
Fast Secrecy Computation with Multiplication Under the
Setting of k≤N<2k-1 using Secret Sharing Scheme

Keiichi Iwamura1 and Ahmad Akmal Aminuddin Mohd Kamal2

1 Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585 JAPAN
iwamura@ee.kagu.tus.ac.jp

2 Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585 JAPAN
ahmad@sec.ee.kagu.tus.ac.jp

Abstract. In this paper, we describe two new protocols for secure secrecy com-
putation with information theoretical security against the semi-honest adversary
and the dishonest majority. Typically, unconditionally secure secrecy computa-
tion using the secret sharing scheme is considered impossible under the setting
of 𝒏 < 𝟐𝒌 − 𝟏. Therefore, in our previous work, we first took the approach of
finding conditions required for secure secrecy computation under the setting of
𝒏 < 𝟐𝒌 − 𝟏 and realized a new technique of conditionally secure secrecy com-
putation. We showed that secrecy computation using a secret sharing scheme can
be realized with a semi-honest adversary with the following three preconditions:
(1) the value of a secret and a random number used in secrecy multiplication does
not include 0; (2) there is a set of shares on 1 that is constructed from random
numbers that are unknown to the adversary; and (3) in secrecy computation in-
volving consecutive computation, the position of shares in a set of shares that are
handled by each server is fixed. In this paper, we differentiate the relationship
between the parameter 𝒏 of (𝒌, 𝒏)-threshold secret sharing scheme and 𝑵 of the
number of servers/parties, and realize secrecy computation of multiplication un-
der the setting of 𝒌 ≤ 𝑵 < 𝟐𝒌 − 𝟏. In addition, we improve the processing speed
of our protocol by dividing the computation process into a Preprocessing Phase
and a Computation Phase and shifting the cost for communication to the Prepro-
cessing Phase. This technique allows for information that does not depend on
any of the private values, to be generated in advance and significantly reduce the
cost of communication in the Computation Phase. For example, for secrecy com-
putation without repetition, the cost for communication can be totally removed
in the Computation Phase. As a result, we realize the method for secrecy compu-
tation that is faster compared to conventional methods. In addition, our protocols
provided solutions for the aforementioned three preconditions and realize secure
secrecy computation without any limitation in terms of usability.

Keywords: secrecy computation, multiparty computation, secret sharing, n<2k-
1, information-theoretically secure, fast computation

2

1 Introduction

1.1 Background

In recent years, with the improvement of big data and the internet of things (IoT), there
is high anticipation regarding technology that could make use of an individual’s infor-
mation. However, there is still concern among individuals about the privacy, security,
and confidentiality of their information. Therefore, as a measure to solve this problem,
there is a need for technology that allows for their information to be used without re-
vealing anything about their privacy. One of the available technologies that could per-
mit this is called secrecy computation or multiparty computation. In the setting of se-
cure secrecy computation, a set of parties with private inputs wish to compute a joint
function of their inputs, without revealing anything but the output. Protocols for secure
secrecy computation guarantee privacy (meaning that the protocol reveals nothing but
the output), correctness (meaning that the correct function is computed), and more.
These security guarantees are provided in the presence of two types of adversary mod-
els: semi-honest (where the adversary follows the protocol specification but may try to
learn more than allowed from the protocol) and malicious (where the adversary can run
any arbitrary polynomial-time attack strategy). In the information theoretic model, se-
curity is obtained even in the presence of computationally unbounded adversaries. In
contrast, in the computational model, security is obtained in the presence of polyno-
mial-time adversaries and relies on cryptographic hardness assumptions.

There are three main approaches for constructing secure secrecy computation proto-
cols:

─ Secret sharing approach [1, 5, 9, 11, 12, 16, 19, 20, 22]
─ Homomorphic encryption approach [4, 7, 8, 13, 14, 21]
─ Garbled circuit approach [3, 24].

However, homomorphic encryption is known to be costly in term of computational cost.
Therefore, approaches with lower computational cost are preferable to homomorphic
encryption when considering utilization in a cloud system. On one hand, the garbled
circuit approach yields protocols with a constant number of rounds, therefore, outper-
forming secret sharing based protocols, which have a number of rounds that is linear in
the depth of the circuit being computed in high-latency networks. On the other hand,
protocols based on secret sharing typically have low bandwidth, and given that band-
width is often a bottleneck, it follows that protocols with low communication have the
potential to achieve much higher throughput. Note that the secret sharing approach typ-
ically relies on simple operations making them fast. However, as far as we know, no
protocols achieve low communication while realizing information theoretical security
under the setting of 𝑛 < 2𝑘 − 1. From now on, 𝑛 < 2𝑘 − 1 means 𝑘 ≤ 𝑛 < 2𝑘 − 1.

1.2 Our Results

Our approach to achieving an information theoretical secure secrecy computation was
using the secret sharing scheme. The secret sharing scheme is a method in the field of

3

cryptography for data encryption, in which a single data is divided into multiple shares,
which are then distributed to multiple users. A known example of a secret sharing
scheme is Shamir’s (𝑘, 𝑛) threshold secret sharing scheme [17]. In this scheme, a secret
𝑠 is divided into 𝑛 number of shares. The original secret 𝑠 could only be reconstructed
or retrieved from a threshold 𝑘 number of shares. That is, any 𝑘 − 1 or smaller number
of shares reveals nothing about the original secret. However, there are a few major
challenges. Secure computation using a secret sharing scheme can perform secrecy ad-
dition and subtraction easily. However, this is not so in the case of secrecy multiplica-
tion, where the degree of a polynomial changes from 𝑘 − 1 to 2𝑘 − 2 for each multi-
plication of polynomials. To restore the multiplication result, the number of shares re-
quired increases from 𝑘 to 2𝑘 − 1. This problem was solved by Shingu et al. through
the TUS1 method [19], where the secret is first encrypted with a random number. When
performing secrecy multiplication, the encrypted secret is momentarily restored as a
scalar value and multiplication is realized using the (𝑠𝑐𝑎𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒 × 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙) ap-
proach to prevent an increase in the polynomial degree. However, the TUS1 method
introduced another problem: when computation involving a combination of operations,
such as that of 𝑎𝑏 + 𝑐, is performed, if the adversary has information about one of the
inputs and outputs, he/she can specify the value of the remaining two inputs. This prob-
lem was solved by Mohd Kamal et al. through the TUS2 method [16], by introducing
the concept of conditionally secure secrecy computation. Typically, unconditionally
secure secrecy computation is considered impossible under the setting of 𝑛 < 2𝑘 − 1.
In contrast, this means that secure secrecy computation using a secret sharing scheme
is possible with certain conditions. Therefore, Mohd Kamal et al. proposed three con-
ditions as shown below, and realized a new method to solve the problem of the TUS1
method. Note that both methods share a common point where the secret information is
first encrypted with a random number and is then used in the actual secrecy computa-
tion.

─ Condition 1: The value of a secret and a random number used in secrecy multiplica-
tion does not include 0.

─ Condition 2: There is a set of shares on 1 that is constructed from random numbers
that are unknown to the adversary.

─ Condition 3: In secrecy computation involving consecutive computation, the posi-
tion of shares in a set of shares that are handled by each server is fixed.

However, introduction of the aforementioned conditions limits the usability of the
TUS2 method. In addition, the TUS2 method requires a large computational cost, thus
making it slow.

Therefore, in this paper, we propose protocols to solve these three conditions and
realize secure secrecy computation without any limitation in terms of usability. Fur-
thermore, our protocol significantly reduces the communication cost compared to con-
ventional methods and realizes a faster secrecy computation.

New protocols

Below, we describe 2 new secrecy computation protocols.

4

New Protocol 1:
In the conventional method of secrecy computation using a secret sharing scheme,

to restore the multiplication result, the number of shares required increases from 𝑘 to
2𝑘 − 1. Therefore, the number of servers/parties (parameter 𝑛) needs to be more than
2𝑘 − 1. Due to this, unconditionally secure secrecy computation is considered impos-
sible under the setting of 𝑛 < 2𝑘 − 1．In our new protocol 1, we differentiate the re-
lationship between the parameter 𝑛 required in the (𝑘, 𝑛) -threshold secret sharing
scheme and parameter 𝑁, which is defined as the number of servers/parties participat-
ing in the computation, realizing a secrecy computation using a secret sharing scheme
with the parameters of 𝑘 ≤ 𝑁 < 2𝑘 − 1, 𝑛 ≥ 2𝑘 − 1. In other words, the number of
servers/parties remained at 𝑘 ≤ 𝑁 < 2𝑘 − 1, but secrecy computation is realized under
𝑛 ≥ 2𝑘 − 1. By using this technique, we were able to produce the set of shares on 1,
proposed in Condition 2 of the TUS2 method. Therefore, our protocol realizes a secure
secrecy computation of multiplication using a secret sharing scheme while maintaining
the number of servers/parties at less than 2𝑘 − 1 . From now on, 𝑁 < 2𝑘 − 1 also
means 𝑘 ≤ 𝑁 < 2𝑘 − 1.

New Protocol 2:
In order to prevent the degree of a polynomial changing from 𝑘 − 1 to 2𝑘 − 2 for

each multiplication between polynomials, secrecy computation proposed thus far re-
quired extra cost for both communication and computation. In our new protocol 2, we
divide the computation process into a Preprocessing Phase and a Computation Phase.
The new techniques used here allow us to shift parts of the communication cost to the
Preprocessing Phase, where raw material that does not depend on any of the private
values can be generated at convenience. As we shall see later, this can be used to sig-
nificantly reduce the communication cost in the Computation Phase, and significantly
speed up the Computation Phase. For example, when performing computation with
repetition, communication between the servers/parties are required to reconstruct the
result before being used as input for the consecutive multiplication. In contrast, when
performing computation without repetition, because no reconstruction of result is re-
quired, the Computation Phase could be computed with zero communication cost.

Security

We show that our protocols are secure in the presence of semi-honest adversaries
with at most 𝑘 − 1 corrupted servers, under the standard information entropy-based
definitions. The basis of our protocol is information theoretic. In addition to the above,
our proposed model of secrecy computation is based on a client/server model where
any number of clients send shares of their inputs to 𝑛 servers that carry out the compu-
tation for the clients and return the results to them, without learning anything. This
model is widely used nowadays and is the business model used in Sharemind [18]. Our
protocols are designed to be flexible with a dishonest majority, any number of 𝑛 parties
and, at most, 𝑘 − 1 corrupted parties. This is unlike Araki et al.’s method [1] that works
for only a fixed number of 3 parties, with at most one corrupted party.

The construction of this paper is as follows: in Chapter 2, we present related works,
in Chapter 3 we explain the basic building blocks for our protocol, in Chapter 4 we
present our first new protocol and solution for Conditions 2 of the TUS2 method, and

5

in Chapter 5, we present our second new protocol and solution for Condition 1 of the
TUS2 method. In addition, in Chapter 6, we discuss the solution for Condition 3 and
the features of our protocol. Finally, in Chapter 7, we compare our protocol with con-
ventional works and show that our protocol can achieve a faster computation speed,
especially when performing computation without repetition.

2 Related Works

Most of the work on concretely efficient secure secrecy computation has focused on
the dishonest majority case. For example, the SPDZ 2 protocol [13] introduced a com-
putationally secure multiparty computation with dishonest majority through implemen-
tation of homomorphic encryption. In the setting of an honest majority, to the best of
our knowledge, the method by Araki et al. [1] is the only highly efficient protocol with
security for semi-honest adversaries. We will present a detailed comparison of our pro-
tocol in Section 7.

2.1 SPDZ 2 Method by Damgård et al. [13]

Damgård et al. proposed a secure multiparty computation called SPDZ 2 that utilizes a
somewhat homomorphic encryption (SHE) and is secure against a dishonest majority
under the setting 𝑛 = 𝑘. In SPDZ 2, the owner of the secret is one of 𝑛 players involved
in the multiparty computation. Moreover, in SPDZ 2, even when 𝑛 − 1 players form a
coalition, provided that the owner keeps his/her share of the secret secure, the original
secret cannot be reconstructed from 𝑛 − 1 shares.

SPDZ 2 consists of a preprocessing and an online phase. It ensures the confidenti-
ality of inputted secrets by using an additive secret sharing scheme. Through the SPDZ
2 method, secrecy addition is easily achievable. Secrecy multiplication in SPDZ 2 is
based on Beaver’s circuit randomization [2]. To perform secrecy multiplication, shares
of random numbers 〈𝑎〉, 〈𝑏〉, 〈𝑐〉 , called a multiplicative triple, which satisfy 𝑎 ∙ 𝑏 = 𝑐,
are used.

In SPDZ 2, for example, the process where the secret information of 𝑥 is recon-
structed from its shares 〈𝑥〉 is denoted as 𝑥 = 𝑜𝑝𝑒𝑛(〈𝑥〉). The protocol for multiplica-
tion of 𝑥 ∙ 𝑦 proposed by SPDZ 2 is shown below. However, the construction of a mul-
tiplication triple requires fully homomorphic encryption (FHE) [14], where the compu-
tation cost is expensive, thus increasing the overall process time significantly.

1. Prepare the multiplication triple 〈𝑎〉, 〈𝑏〉, 〈𝑐〉 (Offline Phase).
2. Compute shares 〈𝑥〉, 〈𝑦〉 on secret 𝑥, 𝑦 (Distribution Phase).
3. Each server reconstructs 𝑑 = 𝑜𝑝𝑒𝑛(〈𝑥〉 − 〈𝑎〉), 𝑒 = 𝑜𝑝𝑒𝑛(〈𝑦〉 − 〈𝑏〉) and computes

〈𝑥 ∙ 𝑦〉 = 𝑑 ∙ 𝑒 + 𝑒 ∙ 〈𝑎〉 + 𝑑 ∙ 〈𝑏〉 + 〈𝑐〉 (Online Phase).

6

2.2 Araki et al.’s Method [1]

Typically, in a secure secrecy computation, the cost for communication between servers
could affect the overall processing speed more than the actual cost of computation.
Therefore, Araki et al. proposed a very fast method of secrecy computation under the
parameters 𝑛 = 3, 𝑘 = 2, that require only 1 times of communication per multiplica-
tion. The detail protocol is shown below. Note that it is usually not considered a prob-
lem, even if communications are required in the Preprocessing Phase. In addition, se-
crecy computation of addition is performed locally, where the shares are added to-
gether.

