
Towards Quantum-Safe VPNs and Internet
Maran van Heesch∗ Niels van Adrichem∗ Thomas Attema∗† Thijs Veugen∗†

∗TNO
the Hague, the Netherlands

Email: firstname.lastname@tno.nl

†CWI
Amsterdam, the Netherlands

Abstract—Estimating that in 10 years time quantum com-
puters capable of breaking public-key cryptography currently
considered safe could exist, this threat is already eminent for
information that require secrecy for more than 10 years. Con-
sidering the time required to standardize, implement and update
existing networks signifies the urgency of adopting quantum-safe
cryptography.

In this work, we investigate the trade-off between network
and CPU overhead and the security levels defined by NIST. To
do so, we integrate adapted OpenSSL libraries into OpenVPN,
and perform experiments on a large variety of quantum-safe
algorithms for respectively TLS versions 1.2 and 1.3 using
OpenVPN and HTTPS independently. We describe the difficulties
we encounter with the integration and we report the experimental
performance results, comparing setting up the quantum-safe
connection with setting up the connection without additional post-
quantum cryptography.

I. INTRODUCTION

Research in the field of quantum computing is progressing,
the first computational operations can already be performed
on actual qubits and the first small gated quantum computer
is commercially available [1]. For a specific computational
task the first experimental realisation of quantum supremacy
has been achieved [2]. This new paradigm for computing
is expected to allow us to solve (computational) problems
that are currently deemed infeasible to solve on traditional
(super) computers. Unfortunately, some of the mathematical
problems that become solvable with quantum computers form
the basis of many cryptographic primitives that we use today
to protect the confidentiality, authenticity and integrity of data
transmitted over the Internet. More specifically, nearly all
approaches for public-key cryptography currently in use (e.g.,
RSA and Elliptic Curve Cryptography) are vulnerable to a
quantum-computer attack. This is due to Shor’s algorithm [3],
which can be used to solve the factoring and the Discrete Log
problem used in public-key cryptography in polynomial time.

Experts say it is likely that a quantum computer capable of
breaking 2048-bit RSA encryption in a matter of hours can be
built by 2030 [4]. Even though the availability of a quantum
computer for practical cryptographic attacks is still one or two
decades in the future, we need to develop and adopt quantum-
safe alternatives, being post-quantum cryptographic primitives.
Malicious actors can already intercept and store large amounts
of encrypted traffic, and wait for the availability of quantum
computers to decrypt the traffic at a later time. Additionally,
the standardization of post-quantum cryptographic protocols

is a process that takes at least until late 2020 [5], and it will
take even more time before hardware and software have been
updated (or replaced) to comply with these new standards.
Hence, the threat of quantum computers already needs to be
taken into account when sharing sensitive information which
needs to be kept secret beyond 2030, while the window
for a smooth transition towards quantum-safe cryptographic
protocols is narrowing [6].

One of the problems that is encountered in the transition
from one cryptographic primitive to another is that primitives
are not plug-and-play. A large number of devices need to
be upgraded to achieve mass compatibility, often requiring
replacement of hardware appliances. Furthermore, the mathe-
matical problems used in the new post-quantum primitives are
more complex than the factoring and Discrete Log problem. In
general, the use of post-quantum primitives results in increased
CPU usage and larger key sizes, leading to additional use of
network resources. In order to prepare for the adoption of
post-quantum cryptography, it is not only important to consider
post-quantum cryptography as a stand alone primitive, but also
to investigate the requirements that the use of it poses on our
digital infrastructures and communication networks.

In this work, we investigate the impact of implementing
post-quantum cryptographic protocols in OpenVPN [7] and
OpenSSL [8], and study the performance and various trade-
offs to be made when selecting one of many available post-
quantum primitives. OpenVPN is a commonly used open-
source software suite used to set up secure VPN connections.
In this work OpenVPN is considered to be an end-to-end
secure communication link, but OpenVPN can be used to
construct large, advanced network topologies.

We describe how OpenVPN and OpenSSL can be config-
ured to establish quantum-safe connections in section II, con-
sidering both post-quantum key exchange and post-quantum
authentication. In section III a performance analysis on various
(quantum-safe) cryptographic ciphers with TLS 1.2 [9] on
OpenVPN and TLS 1.3 [10] independently is presented, and
the effects of using post-quantum cryptography compared to
current state-of-the-art cryptography are quantified. Related
work is presented in Section IV.

1Using the “recommended” parameter set.
2Using the EES743EP1 parameter set.
3Newhope is an improved version of rlwe-bcns15 presented.



