme and its implementation using dh-op follows from the OPRF properties (in particular as
studied in [28, 29]). We do not formally analyze the OKMS scheme but rather do so in Sections 3
and 4 for its extension to the Updatable OKMS setting presented next. (A model and analysis of
OKMS can be obtained by specializing the UOKMS model to a single update period.)

6

Components: G: group of prime order q; H,H ′: hash functions with ranges {0, 1}` and G,
respectively, where ` is a security parameter.

PRF Fk Definition: For key k ←R Zq and x ∈ {0, 1}∗, define

Fk(x) = H(x, (H ′(x))k)

Oblivious Fk Evaluation between client C and server S

1. On input x, C picks r←RZq; sends a = (H ′(x))r to S.

2. S checks that the received a is in group G and if so it responds with b = ak.

3. C outputs Fk(x) = H(x, b1/r).

Figure 3: DH-based OPRF function dh-op [29]

Setting: Generator g of group G of prime order q; symmetric authenticated encryption scheme
Enc,Dec with keys of length security parameter `; hash function H : G→ {0, 1}`.

Client keys: KMS server KmS stores a client-specific random key kc ∈ Zq for each client;
storage server StS stores certified public value yc = gkc for client C.

Encryption of object Obj: To encrypt Obj under key yc, pick r ←R Zq \ {0}, set w = gr and
dek = H(yc

r), and output ciphertext triple c = (ObjId, w,Encdek(Obj)).

Decryption of ciphertext c = (ObjId, w, e): (1) C checks that w is valid, i.e., w ∈ G \ {1},
and aborts if not; (2) C sends u = wr

′
for r′ ←R Zq to KmS; (3) KmS checks if u ∈ G and if so

returns v = ukc to C;
(4) C outputs Obj = Decdek(e).

Key rotation and update: To change client’s key from kc to kc
′, KmS sends ∆ = kc/kc

′ and
y′c = gkc

′
to StS. StS replaces yc with y′c and replaces each ciphertext c = (ObjId, w, e) with

c′ = (ObjId, w′ = w∆, e), provided that w ∈ G. (Element w /∈ G indicates an invalid ciphertext
which can be removed.)

Figure 4: Updatable Oblivious KMS Scheme

2.2 Updatable OKMS

Key management systems are required, by regulations and best practices, to periodically update
client keys kc (an operation known as key rotation). The goal is to limit the negative effects of
the compromise of a key kc to a shorter period of time and to as little data as possible. This is
particularly important for keys that protect data stored for long periods of time as it is common
in many cloud storage applications (anything from user photos to regulated financial information).
Upon the rotation by the KMS server KmS of a key kc into a new key kc

′, all ciphertexts protected
with kc and held by the storage server StS need to be updated too. The updated ciphertexts should
be decryptable by kc

′ but not by kc. The goal is that an attacker that learns kc but only sees
updated ciphertexts should not be able to learn anything about the encrypted data in the new
period (while kc

′ is unexposed). Similarly if the attacker has seen a ciphertext encrypted using
an unexposed kc and later learns kc

′, it still should not learn anything from that ciphertext. This
provides both forward security (security against future exposures) and post-compromise security
(security against past exposures). Obviously, one also requires that the update process itself does

7

not reveal encrypted information to StS (e.g., decrypting and re-encrypting the data by StS would
not be considered secure).

In the traditional wrapping-based KMS of Fig. 1, such key rotation operation requires interaction
between the storage server StS and KMS server KmS where StS sends every stored wrap to KmS for
unwrapping under kc and re-wrapping using kc

′. This requires the transmission of all wrap values
between StS and KmS, and the exposure of all dek values to KmS. In a large storage setting such
process can take very long time (particularly under the “lazy evaluation” practice where a wrap held
by StS is updated to kc

′ only when the application requires a regular unwrap operation for that
object). During all this time the old and new keys kc, kc

′ must be stored at KmS thus extending
the life and exposure period of these keys.

In Fig. 4 we present an Updatable Oblivious KMS that adapts the OKMS scheme from the
previous section to the updatable setting. Using techniques from updatable encryption [9, 20, 37]
adapted to the oblivious setting, we achieve some desirable properties, both in terms of security
and performance. First, upon the change of key kc into a new key kc

′, KMS server KmS can
produce a short token ∆ with which all the ciphertexts of client C can be updated by StS in a way
that achieves the above security properties. Second, the update operation is non-interactive: It
is performed locally by StS with the sole possession of ∆. Note that once KmS produces a new
key kc

′ and the corresponding update value ∆, KmS can immediately erase the old key kc, hence
reducing the risk of exposure to only one key at a time. Finally, the update operation at StS
only requires a single exponentiation per ciphertext independently of the ciphertext size, compared
to at least 2 exponenentiations per ciphertext in previous updatable encryption schemes (see also
footnote 3), leading to a fast update of all ciphertexts that were encrypted under kc. Thus, one
obtains a very efficient update procedure that achieves better security than in the wrapping-based
KMS in many ways: dek keys are never exposed to StS or to KmS during updates; old keys can
be erased immediately upon rotation; the interaction between StS and KmS is minimal (only ∆ is
transmitted); and ∆ can be erased by StS as soon as it locally updates all ciphertexts.

The UOKMS scheme from Fig. 4 departs from the OKMS scheme of Fig. 2 in some important
ways. First, to allow for fast updates, ciphertexts are composed of two parts, a wrap and a sym-
metrically encrypted ciphertext that derives the encryption key from wrap. For updates, only wrap
is updated. Second, the encryption operation is non-interactive, that is, C (or anyone else) can
encrypt data locally without interacting with KmS provided that it possesses the equivalent of a
certified “public key” yc corresponding to kc (yc = gkc in our scheme). Decryption is only possible
via an oblivious interaction with KmS. As a “side effect” of the above properties, the UOKMS
scheme supports public key encryption, meaning that anyone can produce ciphertexts but only
C can decrypt them, thus expanding the use cases for such KMS solution. Note that decryption
requires interaction with KmS which we assume has the means to authenticate decryption requests
from C. Third, the UOKMS scheme from Fig. 4 is presented in terms of a specific instantiation
rather than using generic tools like the OPRF in OKMS. Indeed, the malleability properties re-
quired for the update operations are not possible with a generic OPRF (but see below about Weak
OPRFs). Finally, verifiability of correct encryption by KmS is not needed in UOKMS where en-
cryption is non-interactive, and verification of correct decryption can be done via the (symmetric)
authenticated decryption operation Dec. This saves the need to verify the correct exponentiation
by KmS, further improving the performance of UOKMS.

Correctness of the UOKMS scheme is easy to validate. For encryption, one sets w = gr for
random r, then derives the encryption key dek from yrc , encrypts the data and stores w. For
decryption, C computes wkc obliviously in interaction with KmS and derives dek from this value.
This recovers the original data as yrc = (gkc)r = (gr)kc = wkc . Regarding the update operation, if
we denote by wt and kt the values of w and kc, respectively, after t updates (here w0 denotes the
original value of w computed at the time of deriving dek, and k0 denotes the client’s key kc as it
existed at that time), then one can see inductively that if wktt = wk00 (the latter is the value from

8

which dek is derived), then this is also true for t+ 1, namely, (wt+1)kt+1 = (w0)k0 . Indeed, we have

that wt+1 = w
∆t+1

t = w
kt/kt+1

t , thus (wt+1)kt+1 = (w
kt/kt+1

t)kt+1 = wktt = wk00 .

Security of the UOKMS scheme from Fig. 4 is proven in Section 4 based on the security model
presented in Section 3.

In Section 5 we show how to distribute the KmS functionality of UOKMS through a threshold
scheme which includes the distributed generation of the value ∆ so only StS can learn it.

On Weak Oblivious PRF. The UOKMS scheme from Fig. 4 derives symmetric encryption keys
from a function Fk(w) = H(wk) defined over elements in a group G of prime order q (where the
key k is chosen at random in the set Zq). The function F has strong similarities with the OPRF
dh-opk(x) = H(x, (H ′(x))k) from Fig. 3 that we use as the basis of the OKMS scheme from Fig. 2,
as well as some fundamental differences. First, the input to F is a group element (rather than an
arbitrary string mapped into the group by the hash function H ′ in dh-op). But more importantly,
knowing wk for any value w allows to compute the function on wt for known t. At the same
time, computing F on a independently random group element is hard under CDH hence F can be
modeled as a Weak PRF (as noted in [41]). In our application for UOKMS we also use the fact
that F can be computed obliviously and use its homomorphic properties to support updatability.
We leave as a future work item the formalization of such “oblivious Weak OPRF” function in the
UC model, similarly to the treatment of OPRFs in [29]. For the purpose of our use of F in the
context of UOKMS, we carry the analysis directly in a specialized UOKMS security model that we
present in Section 3.