Preprocessing Phase: Generation of correlated randomness

1. Players 𝑃ଵ, 𝑃ଶ, 𝑃ଷ generate and hold 𝛽ଵ, 𝛽ଶ, 𝛽ଷ ∈ 𝑍ଶ೙, where 𝛽ଵ + 𝛽ଶ + 𝛽ଷ = 0.

Computation Phase:

Distribution

1. Dealer D chooses a random number 𝑥ଵ, 𝑥ଶ, 𝑥ଷ ∈ 𝑍ଶ೙, where 𝑥ଵ + 𝑥ଶ + 𝑥ଷ = 0.
2. Dealer D sends a share (𝑥௜ , 𝑎௜) of the secret 𝑣ଵ to players 𝑃௜ . 𝑎௜ is computed as 𝑎௜ =

𝑥௜ିଵ − 𝑣ଵ (𝑖 = 1,2,3).
3. Dealer D performs the same process on secret 𝑣ଶ, producing share (𝑦௜ , 𝑏௜) for play-

ers 𝑃௜ . Note that 𝑏௜ = 𝑦௜ିଵ − 𝑣ଶ, 𝑦ଵ + 𝑦ଶ + 𝑦ଷ = 0.

Multiplication

1. Players 𝑃௜ compute 𝑟௜ = (𝑎௜𝑏௜ − 𝑥௜𝑦௜ + 𝛽௜) 3⁄ and send to players 𝑃௜ାଵ.
2. Players 𝑃௜ compute 𝑧௜ = 𝑟௜ିଵ − 𝑟௜ , 𝑐௜ = −2𝑟௜ିଵ − 𝑟௜ and hold (𝑧௜ , 𝑐௜) as a share on

the result of multiplication of 𝑣ଵ𝑣ଶ.

Reconstruction

1. From information 𝑧௜ , 𝑐௜ , 𝑧௝ , 𝑐௝ of Player 𝑃௜ and Player 𝑃௝, the result of multiplication
𝑣ଵ𝑣ଶ can be computed using the equation shown below. Note that 𝑐௜ = −2𝑟௜ିଵ −
𝑟௜ = 𝑧௜ିଵ − 𝑣ଵ𝑣ଶ.

𝑧𝑗 − 𝑐𝑖 = 𝑣1𝑣2

3 Building Blocks and Sub-Protocols

3.1 (𝒌, 𝒏) threshold secret-sharing scheme

A secret sharing scheme that satisfies both the conditions stated below is known as the
(𝑘, 𝑛) threshold secret-sharing scheme.

 Any 𝑘 − 1, or less, number of shares will reveal nothing about the original secret
information 𝑠.

7

 Any 𝑘 and above number of shares will allow for the reconstruction of the original
secret information 𝑠.

The classic methods of the (𝑘, 𝑛) threshold secret sharing scheme are Shamir’s (𝑘, 𝑛)
threshold secret sharing scheme [17](Shamir’s method) and the XOR-based method for
sharing and reconstruction of secret information proposed by Kurihara et al. [15] (XOR
method). In our protocol, unless stated otherwise, Shamir’s method is used, and all
computations are performed in modulus 𝑝. In addition, shares of secret information, 𝑠,
are represented by [𝑠]തതതത

௜

3.2 Ben-Or’s Method [5]

Multiplication of the 𝑘 -degree polynomial 𝑓(𝑥), 𝑔(𝑥) will result in ℎ(𝑥) = 𝑓(𝑥) ×
𝑔(𝑥) with a degree of 2𝑘. Therefore, at least 2𝑘 + 1 number of shares are required for
reconstructing ℎ(𝑥). Here, Ben-Or proposed a method of reducing the degree of the
polynomial of ℎ(𝑥) from 2𝑘 to 𝑘, where each coefficient of ℎ(𝑥) is randomized.

However, this method does not change the limitation where the required number of
shares 𝑛 for reconstruction must be 𝑛 ≥ 2𝑘 + 1. In this method, by using matrix 𝐴
shown below, 𝑅 = 𝑊・𝐴 is computed in regard to a vector of shares 𝑊 =
(𝑊଴, 𝑊ଵ, … , 𝑊ଶ௞ିଵ) with a degree of 2𝑘 , producing a vector of shares 𝑅 =
(𝑅଴, 𝑅ଵ, … , 𝑅ଶ௞ିଵ) with a degree of 𝑘.

𝐴 = ൥

𝑎଴,଴ ⋯ 𝑎଴,௞ିଵ

⋮ ⋱ ⋮
𝑎ଶ௞ିଵ,଴ ⋯ 𝑎ଶ௞ିଵ,ଶ௞ିଵ

൩ (1)

3.3 The TUS Methods

First, Shingu et al. proposed a 2-inputs-1-output computation named the TUS1 method
[19], where the secret is first encrypted with a random number. When performing se-
crecy multiplication, the encrypted secret is momentarily restored as a scalar value and
multiplication is realized using the (𝑠𝑐𝑎𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒 × 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙) approach to pre-
vent an increase in the polynomial degree. However, the TUS1 method introduced an-
other problem: when computation involving a combination of operations, such as that
of 𝑎𝑏 + 𝑐, is performed, if the adversary has information about one of the inputs and
outputs, he/she can specify the value of the remaining two inputs. Therefore, condition
where computation involving a combination of addition/subtraction and multiplica-
tion/division is not performed is needed, in addition to the existing condition where the
input of the secret does not include the value 0. Therefore, the TUS1 method could
realize a very effective specific computation such as a computation of RSA encryption.
However, it is not capable of coping with computation that requires a combination of
addition/subtraction and multiplication/division.

Next, Mohd Kamal et al. introduced an improved method called the TUS 2 method,
where computation that involves a combination of addition/subtraction and multiplica-
tion/division can also be performed securely [16]. This method was proven to be secure
under the aforementioned three conditions. In addition, it was shown that this method

8

is secure against computation that involves a combination of product-sum operation.
Therefore, this method could realize any arithmetic computation under the setting of
𝑛 < 2𝑘 − 1. However, the TUS 2 method requires much more computational cost com-
pared to the conventional method in 𝑛 ≥ 2𝑘 − 1, so it is not the most efficient method.

Because of this, Tokita et al. proposed an improved version of the TUS 2 method,
known as the TUS 3 method, where XOR based secret sharing [15] is introduced and
realizes a more efficient method of secrecy computation [20]. Out of the aforemen-
tioned three conditions, the TUS 3 method proposed a way to ease one of the conditions
(known as the TUS3’ method); however, the three conditions still remain. Note that all
TUS methods share a common point where the secret information is first encrypted
with a random number, and is then used in the secrecy computation using a secret shar-
ing scheme.

4 Proposed Method 1

4.1 Secrecy Multiplication for 𝑵 < 𝟐𝒌 − 𝟏 and Solution for Condition 2

In the TUS method, it is proposed that in Condition 2 there is a set of shares on 1 that
is constructed from random numbers that are unknown to the adversary, as defined be-
low.

[𝜀]௜ = ൫[𝜀]തതതത
௜ , [𝜀଴]തതതതത

௜ , … , [𝜀௞ିଵ]തതതതതതതത
௜൯ (2)

Here, 𝜀 = ∏ 𝜀௝
௞ିଵ
௝ୀ଴ is defined as a random number unknown to the adversary. However,

in order to produce a set of shares on 1, shown above, multiplication 𝜀 = ∏ 𝜀௝
௞ିଵ
௝ୀ଴ of

random numbers 𝜀௝ (𝑗 = 0, 1, … , 𝑘 − 1) is required. However, it is known that uncon-
ditionally secure multiparty computation is considered impossible under the setting of
𝑛 < 2𝑘 − 1. Therefore, our protocol introduces the approach of differentiating the re-
lationship between parameter 𝑁, which is the number of servers/players that is actually
needed, and parameter 𝑛 of secret sharing scheme, and realizing computation under the
parameter setting of 𝑁 < 2𝑘 − 1, 𝑛 ≥ 2𝑘 − 1. Because of this, we could extend the
work of Ben-Or where 𝑁 = 𝑛 ≥ 2𝑘 − 1 is assumed, into a protocol that can be realized
even when 𝑁 < 2𝑘 − 1, 𝑛 ≥ 2𝑘 − 1.

Below, where the number of participants is 𝑢, we show the method of multiplication
and construction of a set of shares on 1 under the setting of 𝑁 < 2𝑘 − 1. However, for
ease of understanding, we explain the algorithm using 𝑢 = 3, 𝑁 = 𝑘. In the case where
𝑢 > 3, Player 𝑃௜(𝑖 = 3, … , 𝑢 − 1) performs the same process of Step 3 as Player 𝑃ଶ,
and broadcasts each encrypted secret information of 𝜆௜ which is equivalent to 𝛾𝜆ଶ .
From Step 4 onwards, all encrypted information by Player 𝑃௜ is treated the same as 𝛾𝜆ଶ,
and random numbers used to encrypt the secret information, which was distributed to
every server, are also treated the same way as random numbers 𝛾௜. However, we as-
sumed that 𝜆௜ does not include 0. In addition, in the case of 𝑢 = 2, secrecy multiplica-
tion by players 𝑃଴, 𝑃ଵ is realized.

9

In this section, for ease of understanding, [𝑎]തതതത
௜
(௞) is defined as shares of 𝑎 where the

number of shares required for reconstructing 𝑎 is 𝑘. Below, 𝑎௜,௝ are elements of matrix
A of Ben-Or’s method (we include the computation of Matrix A for 𝑘 = 3 in Appendix
3), and 0௜, 0′௜ are used in order to differentiate between the shares of 0 that had been
distributed by different polynomials. In the protocol below, random numbers are chosen
from uniformly distributed random numbers and do not include the value of 0. In addi-
tion, all values are chosen from finite field 𝐺𝐹(𝑝), and all computations including the
secret sharing are performed in modulus 𝑝. We also presume there exists a secure com-
munication between the players and servers.

For ease of understanding, we include the computation for 𝑁 = 𝑘 = 3 from Step 4
to Step 8 in Appendix 1．

Protocol 4.1: Secrecy multiplication for 𝑵 < 𝟐𝒌 − 𝟏

1. Player 𝑃଴ generates random numbers 𝛼଴, … , 𝛼௞ିଵ, computes 𝛼 = ∏ 𝛼௝
௞ିଵ
௝ୀ଴ and dis-

tributes secret information 𝜆଴ using (𝑘, 2𝑘) Shamir’s method. Then, computes
[𝛼𝜆଴]തതതതതതത

௜
(௞)

= 𝛼 × [𝜆଴]തതതതത
௜
(௞)

, [𝛼𝜆଴]തതതതതതത
௜ା௞
(௞)

= 𝛼 × [𝜆଴]തതതതത
௜
(௞)

(𝑖 = 0, … , 𝑘 − 1) and sends

[𝛼𝜆଴]തതതതതതത
௜
(௞)

, [𝛼𝜆଴]തതതതതതത
௜ା௞
(௞)

, 𝛼௜ to servers 𝑆௜.
2. Player 𝑃ଵ generates random numbers 𝛽଴, … , 𝛽௞ିଵ , computes 𝛽 = ∏ 𝛽௝

௞ିଵ
௝ୀ଴ and dis-

tributes secret information 𝜆ଵ using (𝑘, 2𝑘) Shamir’s method. Then, computes
[𝛽𝜆ଵ]തതതതതതത

௜
(௞)

= 𝛽 × [𝜆ଵ]തതതതത
௜
(௞)

, [𝛽𝜆ଵ]തതതതതതത
௜ା௞
(௞)

= 𝛽 × [𝜆ଵ]തതതതത
௜ା௞
(௞)

(𝑖 = 0, … , 𝑘 − 1) and sends

[𝛽𝜆ଵ]തതതതതതത
௜
(௞)

, [𝛽𝜆ଵ]തതതതതതത
௜ା௞
(௞)

, 𝛽௜ to servers 𝑆௜.
3. Player 𝑃ଶ generates random numbers 𝛾଴, … , 𝛾௞ିଵ , computes 𝛾 = ∏ 𝛾௝

௞ିଵ
௝ୀ଴ and 𝛾𝜆ଶ

using secret information 𝜆ଶ, sends 𝛾𝜆ଶ to all servers and 𝛾௜ to servers 𝑆௜.
4. Servers 𝑆௜ compute 𝛼௜𝛽௜𝛾௜, distribute 0௜ using (2𝑘, 2𝑘) Shamir’s method, compute

the following and send [𝛼ିప𝛽ିప𝛾 ప𝜆଴𝜆ଵ𝜆ଶ]′തതതതതതതതതതതതതതതതതതതതതതതത
௜
(ଶ௞)

, [𝛼ିప𝛽ିప𝛾 ప𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതതതതതതതതതതതതതത′௜ା௞
(ଶ௞) and shares

of 0௜ (except for [0ప]തതതതത
௜
(ଶ௞)

, [0ప]തതതതത
௜ା௞
(ଶ௞)) to server 𝑆௜ାଵ(௠௢ௗ௞). However, 𝛼 that does not in-

clude 𝛼௜ is denoted as 𝛼ି௜.

[𝛼𝛽𝛾𝜆଴𝜆ଵ𝛾𝜆ଶ]തതതതതതതതതതതതതതതതതത
௜
(ଶ௞ିଵ)

= [𝛼𝜆଴]തതതതതതത
௜
(௞)

× [𝛽𝜆ଵ]തതതതതതത
௜
(௞)

× 𝛾𝜆ଶ

[𝛼𝛽𝛾𝜆଴𝜆ଵ𝛾𝜆ଶ]തതതതതതതതതതതതതതതതതത
௜ା௞
(ଶ௞ିଵ)

= [𝛼𝜆଴]തതതതതതത
௜ା௞
(௞)

× [𝛽𝜆ଵ]തതതതതതത
௜ା௞
(௞)

× 𝛾𝜆ଶ

[𝛼ିప𝛽ିప𝛾 ప𝜆଴𝜆ଵ𝜆ଶ]′തതതതതതതതതതതതതതതതതതതതതതതത
௜
(ଶ௞)

=
[𝛼𝛽𝛾𝜆଴𝜆ଵ𝛾𝜆ଶ]തതതതതതതതതതതതതതതതതത

௜
(ଶ௞ିଵ)

𝛼௜𝛽௜𝛾௜

+ [0଴]തതതതത
௜
(ଶ௞)

[𝛼ିప𝛽ିప𝛾 ప𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതതതതതതതതതതതതതത′௜ା௞
(ଶ௞)

=
[𝛼𝛽𝛾𝜆଴𝜆ଵ𝛾𝜆ଶ]തതതതതതതതതതതതതതതതതത

௜ା௞
(ଶ௞ିଵ)

𝛼௜𝛽௜𝛾௜

+ [0଴]തതതതത
௜ା௞
(ଶ௞)

5. Servers 𝑆௜(𝑖 = 0, … , 𝑘 − 1) distribute 0′௜ using (2𝑘, 2𝑘) Shamir’s method, perform
the following process on round 𝑟 (𝑟 = 1, … , 𝑘 − 1) and send the result to servers
𝑆௜ାଵ(௠௢ௗ௞) . However, distribution of 0′௜ is different for each round and 𝑗 corre-

sponds to the received [0పିଵ]തതതതതതതത
௝
(ଶ௞). Note that the subscript of the shares is in 𝑚𝑜𝑑2𝑘.