TABLE I
PQ-KEX AND PQ-SIGN SCHEMES SUPPORTED BY OQS-OPENSSL IN TLS 1.2 AND CURRENTLY CONSIDERED BY NIST

Cipher NIST Conventional or PQ-KEX Hybrid KEX with ECDHE
PQ-KEX Type Security Level Contestant Bytes transmitted Nb. of instructions Bytes transmitted Nb. of instructions
ECDHE [11] 7289 26710360 Not applicable Not applicable
frodo1 [12] Lattice 130 bits (L1) Yes 30326 35931344 30509 36802746
ntru2 [13] Lattice 159 bits (L1) Merged 9195 39295256 9378 40152096
rlwe-bcns15 [14] Lattice 78 bits Renewed3 15646 35996687 15829 36872509
rlwe-msrln16 [15] Lattice 128 bits (L1) Merged4 11054 27006717 11237 27886168
newhope [16] Lattice 128 bits (L1) Yes 11054 26963921 11237 27861721
sidh [17] Isogeny 128 bits (L1) Sike only 7866 568167669 8049 569050654
PQ-SIGN
picnic [18] Hash 128 bits (L1) Yes
frodo+picnic Combined 23218 150150465 232352 151022835
rlwe-msrln16+picnic Combined 212952 141301962 213172 142235675
sidh+picnic Combined 209748 682411927 209911 683303939

II. IMPLEMENTATION

In this paper, we consider 2 different test cases and a variety
of (quantum-safe) ciphers. Our scenario comprises a 1-to-
1 setup, considering two distinct networks or hosts that are
connected via a single encrypted connection. Although a lim-
ited setup, our results can be extrapolated to larger networks
for larger quantitative analysis. Both test cases consider the
Transport Layer Security (TLS) protocol as communication
protocol to set up and maintain the encrypted communication
channel. TLS is well-known and commonly used when pro-
tecting web traffic, e-mail services and VPN services such as
HTTPS and OpenVPN. In the first test case in Section III,
we use OpenVPN [7] on top of TLS version 1.2 [9] to set
up encrypted connections, since it is a commonly used VPN
solution. In the second test case we use TLS 1.3 [10] with
HTTPS.

A. Post-quantum cryptography implementation

The Open Quantum Safe (OQS) project [19] provides open-
source prototypes implementing many quantum-safe ciphers,
among which candidate ciphers for NIST5[5]. Additionally,
OQS offers a customized version of OpenSSL [20] (OQS-
OpenSSL), an open-source TLS library, offering an exper-
imental SSL library with quantum-safe ciphers. We have
used two branches of the OQS library liboqs, being master
and nist-branch. For use with TLS 1.3 independently, we
used these two branches with OQS-OpenSSL branch OQS-
OpenSSL 1 1 1-stable, while we compiled OpenVPN with
TLS 1.2 against OQS-OpenSSL from branch OpenSSL 1 0 2.
We have evaluated both quantum-safe key exchange protocols
(PQ-KEX) and signature schemes (PQ-SIGN), as well as
combined (PQ-SIGN and PQ-KEX) and hybrid solutions.

Hybrid solutions imply the use of both quantum-safe and
quantum-unsafe protocols to further elevate the security level.
Many cryptographic vulnerabilities lie in their implementa-
tions. Conventional quantum-unsafe schemes have historic

4The scheme rlwe-msrln16 contains improvements to the number theoretic
transform used in newhope. These changes were later added to newhope,
making the two schemes very similar.

5We did not validate the correctness and security of these cryptographic
implementations.

track records of implementation vulnerabilities and their solu-
tions. Hence, combining a conventional quantum-unsafe cryp-
tographic scheme with a novel quantum-safe scheme assures
that when unexpected implementation vulnerabilities are found
in the quantum-safe scheme one still enjoys the security of the
conventional quantum-unsafe scheme.

When a hybrid key exchange protocol is tested, two cryp-
tographic schemes are executed in parallel, and two TLS pre-
master secrets are determined. The resulting TLS pre-master
secrets are concatenated as input to the key derivation function,
determining the TLS master secret used to derive the keys for
the symmetric cipher and Message Authentication Code.

a) Security level: Additional to testing various PQ-KEX
and PQ-SIGN schemes, we have tested the schemes for various
security levels. NIST has defined five levels of security [21] for
which the cryptographic protocols can have a parameter set,
being: any attack that breaks the relevant security definition
must require computational resources comparable to, or greater
than, those required for:

L1 key search on a block cipher with a 128-bit key
(e.g. AES128 on a conventional computer),

L2 collision search on a 256-bit hash function (e.g.
SHA256/ SHA3-256 on a conventional computer),

L3 key search on a block cipher with a 192-bit key
(e.g. AES192 on a conventional computer),

L4 collision search on a 384-bit hash function (e.g.
SHA384/ SHA3-384 on a conventional computer),

L5 key search on a block cipher with a 256-bit key
(e.g. AES 256 on a conventional computer).

These five levels are reconsidered in a quantum world, where
an adversary has access to a quantum computer. For each cryp-
tographic cipher, multiple parameter sets have been selected
in order to satisfy various security levels. We have indicated
the security level per cryptographic protocol considered in the
experiments in tables I and II.

b) Algorithms used in OpenVPN with TLS 1.2: The
implementations of the cryptographic ciphers that we consider
in our experiment using OpenVPN with TLS 1.2 are listed in
Table I. Additionally, we mention the class of assumptions on
which the cryptographic protocols are based. Additionally, we



OpenVPN-Endpoint1

OpenVPN-Endpoint2

Host1 Host2

Mgmt-only Mgmt-only

.9.9 .13.10

.136.111 .141.123

Fig. 1. Experiment topology

mention whether the cipher reached the second round of NIST
standardization, or has been merged into another cipher.