3 Security Model for Updatable Oblivious KMS

We introduce the security model for Updatable Oblivious KMS which combines the elements and
advantages of oblivious computation and updatable encryption in a single model. As in updatable
encryption, e.g. [9, 10, 20, 37, 35], we consider keys that evolve over epochs, where at the beginning
of a new epoch the encryption/decryption key is replaced with a fresh key. In our case, this applies
to client keys kc held by the Key Management server KmS. The goal is to capture the security
of key rotation both in the sense of forward security and post-compromise security. That is, the
compromise of a client key kc from a given epoch should not help in exposing data encrypted either
at a later epoch or in a previous epoch. In the latter case, however, one needs to qualify this
requirement. Suppose that a ciphertext e is generated using the key kc from epoch t and later
the key kc

′ for epoch t′ > t is exposed; should the data d encrypted under ciphertext e still be
secure? Clearly, if the attacker A sees e′, the updated version of ciphertext e in epoch t′, then A
can decrypt e′ and obtain d. However, if A possesses kc

′ and e but does not have the updated e′

then the security of d needs to be fully preserved.

The above illustrates the intricacies of updatable encryption models, which require careful book-
keeping of information available to the attacker: What ciphertexts it sees and when, for what epochs
it obtains the secret key kc, and for which it receives update information, etc. The goal is to pre-
vent the attacker from learning anything that is not trivially (and unavoidably) derivable from the
information it requests. In this section, we set these rules and goals through a formal model of
UOKMS security, and use it in Section 4 to prove the security of our UOKMS design from Fig. 4.

3.1 Formal UOKMS Scheme

Formally, an Updatable Oblivious KMS (UOKMS) scheme is a tuple of algorithms KGen, Enc,
UGen, UEnc, and a protocol Dec, intended for a KMS server KmS, a storage server StS, and a client
C, s.t.:

9

• KGen is a key generation algorithm, run by KmS, which on input a security parameter `
generates a public key pair (sk, pk).

• Enc is an encryption algorithm, run by any party, which on input key pk and plaintext m
generates ciphertext c.

• Dec = (Dec.KmS,Dec.C) is an interactive decryption protocol between a client running
Dec.C(pk, c) and KmS running Dec.KmS(sk, pk), where Dec.C outputs m or ⊥.

• UGen is an update generation algorithm, run by KmS, which on input (sk, pk) generates a
new key pair (sk′, pk′) together with an update token ∆.

• UEnc is a ciphertext update algorithm, run by StS, which on input (c, pk,∆) outputs an
updated ciphertext c′.

An UOKMS scheme must satisfy the following correctness property. First, the interactive de-
cryption must recover the encrypted plaintext, i.e. for any m, if (sk, pk) ← KGen(`) and c ←
Enc(pk, c) then Dec.C(pk, c) outputs m after an interaction with Dec.KmS(sk, pk). Furthermore, the
same correctness property applies to keys and ciphertexts produced and updated in later periods.
That is, for every m, if (sk, pk) ← KGen(`), c ← Enc(pk,m), (sk′, pk′,∆) ← UGen(sk, pk), and
c′ ← UEnc(c, pk,∆), then Dec.C(pk′, c′) outputs m after an interaction with Dec.KmS(sk′, pk′).

On public and private values. We model UOKMS as a public key encryption scheme where
any party in possession of the public key pk can encrypt files for the client whose corresponding
decryption key sk is held by KmS. It is assumed that KmS has the means to authenticate the client
before engaging in a decryption operation using key sk but a secret channel between client and
KmS is not needed. The update token ∆ is assumed to be transmitted from KmS to StS over a
secure channel. No other party needs or should know this value. In particular, the model does not
guarantee secrecy of skt+1 given skt and ∆t+1 or secrecy of skt given skt+1 and ∆t+1. For example,
in our UOKMS scheme of Figure 4 receiving ∆t+1 allows one to derive both skt+1 from skt, and skt
from skt+1. In this case, if ∆t+1 was leaked then a KmS corrupted in epoch t would be effectively
also corrupted in epoch t+1, and vice versa.4

3.2 UOKMS obliviousness and security

The definition below formalizes the notion of KMS obliviousness.

Definition 1 We say that a UOKMS scheme is oblivious if for all efficient algorithms A the
interaction of A with Dec.C(pk, c0) is indistinguishable from interaction with Dec.C(pk, c1), for any
(pk, c0, c1) output by A s.t. c0, c1 are valid ciphertexts of the same length and pk is a valid public
key.5

As noted above, defining security of UOKMS, and of updatable encryption in general, requires
establishing the rules of what information the adversary is entitled to receive and when, and what
constitutes a win relative to that information. In our model, time is divided into epochs at the
beginning of which a new key pair (sk, pk) and an update token ∆ are generated. For each epoch
the adversary A receives the new public key pk, and can request to see either the new secret key

4This is not a necessary feature of a UOKMS scheme, i.e. one could imagine that ∆t+1 allows for updating
ciphertexts (and the public key), but not for updating the corresponding secret key. However, all existing ciphertext-
independent updatable encryption schemes, ours included, allow for updating sk given ∆.

5The public key pk, normally chosen by KmS, can be chosen by A in this definition, modeling a malicious KmS,
but C can check some properties of the public key and the ciphertext, e.g. that they contain expected group elements,
before running Dec.

10

sk or the update token ∆, which corresponds to A compromising in that epoch, respectively either
server KmS or server StS. Algorithm A is also given oracle access to the ciphertext-update function
UEnc but it is not allowed to use it for trivial wins, e.g., updating challenge ciphertexts to an epoch
for which it knows the secret key. Note that A learns the secret key skt of epoch t if A asks for it,
but also if A asks for skt−1 in epoch t− 1 and asks for ∆t in epoch t. This shows that what A can
learn in one epoch may depend on what it knew in the previous epoch, and the UOKMS security
game rules must reflect that.

We formalize these rules and the attacker goals via the real-ideal experiments shown in Fig. 5.
In each epoch t, the attacker receives pkt and chooses to either corrupt KmS, hence obtaining skt,
or to corrupt StS, hence obtaining the update token ∆t, except if KmS was corrupted in epoch
t− 1 (otherwise the attacker could calculate skt from skt−1 and ∆t, making this case equivalent to
corrupting both KmS and StS in epoch t). In addition, A obtains access to oracles Enc,Dec,UEnc,
depending on the compromised party. An aspect of the definition that is specific to our oblivious
setting is that the attacker with access to the oblivious decryption oracle can decrypt any ciphertext
of its choice in a decryption call, but each call can result in decryption of at most a single challenge
ciphertext. More generally, with q calls to the decryption oracle, A can decrypt q messages but
nothing more. Finally, we note that the ability of the attacker to access a decryption oracle provides
CCA security to our public key scheme in the oblivious setting.

Expreal
uokms(A, `)

Set t← 0 and corr0 ← sts. Generate (sk0, pk0)← KGen(`) and give pk0 to A.
The experiment output is the output of A after interaction with the following oracles:

Enc: On A’s input m, if corrt = sts output Enc(pkt,m);

Dec: Let A interact with Dec.S(skt);

UEnc: On A’s input (t′, c), if corrt = sts and 0 ≤ t′ < t then

set ct′ := c; for j = t′+1 to t set cj := UEnc(cj−1, pkj ,∆j); output ct;

Corr: On A’s input corrt+1, set (skt+1, pkt+1,∆t+1)← UGen(skt, pkt);

If (corrt, corrt+1) = (kms, kms) output (pkt+1, skt+1,∆t+1);

If (corrt, corrt+1) = (kms, sts) output pkt+1;

If (corrt, corrt+1) = (sts, kms) output (pkt+1, skt+1);

If (corrt, corrt+1) = (sts, sts) output (pkt+1,∆t+1);

Increment epoch counter t := t+ 1.

Expideal
uokms(A,SIM, `)

Set t← 0 and corr0 ← sts. Initialize an empty challenge plaintext list L.
Let a stateful algorithm SIM generate pk0 on input ` and give pk0 to A.
Experiment output is the output of A after interaction with the following oracles:

Enc: On A’s input m, if corrt = sts add m to L and output SIM(enc,|m|);
Dec: Let A interact with SIM(dec) while letting SIM learn one chosen item in L;

UEnc: On A’s input (t′, c), if corrt = sts and 0 ≤ t′ < t then output SIM(upd, t′, c);

Corr: On A’s input corrt+1 output SIM(corrt+1) and increment epoch counter t := t+ 1.