This process is repeated until 𝛼𝛽𝛾 is cleared.

10

ൣ𝛼ି(పି௥,…,ప)𝛽ି(పି௥,…,ప)𝛾ି(పି௥,…,ప)𝜆଴𝜆ଵ𝜆ଶ൧തത′௜ି௥
(ଶ௞)

=
ൣ𝛼ି(పି௥,…,పିଵ)𝛽ି(పି௥,…,పିଵ)𝛾ି(పି௥,…,పିଵ)𝜆଴𝜆ଵ𝜆ଶ൧തത′௜ି௥

(ଶ௞)

𝛼௜𝛽௜𝛾௜

+ [0′ప]തതതതതത
௜ି௥
(ଶ௞)

ൣ𝛼ି(పି௥,…,ప)𝛽ି(పି௥,…,ప)𝛾ି(పି௥,…,ప)𝜆଴𝜆ଵ𝜆ଶ൧തത′௜ି௥ା௞
(ଶ௞)

=
ൣ𝛼ି(పି௥,…,పିଵ)𝛽ି(పି௥,…,పିଵ)𝛾ି(పି௥,…,పିଵ)𝜆଴𝜆ଵ𝜆ଶ൧തത′௜ି௥ା௞

(ଶ௞)

𝛼௜𝛽௜𝛾௜

+ [0′ప]തതതതതത
௜ି௥
(ଶ௞)

[0పି௥…ప]തതതതതതതതതത
௝
(ଶ௞)

=
[0పି௥…పିଵ]തതതതതതതതതതതതത

௝
(ଶ௞)

𝛼௜𝛽௜𝛾௜

+ [0′ప]തതതതതത
௝
(ଶ௞)

6. After the (𝑘 − 1)-th round, servers 𝑆௜ collect ൣ0ఫ…ఫା௞ିଵ൧തതതതതതതതതതതതത
௜ାଵ

(ଶ௞)
, ൣ0ఫ…ఫା௞ିଵ൧തതതതതതതതതതതതത

௜ାଵା௞

(ଶ௞)
(𝑗 =

0, … , 𝑘 − 1) that correspond to its own [𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത′௜ାଵ
(ଶ௞)

, [𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത′௜ାଵା௞
(ଶ௞) , add them to-

gether and produce [𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത"௜ାଵ
(ଶ௞),[𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത"௜ାଵା௞

(ଶ௞) .
7. Servers 𝑆௜ distribute 0"௜ using (𝑘, 𝑁) Shamir’s method, compute the following for

𝑗 = 0, … , 𝑁 − 1, and send 𝑅௜,௝ to servers 𝑆௝.

𝑅௜,௝ = 𝑎௝,௜ାଵ × [𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത"௜ାଵ
(ଶ௞)

+ 𝑎௝,௜ାଵା௞ × [𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത"௜ାଵା௞
(ଶ௞)

+ [0"ప]തതതതതത
௝
(௞)

8. Servers 𝑆௜ compute [𝜆]തതതത
௜
(௞)

= ∑ 𝑅௝,௜
ேିଵ
௝ୀ଴ , and obtain [𝜆]തതതത

௜
(௞). However, note that 𝜆 =

𝜆଴𝜆ଵ𝜆ଶ.

When performing reconstruction of the multiplication result, the player only needs to

collect 𝑘 numbers of [𝜆]തതതത
௜
(௞) and reconstruct the result of 𝜆. In addition, if 𝑘 number of

players distribute 𝜆଴, … , 𝜆௞ିଵ as random numbers 𝜀଴, … , 𝜀௞ିଵ in Steps 1 and 2, using
the (𝑘, 𝑁) XOR method, servers 𝑆௜ can obtain set of shares on 1 as shown above.

In addition, in Step 7 of the above protocol, if 𝑁 ≥ 𝑘 and computation is performed
until 𝑅௜,ேିଵ is computed and sent to 𝑁 number of servers, the above protocol can also
accommodate the case of 𝑁 ≥ 𝑘.

4.2 Security Analysis on Secrecy Multiplication for 𝒌 ≤ 𝑵 < 𝟐𝒌 − 𝟏

We assumed that there were 𝑢 number of players. In this case, 𝜆଴, … , 𝜆௨ିଵ is secret in-
formation, and ∏ 𝜆௝

௨ିଵ
௝ୀ଴ is the result of secrecy multiplication. Here, we assumed that

the adversary had information from 𝑘 − 1 number of servers. First, we defined 𝑢 − 2
number of players and the player who reconstructed the result as Adversary 1 and the
adversary attempting to learn about the secret information of the remaining players.
Next, we defined 𝑢 − 1 number of players as Adversary 2 and the adversary attempting
to learn about the secret information of the remaining players and the result of the se-
crecy computation.

Proof of Security against Adversary 1

11

We suppose that Players 𝑃଴, … , 𝑃௨ିଷ and the player who reconstructed the result are
Adversary 1. In addition, Adversary 1 has information from servers 𝑆଴, … , 𝑆௞ିଶ. In this
case, if Adversary 1 managed to learn about secret information 𝜆௨ିଶ, 𝜆௨ିଵ of the re-
maining players 𝑃௨ିଶ, 𝑃௨ିଵ, the attack would be considered as successful.

From Step 3, Adversary 1 learns from players 𝑃௨ିଶ, 𝑃௨ିଵ about encrypted infor-
mation 𝜔𝜆௨ିଶ, 𝜁𝜆௨ିଵ and random numbers 𝜔଴, … , 𝜔௞ିଶ, 𝜁଴, … , 𝜁௞ିଶ which were used
to construct random numbers 𝜔, 𝜁. Therefore, Adversary 1 also learns about random
numbers 𝜔௞ିଵ𝜆௨ିଶ and 𝜁௞ିଵ𝜆௨ିଵ . However, because secret information 𝜆௨ିଶ, 𝜆௨ିଵ
does not consist of value 0, and Adversary 1 has no information on 𝜔௞ିଵ, 𝜁௞ିଵ, the
adversary will not be able to identify information of 𝜆௨ିଶ, 𝜆௨ିଵ. In addition, in Step 4,

Adversary 1 learns about [0௞ିଵ]തതതതതതതത
௜
(ଶ௞)

, [0௞ିଵ]തതതതതതതത
௜ା௞
(ଶ௞)

(𝑖 = 0, … , 𝑘 − 2) from server 𝑆௞ିଵ. Be-
cause the constant for these are the value 0, it can be solved if 2𝑘 − 1 number of shares
are collected; however, because Adversary 1 only knows 2𝑘 − 2 number of shares, it
cannot be solved. From Step 5 and onwards, because shares of value 0 is added to all
information that is being sent, even if the original value is known it cannot be solved.

In addition, because Adversary 1 has 𝑘 numbers of [𝜆]തതതത
௜
(௞) in the reconstruction process,

from the computation result of 𝜆 and information of 𝜆଴, … , 𝜆௨ିଷ from 𝑢 − 2 number of
players, the adversary will be able to learn about 𝜆௨ିଶ𝜆௨ିଵ. However, it cannot be de-
composed into 𝜆௨ିଶ, 𝜆௨ିଵ. Therefore, Adversary 1 cannot learn about each individual
information of 𝜆௨ିଶ, 𝜆௨ିଵ. The same can be said even if Adversary 1 learns about other
combinations of 𝑘 − 1 number of servers. In addition, it is also obvious that the same
can be said even if the combination of players is changed. Therefore, we can state that
the algorithm shown above is secure.

Proof of Security against Adversary 2

Suppose that the players 𝑃଴,…,𝑃௨ିଶ make up Adversary 2 and the adversary also has
information from servers 𝑆଴, … , 𝑆௞ିଶ. In this case, the attack will be considered suc-
cessful if Adversary 2 learns about input 𝜆௨ିଵ or the result of computation ∏ 𝜆௝

௨ିଵ
௝ୀ଴ .

From Step 3, Adversary 2 learns from player 𝑃௨ିଵ about encrypted information 𝜁𝜆௨ିଵ
and random numbers 𝜁଴, … , 𝜁௞ିଶ used to construct random number 𝜁. Therefore, Ad-
versary 2 also learns about 𝜁௞ିଵ𝜆௨ିଵ. However, because secret information 𝜆௨ିଵ does
not consist of value 0, and Adversary 2 has no information of 𝜁௞ିଵ, the adversary will
not be able to learn about 𝜆௨ିଵ. In addition, From Step 4, Adversary 2 has information

about [0௞ିଵ]തതതതതതതത
௜
(ଶ௞)

, [0௞ିଵ]തതതതതതതത
௜ା௞
(ଶ௞)

(𝑖 = 0, … , 𝑘 − 2) from server 𝑆௞ିଵ. Because the constant
of these is the value 0, it can be solved by collecting 2𝑘 − 1 number of shares. How-
ever, because the adversary only has information about 2𝑘 − 2 number of shares, it
cannot be solved. From Step 5 onwards, because shares of value 0 are added to all
information that is being sent, even if the original value is known, it cannot be solved.
Therefore, Adversary 2 cannot learn about secret information 𝜆௨ିଵ of player 𝑃௨ିଵ and
the result of computation 𝜆. The same can be said even if Adversary 2 learns about
information from other combinations of servers. The same is true even for other com-
binations of players. Therefore, we can state that the algorithm above is secure and the
statements below are true.

12

𝐻(𝜆௜) = 𝐻(𝜆௜|𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢
− 2 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑙𝑎𝑦𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑛𝑜 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝜆௜
+ 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑙𝑎𝑦𝑒𝑟 𝑤ℎ𝑜 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡
+ 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑘 − 1 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑟𝑣𝑒𝑟𝑠)

𝐻(𝜆௜) = 𝐻(𝜆௜|𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑙𝑎𝑦𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑛𝑜 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝜆௜

+ 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑘 − 1 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑟𝑣𝑒𝑟𝑠)

𝐻(𝜆଴𝜆ଵ𝜆ଶ) = 𝐻(𝜆଴𝜆ଵ𝜆ଶ|𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢 − 1 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑙𝑎𝑦𝑒𝑟𝑠
+ 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑘 − 1 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑟𝑣𝑒𝑟𝑠)

In regard to the set of shares on secret 1, 𝑘 number of players are required to distribute
𝜀଴, … , 𝜀௞ିଵ using (𝑘, 𝑁) XOR instead of 𝜆଴, … , 𝜆௞ିଵ in Steps 1, 2. This is considered to
be independent of the secrecy multiplication, thus it is clear that even by adding this
process it will still be secure.

4.3 Verification of the Result of Secrecy Multiplication

If any of the players or servers perform different processes other than as shown in Sec-
tion 4.1, result [𝜆]തതതത

௜ will be computed but it will not be a correct result of multiplication.
Here, we need to think about the verification of the result of secrecy multiplication
generated by 𝑘 number of servers from Section 4.1. In order to do that, we first assumed
that each server held another different result of secrecy multiplication, namely
([𝜇ଵ]തതതതത

௜ , 𝜇ଵ,௜). Here, ([𝜇ଵ]തതതതത
௜ , 𝜇ଵ,௜) is also generated from the protocol shown in Section 4.1.

From above, the verification of ([𝜆]തതതത
௜ , 𝜆௜) produced in Section 4.1 can be performed

as follows:

Protocol 4.3: Verification of the Result of Secrecy Multiplication

1. Servers 𝑆௜ or Player 𝑃௜ compute 𝜆௜/𝜇ଵ,௜ and broadcast it.
2. Servers 𝑆௜ compute the following and broadcast [0′]തതതതത

௜.

[𝜆′]തതതതത
௜ = ቆ

𝜆଴

𝜇ଵ,଴

ቇ × … × ቆ
𝜆௞ିଵ

𝜇ଵ,௞ିଵ

ቇ × [𝜇ଵ]തതതതത
௜ (3)

[0′]തതതതത
௜ = [𝜆′]തതതതത

௜ − [𝜆]തതതത
௜ (4)

3. Servers 𝑆௜ reconstruct [0′]௜ and verify whether it it is equal to 0. If the reconstructed
result is equal to 0, the result of secrecy multiplication ([𝜆]തതതത

௜ , 𝜆௜) is correct; if the
reconstructed result is not equal to 0, the result of secrecy multiplication has been
corrupted

Case 1: We suppose a situation where one of the results of secrecy computation
([𝜇ଵ]௜ , 𝜇ଵ,௜), ([𝜆]௜ , 𝜆௜) is incorrect, without adversary.

In this case, either 𝜇ଵ or 𝜆 will not become 𝜇ଵ = ∏ 𝜇ଵ,௜
௞ିଵ
௜ୀ଴ or 𝜆 = ∏ 𝜆௜

௞ିଵ
௜ୀ଴ , respec-

tively. Therefore, we suppose 𝜇ଵ = 𝜌ଵ(∏ 𝜇ଵ,௜
௞ିଵ
௜ୀ଴) or 𝜆 = 𝜌଴(∏ 𝜆௜

௞ିଵ
௜ୀ଴) (𝜌଴, 𝜌ଵ ≠ 1).

13

However, because one of these is correct, for example, if 𝜇ଵ is assumed to be 𝜇ଵ =

𝜌ଵ(∏ 𝜇ଵ,௜
௞ିଵ
௜ୀ଴), from equation (3), [𝜆′]തതതതത

௜ will become [𝜆′]തതതതത
௜ = 𝜌ଵ൫∏ 𝜆௜

௞ିଵ
௜ୀ଴ ൯ × [1]തതതത

௜. Thus,

it will not be a matched with [𝜆]തതതത
௜ and the reconstruction result of [0′]௜ will not equal to

0, resulting in multiplication deemed as incorrect. However, in this case ([𝜆]௜ , 𝜆௜) is
assumed to be correct. We can also think about the opposite situation of judging the
incorrect result by giving priority to safety.

Case 2: We suppose a situation where both results of the secrecy computation
([𝜇ଵ]௜ , 𝜇ଵ,௜) and ([𝜆]௜ , 𝜆௜) are incorrect, without adversary.