Key exchanges are by default executed with an RSA au-
thentication of 2048 bits or with picnic authentication when
denoted. Picnic authentication is only supported in combina-
tion with frodo, rlwe-msrln16 and sidh key exchanges. All key
exchanges, including those with picnic, have been executed in
both native and hybrid mode with ECDHE. After key exchange
and authentication all connections use a symmetric cipher with
AES 256-bit encryption, which is considered quantum-safe on
its own offering 128 bits of security in a quantum world, in
Galois/Counter Mode of operation with a SHA-384 hash for
the key expansion function and message authentication.

c) Algorithms in TLS 1.3 independently: Instead of using
OpenVPN with TLS 1.2, for TLS 1.3 we have used the
OpenSSL [8] s server and s client applications to set up
connections and measure CPU and network overhead for
HTTPS-alike connections. The OQS branches for TLS 1.3
support more candidate ciphers considered by NIST. In Table
II we list all schemes implemented by OQS that are still
considered by NIST and evaluated in our work. For each
algorithm, we mention the class of assumptions on which
the cryptographic protocols are based, their respective NIST
security levels, and denote their parameter sets or names
specific to that security level.

We note that there are more cryptographic schemes still
under consideration for standardisation by NIST than currently
available in OQS, those are not considered in this work.

B. Hardware

The experimental setup is realized on our private cloud
environment based on OpenStack. On our cloud, a quantum-
safe OpenVPN and OpenSSL testbed has been created by
reserving resources and creating internal and public networks
representing trusted and untrusted networks, respective to
red-black architectures where red networks represent trusted
plaintext (unencrypted) networks and black networks represent
untrusted networks over which solely encrypted information is
transmitted.

Figure 1 represents the topology in the cloud environment.
The internal networks 1 and 2 are networks internal to
respectively hosts 1 and 2 and routers OpenVPN-Endpoints
1 and 2. The routers OpenVPN-Endpoint 1 and 2 connect
to each other through the public network, which is considered

TABLE II
PQ-KEX AND PQ-SIGN SCHEMES USING TLS 1.3 SUPPORTED BY

OQS-OPENSSL AND CURRENTLY CONSIDERED BY NIST

PQ-KEX Type Security levels and parameters
bike [22] Codes L1 L3 L5
frodo [12] Lattice L1 (640) L3 (976)
kyber [23] Lattice L1 (512) L3 (768) L5 (1024)
ledakem [24] Codes L1 (C1) L3 (C3) L5 (C5)
newhope [16] Lattice L1 (512) L5 (1024)
saber [25] Lattice L1 (Light) L3 L5 (Fire)
sike [26] Isogeny L1 (p503) L3 (p751)
PQ-SIGN
Picnic [18] Hash L1 L3 L5
Qtesla [27] Lattice L1 (I) L3 (III)

unsafe for data distribution, and set up a secure communication
channel represented as network OpenVPN. Through routers
OpenVPN-Endpoint 1 and 2, hosts 1 and 2 can communicate
securely. Additionally, we connected hosts 1 and 2 directly to
the public network for management purposes of our experi-
ment. In a production network these management interfaces
require additional security measures.

Both hosts and routers are running on virtual machines
with two virtually assigned CPUs of the x86-64 processor
architecture, 2 GB RAM and 20 GB of disk space, hypervisors
are interconnected through 2 aggregated network links of 10
Gbps each.

C. Implementation challenges

Although OQS already offers a customized version of
OpenSSL that works with most of the algorithms out of the
box (OQS-OpenSSL), we had to implement a few changes to
both OpenSSL and OpenVPN to acquire a functioning setup.

For TLS 1.2 with OpenVPN we adapted OQS-OpenSSL
branch OpenSSL 1 0 2-stable in the following ways. First, we
compiled OpenSSL with the shared-libraries option enabled to
obtain the Shared Object libraries libpicnic, liboqs, libcrypto
and libssl. Additionally, we increased the internal message
buffer to 4 times the size of its initial maximum length,
to prevent the connection set-up from failing as the larger
picnic certificates did originally not fit within the internal
message buffer. Finally, we adapted OpenVPN to include
the new Shared Object libraries liboqs and libpicnic and
replaced libssl and libcrypto with the adapted versions and
compiled OpenVPN accordingly. This resulted in a version of
OpenVPN integrating OQS-OpenSSL and enabled us to use
quantum-safe cryptography in OpenVPN. Although we solved
these practical burdens to set up the encryption channels, we
remained experiencing problems running specifically McBits
[28] key exchange and sidh key exchange using its initial ref-
erence implementation, the sidh implementation by Microsoft
Research Labs did function. Hence, we have not been able to
evaluate McBits and the reference implementation of sidh for
OpenVPN with TLS 1.2.