Figure 5: Security Experiments for Updatable Oblivious KMS

11

Figure 5 shows two experiments: Experiment Expreal
uokms(A, `) which models an interaction of the

real-world adversary A with the real UOKMS scheme, and experiment Expideal
uokms(A,SIM, `) which

models an interaction of a simulator SIM with an “ideal” UOKMS scheme. We call a UOKMS
scheme secure if the two interactions, real and ideal, are indistinguishable. Formally:

Definition 2 Let Advreal
uokms(A, `) be the probability that experiment Expreal

uokms(A, `) outputs 1, and
let
Advideal

uokms(A,SIM, `) be the probability that experiment Expideal
uokms(A,SIM, `) outputs 1. We say that

UOKMS scheme is secure if for all efficient algorithms A there exist an efficient algorithm SIM s.t.
|Advreal

uokms(A, `)−Advideal
uokms(A,SIM, `)| is negligible in `.

The real experiment Expreal
uokms(A, `) in Figure 5 models an interaction of adversary A with

a UOKMS scheme which progresses through epochs t = 0, 1, ... where the flag corrt designates
whether A corrupts KmS (kms) or the storage server StS (sts) in epoch t. After the initialization
which generates the initial KMS key pair (sk0, pk0) we give pk0 to A and let A interact with the
encryption, decryption, and ciphertext update oracles. We model the progress from one epoch to
the next via “party corruption” oracle Corr which uses A’s decision bit corrt+1 to corrupt either KmS
or StS in the next epoch6. This oracle triggers a key update, i.e. a new KMS key pair is created as
(skt+1, pkt+1,∆t+1) ← UGen(skt, pkt), and the epoch counter t is incremented. Adversary A then
receives the new public key pkt+1 and possibly more, depending on the parties it corrupts: Namely,
if corrt+1 = kms then A also gets the new secret key skt+1, and if corrt+1 = corrt, i.e. if A corrupts
the same party in the two consecutive epochs, then A also gets the update token ∆t+1. Crucially,
A does not get ∆t+1 if corrt+1 6= corrt. (Indeed, as mentioned above, in the UOKMS scheme of
Figure 4, receiving the update token would allow the adversary to effectively extend the corruption
of KmS from epoch t to epoch t+1 and vice versa.)

The security experiment assumes that KmS corruptions are passive in the sense that if corrt =
kms we let A learn skt (and ∆t if corrt−1 = kms), but we do not let A interfere in the update
generation and/or the dissemination of the created update token and a public key, or in the execution
of the decryption protocol. (All existing Updatable Encryption security notions make such choices,
e.g. assuming that even if the adversary compromises the entity that stores the key, the key update
is still generated honestly.)

We assume that StS corruptions are active in the sense that for epochs where corrt = sts we not
only let A learn ∆t, but we also give A an access to the ciphertext update oracle UEnc which on
input (t′, c), for t′<t and c a ciphertext from epoch t′, outputs the updated value of c at epoch t.
That is, the oracle runs the update algorithm on (supposed) ciphertext ct′ = c using update tokens
∆t′+1, ...,∆t, and outputs the updated ciphertext ct. This models the ability of the adversary to
inject ciphertexts to StS in some epoch – either by directly modifying these ciphertexts when StS is
corrupted, or by sending a ciphertext to the client who then stores it at StS7 – and then having this
ciphertext updated by the UEnc oracle. Note that the Update protocol is not provided at epochs
where corrt = kms since this would allow A to decrypt challenge ciphertexts using the compromised
KmS key.

Our UOKMS models a public key encryption where adversary A can encrypt any message
at will, but the role of the encryption oracle Enc in the UOKMS security game is to model the
generation of challenge ciphertexts. Namely, in the real game, oracle Enc on A’s input m generates
a ciphertext c=Enc(pkt,m), but in the ideal game the same ciphertext c must be produced by the

6 We assume w.l.o.g. that A corrupts exactly one of these parties in each epoch. In particular, the real-world
event when both StS and KmS are corrupted in epoch t is reflected in our model by KmS corrupted in two consecutive
epochs t−1, t, because this reveals both skt and ∆t to A. On the other hand, the epoch without corruption strictly
weakens the adversary capabilities hence it is subsumed by the other cases.

7Note that our treatment is of a public key encryption, so other parties can potentially create ciphertexts which
land in the StS storage.

12

simulator algorithm SIM given only |m| (and flag enc) as an input while the plaintext m is added to
the (secret) list L of encrypted challenge plaintexts. Adversary A can decrypt any ciphertexts (or
indeed any ciphertext-like objects of its choice) using the decryption oracle Dec. Because we aim to
support oblivious decryption, the precise ciphertext which A effectively enters into the decryption
oracle is hidden from the oracle, hence we must count each decryption oracle access as an attempt
to decrypt some challenge ciphertext. We model this in the ideal game by giving SIM access to a
single location in list L of challenge plaintexts, per each Dec query of A. Note that this technically
implies that the simulator can extract the unique ciphertext which A attempts to decrypt in this
oblivious decryption protocol instance, or otherwise the simulator wouldn’t know which plaintext on
list L it should access. Observe also that we do not create challenge ciphertexts in an epoch where
KmS is corrupted, because knowledge of KmS’s private key makes all such ciphertexts insecure.

We stress that the Expreal
uokms security game allows any pattern of corruptions except corruption

of both StS and KmS in a single epoch (see footnote 6). However, our model of corruptions is static
in the sense that A must decide which party to corrupt at the beginning of each epoch. (See also
the discussion below.)

Prior Updatable Encryption Models. Our notion of Updatable (Oblivious) KMS is related
to Updatable Encryption (UE) or Encryption with Key Rotation, which was studied in several
recent works [9, 10, 20, 37, 35]. UOKMS extends the notion of UE by splitting the UE’s client
into two separate entities, the KMS server, which holds the client’s decryption key and generates
key updates, and the client itself, who decrypts the ciphertexts retrieved from the storage server
via an interactive decryption protocol with the KMS. The UOKMS model thus lifts the notion of
Updatable Encryption to the setting that reflects realistic large cloud storage deployments, where
the decryption keys of all clients are held by a specialized Key Managment server. On the other
hand, collapsing the client and the KMS in the UOKMS model into a single entity gives exactly
the setting of UE, hence our UOKMS scheme and security notion give rise to the corresponding
UE scheme and notion.

Our security model corresponds to the ciphertext-independent UE model of Lehmann et al. [37]
(which refines the model of Everspaugh et al. [20]), where a single update message can be used to
update any number of ciphertexts. Of these only the recent work of Klooss et al. [35] addresses
CCA security, and lets the adversary access a decryption oracle, as we do in our model. However,
of the two schemes shown secure in [35] the one whose efficiency is comparable to ours does not
allow the adversary an unrestricted access to the Ciphertext Update oracle, while our model allows
unrestricted access to both Dec and UEnc oracles. The scheme of [35] which allows such unrestricted
oracle access relies heavily on pairing-based NIZKs, using e.g. 22 pairings in decryption, in contrast
to a single standard group exponentiation used in decryption in our scheme. However, our model of
UOKMS security is specialized to the case of oblivious interactive decryption where the decryption
oracle, which models the KMS server, runs on blinded ciphertexts. In such setting a standard CCA
notion, where the decryption oracle is restricted from decrypting a challenge ciphertext, does not
apply. Thus we capture security with a “counting method” which enforces that any Q accesses to
the decryption oracle allow for learning plaintext information in at most Q challenge ciphertexts.
Ours is the first treatment of Updatable Encryption with oblivious decryption procedure, and this
setting necessitates a “counting-based” notion of security in the presence of decryption oracle.

The UE schemes of [20, 37, 35] achieve update indistinguishability, i.e. a ciphertext updated to
the new epoch cannot be efficiently linked to the original from the previous epoch. We do not
consider this property, although our scheme can be extended to support it, because achieving this
property requires update cost proportional to the total size of the encrypted data, which we believe
is impractical in large storage deployments (see footnote 3). The above UE schemes also consider
ciphertext integrity, but this notion is specialized to the case of symmetric key encryption, while
our UOKMS model treats the case of public key encryption.

13

Finally, we should point out that our security model is static in the sense that an adversary must
choose at the beginning of each epoch whether it compromises the decryption key stored by the KMS
or the update token held by the storage server (or both). By contrast, [37, 35] consider an adaptive
model of corruptions, where an adversary can request either the decryption key or the update token
or both for any past epoch as well. The adaptive security model is more general and less restrictive,
but we analyze the security of our scheme only in the static model because adaptive security presents
subtle technical challenges which we do not know how to overcome.8 Technically, the simulator
would have to make bets about past epochs, guessing whether an adverary will eventually ask for
a decryption key for some past epoch (in which case the simulator needs to know this epoch key),
or whether an adversary will ask for an update token which allows updating a challenge ciphertext
to that epoch (in which case the simulator needs to embed an encryption challenge in that epoch
key). Since the simulator needs to make these bets with respect to polynomially-many past epochs,
the probability that its guesses are all correct will be negligible, and it is not clear if such strategy
can lead to efficient simulation. We thus believe that security analysis in the fully adaptive model
of [37, 35] remains an open question.