If we assumed that 𝜇ଵ = 𝜌ଵ൫∏ 𝜇ଵ,௜
௞ିଵ
௜ୀ଴ ൯，𝜆 = 𝜌଴(∏ 𝜆௜

௞ିଵ
௜ୀ଴), equation (3) will become

[𝜆′]തതതതത
௜ = 𝜌ଵ൫∏ 𝜆௜

௞ିଵ
௜ୀ଴ ൯ × [1]തതതത

௜ , and equation (4) will become (𝜌଴ − 𝜌ଵ) × ൫∏ 𝜆௜
௞ିଵ
௜ୀ଴ ൯ ×

[1]തതതത
௜. Therefore, only when both 𝜌଴ and 𝜌ଵ coincidently match, reconstruction of [0′]௜

will produce a value of 0, causing an error in the verification process. If the verification
process is repeated by changing ([𝜇ଵ]௜ , 𝜇ଵ,௜) to ([𝜇௛]௜ , 𝜇௛,௜)(ℎ = 2,3 …), the percentage
for errors to occur in verification of ([𝜆]௜ , 𝜆௜) can be arbitrarily reduced.

Case 3: We suppose a situation where the adversary makes use of servers that it had
taken over and tried to output false result of multiplication and at the same time tried to
establish equations (3) and (4).

From the proof of security against Adversary 2 in Section 4.2, even if players and serv-
ers are dishonest, no one can learn about the result of the secrecy multiplication. In

other words, because the adversary has no information on [𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത"௜ାଵ
(ଶ௞)

,

[𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത"௜ାଵା௞
(ଶ௞) held by an honest server, the adversary cannot learn about the result of

the secrecy multiplication. Therefore, because the adversary has no information on 𝜆
and 𝜇ଵ, the adversary will not be able to learn about 𝜌଴, 𝜌ଵ, which are required to estab-
lish equations (3) and (4). The detail of the proof is shown in Appendix 2.

Case 4: We suppose a situation where the adversary performs protocol in Section 4.1
correctly and obtains the correct result of multiplication. However, the adversary tries
to establish equations (3) and (4) by outputting false values.

For example, the adversary decides on any random number 𝜌଴ and makes use of two
servers 𝑆௜ , 𝑆௝ that it had taken over to output false values of (𝜌଴𝜆௜/𝜇ଵ,௜), (𝜆௝/𝜌଴𝜇ଵ,௝). If
the outputted values of (𝜌଴𝜆௜/𝜇ଵ,௜), (𝜆௝/𝜌଴𝜇ଵ,௝) satisfies (𝜌଴𝜆௜/𝜇ଵ,௜) ≠ (𝜆௜/𝜇ଵ,௜), (𝜆௝/

𝜌଴𝜇ଵ,௝) ≠ (𝜆௝/𝜇ଵ,௝), the condition where 𝜌଴ = 𝜌ଵ shown in Case 2 can always be made.
By this, equations (3) and (4) can be established even in regard to multiple ൫[𝜇௛]௜ , 𝜇௛,௜൯.
However, this corruption is only possible under the assumption that the adversary has
access to the correct values of (𝜆௜/𝜇ଵ,௜), (𝜆௝/𝜇ଵ,௝), where 𝜆 = ∏ 𝜆௜

௞ିଵ
௜ୀ଴ , 𝜇ଵ = ∏ 𝜇ଵ,௜

௞ିଵ
௜ୀ଴ .

In contrast, as shown in Case 3, if dishonest processes are performed in the protocol
shown in Section 4.1, the adversary cannot learn about the value of 𝜆 where 𝜆 =
∏ 𝜆௜

௞ିଵ
௜ୀ଴ . Consequently, equations (3) and (4) cannot be established. Therefore, in re-

gard to multiple ൫[𝜇௛]௜ , 𝜇௛,௜൯, if equations (3) and (4) are established, we can state that
the result of secrecy multiplication obtained is correct. However, it is also possible that
false values of shares are used in the reconstruction process of 𝜆. Therefore, equations

14

(3) and (4) only guarantee the correctness of the result of secrecy multiplication but not
the correctness of the reconstructed value 𝜆. In other words, the problem whether cor-
rect shares of multiplication (including the reconstruction of 𝜆) are used for the consec-
utive secrecy computation will depend on the verification process of that particular se-
crecy computation

From above, in regard to multiple ൫[𝜇௛]௜ , 𝜇௛,௜൯, if equations (3) and (4) are estab-
lished, we can conclude that the multiplication protocol shown in Section 4.1 had been
performed correctly.

4.4 Implementation into generation of Multiplication Triple

In the offline phase (preprocessing phase) of the SPDZ method, “Multiplication Triple”
is generated by using homomorphic encryption. Even when using the SPDZ 2 method,
if the number of servers/parties is at 𝑁 = 𝑘 no substantial problem will occur, even
without the use of homomorphic encryption. Therefore, we will show the method of
generating multiplication triple using our proposed method. Below, we show the algo-
rithm for 𝑢 number of players. By this, SPDZ 2 can also be improved with faster pro-
cessing speed and realization of information-theoretical security.

Protocol 4.4: Generation of multiplication triple for 𝑵 = 𝒌

1. 𝑢 number of players 𝑃୧ each generates random numbers 𝜆଴,௜ and 𝜆ଵ,௜, and computes
𝜆௜ = 𝜆଴,௜𝜆ଵ,௜.

2. In regard to 𝜆௜ , 𝑢 number of players perform secrecy multiplication as shown in Sec-

tion 4.1 and obtain [𝜆]തതതത
௜
(௞). Note that 𝜆 = 𝜆ଵ … 𝜆௨.

3. In regard to 𝜆଴,௜, 𝑢 number of players perform secrecy multiplication as shown in

Section 4.1 and obtain [𝜆଴]തതതതത
௜
(௞). Note that 𝜆଴ = 𝜆଴,ଵ … 𝜆଴,௨.

4. In regard to 𝜆ଵ,௜, 𝑢 number of players perform secrecy multiplication as shown in

Section 4.1 and obtain [𝜆ଵ]തതതതത
௜
(௞). Note that 𝜆ଵ = 𝜆ଵ,ଵ … 𝜆ଵ,௨

Suppose that when 𝜆଴ = 𝑎, 𝜆ଵ = 𝑏, 𝜆 = 𝑎𝑏, “Multiplication Triple” can be obtained. In
addition, it is obvious that the security for this algorithm can be proven the same way
as shown in Sections 4.2. and 4.3.

4.5 Generation of Set of Shares on 1 When the Same Participant Participates
in the Secrecy Computation of the TUS methods

The method of generating a set of shares on 1 shown in Section 4.1 is valid when it is
performed independently from the actual Computation Phase using TUS methods.
However, there is a problem if the participant of the secrecy computation is the same
entity as the player who provided an input for generating the set of shares on 1. For
example, assume that 𝑁 = 𝑘 = 2 and Player A, who knows about random numbers 𝜀଴,
participates in the secrecy computation. If the player could learn about the information
of the server that reconstructed the random number 𝜀ଵ, Player A would be able to learn
about the random number 𝜀 used in the set of shares on 1. Therefore, Condition 3 is

15

required. In order to omit Condition 3, Player 𝑃௜ in Section 4.1 must be replaced with
servers 𝑆௜. In this case, the adversary will be able to learn information from at most 𝑘 −
1 number of servers; however, this is the same as Adversary 2 shown in 4.2, where 𝑢 −
1 = 𝑘 − 1 number of players (who provide inputs) are attacked. Because our proposed
method is secure against this, it is not a problem. Therefore, in the case where the player
who provided input in Section 4.1 is the participant for the secrecy computation, if
servers 𝑆୧ generate random numbers 𝜆୧ and store them to be used in the Computation
Phase, even if 𝑘 − 1 numbers of 𝜀୧ are leaked, random number 𝜀, which is the result of
multiplication, is not known.

In addition, because random number 𝜆௜, which is the input for Multiplication Triple
and the set of shares on 1, does not need to include the value of 0, leakage of the result
will not occur.

5 Proposed Method 2

By dividing the computation process into a Preprocessing Phase and a Computation
Phase, it allows us to shift parts of the computation that require communication to the
Preprocessing Phase, where information that does not depend on any of the private
values can be generated in advance. This can be used to significantly reduce the cost
for communication in the Computation Phase and speed up the whole process. When
computation is performed without repetition, the Computation Phase can be performed
without any communication cost. However, when computation is performed with rep-
etition, communication between servers is required during reconstruction. Here, com-
putation with repetition means that the result of computation is reconstructed tempo-
rarily and is then used as an input for the consecutive secrecy computation of multipli-
cation. In this case, communication between servers is required only for the reconstruc-
tion process. On the other hand, in the case where repetition is not required, the cost for
communication can be totally eliminated from the Computation Phase, realizing a very
effective method of secure computation. Below, we show two types of protocols that
can accommodate computation without repetition (TUS 5’ Method) and computation
with repetition (TUS 5 Method).

5.1 TUS 5’ Method: Protocol for Computation without Repetition

In computation without repetition, even if the result of computation is equal to 0, be-
cause the result is not reconstructed midway we only need to respond when the input is
zero (which means that we can use the same approach as the TUS3’ method proposed
by Tokita et al. [20]). However, the input needs to be within modulus 𝑝 and be a number
under 𝑝 − 2. For ease of understanding, we show our protocol for computation of the
product-sum operation of 𝑎𝑏 + 𝑐 in the setting of 𝑁 = 𝑘. However, extension of our
protocol into computation such as ∑ (𝑎௜𝑏௜ … 𝑧௜)௠

௜ୀଵ is also possible. In addition, we as-
sume that communication between the dealer, players and servers is secure.

Preprocessing Phase

16

1. Servers 𝑆௜ (𝑖 = 0, … , 𝑘 − 1) that participate in the computation produce 4 random
numbers 𝜀௝,௜(𝑗 = 1, … 4), and by using the method shown in Chapter 4, multiply

them together and compute 4 shares on ൣ𝜀ఫ൧തതതതത
௜
, and store ൣ𝜀ఫ൧തതതതത

௜
 and 𝜀௝,௜.

2. Dealer D generates 𝑘 number of random numbers 𝛼଴,଴, 𝛼଴,ଵ, … , 𝛼଴,௞ିଵ , computes
𝛼଴ = ∏ 𝛼଴,௝

௞ିଵ
௝ୀ଴ and sends 𝛼଴,௝ to Servers 𝑆௝.

3. Dealer D performs the same process as Step 2 on random numbers 𝛽଴,௝ and 𝛾଴,௝.

4. 𝑘 number of Servers 𝑆𝑗 (𝑗 = 0, … , 𝑘 − 1) generate random numbers 𝛿0,𝑗, compute

the following, and send to one of the servers (Here, we assume the server to be Server
𝑆0).

𝛿0,𝑗

𝛼0,𝑗𝛽0,𝑗
𝜀1,𝑗

,
𝛿0,𝑗

𝛼0,𝑗𝜀2,𝑗

,
𝛿0,𝑗

𝛽
0,𝑗

𝜀3,𝑗

,
𝛿0,𝑗

𝛾
0,𝑗

𝜀4,𝑗

5. By using the received information, Server 𝑆଴ computes the following and sends
𝛿଴ 𝛼଴𝛽଴𝜀ଵ⁄ , 𝛿଴ 𝛼଴𝜀ଶ⁄ , 𝛿଴ 𝛽଴𝜀ଷ⁄ , 𝛿଴ 𝛾଴𝜀ସ⁄ to all servers.

𝛿଴

𝛼଴𝛽଴𝜀ଵ

= ෑ
𝛿଴,௝

𝛼଴,௝𝛽଴,௝𝜀ଵ,௝

௞ିଵ

௝ୀ଴

𝛿଴

𝛼଴𝜀ଶ

= ෑ
𝛿଴,௝

𝛼଴,௝𝜀ଶ,௝

௞ିଵ

௝ୀ଴

𝛿଴

𝛽଴𝜀ଷ

= ෑ
𝛿଴,௝

𝛽଴,௝𝜀ଷ,௝

௞ିଵ

௝ୀ଴

𝛿0

𝛾
0
𝜀4

= ෑ
𝛿0,𝑗

𝛾
0,𝑗

𝜀4,𝑗

𝑘−1

𝑗=0

6. All servers 𝑆𝑖 compute and hold the following information:

൤
𝛿଴

𝛼଴𝛽଴

൨
തതതതതതതതത

௜

=
𝛿଴

𝛼଴𝛽଴𝜀ଵ

× [𝜀ଵ]തതതതത
௜

൤
𝛿଴

𝛼଴

൨
തതതതതത

௜

=
𝛿௢

𝛼଴𝜀ଶ

× [𝜀ଶ]തതതതത
௜

൤
𝛿଴

𝛽଴

൨
തതതതത

௜

=
𝛿଴

𝛽଴𝜀ଷ

× [𝜀ଷ]തതതതത
௜

൤
𝛿଴

𝛾଴

൨
തതതതത

௜

=
𝛿଴

𝛾଴𝜀ସ

× [𝜀ସ]തതതതത
௜

17

7. Dealer D sends 𝛼଴ to Player A, 𝛽଴ to Player B, and 𝛾଴ to Player C.

Encryption Phase

1. Player A computes 𝛼଴(𝑎 + 1) = 𝛼଴ × (𝑎 + 1) for secret information 𝑎 and sends to
all servers.

2. Player B computes 𝛽଴(𝑏 + 1) = 𝛽଴ × (𝑏 + 1) for secret information 𝑏 and sends to
all servers.

3. Player C computes 𝛾଴(𝑐 + 1) = 𝛾଴ × (𝑐 + 1) for secret information 𝑐 and sends to
all servers.

Computation Phase (Product-Sum Operation)

1. All servers 𝑆௜ compute [𝛿଴(𝑎𝑏 + 𝑐)]തതതതതതതതതതതതതതതത
௜ as shown below

[𝛿଴(𝑎𝑏 + 𝑐)]തതതതതതതതതതതതതതതത
௜ = 𝛼଴(𝑎 + 1) × 𝛽଴(𝑏 + 1) × ൤

𝛿଴

𝛼଴𝛽଴

൨
തതതതതതതതത

௜

− 𝛼଴(𝑎 + 1) × ൤
𝛿଴

𝛼଴

൨
തതതതതത

௜

− 𝛽଴(𝑏 + 1) × ൤
𝛿଴

𝛽଴

൨
തതതതത

௜

+ 𝛾଴(𝑐 + 1) × ൤
𝛿଴

𝛾଴

൨
തതതതത

௜

Reconstruction Phase

1. Player who wishes to reconstruct the result collects [𝛿଴(𝑎𝑏 + 𝑐)]തതതതതതതതതതതതതതതത
௝ and 𝛿଴,௝ from 𝑘

number of servers, reconstructs 𝛿଴(𝑎𝑏 + 𝑐), 𝛿଴, and computes the result of 𝑎𝑏 + 𝑐
as follows:

𝛿଴(𝑎𝑏 + 𝑐)

𝛿଴

= 𝑎𝑏 + 𝑐

5.2 Security Analysis and Discussion of the TUS 5’ Method

In a 3-input-1-output computation, regardless of the security level of the method used,
if two out of three inputs and the output are leaked to the adversary, the remaining one
input can also be leaked. Similarly, when all three of the inputs are known to the adver-
sary, the output can also be leaked to the adversary. Therefore, we consider these two
types of adversaries. We can state that our proposed secrecy computation method is
secure if it is secure against Adversaries 1 and 2 defined below. However, if each ad-
versary can learn information that he/she wanted to learn, the attack will be considered
to be successful.