For TLS 1.3 with HTTPS, we were able to acquire a func-
tioning setup by following the readme instructions of OQS-
OpenSSL branch OQS-OpenSSL 1 1 1-stable. The biggest



ECDHE

frodo

ntru

rlwe-bcns15

rlwe-msrln16

newhope

sidh

frodo-picnic
msrln16-picnic

sidh-picnic

0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

800000000

0 50000 100000 150000 200000 250000

N
b

. o
f 

C
P

U
 In

st
ru

ct
io

n
s

L4-Network Usage (bytes)

Fig. 2. Performance evaluation of PQ-KEX and PQ-SIGN using TLS 1.2 with default parameters of OQS-OpenSSL branch OpenSSL 1 0 2-stable.

difference is that this branch requires to compile liboqs man-
ually for either its master or nist-branch branches, depending
on the algorithms we needed to evaluate, whereas with TLS
1.2 compiling liboqs was included in the process.

Finally, we set up independent Public Key Infrastructures
(PKI) for individual iteration in the experiments in Section
III and cipher. For TLS 1.2 we set up PKIs based on 2048-
bit RSA certificates and PKIs based on picnic authentication
through “openssl x509” commands. For each PKI we created
a self-signed Certificate Authority (CA), which signed two
certificates to be used by the endpoints, all signed using either
RSA or picnic. Picnic signatures exist of a SHA512 hash of
the certificate input, which is private-key encrypted by picnic.
For TLS 1.3 we also set up PKIs for each authentication
algorithm, albeit that this version supports more authentication
algorithms.

III. EXPERIMENT AND RESULTS

Quantifying the impact of post-quantum cryptography in
(large) communication networks can be done in various ways.
Aspects of network traffic that can be measured are net-
work usage (packet and byte counters), throughput, delay,
jitter, packet loss and out-of-order packet delivery. On the
client/server side, CPU load and memory usage can be ob-
served.

In this section, we describe how we determined the impact
of post-quantum cryptography on our experiment setup and
experimental results are discussed.

A. Experiment scenario

As far as we currently know the main threat of the quantum
computer lies in the use of public-key cryptography. We deter-
mined that the start-up phase of an encrypted communication
channel is hence the most relevant to evaluate. To do so, we
have performed the following actions. For OpenVPN with
TLS 1.2, we automatically set up an OpenVPN connection
from endpoints 1 to 2 (see Figure 1), submit four ICMP
echo requests [29], log the resulting ICMP echo replies to
confirm VPN connectivity, and break down the connection

again. During the life-span of the iteration, we capture all
OpenVPN traffic between the VPN endpoints using tcpdump
and gather performance profiling statistics using perf. This
process is repeated 100 times for each cipher.

For TLS 1.3 we use a similar approach, except that we
use TLS 1.3 independent from OpenVPN and respectively run
OpenSSL’s s server and s client applications on endpoints 1
and 2 (see Figure 1) to set up an encrypted HTTPS channel,
and send a 24-byte message for each iteration of each cipher.

The scenario is executed on our private OpenStack-based
cloud, described in section II-B. Due to the shared nature of a
virtualized environment, potential spatiotemporal inaccuracies
are more likely to occur. Besides repeating the procedure 100
times for every described cipher, we execute each cipher once
at every iteration instead of running the ciphers 100 times
sequentially to enable us to detect such cross-talk with other
users of the cloud.

The experiments provide ample metrics to evaluate. Where
perf already provides aggregated statistics for each iteration
and cipher, we used tshark to analyze the traces from tcpdump
and generate statistics such as OSI-Layer 2 to 4 frame and
payload lengths and packet counters. We used the number of
issued CPU instructions as an indication for the computational
complexity, and the number of bytes sent and transmitted by
OpenVPN or OpenSSL (OSI Layer 4 payload) as a measure
for the network overhead.

We decided to use the more abstract metric of CPU in-
structions instead of a more detailed metric such as CPU
cycles, since the actual amount of consumed CPU cycles is
influenced by which optimizations are implemented in the used
processor. Instruction execution optimizations, parallelization,
pipelining and branch predictioning influence the efficiency of
execution by the processor and hence the actual number CPU
cycles used. Hardware appliances tend to have even greater
improvements due to the use of application-specific processors
instead of general-purpose processors. Taking into account
that we aim to give an overview that is useful for devices
ranging from simple embedded processors, to general-purpose



ECDHE

sike503

frodo640aes

frodo640cshake

bike1l1

bike2l1

bike3l1

newhope512cca

kyber512

ledakem_C1_N02
ledakem_C1_N03

ledakem_C1_N04

saber_light_saber

sike751

frodo976aes

frodo976cshake
bike1l3

bike2l3

bike3l3

kyber768
ledakem_C3_N02

ledakem_C3_N03

ledakem_C3_N04

saber_saber

bike1l5

bike2l5 bike3l5

newhope1024cca

kyber1024

ledakem_C5_N02

saber_fire_saber

0

500000000

1E+09

1.5E+09

2E+09

2.5E+09

0 5000 10000 15000 20000 25000 30000 35000 40000

N
b

. o
f 

C
P

U
 In

st
ru

ct
io

n
s

L4-Network Usage (bytes)

NIST L1

NIST L3

NIST L5

Fig. 3. Performance evaluation of native and hybrid PQ-KEX using TLS 1.3

computing and application-specific designs and the fact that
there is a high correlation between the number of issued CPU
instructions and consumed cycles, we decided to use the more
abstract number of CPU instructions instead.