4 Security Analysis of the UOKMS Scheme

The UOKMS scheme shown in Figure 4 is information-theoretic oblivious, as is the OPRF protocol
dh-op on which the Decryption protocol in Fig. 4 is based, but the security of this scheme relies on
the OMDH-IO computational assumption and the (receiver) non-committing property of symmetric
encryption, both defined below:

One-More DH with Inverse Oracle (OMDH-IO) Assumption. For any PPTA the following
probability is negligible:

Prob[A(·)k,(·)1/k(g, gk, g1, . . . , gN) = {(gjs , gkjs)}s=1,...,Q+1]

with the probability going over random k in Zq, random choice of group elements g1, . . . , gN in
G = 〈g〉, and A’s randomness, and where (·)k and (·)1/k are exponentiation oracles, and Q is the
number of A’s queries to the (·)k oracle.

Without access to oracle (·)1/k, the above is identical to the One-More DH (OMDH) assumption
[6, 33], which was used e.g. for proving the security of the practical OPRF schemes [28, 29], partic-
ularly the one shown in Figure 3 in Section 2.1. Thus, OMDH-IO is a strengthening of OMDH; its
security can be proven in the Generic Group Model (GGM) as an extension to the proof of OMDH
in that model [31] and with a slight modification of the security bounds. We sketch this adaptation
in Appendix A.

Receiver Non-Committing Symmetric-Key Encryption. This property of symmetric-key
encryption (SKE) is used in our security analysis to enable the simulation required by the security
game in Fig. 5. Informally, it states that without knowledge of the encryption key, ciphertexts
do not commit to their underlying plaintexts, thus allowing the simulator to “explain” a fixed
ciphertext as the encrypton of any plaintext. Formally, a symmetric encryption scheme (Enc,Dec)
is receiver non-committing (RNC) if for any PPT A there exists PPT SIM s.t. A’s view in the
following real and ideal games is indistinguishable: (1) In the real game A interacts with oracles
Enc and Reveal, where Enc(i,m) picks random key ki and outputs e = Enc(ki,m) while Reveal(i)
reveals ki; (2) In the ideal game A interacts with a stateful algorithm SIM, s.t. when A sends (i,m)
as an Enc query, SIM must return e on input (i, |m|), and when A sends i as a Reveal query, SIM
must output ki on input (i,m).

8We stress that this is an issue in the proof only and not an explicit attack, and that similar technical issues were
observed regarding adaptive security in other contexts, e.g. in proactive cryptosystems, see e.g. [13, 1, 38].

14

Theorem 3 The UOKMS scheme in Figure 4 is unconditionally oblivious and is secure under the
OMDH-IO assumption in ROM if the symmetric encryption scheme Enc is receiver non-committing.

Notes on the Proof. The proof of Theorem 3 is presented in Section 4.1. We note that the
inverse exponentiation oracle in OMDH-IO is necessary to obtain the theorem as the protocol (in
the context of our model) provides an attacker A that corrupts KmS in epoch t− 1 and StS in
period t with an oracle to the function (·)1/kt . Indeed, in epoch t, A obtains access to UEnc which
implements an exponentiation oracle (·)∆t = (·)kt−1/kt , and together with knowledge of kt−1, A
can compute (·)1/kt on any value of its choice. The RNC property of SKE Enc is likewise necessary.
Consider an attacker A making two queries: (a) an Enc query on some m, and (b) a Dec query
where A runs the Dec.C protocol on the received ciphertext c = (ObjId, w, e). By the UOKMS
security game rules of Fig. 5 the simulator SIM has to simulate this as follows: (a) it produces c
on message length |m|, and (b) on input m retrieved from list L, it simulates protocol Dec.S so
that c decrypts to m. SIM’s response v to A’s message u in the decryption protocol, see Fig. 4,
defines the effective KMS key as k = DL(u, v), and consequently defines the data encryption key
for (ObjId, w, e) as dek = H(wk). Thus when SIM defines the output dek of oracle H on input wk

it must satisfy that e = Encdek(m). In particular, SIM first creates ciphertext e given just |m| and
then, given m, it creates dek s.t. e = Encdek(m), wihch implies that SKE Enc satisfies the RNC
property.

Corollary 4 The UOKMS scheme in Figure 4 is secure under the OMDH-IO assumption in the
Ideal Cipher Model and ROM if the symmetric encryption is implemented using CTR or CBC
modes.

The corollary follows because CTR and CBC encryption modes satisfy the receiver non-committing
property in the Ideal Cipher model: If message length |m| defines n blocks for block cipher E then
SIM services Enc query on input (i, |m|) by setting ciphertext e = (IV, e1, ..., en) where IV and
all ei’s are random blocks. When SIM gets m = (m1, ...,mn) to service Reveal(i) query, values
(IV, e1, ..., en,m1, ...,mn) define n input/output pairs which SIM needs to set for E(k, ·) for random
key k. For counter mode CTR, SIM sets E(k, IV + j) = mj ⊕ ej for all j while for CBC mode,
SIM sets E(k,mj ⊕ ej−1) = ej for all j where e0 = IV . Either way by randomness of ei’s this sets
E(k, ·) outputs on n given points to n random values. The probability that this creates collisions
in E(k, ·) is negligible, and by randomness of k there is a negligible probability that any points of
E(k, ·) were queried before.

Note. The above argument can be expanded to include authenticated encryption via encrypt-then-
mac where the simulator chooses the MAC key.

4.1 Proof of Theorem 3

Proof: Note first that the unconditional obliviousness of this UOKMS scheme is immediate,
because for any public key pk and any two valid ciphertexts c0 = (ObjId0, w0, e0) and c1 =
(ObjId1, w1, e1), the interaction with Dec.C on (pk, cb) for b = 0 and b = 1 is identical: In ei-
ther case C sends u = (wb)

r′ for r′ ←R Zq, which is a random group element if wb ∈ G and
wb 6= 1 because the group order is prime. To argue UOKMS security we will first show an efficient
simulator algorithm SIM which having access to (any) adversary algorithm A, interacts with the
ideal UOKMS game Expideal

uokms. We will then re-write SIM as a reduction algorithm R s.t. if A has ε
advantage in distinguishing an interaction with the real UOKMS game Expreal

uokms and an interaction
with SIM and Expideal

uokms, i.e. if

ε = | Pr[1← Expreal
uokms(A, `)]− Pr[1← Expideal

uokms(A,SIM, `)] |

15

then reduction R, given access to A, has the same probability ε of solving the OMDH-IO problem.
It follows that under the OMDH-IO assumption quantity ε must be negligible, which implies that
the UOKMS scheme is secure. We note that in one step along these SIM modifications we replace
the real symmetric encryption Enc with the simulator assumed by the RNC property of SKE Enc.
We provide the details of the proof now.

The proof relies on the ROM model for function H : G→{0, 1}` used in UOKMS scheme
in Figure 4. Specifically, we treat H as an external entity A needs to query to compute H
outputs, simulator SIM and reduction R intercept A’s calls to H, and we measure probabilities
p0 = Pr[1←Expreal

uokms(A, `)] and p1 = Pr[1←Expideal
uokms(A,SIM, `)] over the randomness of H. For

simplicity of notation we assume that group G is fixed for every security parameter ` and we as-
sume a non-uniform security model both for the OMDH-IO assumption and UOKMS security. To
reduce visual clutter we denote plaintext files as m instead of Obj and we omit idenfiers ObjId in
ciphertexts.

We will first describe game G, which reproduces the same distribution A sees in the real security
game Expreal

uokms, but does it in a way which makes it easier to understand simulator SIM which we
will describe next. Game G picks k ∈ Zq and sets the first epoch key as (k0, y0) = (k, gk). Game
G also picks a list of random group elements g1, ..., gN in G, where N is the upper-bound on the
number of Enc queries A makes. Then for every i > 0, G picks the following values: If A corrupts
KmS in epoch i then G picks random ki ← Zq and outputs (ki, yi) for yi ← gki . (If A corrupts KmS
for two epochs in the row G also outputs ∆i = ki−1/ki.) If A corrupts StS in epoch i then G acts
depending on which party A corrupted in epoch i− 1: (case 1) If it was StS then G picks random
∆i ← Zq and outputs yi ← yi−1

1/∆i ; (case 2) If it was KmS then G picks random ∆j+1,i ← Zq
and outputs yi ← yj

1/∆j+1,i where j was the last epoch when A corrupted StS before A corrupted
KmS in epoch i− 1. Let EK be the set of epochs when A corrupts KmS and ES the set of epochs
when A corrupts StS. The above process defines value δi for each i ∈ ES s.t. yi = y1/δi (hence
ki = k/δi), and G can compute this δi as either δi−1 ·∆i, if (i− 1) ∈ ES , or as δj ·∆j+1,i, if j ∈ ES
and {j + 1, ..., i − 1} ⊆ EK . Given these values, G services oracles Enc, Dec, and UEnc at epoch
i ∈ ES (note that these calls are disallowed if i ∈ EK) as follows:

• G replies to n-th call to Enc(m) with c = (w,Encdek(m)) where w = (gn)δi and dek = H(z)
for z = (gn)k; (Note that z = wk/δi , hence c is distributed as in the real interaction.)