Adversary 1：
In the product-sum operation, one of the players who inputted the secret and the

player who reconstructed the output constitute the adversary. Adversary 1 has infor-
mation on one of the inputs (and the random number used to encrypt it) and the infor-
mation needed to reconstruct the output. In addition, the adversary also has knowledge
of information from 𝑘 − 1 servers. According to this information, the adversary at-
tempts to learn the remaining two inputs.

18

Adversary 2:
In the product-sum operation, two of the players who inputted secrets constitute the

adversary. Adversary 2 has information on two of the secrets (and the random numbers
used to encrypt them). In addition, the adversary also has knowledge of information
from 𝑘 − 1 servers. According to this information, the adversary attempts to learn the
remaining one input or the output of the computation.

The security proof for the TUS5’ method is shown below.

Proof of security of the Preprocessing Phase

First, in Step 1, as proven in Section 4, the process of generating a set of shares on 1
is secure. In addition, because our proposed method assumed a semi-honest adversary,
we assumed that the Dealer performed Step 2, Step 3, and Step 7 securely and correctly,
and sent to each server. In Step 4. 𝑘 number of servers 𝑆௝ (𝑗 = 0, … , 𝑘 − 1) compute
𝛿଴,௝ 𝛼଴,௝𝛽଴,௝𝜀ଵ,௝⁄ , 𝛿଴,௝ 𝛼଴,௝𝜀ଶ,௝⁄ , 𝛿଴,௝ 𝛽଴,௝𝜀ଷ,௝⁄ , 𝛿଴,௝ 𝛾଴,௝𝜀ସ,௝⁄ and send to server 𝑆଴. How-
ever, Adversary 1 and Adversary 2 cannot decompose each random number from the
above information. Therefore, Adversary 1 and Adversary 2 cannot learn about random
numbers 𝛿଴, 𝛼଴, 𝛽଴,, 𝛾଴, 𝜀ଵ, … , 𝜀ସ . In Step 5, Server 𝑆଴ computes and broadcasts
𝛿଴ 𝛼଴𝛽଴𝜀ଵ⁄ , 𝛿଴ 𝛼଴𝜀ଶ⁄ , 𝛿଴ 𝛽଴𝜀ଷ⁄ , 𝛿଴ 𝛾଴𝜀ସ⁄ ; however, Adversary 1 and Adversary 2 can-
not decompose this information into random numbers. Shares in Step 6 are generated
by using shares on 1. Because Adversary 1 and Adversary 2 have no information on
random numbers, or random number 𝜀௝ in shares on 1, we can say that the shares for
each server can be generated securely.

Therefore, the following statement is true and the evaluation above remains valid for
the rest of the shares.

𝐻 ቆ൤
𝛿଴

𝛼଴𝛽଴

൨
തതതതതതതതത

௜

ቇ = 𝐻 ൬൤
𝛿଴

𝛼଴𝛽଴
൨

തതതതതതതതത

௜
ฬ

𝛿଴

𝛼଴𝛽଴𝜀ଵ
൰

Proof of security of the Encryption Phase

Because the secret information is smaller than 𝑝 − 2, even if 1 is added to the secret
information it will not become 0. In addition, a random number generated by the dealer
is secure. Therefore, the following statement is true, and remains true for the rest of the
secret information 𝑏 and 𝑐.

𝐻(𝑎) = 𝐻൫𝑎ห𝛼଴(𝑎 + 1)൯

Proof of security of the Computation Phase

Security against Adversary 1

Assume that the player who inputted secret information 𝑏 and random numbers 𝛽଴
is the adversary. He/she also has information from 𝑘 − 1 servers in addition to the re-
sult of computation. In Step 6 of the Preprocessing Phase, Adversary 1 has information
about 𝛿଴ 𝛼଴𝛽଴𝜀ଵ⁄ , 𝛿଴ 𝛼଴𝜀ଶ⁄ , 𝛿଴ 𝛽଴𝜀ଷ⁄ , 𝛿଴ 𝛾଴𝜀ସ⁄ . In the Distribution Phase, Adversary
1 has information about 𝛼଴(𝑎 + 1), 𝛾଴(𝑐 + 1). In the Reconstruction Phase, Adversary

19

1 has information about 𝛿଴(𝑎𝑏 + 𝑐), 𝛿଴ and 𝑎𝑏 + 𝑐. By using this information, we as-
sume that Adversary 1 tries to learn about secret information 𝑎, 𝑐. However, if less than
𝑘 number of shares about random numbers are collected, information regarding the
random numbers and secret information will not be leaked.

First, in order to simplify the problem, we redefined the parameter above to avoid
any duplication of a parameter. As a result, Adversary 1 has information about 𝐵 =
{𝑏, 𝛽଴, 𝛼଴(𝑎 + 1), 𝛾଴(𝑐 + 1), 1 𝛼଴𝜀ଵ⁄ , 1 𝛼଴𝜀ଶ⁄ , 1 𝜀ଷ⁄ , 1 𝛾଴𝜀ସ⁄ , 𝛿଴, 𝑎𝑏 + 𝑐}.

One of the methods to learn about secret information 𝑎, is to first learn about random
number 𝛼଴ . However, Adversary 1 has no information on random numbers 𝜀ଵ～𝜀ସ ,
therefore, he/she is not able to learn about 𝛼଴ from B. Similarly, because Adversary 1
has no information on 𝛾଴, he/she is not able to learn about 𝑐. Even if Adversary 1 tries
to learn about 𝑎, 𝑐 from 𝑎𝑏 + 𝑐 , he/she cannot decompose secret 𝑎, 𝑐 from 𝑎𝑏 + 𝑐 .
Therefore, the following statements are true.

𝐻(𝑎) = 𝐻(𝑎|𝐵)

𝐻(𝑐) = 𝐻(𝑐|𝐵)

In addition, the evaluation above remains valid even if the adversary is the player who
inputted secret 𝑎 or 𝑐. Therefore, the TUS5’ method is information-theoretically secure
against Adversary 1.

Security against Adversary 2

Assume that the player who inputted secrets 𝑏, 𝑐 and random numbers 𝛽଴, 𝛾଴ is the
adversary. He/she also has information from 𝑘 − 1 servers. Therefore, in the Prepro-
cessing Phase, Adversary 2 has information about 𝛿଴ 𝛼଴𝛽଴𝜀ଵ⁄ , 𝛿଴ 𝛼଴𝜀ଶ⁄ , 𝛿଴ 𝛽଴𝜀ଷ⁄ ,
𝛿଴ 𝛾଴𝜀ସ⁄ . In the Distribution Phase, Adversary 2 has information about 𝛼଴(𝑎 + 1). By
using this information, the adversary tries to learn about the remaining input 𝑎 or output
𝑎𝑏 + 𝑐. However, if less than 𝑘 number of shares about random numbers are collected,
information regarding the random numbers and secret information will not be leaked.

In order to simplify the problem, we redefined the parameters above to avoid any
their duplication. As a result, we know that Adversary 2 has information about 𝐵𝐶 =
{𝑏, 𝑐, 𝛽଴, 𝛾଴, 𝛼଴(𝑎 + 1), 𝛿଴ 𝛼଴𝜀ଵ⁄ , 𝛿଴ 𝛼଴𝜀ଶ⁄ , 𝛿଴ 𝜀ଷ⁄ , 𝛿଴ 𝜀ସ⁄ , 𝛿଴(𝑎𝑏 + 𝑐)}.

One of the methods to learn about secret information 𝑎, is to first learn about random
number 𝛼଴ . However, Adversary 2 has no information on random numbers 𝜀ଵ～𝜀ସ ,
therefore, he/she is not able to learn about 𝛼଴ from BC. In addition, even if Adversary
2 tries to learn about output 𝑎𝑏 + 𝑐 from 𝛿଴(𝑎𝑏 + 𝑐), because Adversary 2 has no in-
formation on 𝛿଴, the output will not be leaked. The same can also be said for other
combinations. Therefore, the following statements are true.

𝐻(𝑎) = 𝐻(𝑎|𝐵𝐶)

𝐻(𝑎𝑏 + 𝑐) = 𝐻(𝑎𝑏 + 𝑐|𝐵𝐶)

In addition, if 𝑏 = 1, or 𝑐 = 0, it is clear that our protocol is also secure against secrecy
computation of addition and multiplication (because 𝑏 = 1 or 𝑐 = 0 is treated as one

20

of the pieces of information that is known to the adversary and the adversary tries to
learn about the remaining one input or output) .

Proof of security of the Reconstruction Phase

Even if 𝑎𝑏 + 𝑐 is equal to 0, because nothing is leaked from 𝑘 or less number of
shares on [𝛿଴(𝑎𝑏 + 𝑐)]തതതതതതതതതതതതതതതത

௜ and 𝛿଴,௝, we can say that Adversary 2 is not able to learn about
the result of the computation.

Because the Preprocessing Phase only processes information that does not depend
on any of the secret information, it can be performed in advance before inputting the
secret information. Secret information is introduced in the Encryption Phase and the
result is sent to all servers. Both these phases are equal to the process of distribution/set-
ting of the secret sharing scheme. Therefore, the actual computation is performed by
the Computation Phase using values set in advance, so no communication between
servers is needed. Finally, in the Reconstruction Phase, a player collects [𝛿଴(𝑎𝑏 + 𝑐)]തതതതതതതതതതതതതതതത

௜
and 𝛿଴,௝ from 𝑘 number of servers 𝑆௝ and obtains 𝑎𝑏 + 𝑐. From this, we learn that com-
munication only occurs in the Preprocessing Phase, Encryption Phase and Recon-
struction Phase.

5.3 TUS 5 Method: Protocol for Computation with Repetition

Because no repetition of computation is assumed in the TUS5’ method, reconstruction
is only performed by the player who wishes to know about the results of computation.
However, when computation with repetition is assumed, encrypted results are recon-
structed temporarily by one of the servers and are then used as input for the consecutive
computation. Here, if the reconstructed result of that particular computation is equal to
0, the information that the result of that particular computation is equal to 0 will be
leaked. Even if a value of 1 is added to the result before being reconstructed, if the
reconstructed result is still equal to 0, the information that the resulting value is equal
to -1 in modulus 𝑝 will be leaked. Therefore, the protocol shown below will introduce
the measure to accommodate secrecy computation with repetition.

Preprocessing Phase

1. Servers 𝑆௜ (𝑖 = 0, … , 𝑘 − 1) that participate in the computation generate random
numbers 𝜀௝,௜(𝑗 = 1, … 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟) and by using the method in Section 4,

multiply them together and compute enough number of shares ൣ𝜀ఫ൧തതതതത
௜
 on 1, and store

ൣ𝜀ఫ൧തതതതത
௜
 and 𝜀௝,௜.

2. Dealer D generates 2 sets of 𝑘 numbers of random numbers 𝛼0,0, 𝛼0,1 , … , 𝛼0,𝑘−1 and

𝛼2,0, 𝛼2,1 , … , 𝛼2,𝑘−1, computes the following and sends 𝛼0,𝑗, 𝛼2,𝑗 to Servers 𝑆𝑗.

𝛼଴ = ෑ 𝛼଴,௝

௞ିଵ

௝ୀ଴

21

𝛼2 = ෑ 𝛼2,𝑗

𝑘−1

𝑗=0

3. Dealer D performs the same process as Step 2 on random numbers 𝛽
0,𝑗

, 𝛽
2,𝑗

 and

𝛾
0.𝑗

, 𝛾
2,𝑗

.

4. Servers 𝑆𝑗 (𝑗 = 0, … , 𝑘 − 1) compute the following and send to Server 𝑆0.

𝛿଴,௝

𝛼଴,௝𝛽଴,௝𝜀ଵ,௝

,
𝛿଴,௝

𝛼଴,௝𝛽ଶ,௝𝜀ଶ,௝

,
𝛿଴,௝

𝛼ଶ,௝𝛽଴,௝𝜀ଷ,௝

𝛿଴,௝

𝛾଴,௝𝜀ସ,௝

,
𝛿ଶ,௝

𝛼ଶ,௝𝛽ଶ,௝𝜀ହ,௝

,
𝛿ଶ,௝

𝛾ଶ,௝𝜀଺,௝

5. Server 𝑆଴ computes 𝛿଴ 𝛼଴𝛽଴𝜀ଵ⁄ , 𝛿଴ 𝛼଴𝛽ଶ𝜀ଶ⁄ , 𝛿଴ 𝛼ଶ𝛽଴𝜀ଷ⁄ , 𝛿଴ 𝛾଴𝜀ସ⁄ , 𝛿ଶ 𝛼ଶ𝛽ଶ𝜀ହ⁄ ,
𝛿ଶ 𝛾ଶ𝜀଺⁄ as shown below, and sends to all servers.