B. Results

We split the performance results based on whether they were
achieved through OpenVPN with TLS 1.2, or through OQS-
OpenSSL independently with TLS 1.3. Both results contain
measurements regarding post-quantum key exchange and post-
quantum authentication. Both results also contain hybrid ap-
proaches where a traditional and quantum-safe algorithm are
combined. However, the exact algorithms evaluated depend on
whether they were implemented in OQS-OpenSSL and liboqs.

a) Results with OpenVPN on TLS 1.2: We have measured
the performance results of the start-up phase of OpenVPN
using quantum-safe key exchange ciphers with RSA 2048-bit
authentication, as well as quantum-safe authentication through
the picnic algorithm combined with three compatible key
exchanges. Figure 2 illustrates the network overhead on the
x-axis, compared to the CPU overhead illustrated on the y-
axis.

Additionally, we have repeated measurements for all ciphers
with hybrid key exchange, combining PQ-KEX with ECDHE
for additional security. The experimental results of the hybrid
PQ-KEX are included in Table I. Due to the minimal increase
in overhead hybrid PQ-KEX is omitted in Figure 2 for
readability purposes. The data-point labelled ECDHE is used
as benchmark, as these results come from setting-up the VPN
connection with traditional cryptography.

From Figure 2 it is clear that both the PQ-KEX and PQ-
SIGN perform differently considering their CPU or network
overhead. Sidh has the smallest network overhead, roughly 600
bytes compared to ECDHE, whereas it has by far the largest
CPU overhead, over 21 times more than setting up the VPN
connection without a quantum-safe key exchange. Newhope
has the smallest CPU overhead, with rlwe-msrln16 as a close
second. Both have a network overhead of approximately 1.5

times more than setting up the VPN connection with ECDHE.
The most expensive in terms of network overhead, frodo, has
an overhead increase of approximately factor 4.

Figure 2 illustrates that adding the picnic signature scheme
has a big impact on the set-up time of the quantum-safe VPN.
The network overhead increases up to 26.6 times when using
sidh with or without picnic authentication, while the CPU
overhead increases up to 5.2 times when using rlwe-msrln16
with or without picnic authentication.

b) Results with OpenSSL independently on TLS 1.3:
Instead of working with OpenVPN, this version of TLS has
been evaluated through using HTTPS directly on OpenSSL.

Figure 3 illustrates the overhead of various PQ-KEX al-
gorithms compared to the benchmark of ECDHE. The name
of the implementation describes the parameter option that
is chosen for the instantiation, which is linked to the NIST
security level that is aimed for in Table II. Note that when the
security level increases, the performance of the cryptographic
ciphers decreases. Some ciphers show multiple data points,
this is due to the fact that there are multiple parameter
instances that can be used. Depending on the required security
and allowed infrastructure overhead, a parameter set should be
selected.

Comparing L1 security to the baseline ECDHE implemen-
tation, we observe that the least network overhead is measured
using sike503, as was the case in the earlier experiment where
the (also isogeny-based) sidh (which has a different protocol
structure than sike503) has the smallest network overhead.
The network overhead is 1.3 times larger than using the
benchmark, but in the TLS 1.2 experiment it is only 1.08
times larger. Similar, the CPU overhead is the largest, 34 times
higher. For L1 security, kyber512 [23] and saber light saber
[25] appear to be the most suitable candidates to protect the
TLS connection, as they provide both low CPU and network
overhead.

Comparing L3 security to the baseline ECDHE implemen-
tation, considering only the implementations of the Open
Quantum Safe project, bike and kyber appear to be the most



suitable PQ-KEX for the VPN test case using TLS1.3.
In Figure 4 we illustrate the effect of using quantum-safe

authentication6. There are two parameter sets tested for qtesla
at NIST L3, one optimizing for speed, and one for reducing
the signature size. The qtesla and picnicL1FS schemes have
been tested independently and to show the effect of hybrid con-
nections adding a second, quantum-unsafe, signature protocol.
The quantum-unsafe protocols used in hybrid mode are ECC-
P256, ECC-P384 and RSA-3072. We observed that adding the
elliptic curve signatures does not affect the performance much,
whereas adding RSA-3072 signatures adds a CPU overhead of
61% in the case of picnic and 53% in the case of qteslaI.

IV. RELATED WORK

The need for post-quantum cryptographic primitives has
become apparent and research efforts have grown signifi-
cantly. Moreover, applicability has become an important and
challenging research direction. The vast amount and diversity
of new cryptographic schemes and their parameter selection
clearly indicate the various performance and security trade-offs
that can be made. Post-quantum cryptographic primitives will
most-likely impact current communication infrastructures, for
example by introducing larger keys, failure probabilities, or
an increased computational burden. Important questions about
the implications of real-world implementations thus arise.