• G replies to message u to Dec with v = (u1/δi)k;

• G replies to UEnc(t′, c) for c = (w, e) with (w′, e) for w′ = wδi/δt′ if t′ ∈ ES , and w′ =
(wδi·kt′)1/k if t′ ∈ EK .

The correctness of Enc and Dec responses follows because ki = k/δi, and as for UEnc, note that
ki = k/δi, and the implicit update from epoch t′ to epoch i is ∆t′,i = kt′/ki, which together
implies that ∆t′,i = (kt · δi) · (1/k). Thus game G reproduces the exact same view as security game

Expreal
uokms.

Simulator SIM interacts with an ideal experiment Expideal
uokms and executes the same algorithm

as game G – including picking the initial key k and keys ki if i ∈ EK and update-related values
δi and ∆j,i if i ∈ ES as described above (and defining corresponding δi’s and ki’s). For handling
oracles Enc and Dec, SIM resorts to the (stateful) simulator SIME assumed by the Receiver Non-
Committing (RNC) property of the symmetric encryption Enc. First, when A sends t-th query
m to oracle Enc in epoch i ∈ ES , we put m at position t in list L, and SIM replies to A with
c = (w, e) for w = (gt)

δi and e computed by SIME on input (t, |m|). Second, when A sends u to
Dec, SIM replies with v = (u1/δi)k and then monitors A’s queries to H: If A makes query z to H
s.t. z1/k = gt for gt ∈ {g1, ..., gN} then SIM asks Expideal

uokms to reveal message m at the t-th position
in list L, sends (t,m) as the Reveal query to SIME , and given key dek as SIME ’s response, defines

16

H(z) = dek. By the RNC property of Enc, pairs (dek, e) produced by SIME are computationally
indistinguishable from random dek and e = Encdek(m). (In particular, this process sets H(z) to a
value indistinguishable from random.)

The only difference between A’s interaction with G and A’s interaction with SIM (which in
turn interacts with Expideal

uokms) is if in the latter case A queries H on arguments (gi)
k for more than

Q elements in {g1, ..., gN} where Q is the number of A’s decryption queries: Given Q decryption
queries SIM is allowed to learn onlyQ items in list L, so it can embed correct messages as decryptions
of Q challenge ciphertexts, involving Q challenge points {gjs}s=1,...,Q, but SIM will not be able to
decrypt correctly the (Q + 1)-st ciphertext (w, e) formed as w = (gjQ+1

)δi s.t. A queries H on

z = (gjQ+1
)k = wki . In other words, if there is ε difference between Pr[1 ← Expreal

uokms(A, `)] and

Pr[1← Expideal
uokms(A,SIM, `)] then ε is upper-bounded by the probability that A queries H on values

(gj)
k for Q+1 points gj in {g1, ..., gN}. But by inspection of SIM one can see that SIM can be readily

changed to reduction R against the OMDH-IO problem: R follows the algorithm of SIM except
that uses the OMDH-IO challenge key gk as y, it gets points (g1, . . . , gN) as part of the OMDH-IO
challenge, and it uses OMDH-IO oracles (·)k, (·)1/k instead of using exponent k directly. Note that
SIM uses (·)k only Q times, to service the Q decryption oracle queries, and if A makes queries to
H on Q + 1 arguments (gj)

k with probability ε, then R will break OMDH-IO with probability ε
because R can identify such queries with oracle (·)1/k. This completes the proof of Theorem 3. �

5 Threshold OKMS and UOKMS

The key management systems (particularly for storage applications) that motivate our work are
often characterized by the large amounts of data they store as well as the value and long-lived
nature of this data. The whole security of such an operation depends on the security of the KMS
client keys, hence the importance of key rotation (as addressed by UOKMS) as a way to limit the
bad effects of key exposure. Yet, the main priority is to prevent these keys from leaking in the first
place. Fortunately, all the schemes presented in this paper lend themselves to efficient distributed
implementations via the very efficient Threshold OPRF tdh-op [30] shown in Figure 6.

Key and server initialization. Key k ←R Zq is secret shared using Shamir’s scheme with
parameters n, t; server Si, i = 1, . . . , n, holds share ki.

Threshold Oblivious Computation of Fk(x).

• On input x, client C picks r ←R Zq and computes a := H ′(x)r; it chooses a subset SE of
[n] of size t+ 1 and sends to each server Si, i ∈ SE , the value a and the subset SE .

• Upon receiving a from C, server Si verifies that a ∈ G and if so it responds with bi := aλi·ki

where λi is a Lagrange interpolation coefficient for index i and index set SE .

• When C receives bi from each server Si, i ∈ SE , C outputs as the result of Fk(x) the value
H(x, (

∏
i∈SE bi)

1/r)).

Figure 6: Protocol tdh-op [30]: (n, t)-threshold computation of dh-op from Fig. 3

In our application, client keys kc are shared among n KMS servers S1, . . . , Sn, so that the
cooperation of t+ 1 of these is needed to compute the OPRF function with kc as the key, while the
compromise of t servers provides no information to the attacker on kc. Moreover, the key kc is never
reconstructed or exists in one place, not even at generation (which is also performed distributively).

17

In addition, this scheme enjoys proactive security [44, 25], namely, the sharing among the n servers
can be refreshed periodically so that the attacker needs to break into t + 1 servers during the
same time period to be able to compromise the key. Servers can be replaced and shares recovered,
protecting secrecy and integrity/availability of the system as needed for long-lived keys.

The tdh-op function from Fig. 6 implements exactly the OPRF as defined in the OKMS scheme
from Fig. 2. For the UOKMS scheme of Fig. 4, the only difference is in the input from the client
(a random group element rather than a hashed value).

Note on efficiency. The dominant cost of computation in tdh-op is one exponentiation for each of
the t + 1 servers and two exponentiations for the client regardless of the values n and t. We note
that tdh-op is described in a simplified form in Figure 6 where the set of reconstruction parties SE
is assumed to be known by C in advance. If the reconstruction set SE is not known a-priori (i.e.,
more than t+ 1 servers are contacted), each Si would respond with aki and C would compute the
interpolation in the exponent at the cost of a single multi-exponentiation (which can be further
optimized when the αi’s are small, e.g., αi = i, using a recent technique from [45]). An additional
important feature of the tdh-op solution is that the aggregation of server values bi into the dh-op
result can be done by a proxy server (one of the threshold servers or a special purpose one) so that
the threshold implementation is transparent to the client.

5.1 Distributed Updates

While a threshold solution greatly increases the security of the KMS keys, one may still want to
apply key rotation, particularly given the efficiency of updates in our UOKMS solution. In the
threshold setting this means that at the beginning of a rotation epoch, the servers, that have a
sharing of a key kc, need to choose a new random client key kc

′ and generate the value ∆ = kc/kc
′.

However, ∆ should only be disclosed to the client C and the storage server StS, calling for a
distributed generation of ∆ where no subset of t or less servers learn anything about this value.

We show a procedure that given (n, t) Shamir sharing of a key k generates (n, t) sharing of a
new random key k′ and of the update token ∆ = k/k′. It uses two standard tools from multi-party
computation: (i) The joint generation of a Shamir sharing ρ1, . . . , ρn of a uniformly random secret
ρ over Zq, e.g., [46] or Fig. 7 of [23], and (ii) a Distributed Multiplication protocol which given the
sharings of secret a and secret b generates a sharing of the product a · b without learning anything
about either secret, e.g., [23].

The distributed update protocol assumes that n servers S1, . . . , Sn have a sharing (k1, . . . , kn)
of a key k. To produce a new key k′ the servers jointly generate a sharing ρ1, . . . , ρn of a random
secret ρ ∈ Zq and run distributed multiplication to generate shares k′1, . . . , k

′
n of the new key defined

as k′ = ρ · k. Finally, each server Si sends to C and/or StS its share ρi from which the recipient
reconstructs ρ and sets ∆ := ρ−1 [= k′/k].