𝛿଴

𝛼଴𝛽଴𝜀ଵ

= ෑ
𝛿଴,௝

𝛼଴,௝𝛽଴,௝𝜀ଵ,௝

௞ିଵ

௝ୀ଴

𝛿଴

𝛼଴𝛽ଶ𝜀ଶ

= ෑ
𝛿଴,௝

𝛼଴,௝𝛽ଶ,௝𝜀ଶ,௝

௞ିଵ

௝ୀ଴

𝛿଴

𝛼ଶ𝛽଴𝜀ଷ

= ෑ
𝛿଴,௝

𝛼ଶ,௝𝛽଴,௝𝜀ଷ,௝

௞ିଵ

௝ୀ଴

𝛿଴

𝛾଴𝜀ସ

= ෑ
𝛿଴,௝

𝛾଴,௝𝜀ସ,௝

௞ିଵ

௝ୀ଴

𝛿ଶ

𝛼ଶ𝛽ଶ𝜀ହ

= ෑ
𝛿ଶ,௝

𝛼ଶ,௝𝛽ଶ,௝𝜀ହ,௝

௞ିଵ

௝ୀ଴

𝛿ଶ

𝛾ଶ𝜀଺

= ෑ
𝛿ଶ,௝

𝛾ଶ,௝𝜀଺,௝

௞ିଵ

௝ୀ଴

6. All servers 𝑆௝ compute and hold the following.

൤
𝛿଴

𝛼଴𝛽଴

൨
തതതതതതതതത

௜

=
𝛿଴

𝛼଴𝛽଴𝜀ଵ

× [𝜀ଵ]തതതതത
௜

൤
𝛿଴

𝛼଴𝛽ଶ

൨
തതതതതതതതത

௜

=
𝛿଴

𝛼଴𝛽ଶ𝜀ଶ

× [𝜀ଶ]തതതതത
௜

22

൤
𝛿଴

𝛼ଶ𝛽଴

൨
തതതതതതതതത

௜

=
𝛿଴

𝛼ଶ𝛽଴𝜀ଷ

× [𝜀ଷ]തതതതത
௜

൤
𝛿଴

𝛾଴

൨
തതതതത

௜

=
𝛿଴

𝛾଴𝜀ସ

× [𝜀ସ]തതതതത
௜

൤
𝛿ଶ

𝛼ଶ𝛽ଶ

൨
തതതതതതതതത

௜

=
𝛿ଶ

𝛼ଶ𝛽ଶ𝜀ହ

× [𝜀ହ]തതതതത
௜

൤
𝛿ଶ

𝛾ଶ

൨
തതതതത

௜

=
𝛿ଶ

𝛾ଶ𝜀଺

× [𝜀଺]തതതതത
௜

7. Dealer D sends 𝛼଴, 𝛼ଶ to Player A, 𝛽଴, 𝛽ଶ to Player B, and 𝛾଴, 𝛾ଶ to Player C.

Encryption Phase

1. Player A generates random number 𝛼ଵ, such that 𝑎 + 𝛼ଵ ≠ 0 for secret information
𝑎, computes 𝛼଴(𝑎 + 𝛼ଵ), 𝛼ଶ𝛼ଵ, and sends to all servers.

2. Player B generates random number 𝛽ଵ, such that 𝑏 + 𝛽ଵ ≠ 0 for secret information
𝑏, computes 𝛽଴(𝑏 + 𝛽ଵ), 𝛽ଶ𝛽ଵ, and sends to all servers.

3. Player C generates random number 𝛾ଵ, such that 𝑐 + 𝛾ଵ ≠ 0 for secret information
𝑐, computes 𝛾଴(𝑐 + 𝛾ଵ), 𝛾ଶ𝛾ଵ, and sends to all servers.

Computation Phase

1. All servers 𝑆௜ compute [𝛿଴(𝑎ᇱ + 𝛼′ଵ)]തതതതതതതതതതതതതതതതതത
௜ , [𝛿ଶ𝛼′ଵ]തതതതതതതതത

௜ as follows. Note that 𝑎ᇱ = 𝑎𝑏 +
𝑐, 𝛼′ଵ = 𝛾ଵ − 𝛼ଵ𝛽ଵ.

[𝛿଴(𝑎ᇱ + 𝛼′ଵ)]തതതതതതതതതതതതതതതതതത
௜ = 𝛼଴(𝑎 + 𝛼ଵ) × 𝛽଴(𝑏 + 𝛽ଵ) × ൤

𝛿଴

𝛼଴𝛽଴

൨
തതതതതതതതത

௜

− 𝛼଴(𝑎 + 𝛼ଵ) × 𝛽ଶ𝛽ଵ × ൤
𝛿଴

𝛼଴𝛽ଶ

൨
തതതതതതതതത

௜

− 𝛽଴(𝑏 + 𝛽ଵ) × 𝛼ଶ𝛼ଵ × ൤
𝛿଴

𝛼ଶ𝛽଴

൨
തതതതതതതതത

௜

+ 𝛾଴(𝑐 + 𝛾ଵ) × ൤
𝛿଴

𝛾଴

൨
തതതതത

௜

[𝛿ଶ𝛼′ଵ]തതതതതതതതത
௜ = 𝛾ଶ𝛾ଵ × ൤

𝛿ଶ

𝛾ଶ

൨
തതതതത

௜

− 𝛼ଶ𝛼ଵ × 𝛽ଶ𝛽ଵ × ൤
𝛿ଶ

𝛼ଶ𝛽ଶ

൨
തതതതതതതതത

௜

2. Server 𝑆଴ collects [𝛿ଶ𝛼′ଵ]௝ from 𝑘 number of servers 𝑆௝, and reconstructs 𝛿ଶ𝛼′ଵ.
3. If 𝛿ଶ𝛼′ଵ = 0 or 𝛿଴(𝑎ᇱ + 𝛼′ଵ) = 0 , skip to Correction Phase, and obtain

𝛿ଶ𝛼"ଵ, 𝛿଴(𝑎ᇱ + 𝛼"ଵ), such that 𝛿ଶ𝛼"ଵ ≠ 0, 𝛿଴(𝑎ᇱ + 𝛼"ଵ) ≠ 0.

Correction Phase

1. Servers 𝑆௝ generate random numbers 𝜌௝, 𝜆௝, and send the product of 𝜌௝𝜆௝ to Server
𝑆଴.

23

2. Server 𝑆0 computes the multiplication of 𝜌𝜆 = Π𝜌௝𝜆௝, and broadcasts the result to
all servers.

3. Servers 𝑆௝ compute the following and send to Server 𝑆଴. However, a set of shares
on 1 used in the Correction Phase, such as 𝜀଻, 𝜀଼ are also generated through Step 1
of the Preprocessing Phase.

𝛿ଶ,௝

𝜌௝𝜀଻,௝

,
𝛿଴,௝

𝜌௝𝜀଼,௝

4. Server 𝑆0 computes the following and sends to all servers.

𝛿ଶ

𝜌𝜀଻

= ෑ
𝛿ଶ,௝

𝜌௝𝜀଻,௝

௞ିଵ

௝ୀ଴

𝛿଴

𝜌𝜀଼

= ෑ
𝛿଴,௝

𝜌௝𝜀଼,௝

௞ିଵ

௝ୀ଴

5. All servers 𝑆𝑖 compute the following.

[𝛿ଶ𝜆]തതതതതതത
௜ = 𝜌𝜆 ×

𝛿ଶ

𝜌𝜀଻

× [𝜀଻]തതതതത
௜

[𝛿଴𝜆]തതതതതതത
௜ = 𝜌𝜆 ×

𝛿଴

𝜌𝜀଼

× [𝜀଼]തതതതത
௜

6. All servers 𝑆௜ compute the following. Note that 𝛼"ଵ = 𝛼′ଵ + 𝜆.

[𝛿ଶ𝛼"ଵ]തതതതതതതതത
௜ = [𝛿ଶ𝛼′ଵ]തതതതതതതതത

௜ + [𝛿ଶ𝜆]തതതതതതത
௜

[𝛿଴(𝑎ᇱ + 𝑎"ଵ)]തതതതതതതതതതതതതതതതതത
௜ = [𝛿଴(𝑎ᇱ + 𝛼′ଵ)]തതതതതതതതതതതതതതതതതത

௜ + [𝛿଴𝜆]തതതതതതത
௜

7. Server 𝑆଴ first collects [𝛿ଶ𝛼"ଵ]തതതതതതതതത
௜ from 𝑘 numbers of Servers 𝑆௝ and reconstructs

𝛿ଶ𝛼"ଵ. If 𝛿ଶ𝛼"ଵ = 0, Step 1 is repeated with different random numbers. If 𝛿ଶ𝛼"ଵ is
not equal to 0, Server 𝑆଴ collects [𝛿଴(𝑎ᇱ + 𝛼"ଵ)]തതതതതതതതതതതതതതതതതത

௝ from 𝑘 numbers of Servers 𝑆௝
and reconstructs 𝛿଴(𝑎ᇱ + 𝛼"ଵ). If 𝛿଴(𝑎ᇱ + 𝛼"ଵ) = 0, returns to Step 1, and repeats
the process by changing the random numbers. This process is repeated until both
𝛿଴(𝑎ᇱ + 𝛼"ଵ), 𝛿ଶ𝛼"ଵ are not equal to 0.

Reconstruction Phase

1. The player collects 𝛿଴,௝, 𝛿ଶ,௝ from 𝑘 numbers of servers 𝑆௝ who participated in the
last computation, and by using 𝛿଴(𝑎ᇱ + 𝛼"ଵ), 𝛿ଶ𝛼"ଵ and the reconstructed 𝛿଴, 𝛿ଶ ,
computes result 𝑎′ by using the equation below.

𝛿଴(𝑎ᇱ + 𝛼"ଵ)

𝛿଴

−
𝛿ଶ𝛼"ଵ

𝛿ଶ

= 𝑎′

24

5.4 Security Analysis of the TUS5 Method

The number of random numbers produced in the Preprocessing Phase increased com-
pared to the Preprocessing Phase of the TUS5’ method; however, the security remains
the same as in the TUS5’ method. In the Encryption Phase, because random number
𝛼ଵ is added to produce 𝑎 + 𝛼ଵ ≠ 0, even if secret information 𝑎 = 0, 𝛼଴(𝑎 + 𝛼ଵ) ≠ 0,
secret information 𝑎 will not be leaked. In the Computation Phase, the number of ran-
dom numbers known to Adversary 1 and Adversary 2 increases. However, the security
of the Computation Phase in the TUS5 method can still be proven to be the same as in
the TUS5’ method. In addition, the security of the Reconstruction Phase is also the
same as in the TUS5’ method. However, because of the limit on the number of pages,
we have omitted the detailed proof. Below, we show the security analysis for the newly
added Correction Phase.

Proof of security of the Correction Phase

In the Correction Phase, if either one of the reconstructed results is equal to 0, a new
random number 𝜆 is added for 𝛼′ଵ to be renewed as 𝛼"ଵ. Only 𝛿଴(𝑎ᇱ + 𝛼"ଵ), 𝛿ଶ𝛼"ଵ that
are not equal to 0 become the new 𝛼଴(𝑎 + 𝛼ଵ), 𝛼ଶ𝛼ଵ. This allows for the repetition of
computation of secrecy product-sum computation. Note that, in the Correction Phase,
𝛿ଶ𝛼"ଵ and 𝛿଴(𝑎ᇱ + 𝛼"ଵ) are not reconstructed together. If either one of the recon-
structed results 𝛿ଶ𝛼"ଵ = 0 , 𝛿଴(𝑎ᇱ + 𝛼"ଵ) = 0 , information about either 𝛼"ଵ = 0 or
(𝑎ᇱ + 𝛼"ଵ) = 0 will be leaked. However, because 𝛼"ଵ consists of only random num-
bers, information regarding the secret information will not be leaked. In addition, if
(𝑎ᇱ + 𝛼"ଵ) = 0, information that 𝑎ᇱ = −𝛼"ଵ will be leaked. However, because 𝛼"ଵ is
not equal to 0 and is encrypted by 𝛿ଶ𝛼"ଵ, information regarding secret information will
not be leaked. Therefore, Adversaries 1 and 2 cannot learn about the secret information.

In addition, even if the Correction Phase is repeated, because different random num-
bers (except for 𝛿ଶ, 𝛿଴) are used each time, 𝛿ଶ, 𝛿଴, 𝜆 will not be leaked from
[𝛿ଶ𝜆]തതതതതതത

௜ , [𝛿଴𝜆]തതതതതതത
௜. Therefore, Adversaries 1 and 2 cannot learn about the secret information

and random numbers used.

6 Discussion and Consideration

6.1 Merits of Secrecy Computation for 𝑵 < 𝟐𝒌 − 𝟏

We proposed secrecy computation using a secret sharing scheme under the setting of
𝑛 < 2𝑘 − 1. There are two merits of this approach.

The first merit is the parameters of 𝑛, 𝑘 can be optimized without having to increase
the number of servers. Typically, when parameter 𝑘 is decided based on the attack tol-
erance of the system and when considering the loss resistance of servers, 𝑛 is set such
that 𝑛 ≥ 𝑘. However, when performing secrecy multiplication, because 𝑛 ≥ 2𝑘 − 1,
the number of servers needed will increase, increasing overall cost. In a conventional
method, there are examples where in order to minimize the increase of cost, parameters
𝑛 and 𝑘 are set at 3 and 2, respectively. In such a case, even if one of the servers breaks

25

down, the secrecy computation will no longer be possible, thus losing the loss resistance
of servers.

The second merit is that because parameters 𝑛 and 𝑘 can be set such that 𝑛 = 𝑘, if
the owner of the secret information participates in the computation and he/she manages
his share securely, even if all players except for the owner collude, the information
regarding the secret information will not be leaked. In contrast, in the case when 𝑛 ≥
2𝑘 − 1, even if the owner manages the share securely, if more than 𝑘 players except
for the owner colluded, all information regarding the secret information will be leaked.

We can strictly say that our proposal realizes 𝑁 < 2𝑘 − 1, but it can also realize the
above merits.

6.2 Security Comparison with SPDZ 2 Method

In the SPDZ 2 method [13], the owner of the secret information is one of the players
and it is assumed that even if all players except for the owner (𝑛 − 1 number of players)
is attacked, the secret information will not be leaked. However, in some cases such as
when the reconstructed result is shared with all players, the above statement will not be
true. For example, in the computation of 𝑓 shown below, suppose that 𝑎ଵ is the secret
information of the owner.

𝑎 = 𝑓(𝑎ଵ, 𝑎ଶ, … , 𝑎௡)

Here, if the result of computation 𝑎 is known to (𝑛 − 1) number of players, by using
the computation shown below, secret information 𝑎ଵ of the owner will be leaked. How-
ever, 𝑔 is a function of 𝑓 where 𝑎ଵ had been transformed to 𝑎ଵ = and 𝑓 is a function
that realizes arithmetic computation.

𝑎1 = 𝑔(𝑎, 𝑎2, … , 𝑎𝑛)

Therefore, the security definition of the SPDZ 2 method only ensures security during
the secrecy computation phase, where secret information of the owner will not be
leaked even if 𝑛 − 1 players (excluding the owner) colluded.

The same can be said for the TUS method, where when performing a secrecy com-
putation it can also be resistant to attack by (𝑛 − 1) number of players (excluding the
owner). For example, in the Computation Phase of the product-sum operation, shown
in Section 5.1, the reconstructed result is not known. Therefore, from the security anal-
ysis against Adversary 2, we learn that out of 𝑡 number of players, even if 𝑡 − 1 number
of players colluded, the rest of the secret information will not be leaked.