In 2016 Google, operating both the client-side (Chrome
browser) and the server-side (various web services), conducted
an experiment in which they secured the communication
channel with the lattice-based scheme newhope [30]. They
reported only a minor increase in latency and concluded that,
in this specific scenario, they “did not find any unexpected
impediment to deploying” [31]. Cloudflare on the other hand
reported a significant increase in computational costs when
integrating an sidh key-exchange protocol in TLS 1.3 [32],
building on the work of Microsoft Research [33]. Yet another
approach was followed by De Vries, who applied the Nieder-
reiter cryptosystem [34] to achieve post-quantum security in
OpenVPN [35]. Since the public keys of the Niederreiter
cryptosystem are too large for standard TLS messages, De
Vries chose to run the the post-quantum key exchange once a
conventional VPN tunnel was set up. Others that have worked
on post-quantum VPN solutions are Microsoft Research [36],
Mullvad [37], Post-Quantum [38] and InfoSec Global [39].

Crockett et al. [40] provide very extensive results on inte-
grating NIST candidates into OpenSSL and OpenSSH, design
considerations and case studies, reporting on work integrating
the liboqs [19] library from the Open Quantum Safe project
into OpenSSL and OpenSSH. Providing extensive test results
whether combinations of cryptographic algorithms and proto-
cols successfully work or not, no quantitative measurements
such as in our experiments are provided.

The above experiments indicate that there does not seem
to be a single post-quantum cryptosystem that is optimal

6The results are obtained using ECDHE to establish a key between client
and server, and therefore the setup is not fully quantum-safe.

in all scenarios. This is further reinforced by NIST’s Post-
Quantum Cryptography Standardization initiative, in which 82
proposals were originally submitted and of which currently
26 (15 PQ-KE and 9 PQ-SIGN) proposals are still under
consideration [5]. In the case that there will only be two
rounds, the first standards will be available by the end of 2020.
Software libraries such as liboqs [19] and libpqcrypto [41] en-
able the performance and security evaluation of these and other
cryptographic schemes. Moreover, they play an important role
in the adaptation of post-quantum cryptography.

V. CONCLUSION

We have implemented and evaluated post-quantum cryptog-
raphy in OpenVPN and over HTTPS using an adapted version
of OpenSSL. Both OpenVPN and HTTPS use TLS to set up
encrypted channels, hence, this evaluation can be considered
to be similar to other software solutions using TLS, such as
secure email transmissions. We experienced that post-quantum
cryptography is not yet plug-and-play, since there are schemes
that do not work without a custom integration due to large key
or signature sizes, such as McBits.

The experimental results show that, based on the chosen
cipher and parameters, there is additional overhead when
using post-quantum cryptography. Basing our statement on the
implementations provided by the Open Quantum Safe project,
saber light saber and kyber512 appear to be the most suitable
candidates to set-up quantum-safe OpenVPN connections, as
they provide both acceptable CPU and network overhead,
and claim NIST L1 security. The schemes saber saber and
kyber768 appear to be the most suitable candidates claiming
NIST L3 security, for similar reasons.

The security of the schemes saber and kyber is based on lat-
tice assumptions, the security of saber is based on the hardness
of module learning with rounding (MLWR) problem and the
security of kyber is based on the hardness of module learning
with errors (MLWE) problem. Both of these problems are
variations or adaptations of the LWE problem. These variations
are introduced to reduce key-sizes and improve efficiency, but
the additional structure in these problems potentially increases
the attack surface. To date, no attacks exploiting this struc-
ture and breaking these schemes has been found. However,
MLWE has only been introduced in 2012 [42] and further
cryptanalysis might be required to strengthen our confidence
in these schemes. This holds for more of the cryptographic
protocols considered by NIST. Therefore it is currently not
advised to only use a post-quantum scheme but to combine it
with one of the current standards such as RSA and ECDHE.
We show that, in general, hybrid operation of quantum-safe
and conventional cryptography is efficient in terms of network
and CPU overhead and thus provides additional security at low
cost.

The results presented in this work are subjected to change
when cryptographic implementations are updated. Perfor-
mance could become better in terms of CPU usage once the
code is written more efficiently, and network load can change
due to different parameter selection.



picnicL1FS

qteslaI

p256_picnicL1FS

rsa3072_picnicL1FS

p256_qteslaI

rsa3072_qteslaI

qteslaIIIsize

qteslaIIIspeed

p384_qteslaIIIsize

p384_qteslaIIIspeed

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

0 10000 20000 30000 40000 50000 60000 70000 80000

N
b

. o
f 

C
P

U
 In

st
ru

ct
io

n
s

L4-Network Usage (bytes)

NIST L1

NIST L3

Fig. 4. Performance evaluation of native and hybrid PQ-SIGN using TLS 1.3

ACKNOWLEDGMENT

The authors would like to thank Jacco van Buuren for
insightful discussions and technical assistance.