5.2 Verifiable Threshold (U)OKMS

As noted earlier, being able to verify the correctness of a data encryption key dek before encrypting
an object is an important feature of the OKMS solution and a major advantage over traditional
wrapping-based KM systems (Fig. 1). OKMS Verifiability requires checking the correct OPRF
operation by the KmS for which Verifiable OPRFs [28] are available, assuming the client possesses
the authentic public key gkc corresponding to KmS key kc. As indicated in Section 2.2, verifiability
in the case of UOKMS can be done directly via correct symmetric authenticated decryption, thus
dispensing with the need to check the oblivious operation by KmS. In the threshold case, however,
where multiple servers provide input for decryption, it is necessary to identify misbehaving servers.
Thus, in the threshold case, verifiability is needed also for UOKMS.

18

Note that for the single-server dh-op scheme of Fig.3, verifiability can be added via a simple
non-interactive zero-knowledge proof of equality of logarithms. For the threshold case, namely,
tdh-op scheme of Fig.6, if we assume that the client possesses the public keys gki corresponding to
the shares ki of key k = kc, then zero-knowledge proofs can be used too for verification. However,
this prevents the ability to have a “proxy” (e.g., any one of the n servers) that does the aggregation
of the bi values returned by the servers into the OPRF result. With ZK verification, it is the client
itself that needs to do this aggregation. This loses the “client transparency” property of tdh-op
that has the important practical advantage that the client (and its software) need not be aware of
the implementation of the server, whether it is a single-server deployment or a multi-server one.

Next, we present an alternative verification procedure that is client transparent. The client only
needs to have the certified public key gk for key k (regardless of the number of servers). We first
describe the scheme for the case of the single-server OPRF dh-op from Fig. 3 and later extend it
to the threshold case. (This works directly for OKMS, the adaptation to UOKMS is immediate.)
The procedure is reminiscent of Chaum’s protocol for undeniable signatures [15] but simplified by
dispensing of zero-knowledge proofs that are not needed here. It is easy to verify that the integrity
guarantee is unconditional, namely, against unbounded attackers.

• On input x, C sets h = H ′(x), sets r, c, d ←R Zq, and sends to server S the pair of values
a = hr, b = hcgd.

• S responds with A = ak, B = bk.

• C checks that
Ar
′

= Bc
′
v−dc

′
(1)

where r′ = r−1, c′ = c−1 (and v = gk). It rejects if the equality does not hold, otherwise C
sets the value of (H ′(x))k to Ar

′
which it is already computed for equation (1).

This procedure involves running dh-op on two different values and then verifying consistency via
a single multi-exponentiation by the client. The additional computational cost with respect to the
base dh-op is a single exponentiation for the server and two multi-exponentiations for the client,
essentially doubling the work for the non-verified case.

We now adapt the scheme to the threshold OPRF tdh-op. The client C sends the same pair of
values (a, b) to each participant server Si who responds with Ai = aki , Bi = bki . Upon gathering
t + 1 responses, C interpolates in the exponent (one multi-exponentiation) to obtain values A,B
and checks the identity (1). If it holds, C sets (H ′(x))k to Ar

′
, else it applies the check (1) to each

pair Ai, Bi received by participating server Si using vi = gki instead of v.

The computational cost in the normal case, where the verification against v = gk succeeds,
is the same as in the single-server case except for one additional interpolation in the exponent.
If verification against v = gk fails then the cost is an additional multi-exponentiation per each
participating server. As said, the special feature of this procedure is that the client can interact
with a proxy (or gateway) in a way that all operations by the client are identical to the single-server
case. The proxy will send the values (a, b) generated by the client to the servers and will aggregate
the responses Ai, Bi into a single response that can be verified with the public key gk. Before
sending to the client, the proxy can verify if the aggregation verifies correctly. If not, it needs to
check the individual values sent by each server and discard the bad ones – all of this is done without
any awareness by the client. Thus resulting in fully client-transparent solution.

19

OKMS Client Operations (Single Thread)

Wrap Unwrap

Hash to Curve 58.26 58.26
Generate Blind 1.58 1.58
Apply Blind 68.07 68.07
Create Challenge 83.27 -
Inverse Blind 16.95 16.95
Remove Blind 68.07 68.07
Verify Response 106.67 -

Total Time (µs) 402.86 212.92
Operations / Second 2,482 4,696

Figure 7: Client operation time and Op/s in OKMS

Interpolation Layer Performance (Single Thread)

(t+1)-of-N Time (µs) Ops / Second

1-of-1 81.68 12,242
3-of-5 155.99 6,410
5-of-9 236.72 4,224
5-of-15 236.66 4,225
6-of-11 280.04 3,570

Figure 8: Interpolation layer performance for various threshold parameters

6 Implementation and Performance

We report on implementation and performance of the OKMS and UOKMS schemes from Section
2.1 (Fig. 2) and Section 2.2 (Fig. 4), respectively.

Microbenchmarks. Implementations of all necessary client and server operations were written
in C++ using the OpenSSL library (version 1.1.1-pre5) to provide cryptographic functionality.
Performance tests were conducted on a machine with an Intel(R) Xeon(R) CPU E5-2666 v3 @
2.90GHz having 15 GB of memory. The implementation was compiled with the gcc compiler with
optimization level 3.

The following tables detail the run times of each operation averaged over 10,000 trials. These
tests used only a single thread and CPU core; results could be improved by performing these
operations concurrently across multiple CPU cores.

In these tests, all elliptic curve operations were based on NIST P-256. Field operations (for
Shamir and blinding factors) were defined over the prime order of NIST P-256. Hashing to the
curve (as required by the OPRF defined in Fig. 3) was performed using SHA-256 and the constant
time Simplified SWU algorithm [12].

Client operations in the OKMS scheme are shown in Fig. 7 for both encryption (“wrapping”)
and decryption (“unwrapping”). The two operations differ only in that interactive verifiability
is performed for wrap operations, while for unwrapping (the more common operation) regular
symmetric key verification suffices.

When the (U)OKMS servers are deployed in a threshold architecture then some entity must per-
form polynomial interpolation “in the exponent”. This can be implemented as a multi-exponentiation
of the individual server’s contributions together with the corresponding Lagrange coefficients. This
interpolation operation could variously be performed by one of the servers, by the client, or by a
dedicated intermediate entity.

20

(U)OKMS Server Operations (Single Thread)

Time (µs) Ops / Second

Wrap 136.13 7,345
Unwrap 68.07 14,691

Figure 9: (U)OKMS Server performance for wrap and unwrap

UOKMS Operations (Single Thread)

Time (µs) Operations / Second

Wrap 24.24 41,261
Unwrap 162.33 6,160
Update 68.07 14,691

Figure 10: Client operation time and Op/s in UOKMS

We observe that the multi-exponentiation time dominates the cost of the interpolation (com-
puting the Lagrange coefficients is correspondingly cheap), and we find that the total cost depends
on the threshold rather than the total number of servers. We report interpolation times in Fig. 8.

Server operations, measured for the single server and threshold variants of this (U)OKMS scheme
(implemented with protocol tdh-pop) are shown in Fig. 9. This includes only performing an ex-
ponentiation (EC scalar multiply) in the curve for each input provided by the client (the wrap
operation is more costly as it includes an additional exponentiation to support the interactive
verification procedure from Section 5.2).

Total time and operations per second is not significantly different for the threshold case, as each
of the involved servers computes the same function in parallel.

Client performance in the UOKMS scheme (Sec. 2.2) is shown in Fig. 10. This setting benefits
from being able to perform wrap operations without server involvement, and can further benefit
from precomputation tables for exponentiation of g and gk. In our testing, precomputation provided
more than a 600% speed up (11.33 vs. 68.20 µs). We summarize the number of operations per second
the client can perform in the UOKMS.

(U)OKMS Server. To evaluate performance and scalability we hosted our (U)OKMS server
implementation on Amazon’s Elastic Compute Cloud (EC2)[3] using a c4.2xlarge instance type.
This instance type provides 8 virtual CPUS with an Intel(R) Xeon(R) CPU E5-2666 v3 @ 2.90GHz
having 15 GB of memory and was the same instance type used to obtain the microbenchmark
numbers above.

Requests to this server were issued over HTTP and the web server, nginx, was configured with
8 worker processes (one per CPU). OKMS functionality was added to this web server as a natively
compiled module which used the OpenSSL library (version 1.1.1-pre5) to provide cryptographic
functionality. The server ran Ubuntu 16.04 as its operating system.