6.3 About Condition 3

Through the Preprocessing Phase in the TUS5 and TUS5’ methods, random numbers
used are generated beforehand and are sent directly to all servers participating in the
secrecy computation. However, if one of the servers is broken and cannot be used, se-
crecy computation can no longer be continued because random numbers that are han-
dled by that server will be lost. Therefore, random numbers used in the secrecy

26

computation are not sent directly to all participating servers, but instead are distributed
by using the XOR method. By this, even if one of the servers is no longer functional, if
the substitute server could reconstruct the random numbers used by that particular
server, the process of secrecy computation can be continued. In this case, Condition 3
is needed. In other words, the newly added server and the previous server are deemed
as the same server and it must only handle the same random numbers as the previous
server. However, by doing this, in the case of 𝑛 > 𝑘, the server loss-resistant charac-
teristic of the secret sharing scheme could also be maintained. In addition, even if the
old server is honest and the new server is not honest, we assumed only up to 𝑘 − 1
servers were not honest out of the original 𝑛 number of servers. Therefore, it will not
cause any problem.

7 Performance Evaluation

7.1 Function used for Evaluating Performance

There are many cases where Advanced Encryption Standard (AES) is used for evaluat-
ing the performance of a secrecy computation method. However, regarding AES, where
the process is considerably light, it is hard to imagine a situation where the process of
encryption is outsourced. In a case such as Public Key Encryption where the process is
considerably heavy, it is beneficial to outsource the process of encryption. However,
this is not equivalent to secrecy computation by multiple players, but instead simplifies
the process of outsourcing the encryption process by one player. Therefore, we make
use of the inner-product sum operation by multiple players as the function for evaluat-
ing the performance of multiparty computation, as shown below. Operations such as an
inner-product sum are often used in statistical calculation such as distribution, sum of
squared deviation etc., meaning that it can be applied to areas such as searching of gene
sequence and much more. Therefore, the range of possible application of our protocols
is very wide.

The detailed algorithm is shown below for an inner-product sum computation be-
tween the secret information (𝑎ଵ, … , 𝑎௠) of Player A and the secret information
(𝑏ଵ, … , 𝑏௠) of Player B. The security for this algorithm can be proven the same way as
in the TUS5’ method.

Preprocessing Phase

1. Servers 𝑆௜ (𝑖 = 0, … , 𝑘 − 1) that participate in the computation generate random
numbers 𝜀௝,௜(𝑗 = 1, … 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟), and by using the method shown in Chap-

ter 4, multiply them together and compute the desired number of shares ൣ𝜀ఫ൧തതതതത
௜
 on 1.

Servers 𝑆௜ each hold information ൣ𝜀ఫ൧തതതതത
௜
 and 𝜀௝,௜ .

2. Player A decides random numbers (𝛼଴ଵ, … , 𝛼଴௠) correspond to secret information
(𝑎ଵ, … , 𝑎௠), and sends random numbers 𝛼଴௟,௝ , such that 𝛼଴௟ = ∏ 𝛼଴௟,௝

௞ିଵ
௝ୀ଴ (𝑙 =

1, … , 𝑚) to servers 𝑆௝.

27

3. Player B decides random numbers (𝛽଴ଵ, … , 𝛽଴௠) correspond to secret information
(𝑏ଵ, … , 𝑏௠), and sends random numbers 𝛽଴௟,௝ , such that 𝛽଴௟ = ∏ 𝛽଴௟,௝

௞ିଵ
௝ୀ଴ (𝑙 =

1, … , 𝑚) to servers 𝑆௝.
4. Servers 𝑆௝ (𝑗 = 0, … , 𝑘 − 1) generate random numbers 𝛿଴,௝, compute the following

and send to Server 𝑆଴.

𝛿଴,௝

𝛼଴௟,௝𝛽଴௟,௝𝜀ଵ௟,௝

,
𝛿଴,௝

𝛼଴௟,௝𝜀ଶ௟,௝

,
𝛿଴,௝

𝛽଴௟,௝𝜀ଷ௟,௝

,
𝛿଴,௝

𝜀ସ௟,௝

 (𝑙 = 1, … , 𝑚)

5. Server 𝑆଴ computes the following using the received information and sends to all
servers.

𝛿0

𝛼0𝑙𝛽0𝑙
𝜀1𝑙

= ෑ
𝛿଴,௝

𝛼଴௟,௝𝛽଴௟,௝𝜀ଵ௟,௝

௞ିଵ

௝ୀ଴

𝛿0

𝛼0𝑙𝜀2𝑙

= ෑ
𝛿଴,௝

𝛼଴௟,௝𝜀ଶ௟,௝

௞ିଵ

௝ୀ଴

𝛿0

𝛽
0𝑙

𝜀3𝑙

= ෑ
𝛿଴,௝

𝛽଴௟,௝𝜀ଷ௟,௝

௞ିଵ

௝ୀ଴

𝛿0

𝜀4𝑙

= ෑ
𝛿଴,௝

𝜀ସ௟,௝

௞ିଵ

௝ୀ଴

6. Servers 𝑆௜ compute the following:

൤
𝛿଴

𝛼଴௟𝛽଴௟

൨
തതതതതതതതതത

௜

=
𝛿଴

𝛼଴௟𝛽଴௟𝜀ଵ௟

× ൣ𝜀ଵ௟,ఫ൧തതതതതതത
௜

൤
𝛿0

𝛼0𝑙

൨
തതതതതത

௜

=
𝛿0

𝛼0𝑙𝜀2𝑙

× ൣ𝜀ଶ௟,ఫ൧തതതതതതത
௜

ቈ
𝛿0

𝛽
0𝑙

቉
തതതതതത

௜

=
𝛿0

𝛽
0𝑙

𝜀3𝑙

× ൣ𝜀ଷ௟,ఫ൧തതതതതതത
௜

[𝛿0]തതതതത
௜ =

𝛿0

𝜀4𝑙

× ൣ𝜀ସ௟,ఫ൧തതതതതതത
௜

Encryption Phase

1. In regard to secret information 𝑎௟, Player A computes 𝛼଴௟(𝑎௟ + 1)(𝑙 = 1, … , 𝑚) and
broadcasts it.

2. In regard to secret information 𝑏௟, Player B computes 𝛽଴௟(𝑏௟ + 1)(𝑙 = 1, … , 𝑚) and
broadcasts it.

28

Computation Phase

1. All servers 𝑆௜ compute the following:

൤෍ 𝛿0(𝑎𝑙𝑏𝑙)
𝑚

𝑙=1
൨

തതതതതതതതതതതതതതതതതതതതതത

𝑖

= ෍ {𝛼0𝑙(𝑎𝑙 + 1) × 𝛽
0𝑙

(𝑏𝑙 + 1) × ቈ
𝛿0

𝛼0𝑙𝛽0𝑙

቉
തതതതതതതതതതത

𝑖

− 𝛼0𝑙(𝑎𝑙 + 1) × ൤
𝛿଴

𝛼଴௟
൨

തതതതതതത

𝑖

𝑚

𝑙=1

− 𝛽
0𝑙

(𝑏𝑙 + 1) × ൤
𝛿଴

𝛽଴௟
൨

തതതതതത

𝑖

+ [𝛿0]തതതതതത
𝑖}

Reconstruction Phase

1. The player collects [∑ 𝛿଴(𝑎௟𝑏௟)
௠
௟ୀଵ]തതതതതതതതതതതതതതതതതതത

௝ , 𝛿଴,௝ from 𝑘 number of servers, reconstructs
∑ 𝛿଴(𝑎௟𝑏௟)

௠
௟ୀଵ , 𝛿଴ and computes the following :

෍ (𝑎𝑙𝑏𝑙)
𝑚

𝑙=1
= ෍

𝛿0(𝑎𝑙𝑏𝑙)

𝛿0

𝑚

𝑙=1

The above computation of the inner-product sum operation does not require any com-
munication. In addition, without the use of a junction process such as “if”, and if all the
computations for the second process onwards had been decided and computed in ad-
vance in the Preprocessing Phase, along with all the combinations of random numbers
required, we only need to perform communication when the process of reconstruction
is required for computation with repetition. For example, suppose that after the compu-
tation of the inner-product sum operation, the result is going to be used for other secrecy
computations. By performing the above algorithm using the TUS5 method, one of the
servers first reconstruct [∑ 𝛿଴(𝑎௟𝑏௟ − 𝛼ଵ௟𝛽ଵ௟)௠

௟ୀଵ]തതതതതതതതതതതതതതതതതതതതതതതതതതതതതത
௜ and use it as the encrypted input

∑ 𝛿଴(𝑎௟𝑏௟ − 𝛼ଵ௟𝛽ଵ௟)
௠
௟ୀଵ = 𝛿଴ ∑ (𝑎௟𝑏௟ − 𝛼ଵ௟𝛽ଵ௟)

௠
௟ୀଵ for the consecutive computation. By

this, the secrecy computation can be continued (a more detail explanation will be dis-
cussed later). In addition, if the result of the computation is not equal to 0, even if there
are 𝑚 number of multiplications of 𝑎௟𝑏௟ , the reconstruction process required in the
Computation Phase is only 1. If the result of the computation is equal to 0, the number
of reconstructions required for the Correction Phase will increase; however, this will
only happen several times at most.

7.2 Qualitative Comparison

SPDZ 2 method [13] is limited to the setting 𝑛 = 𝑘 , and Araki et al.’s method [1] is
limited to the setting 𝑛 = 3, 𝑘 = 2. Therefore, comparison by using the same condition
is not possible. Only TUS methods allow for parameters 𝑛, 𝑘 to be set at any value and
are able to accommodate various use cases. However, SPDZ 2 can accommodate a ma-
licious adversary. For equal comparison, all costs for authentication processes, such as
zero knowledge proof and message authentication, are omitted in the next section.
Araki et al. proposed two versions of protocols: a protocol with information-theoretical
security and a protocol with computational security. However, in the next section, we
only perform comparison with the information-theoretical secure protocol. Below, we

29

show the qualitative comparison between our proposed methods and conventional
methods.

Table 1. Qualitative comparison of our proposed method with conventional methods

 Parameter
𝑛 and 𝑘

Type of
Adversary

Security

TUS Methods 𝑛 ≥ 𝑘 Semi-honest Information Theoretical
SPDZ 2 Method 𝑛 = 𝑘 Malicious Computational

Araki et al’s
Method

𝑛 = 3, 𝑘 = 2 Semi-honest
Information Theoretical

or
 Computational

7.3 Quantitative Comparison

By using the computation of 𝑚 number of inner-product sum operations, in Table 2 we
show the communication and computation costs for the SPDZ 2，TUS5’，and TUS5
methods when 𝑛 = 𝑘 = 2. In the case of 𝑛 = 𝑘, because the TUS method could make
use of additive secret sharing, computation of shares and reconstruction of secret infor-
mation can be done by one process of addition.

In Table 3 we show the computation and communication costs of the Araki，TUS5’,
and TUS5 methods when 𝑛 = 3, 𝑘 = 2. Araki et al’s method does not possess the loss
resistance of the server; however, the TUS method still holds the loss resistance of the
server.

In addition, in the inner-product sum computation, no repetition of computation is
required. We assume a situation where the reconstructed result in the TUS5 method
might be equal to 0, thus we include the process of performing 𝑟-times of Correction
Phase. We define the parameters used in the comparison as follows.

Definition of Parameters

─ 𝑑ଵ： Size of share from Shamir’s secret sharing or XOR-based secret sharing
─ 𝑑ଶ： Size of share from SHE
─ 𝐶ଵ： Computational cost of Shamir’s secret sharing
─ 𝐶ଶ： Computational cost for generating a set of Multiplication Triple using SHE
─ 𝐶ଷ： Computational cost of XOR-based secret sharing
─ 𝐴： Computational cost of a single addition/subtraction
─ 𝑀： Computational cost of a single multiplication/division

Parameter 𝑑ଵ is usually almost the same size as the secret information, therefore, the
size of the secret information is assumed as 𝑑ଵ. In contrast, 𝑑ଶ is typically larger than
the original secret. Therefore, 𝑑ଶ > 𝑑ଵ. Moreover, 𝐶ଵ, 𝐶ଷ are considerably smaller than
𝐶ଶ. Therefore, 𝐶ଵ, 𝐶ଷ ≪ 𝐶ଶ. In a secret sharing scheme, the computational cost of the
distribution and the reconstruction process differs, but because both are computations
on a polynomial (reconstruction is performed using the Lagrange Interpolation
method), we consider the computation costs for computing one share and for recon-
struction is 𝐶ଵ . 𝐴, 𝑀 are computational costs for a single computation of

30

addition/subtraction or multiplication/division, and 𝐶ଵ, 𝐶ଶ, 𝐶ଷ ≫ 𝐴, 𝑀. Process costs re-
garding the generation of random numbers and secret information is not included. Com-
munication to all servers is assumed as a one-time communication of broadcast, and 𝑢
represents the number of players.

In Tables 2 and 3 the process of generating a share on 1, as shown in Section 4, is
labelled as Preprocessing0, and the rest of the preprocessing process is labelled as Pre-
processing1. The Correction Phase is also separated and is evaluated as Correction.

The secrecy computation of the TUS5 method is assumed to be as follows:

൤෍ 𝛿0(𝑎𝑙𝑏𝑙 − 𝛼1𝑙𝛽1𝑙
)

𝑚

𝑙=1
൨

തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത

𝑖

= ෍ {𝛼0𝑙(𝑎𝑙 + 𝛼1𝑙) × 𝛽
0𝑙

൫𝑏𝑙 + 𝛽
1𝑙

൯ × ቈ
𝛿0

𝛼0𝑙𝛽0𝑙

቉
തതതതതതതതതതത

𝑖

𝑚

𝑙=1

− 𝛼0𝑙(𝑎𝑙 + 𝛼1𝑙) × 𝛽
2𝑙

𝛽
1𝑙

× ቈ
𝛿0

𝛼0𝑙𝛽2𝑙

቉
തതതതതതതതതതത

𝑖

− 𝛽
0𝑙

൫𝑏𝑙 + 𝛽
1𝑙

൯ × 𝛼2𝑙𝛼1𝑙 ቈ
𝛿0

𝛼2𝑙𝛽0𝑙

቉
തതതതതതതതതതത

𝑖

}

൤෍ 𝛿2(−𝛼1𝑙𝛽1𝑙
)

𝑚

𝑙=1
൨

തതതതതതതതതതതതതതതതതതതതതതതതതതതത

𝑖

= − ෍ {𝛼2𝑙𝛼1𝑙 × 𝛽
2𝑙

𝛽
1𝑙

× ቈ
𝛿2

𝛼2𝑙𝛽2𝑙

቉
തതതതതതതതതതത

𝑖

}
𝑚

𝑙=1

Therefore, even in the TUS5 method, the number of shares on 1 required in order to
perform secrecy computation is 4𝑚. However, considering 𝑟-times of the Correction
Phase, we assumed that it needed (4𝑚 + 2𝑟) number of shares on 1.