REFERENCES

[1] “IBM Unveils World’s First Integrated Quantum Computing System for
Commercial Use.” [Online]. Available: https://newsroom.ibm.com/2019-
01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-
System-for-Commercial-Use#assets all

[2] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett,
Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth,
E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff,
K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho,
M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey,
Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh,
A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero,
D. Lyakh, S. Mandrà, J. R. McClean, M. McEwen, A. Megrant,
X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley,
C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana,
E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger,
V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher,
B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven,
and J. M. Martinis, “Quantum supremacy using a programmable
superconducting processor,” Nature, vol. 574, no. 7779, pp. 505–510,
2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1666-5

[3] P. W. Shor, “Polynominal time algorithms for discrete logarithms and
factoring on a quantum computer,” in Algorithmic Number Theory, First
International Symposium, ANTS-I, 1994.

[4] L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and
D. Smith-Tone, “Report on post-quantum cryptography,” NIST, Tech.
Rep., April 2016, NIST Interagency/Internal Report (NISTIR) - 8105.

[5] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, Y.-K.
Liu, C. Miller, D. Moody, R. Peralta, R. Perlner, A. Robinson, and
D. Smith-Tone, “Status report on the first round of the nist post-quantum
cryptography standardization process,” NIST, Tech. Rep., January 2019,
NIST Interagency/Internal Report (NISTIR) - 8240 .

[6] M. Campagne et al., “Quantum Safe Cryptography and Security,”
ETSI, Tech. Rep., June 2015. [Online]. Available: http://www.etsi.org/
images/files/ETSIWhitePapers/QuantumSafeWhitepaper.pdf

[7] “OpenVPN.” [Online]. Available: https://openvpn.net/
[8] “OpenSSL.” [Online]. Available: https://www.openssl.org/
[9] E. Rescorla and T. Dierks, “The Transport Layer Security (TLS)

Protocol Version 1.2,” RFC 5246, Aug. 2008. [Online]. Available:
https://rfc-editor.org/rfc/rfc5246.txt

[10] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.3,” RFC 8446, Aug. 2018. [Online]. Available: https://rfc-editor.org/
rfc/rfc8446.txt

[11] B. Moeller, N. Bolyard, V. Gupta, S. Blake-Wilson, and C. Hawk,
“Elliptic Curve Cryptography (ECC) Cipher Suites for Transport
Layer Security (TLS),” RFC 4492, May 2006. [Online]. Available:
https://rfc-editor.org/rfc/rfc4492.txt

[12] J. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko,
A. Raghunathan, and D. Stebila, “Frodo: Take off the ring! practical,
quantum-secure key exchange from lwe,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2016, pp. 1006–1018.

[13] J. Hoffstein, J. Pipher, and J. H. Silverman, “Ntru: A ring-based
public key cryptosystem,” in International Algorithmic Number Theory
Symposium. Springer, 1998, pp. 267–288.

[14] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila, “Post-quantum key
exchange for the tls protocol from the ring learning with errors problem,”
in 2015 IEEE Symposium on Security and Privacy. IEEE, 2015, pp.
553–570.

[15] P. Longa and M. Naehrig, “Speeding up the number theoretic transform
for faster ideal lattice-based cryptography,” in International Conference
on Cryptology and Network Security. Springer, 2016, pp. 124–139.

[16] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-quantum
key exchange—a new hope,” in 25th {USENIX} Security Symposium
({USENIX} Security 16), 2016, pp. 327–343.

[17] C. Costello, P. Longa, and M. Naehrig, “Efficient algorithms for su-
persingular isogeny diffie-hellman,” in Annual International Cryptology
Conference. Springer, 2016, pp. 572–601.

[18] M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rech-
berger, D. Slamanig, and G. Zaverucha, “Post-quantum zero-knowledge
and signatures from symmetric-key primitives,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2017, pp. 1825–1842.

[19] “Open Quantum Safe - liboqs.” [Online]. Available: https://github.com/
open-quantum-safe/liboqs

[20] “Open Quantum Safe - OpenSSL.” [Online]. Available: https:
//github.com/open-quantum-safe/openssl

[21] “Submission Requirements and Evaluation Criteria for the Post-
Quantum Cryptography Standardization Process,” 2016, NIST. [Online].
Available: https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/call-for-proposals-final-dec-2016.pdf

[22] N. Aragon, P. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville,
P. Gaborit, S. Gueron, T. Guneysu, C. A. Melchor et al., “Bike: bit flip-
ping key encapsulation,” Proposal to NIST Standardization Competition.,
2017.

[23] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS-Kyber: a CCA-
secure module-lattice-based KEM,” in 2018 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 2018.

[24] M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini,
“Ledakem: a post-quantum key encapsulation mechanism based on qc-
ldpc codes,” in International Conference on Post-Quantum Cryptogra-
phy. Springer, 2018, pp. 3–24.

https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use#assets_all
https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use#assets_all
https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use#assets_all
https://doi.org/10.1038/s41586-019-1666-5
http://www.etsi.org/images/files/ETSIWhitePapers/QuantumSafeWhitepaper.pdf
http://www.etsi.org/images/files/ETSIWhitePapers/QuantumSafeWhitepaper.pdf
https://openvpn.net/
https://www.openssl.org/
https://rfc-editor.org/rfc/rfc5246.txt
https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc4492.txt
https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/openssl
https://github.com/open-quantum-safe/openssl
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf


[25] J.-P. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren, “Saber:
Module-LWR based key exchange,CPA-secure encryption and CCA-
secure KEM,” in International Conference on Cryptology in Africa.
Springer, 2018.