Throughput. To measure throughput a client machine (also c4.2xlarge) was deployed in the same
Amazon Web Service (AWS) availability zone as the server. We used the HTTP load generating
tool hey to measure the throughput for each scheme. hey was configured with a concurrency level of
80 and all results were averaged over 50,000 requests. All requests were for an unwrap operation and
were sent over HTTPS using (TLS 1.2 with ECDHE-ECDSA-AES256-GCM-SHA384). The server
used a self-signed certificate with an EC key on the NIST P-256 curve. Computation time dominates
in the LAN setting due to almost negligible network latency, with the CPU cores reaching near
100% utilization during the LAN throughput tests. To gauge the limits of the server performance,

21

(U)OKMS Server Throughput (8 CPU cores)

Scheme KeepAlive No KeepAlive

Static Page 65,018 6,462
OPRF (Unwrap) 32,094 6,349

Figure 11: (U)OKMS Server Requests/s on EC2 instance (LAN setting)

client-side operations of blinding and verification were not performed by the load generator.

For each scheme, we tested with session KeepAlive on and off. When off, a new TCP connection
and TLS session must be negotiated for each request. When on, the connection setup costs are
amortized over all requests, which is in line with a client that must unwrap many keys.

The table in Figure 11 details the observed throughput in requests per second (RPS) for the
various schemes and two KeepAlive configurations (all over TLS). We compare these schemes to a
static page as a baseline.

We observe that for the No KeepAlive configuration, the cost of creating the new connection
and establishing the TLS session dominates resulting in very little difference in RPS between the
schemes. For the KeepAlive configuration, throughput is significantly better, achieving over 30,000
RPS for the OPRF/T-OPRF case. Thus our (U)OKMS implementation can handle a large number
of clients with a single server. For comparison, Amazon’s object storage service reported a peak
load of 1.1 million requests per second [34]. If needed, the KMS implementation can be scaled with
standard techniques, such as deploying a greater number of servers. With a few dozen servers in
the KMS, a unique key could be supplied each time an object is written to or read from Amazon’s
service.

Hardware Security Modules. A best practice for securing master keys is to keep them within
Hardware Security Modules (HSMs)[4] to prevent their export to less secure locations. Fortu-
nately, the methods described in this paper are supported by existing commercial HSMs. Indeed,
most HSMs support the PKCS#11 standard[43]. This specification defines an API method called
CKM_ECDH1_DERIVE which takes an arbitrary point as an input and returns the x-coordinate of the
point resulting from a scalar multiplication of the input point using an HSM-held private key as
the scalar.

We tested three HSM implementations and found all supported the ECDH1 derive method.
The returned x-coordinate is sufficient to perform an oblivious key derivarion, and verification, but
verification (only needed in the OKMS setting and for threshold implementations of the OPRF)
requires that both positive and negative solutions for the y-coordinate be checked By importing
an elliptic curve private key computed as a Shamir share, existing HSMs can be used as part of a
threshold implementation. Due to obliviousness, interpolating the result from a threshold of HSMs
can be done external to the HSM without sacrificing confidentiality.

We note two potential limitations of using an HSM to hold the OPRF key. The first is that
HSMs are often limited in the curves they support. While all of the HSMs we evaluated supported
standard NIST curves, none supported Curve25519. The second limitation is performance. While
high end commercial HSMs can achieve up to 22,000 scalar multiplications per second[49], this is
roughly equivalent to what a single core can achieve in a multi-core server CPU.

While software implementations of symmetric key wrapping algorithms can be several orders of
magnitude faster than asymmetric operations, we found HSMs often employ specialized hardware to
accelerate the normally slower asymmetric operations. In some cases, HSMs[49] including those used
by leading cloud providers[39], the number of supported ECC operations per second is comparable
to that of supported symmetric encryption operations per second.

22

In conclusion, while in the traditional key-wrapping approach (Fig. 1) one can secure wrapping
keys diligently e.g., in HSMs, the plain data encryption keys (dek) travel over much less secure TLS
channels (sometimes ending or visible in multiple points outside the HSM boundary), and are po-
tentially exposed to rogue administrators, accidental logging, etc. In contrast, these vulnerabilities
are eliminated by the oblivious computation approach where as long as the OPRF key is secure,
nothing can be learned about the data (other than by corrupting the client). Fortunately, securing
these OPRF keys in HSMs is practical today as noted above, and while symmetric operations are
less expensive than OPRF ones in general, HSMs with 20,000 EC op/sec can hardly be the system’s
bottleneck (of course, in large operations multiple HSMs will be used). Importantly, in UOKMS
encrypting data does not necesitate of interaction with the KmS, further increasing performance.
Additionally, the UOKMS approach offers much more efficient key rotation than traditional systems
where rotation requires communication with the KMS for each key (dek or kek) to be updated. This
slows down the rotation process, resulting in longer rotation periods and reduced security.

Acknowledgments

We thank Anja Lehmann for very helpful discussions related to security notions of Updatable En-
cryption schemes. Our implementation experience and reporting has benefited enormously from the
work of Martin Schmatz, Navaneeth Rameshan, and Mark Seaborn. We thank the CCS reviewers
who helped improving the presentation of the paper.

References

[1] J. F. Almansa, I. Damg̊ard, and J. B. Nielsen. Simplified threshold RSA with adaptive and
proactive security. In S. Vaudenay, editor, Advances in Cryptology - EUROCRYPT 2006, pages
593–611, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[2] Amazon Web Services. Aws key management service cryptographic details, 2016. https:

//d1.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf.

[3] Amazon Web Services. Aws elastic compute cloud, 2018. https://aws.amazon.com/ec2/.

[4] E. Barker and W. Barker. Recommendation for key management, part 2: Best practices for
key management organizations (2nd draft). Technical report, National Institute of Standards
and Technology, 2018.

[5] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-RSA-inversion
problems and the security of Chaum’s blind signature scheme. Journal of Cryptology,
16(3):185–215, June 2003.

[6] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The One-More-RSA-Inversion
problems and the security of chaum’s blind signature scheme. Journal of Cryptology, 16(3):185–
215, 2003.

[7] M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy cryptogra-
phy. In K. Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages 127–144. Springer,
Heidelberg, May / June 1998.

[8] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, Heidelberg, Aug. 2004.

23

https://d1.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf
https://d1.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf
https://aws.amazon.com/ec2/

[9] D. Boneh, K. Lewi, H. W. Montgomery, and A. Raghunathan. Key homomorphic prfs and their
applications. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, pages 410–428, 2013.

[10] D. Boneh, K. Lewi, H. W. Montgomery, and A. Raghunathan. Key homomorphic prfs and
their applications. IACR Cryptology ePrint Archive, 2015:220, 2015.

[11] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-LWE and
security for key dependent messages. In P. Rogaway, editor, CRYPTO 2011, volume 6841 of
LNCS, pages 505–524. Springer, Heidelberg, Aug. 2011.

[12] E. Brier, J.-S. Coron, T. Icart, D. Madore, H. Randriam, and M. Tibouchi. Efficient indiffer-
entiable hashing into ordinary elliptic curves. Cryptology ePrint Archive, Report 2009/340,
2009. http://eprint.iacr.org/2009/340.

[13] R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Adaptive security for threshold
cryptosystems. In M. Wiener, editor, Advances in Cryptology — CRYPTO’ 99, pages 98–116,
Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[14] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. In E. Bi-
ham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 255–271. Springer, Heidelberg,
May 2003.

[15] D. Chaum. Zero-knowledge undeniable signatures. In I. Damg̊ard, editor, EUROCRYPT’90,
volume 473 of LNCS, pages 458–464. Springer, Heidelberg, May 1991.

[16] D. Chaum and T. P. Pedersen. Wallet databases with observers. In E. F. Brickell, editor,
CRYPTO’92, volume 740 of LNCS, pages 89–105. Springer, Heidelberg, Aug. 1993.

[17] A. Davidson, A. Deo, E. Lee, and K. Martin. Strong post-compromise secure proxy re-
encryption. In Information Security and Privacy (ACISP) 2019, 2019.

[18] D. Derler, S. Krenn, T. Lorünser, S. Ramacher, D. Slamanig, and C. Striecks. Revisiting
proxy re-encryption: Forward secrecy, improved security, and applications. In M. Abdalla
and R. Dahab, editors, PKC 2018, Part I, volume 10769 of LNCS, pages 219–250. Springer,
Heidelberg, Mar. 2018.

[19] A. Everspaugh, R. Chaterjee, S. Scott, A. Juels, and T. Ristenpart. The pythia PRF service. In
24th USENIX Security Symposium (USENIX Security 15), pages 547–562, Washington, D.C.,
2015. USENIX Association.

[20] A. Everspaugh, K. G. Paterson, T. Ristenpart, and S. Scott. Key rotation for authenticated
encryption. In Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III, pages 98–
129, 2017.

[21] W. Ford and B. S. Kaliski Jr. Server-assisted generation of a strong secret from a password. In
9th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE 2000), pages 176–180, Gaithersburg, MD, USA, June 4–16, 2000. IEEE
Computer Society.

[22] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and oblivious pseu-
dorandom functions. In J. Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 303–324.
Springer, Heidelberg, Feb. 2005.

24

http://eprint.iacr.org/2009/340

[23] R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and fact-track multiparty computa-
tions with applications to threshold cryptography. In B. A. Coan and Y. Afek, editors, 17th
ACM PODC, pages 101–111. ACM, June / July 1998.

[24] Google Cloud. Google cloud key management service, 2018. https://cloud.google.com/

kms/.

[25] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or: How to cope
with perpetual leakage. In D. Coppersmith, editor, CRYPTO’95, volume 963 of LNCS, pages
339–352. Springer, Heidelberg, Aug. 1995.

[26] B. A. Huberman, M. K. Franklin, and T. Hogg. Enhancing privacy and trust in electronic
communities. In EC, 1999.

[27] IBM. Ibm key protect, 2018. https://console.bluemix.net/catalog/services/

key-protect.

[28] S. Jarecki, A. Kiayias, and H. Krawczyk. Round-optimal password-protected secret sharing and
T-PAKE in the password-only model. In P. Sarkar and T. Iwata, editors, ASIACRYPT 2014,
Part II, volume 8874 of LNCS, pages 233–253. Springer, Heidelberg, Dec. 2014.

[29] S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. Highly-efficient and composable password-
protected secret sharing (or: how to protect your bitcoin wallet online). In Security and Privacy
(EuroS&P), 2016 IEEE European Symposium on, pages 276–291. IEEE, 2016.

[30] S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. TOPPSS: Cost-minimal password-protected
secret sharing based on threshold OPRF. In D. Gollmann, A. Miyaji, and H. Kikuchi, editors,
ACNS 17, volume 10355 of LNCS, pages 39–58. Springer, Heidelberg, July 2017.

[31] S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. TOPPSS: Cost-minimal password-protected
secret sharing based on threshold OPRF. Cryptology ePrint Archive, Report 2017/363, 2017.
http://eprint.iacr.org/2017/363.

[32] S. Jarecki, H. Krawczyk, and J. Resch. Updatable oblivious key management for storage
systems. In 2019 ACM SIGSAC Conference on Computer and Communications Security
(CCS’19). ACM, 2019.

[33] S. Jarecki and X. Liu. Fast secure computation of set intersection. In J. A. Garay and R. D.
Prisco, editors, SCN 10, volume 6280 of LNCS, pages 418–435. Springer, Heidelberg, Sept.
2010.

[34] Jeff Barr. Amazon S3 – Two Trillion Objects, 1.1 Million Re-
quests / Second, 2013. https://aws.amazon.com/blogs/aws/

amazon-s3-two-trillion-objects-11-million-requests-second/.

[35] M. Klooß, A. Lehmann, and A. Rupp. (R)CCA secure updatable encryption with integrity
protection. In Eurocrypt 2109, 2019.

[36] R. Lai, C. Egger, M. Reinert, S. Chow, M. Maffei, and D. Schröder. Simple password-hardened
encryption services. In 27th USENIX Security Symposium (USENIX Security 18), 2018.

[37] A. Lehmann and B. Tackmann. Updatable encryption with post-compromise security. In
Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018
Proceedings, Part III, pages 685–716, 2018.

25

https://cloud.google.com/kms/
https://cloud.google.com/kms/
https://console.bluemix.net/catalog/services/key-protect
https://console.bluemix.net/catalog/services/key-protect
http://eprint.iacr.org/2017/363
https://aws.amazon.com/blogs/aws/amazon-s3-two-trillion-objects-11-million-requests-second/
https://aws.amazon.com/blogs/aws/amazon-s3-two-trillion-objects-11-million-requests-second/

[38] A. Y. Lindell. Adaptively secure two-party computation with erasures. In M. Fischlin, editor,
Topics in Cryptology – CT-RSA 2009, pages 117–132, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[39] Microsoft. How many cryptographic operations are supported per second with ded-
icated hsm?, 2019. https://docs.microsoft.com/en-us/azure/dedicated-hsm/faq#

performance-and-scale.

[40] Microsoft Azure. Azure key vault, 2018. https://docs.microsoft.com/en-us/azure/

key-vault/key-vault-overview.

[41] M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random functions and KDCs. In
J. Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 327–346. Springer, Heidelberg,
May 1999.

[42] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random func-
tions. In 38th FOCS, pages 458–467. IEEE Computer Society Press, Oct. 1997.

[43] OASIS Open. PKCS #11 Cryptographic Token Interface Base Specification Version 2.40,
2015. https://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.

40-os.html.

[44] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks (extended abstract). In
L. Logrippo, editor, 10th ACM PODC, pages 51–59. ACM, Aug. 1991.

[45] A. Patel and M. Yung. Fully dynamic password protected secret sharing, 2017. manuscript.

[46] T. P. Pedersen. A threshold cryptosystem without a trusted party (extended abstract) (rump
session). In D. W. Davies, editor, EUROCRYPT’91, volume 547 of LNCS, pages 522–526.
Springer, Heidelberg, Apr. 1991.

[47] Y. Polyakov, K. Rohloff, G. Sahu, and V. Vaikuntanathan. Fast proxy re-encryption for
publish/subscribe systems. ACM Transactions on Privacy and Security (TOPS), 20, 2017.

[48] K. Sakurai and Y. Yamane. Blind decoding, blind undeniable signatures, and their applications
to privacy protection. In Proceedings of the First International Workshop on Information
Hiding, pages 257–264, London, UK, UK, 1996. Springer-Verlag.

[49] Thales. SafeNet Luna Network HSM, 2019. https://safenet.gemalto.com/resources/

data-protection/luna-sa-network-attached-hsm-product-brief/.

A Proof of the OMDH-IO Assumption in the Generic Group
Model

We sketch the steps for adapting the GGM proof of OMDH from [31] to the OMDH-IO case. As
argued in [31], it suffices to show OMDH security for N =Q+ 1, in which case the upper-bound on
a probability that a GGM adversary solves the OMDH problem in a group of prime order q while
making r group operations and Q queries to the exponentiation oracle (·)k is (Q(2Q + r)2)/q. In
a GGM proof, see Theorem 6 in Appendix A in [31], every group element the adversary obtains
is represented with a (random string assigned to) a polynomial in unknowns (u1, ..., uN , k) for
ui = DL(g, gi). Group multiplications or divisions correspond to, respectively, adding or subtracting
such polynomials, and querying oracle (·)k on a group element corresponds to multiplying the
corresponding polynomial by k.

26

https://docs.microsoft.com/en-us/azure/dedicated-hsm/faq#performance-and-scale
https://docs.microsoft.com/en-us/azure/dedicated-hsm/faq#performance-and-scale
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://safenet.gemalto.com/resources/data-protection/luna-sa-network-attached-hsm-product-brief/
https://safenet.gemalto.com/resources/data-protection/luna-sa-network-attached-hsm-product-brief/

The proof argues that the only way the adversary can win is either if some two different poly-
nomials it creates have equal values on random inputs (u1, ..., uN , k), or that the group elements it
outputs correspond to polynomials k·u1, . . . , k·uN . The latter case is easily seen as impossible for an
adversary which can has only Q=N − 1 accesses to the “multiply-a-polynomial-by-k” oracle (·)k,
while the upper-bound on the probability of the first case comes from the fact that there are at most
2Q + r polynomials, each one has at most degree Q in k (and linear in variables u1, . . . , uN), and
the fact that a non-zero Q-degree polynomial can have at most Q roots, hence each pair of different
polynomials can evaluate to the same value on random exponent (u1, ..., uN , k) with probability at
most Q/q. If the GGM adversary in addition makes t queries to the inverse-exponentiation oracle
(·)1/k, each query multiplies the corresponding polynomial by k−1, and the resulting polynomials,
after multiplying all of them by kt, can be thought of as polynomials of degree at most Q+t instead
of Q. Thus by the same argument, the upper-bound on the probability of GGM adversary to solve
all N = Q+ 1 challenges is bounded by (Q+ t)(2Q+ t+r)2/q. Note that r >> max(Q, t) in typical
applications, including our UOKMS scheme, hence this bound can be approximated as (Q+ t)r2/q.

27

	Introduction
	Comparison to previous work

	Updatable Oblivious KMS
	Oblivious Key Management System
	Updatable OKMS

	Security Model for Updatable Oblivious KMS
	Formal UOKMS Scheme
	UOKMS obliviousness and security

	Security Analysis of the UOKMS Scheme
	Proof of Theorem 3

	Threshold OKMS and UOKMS
	Distributed Updates
	Verifiable Threshold (U)OKMS

	Implementation and Performance
	Proof of the OMDH-IO Assumption in the Generic Group Model