[26] R. Azarderakhsh, M. Campagna, C. Costello, L. Feo, B. Hess, A. Jalali,
D. Jao, B. Koziel, B. LaMacchia, P. Longa et al., “Supersingular
isogeny key encapsulation,” Submission to the NIST Post-Quantum
Standardization project, 2017.

[27] E. Alkim, P. S. Barreto, N. Bindel, P. Longa, and J. E. Ricardini, “The
lattice-based digital signature scheme qtesla.” IACR Cryptology ePrint
Archive, vol. 2019, p. 85, 2019.

[28] N. Sendrier, “Code-based cryptography: State of the art and perspec-
tives,” IEEE Security & Privacy, vol. 15, no. 4, pp. 44–50, 2017.

[29] J. Postel, “Internet Control Message Protocol,” RFC 792, Sep. 1981.
[Online]. Available: https://rfc-editor.org/rfc/rfc792.txt

[30] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-quantum
Key Exchange - A New Hope,” in 25th USENIX Security Symposium
(USENIX Security 16), 2016.

[31] A. Langley, “CECPQ1 results,” Nov. 2016. [Online]. Available:
https://www.imperialviolet.org/2016/11/28/cecpq1.html

[32] H. de Valence, “SIDH in Go for Quantum-Resistant TLS 1.3,” Sep.
2017. [Online]. Available: http://blog.cloudflare.com/sidh-go/

[33] C. Costello, P. Longa, and M. Naehrig, “Efficient algorithms for super-
singular isogeny diffie-hellman,” in Advances in Cryptology - CRYPTO
2016 - 36th Annual International Cryptology Conference. Springer,
2016.

[34] H. Niederreiter, “Knapsack-type cryptosystems and algebraic coding

theory,” Problems of Control and Information Theory, vol. 15, no. 2,
pp. 159–166, 1986.

[35] S. de Vries, “Achieving 128-bit Security against Quantum Attacks
in OpenVPN,” Master’s thesis, University of Twente, August 2016.
[Online]. Available: http://essay.utwente.nl/70677/

[36] H. Easterbrook, K. Kane, B. LaMacchia, D. Shumow, and G. Zaverucha,
“Post-quantum Cryptography VPN,” 2018. [Online]. Available: https:
//www.microsoft.com/en-us/research/project/post-quantum-crypto-vpn/

[37] Mullvad, “Introducing a post-quantum VPN, Mullvad’s strat-
egy for a future problem,” Dec. 2017. [Online]. Avail-
able: https://mullvad.net/nl/blog/2017/12/8/introducing-post-quantum-
vpn-mullvads-strategy-future-problem/

[38] Post-Quantum, “VPN,” 2018. [Online]. Available: https://www.post-
quantum.com/vpn/

[39] Infosec Global, “VPN Solution Empowered with Agile Cryptography,”
2018. [Online]. Available: https://www.infosecglobal.com/solutions/
network-protection/agilesec-vpn

[40] E. Crockett, C. Paquin, and D. Stebila, “Prototyping post-quantum and
hybrid key exchange and authentication in tls and ssh,” Cryptology
ePrint Archive, Report 2019/858, 2019, https://eprint.iacr.org/2019/858.

[41] PQCRYPTO project, “Libpqcrypto,” 2018. [Online]. Available: http:
//libpqcrypto.org/index.html

[42] A. Langlois and D. Stehlé, “Worst-case to average-case reductions for
module lattices,” Designs, Codes and Cryptography, vol. 75, no. 3, pp.
565–599, 2015.

https://rfc-editor.org/rfc/rfc792.txt
https://www.imperialviolet.org/2016/11/28/cecpq1.html
http://blog.cloudflare.com/sidh-go/
http://essay.utwente.nl/70677/
https://www.microsoft.com/en-us/research/project/post-quantum-crypto-vpn/
https://www.microsoft.com/en-us/research/project/post-quantum-crypto-vpn/
https://mullvad.net/nl/blog/2017/12/8/introducing-post-quantum-vpn-mullvads-strategy-future-problem/
https://mullvad.net/nl/blog/2017/12/8/introducing-post-quantum-vpn-mullvads-strategy-future-problem/
https://www.post-quantum.com/vpn/
https://www.post-quantum.com/vpn/
https://www.infosecglobal.com/solutions/network-protection/agilesec-vpn
https://www.infosecglobal.com/solutions/network-protection/agilesec-vpn
https://eprint.iacr.org/2019/858
http://libpqcrypto.org/index.html
http://libpqcrypto.org/index.html

	Introduction
	Implementation
	Post-quantum cryptography implementation
	Hardware
	Implementation challenges

	Experiment and results
	Experiment scenario
	Results

	Related Work
	Conclusion
	References