If all preprocessing processes and the encryption process are also considered as pre-
processing processes, from Table 2, the communication cost for the SPDZ 2 method
includes the computation 𝐶ଶ, which requires expensive computation using Somewhat
Homomorphic Encryption (SHE). Therefore, the computation cost for the SPDZ 2
method is the most expensive. In addition, communication costs depend a great deal on
the relationship between 𝑑ଶ, 𝑑ଵ, but the TUS methods typically perform more small
communication. However, the processes up to this point are performed by the Prepro-
cessing Phase. In the secrecy computation of the inner-product sum operation, in order
to see the detailed breakdown of the operation, we show the computation and commu-
nication cost for one server and it is then multiplied by 𝑁 for the total cost. In the SPDZ
2 method, the computation and communication costs per server are 𝑚(3𝑀 + 5𝐴) and
𝑚(2𝑑ଵ), respectively. In contrast, in the TUS5’ method, only the computation cost of
𝑚(4𝑀 + 3𝐴) is required per server and no communication cost is required. Therefore,
in the case where the communication process requires a lot of time, we can state that
the TUS5’ method is faster than the SPDZ 2 method.

Furthermore, when comparing with Araki et al’s method, there are instances where
the cost of both computation and communication of the TUS method are larger during
the Preprocessing and Encryption Phase. However, in the Computation Phase of in-
ner product, Araki et al’s method requires 𝑚(3𝑀 + 5𝐴) of computation cost and
𝑚(𝑑ଵ) communication cost per server. In contrast, the TUS5’ method requires only
𝑚(4𝑀 + 3𝐴) computation cost without any communication cost. Therefore, in the case

31

where communication takes some time, we can also state that the TUS5’ method is
faster than Araki et al’s method. In the evaluation of the TUS method, we know it re-
quires (𝑟 + 1)-times of communication for the reconstruction process, but it is im-
portant to note that it does not depend on the parameter 𝑚. In contrast, the SPDZ 2
method and Araki et al.’s method each require 𝑚(2𝑑ଵ), 𝑚(𝑑ଵ) of communication.
Therefore, when the value of 𝑚 is large, even if we include the process of correction,
we can state that the TUS5 method will be faster.

Table 4~6 shows the results of implementation of Computation Phase using Ama-
zon Web Service (AWS) with maximum 3 number of servers. We show the results for
when required number of data are being sent for each method with the data size of 127
bit, 𝑚 = 1, 100, 10000 and one time of connection establishment process. From Table
4~6, we learnt that by removing the communication process from the TUS5’ method,
we could achieve an overwhelmingly faster speed compare to other conventional meth-
ods. In addition, even if all required number of data are sent at once after the connection
had been established, in the SPDZ 2 and Araki et al.’s method, when the value of 𝑚
exceed a certain value, the time needed for communication will still increase. On the
other hand, in the TUS5 method, only two data are required to be sent for computation
with repetition. Therefore, in the situation when 𝑚 is a huge number or the number of
data needed to be sent at once are huge, we could also state that the TUS5 method will
be faster than SPDZ 2 and Araki et al.’s method.

Table 2. Comparison with conventional methods (for 𝑛 = 𝑘 = 2)

SPDZ 2
Method

TUS 5’
Method

TUS5
Method

Computa-
tion

Preprocessing0 𝑚𝐶ଶ
4𝑚(30M
+ 40A)

(4𝑚
+ 2𝑟)(30M
+ 40A)

Preprocessing1 0 𝑚(33𝑀) 𝑚(42𝑀)
Encryption 2𝑚𝐴 3𝑚(𝑀 + 𝐴) 3𝑚(2𝑀 + 𝐴)
Reconstruction 𝐴 2𝑀 + 𝐴 4𝑀 + A

Inner product
𝑚𝑁(3𝑀
+ 5𝐴)

𝑚𝑁(4𝑀
+ 3𝐴)

𝑚𝑁(6𝑀
+ 2𝐴) + 2𝐴

Correction 0 0 𝑟(21𝑀 + 4𝐴)

Commu-
nication

Preprocessing0
𝑚(𝑢𝑑ଶ

+ 3𝑑ଵ)
4𝑚(20𝑑ଵ)

(4
+ 2𝑟)𝑚(20𝑑ଵ)

Preprocessing1 0 𝑚(17𝑑ଵ) 𝑚(26𝑑ଵ)
Encryption 4𝑚𝑑ଵ 𝑚(3𝑑ଵ) 𝑚(6𝑑ଵ)
Reconstruction 2𝑑ଵ 4𝑑ଵ 6𝑑ଵ
Inner product 𝑚𝑁(2𝑑ଵ) 0 2𝑑ଵ
Correction 0 0 𝑟8𝑑ଵ

32

Table 3. Comparison with conventional methods (for 𝑛 = 3, 𝑘 = 2)

Araki et al.’s

Method
TUS5’
Method

TUS5
Method

Computa-
tion

Preprocessing0 𝑚𝑁𝐴
4𝑚(18𝐶ଵ

+ 34M
+ 27A)

(4𝑚
+ 2𝑟)(18𝐶ଵ

+ 34M
+ 27A)

Preprocessing1 0 𝑚(37𝑀) m(46M)
Encryption 𝑚7𝐴 3𝑚(𝑀 + 𝐴) 3𝑚(2𝑀 + 𝐴)
Reconstruction 𝐴 2𝑀 + A 4𝑀 + A

Inner product
𝑚𝑁(3𝑀
+ 5𝐴)

𝑚𝑁(4𝑀
+ 3𝐴)

𝑚𝑁(6𝑀
+ 2𝐴) + 2𝐴

Correction 0 0
𝑟(21𝐶ଵ

+ 25𝑀 + 6𝐴)

Commu-
nication

Preprocessing0 𝑚𝑁(𝑑ଵ) 4𝑚(22𝑑ଵ)
(4𝑚
+ 2𝑟)(28𝑑ଵ)

Preprocessing1 0 𝑚(17𝑑ଵ) 𝑚(26𝑑ଵ)
Encryption 12𝑚𝑑ଵ 𝑚(3𝑑ଵ) 𝑚(6𝑑ଵ)
Reconstruction 4𝑑ଵ 4𝑑ଵ 6𝑑ଵ
Inner product 𝑚𝑁(𝑑ଵ) 0 2𝑑ଵ
Correction 0 0 𝑟8𝑑ଵ

Table 4. Processing Time in seconds (for 𝑚 = 1)

 TUS5’ SPDZ 2 Araki et al.
Computation Time 3.80E-05 3.41E-05 1.92E-05
Communication Establishment
Time

0 0.100482542 0.099988509

Communication Time 0 0.100984535 1.24E-04
Total Time 3.80E-05 0.201693428 0.100248701

Table 5. Processing Time in seconds (for 𝑚 = 100)

 TUS5’ SPDZ2 Araki et al.
Computation Time 2.14E-03 3.36E-04 2.40E-04
Communication Establishment
Time

0 0.10020276 0.100412364

Communication Time 0 0.10052742 1.70E-04
Total Time 2.14E-03 0.201361759 0.101024941

33

Table 6. Processing Time in seconds (for 𝑚 = 10000)

 TUS5’ SPDZ2 Araki et al.

Computation Time 2.43E-01 2.91E-02 2.11E-02
Communication Establishment
Time

0 0.102026318 0.100967475

Communication Time 0 1.018629671 8.34E-01

Total Time 2.43E-01 1.158342564 0.964274707

8 Conclusion

In this paper, we supposed the number of servers/parties to be 𝑁, and realized a secure
secrecy computation under the setting of 𝑁 < 2𝑘 − 1. In addition, we also proposed a
method that allows for the communication cost to be eliminated from the Computation
Phase when computation without repetition is assumed, thus realizing a faster pro-
cessing speed. Furthermore, our protocols realized secure secrecy computation without
any limitation on the usability of the protocol by solving all three conditions proposed
in the TUS methods. However, in the case of 𝑛 > 𝑘, by keeping Condition 3, we main-
tained server loss-resistant of the system. Therefore, we can say that our protocols are
the only protocols that allow for secure computation without any limitation for 𝑛 ≧ 𝑘.

In a future study, we will perform a detailed experimental analysis on the processing
speed of our protocol and consider an improved method of secrecy computation that is
also secure against a malicious adversary.

Appendix 1

4. Server 𝑆௜ computes the following and sends all except [0ప]തതതതത
௜
(ଶ௞)

, [0ప]തതതതത
௜ା௞
(ଶ௞) to servers

𝑆௜ାଵ(௠௢ௗ௞).

 Server 𝑆଴computes the following：

─ [𝛼ଵ𝛼ଶ𝛽ଵ𝛽ଶ𝛾ଵ𝛾ଶ𝜆଴𝜆ଵ𝜆ଶ]′തതതതതതതതതതതതതതതതതതതതതതതതതതതതത
଴
(ଶ௞)

=
[ఈఉఊఒబఒభఊఒమ]തതതതതതതതതതതതതതതതതതതത

బ
(మೖషభ)

ఈబఉబఊబ
+ [0଴]തതതതത

଴
(ଶ௞)

─ [𝛼ଵ𝛼ଶ𝛽ଵ𝛽ଶ𝛾ଵ𝛾ଶ𝜆଴𝜆ଵ𝜆ଶ]′തതതതതതതതതതതതതതതതതതതതതതതതതതതതത
ଷ
(ଶ௞)

=
[ఈఉఊ బఒభఊఒమ]തതതതതതതതതതതതതതതതതതതത

య
(మೖషభ)

ఈబఉబఊబ
+ [0଴]തതതതത

ଷ
(ଶ௞)

 Server 𝑆ଵ computes the following：

─ [𝛼଴𝛼ଶ𝛽଴𝛽ଶ𝛾଴𝛾ଶ𝜆଴𝜆ଵ𝜆ଶ]′തതതതതതതതതതതതതതതതതതതതതതതതതതതതതത
ଵ
(ଶ௞)

=
[ఈఉఊఒబఒభఊఒమ]തതതതതതതതതതതതതതതതതതതത

భ
(మೖషభ)

ఈభఉభఊభ
+ [0ଵ]തതതതത

ଵ
(ଶ௞)

─ [𝛼଴𝛼ଶ𝛽଴𝛽ଶ𝛾଴𝛾ଶ𝜆଴𝜆ଵ𝜆ଶ]′തതതതതതതതതതതതതതതതതതതതതതതതതതതതതത
ସ
(ଶ௞)

=
[ఈఉఊ బఒభఊఒమ]തതതതതതതതതതതതതതതതതതതത

ర
(మೖషభ)

ఈభఉభఊభ
+ [0ଵ]തതതതത

ସ
(ଶ௞)

 Server 𝑆ଶ computes the following：

34

─ ൣ𝛼0𝛼1𝛽
0
𝛽

1
𝛾

0
𝛾

1
𝜆0𝜆1𝜆2൧′തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത

2

(2𝑘)
=

[𝛼𝛽𝛾𝜆0𝜆1𝛾𝜆2]തതതതതതതതതതതതതതതതതതതത
2
(2𝑘−1)

𝛼2𝛽2𝛾2
+ [02]തതതതതത

2
(2𝑘)

─ ൣ𝛼0𝛼1𝛽
0
𝛽

1
𝛾

0
𝛾

1
𝜆0𝜆1𝜆2൧′തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത

5

(2𝑘)
=

[𝛼𝛽𝛾𝜆0𝜆1𝛾𝜆2]തതതതതതതതതതതതതതതതതതതത
5
(2𝑘−1)

𝛼2𝛽2𝛾2
+ [02]തതതതതത

5
(2𝑘)

5-1. Here we show the process by servers 𝑆௜ on the first round. Servers 𝑆௜ perform the

following on the received [𝛼ିప𝛽ିప𝛾 ప𝜆଴𝜆ଵ𝜆ଶ]′തതതതതതതതതതതതതതതതതതതതതതതത
௜
(ଶ௞)

, [𝛼ିప𝛽ିప𝛾 ప𝜆଴𝜆ଵ𝜆ଶ]′തതതതതതതതതതതതതതതതതതതതതതതത
௜ା௞
(ଶ௞) , and

send the result of computation to servers 𝑆௜ାଵ(௠௢ௗ௞).

 Server 𝑆଴ computes the following：

─ [𝛼ଵ𝛽ଵ𝛾ଵ𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതതതതതതതതതതത′ଶ
(ଶ௞)

=
[ఈబఈభఉబఉభఊబఊభఒబఒభఒమ]ᇱതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത

మ
(మೖ)

ఈబఉబఊబ
+ [0ᇱ

଴]തതതതതത
ଶ
(ଶ௞)

=

[𝛼ଵ𝛽ଵ𝛾ଵ𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതതതതതതതതതതത
ଶ
(ଶ௞ିଵ)

+ [0ଶ଴]തതതതതതത
ଶ
(ଶ௞)

─ [𝛼ଵ𝛽ଵ𝛾ଵ𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതതതതതതതതതതത′ହ
(ଶ௞)

=
[ఈబఈభఉబఉభఊబఊభఒబఒభఒమ]ᇱതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത

ఱ
(మೖ)

ఈబఉబఊబ
+ [0ᇱ

଴]തതതതതത
ହ
(ଶ௞)

=

[𝛼ଵ𝛽ଵ𝛾ଵ𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതതതതതതതതതതത
ହ
(ଶ௞ିଵ)

+ [0ଶ଴]തതതതതതത
ଶ
(ଶ௞)

─ [0ଶ଴]തതതതതതത
଴
(ଶ௞)

=
[଴మ]തതതതതത

బ
(మೖ)

ఈబఉబఊబ
+ [0ᇱ

଴]തതതതതത
଴
(ଶ௞)

─ [0ଶ଴]തതതതതതത
ଵ
(ଶ௞)

=
[଴మ]തതതതതത

భ
(మೖ)

ఈబఉబఊబ
+ [0ᇱ

଴]തതതതതത
ଵ
(ଶ௞)

─ [0ଶ଴]തതതതതതത
ଷ
(ଶ௞)

=
[଴మ]തതതതതത

య
(మೖ)

ఈబఉబఊబ
+ [0ᇱ

଴]തതതതതത
ଷ
(ଶ௞)

─ [0ଶ଴]തതതതതതത
ସ
(ଶ௞)

=
[଴మ]തതതതതത

ర
(మೖ)

ఈబఉబఊబ
+ [0ᇱ

଴]തതതതതത
ସ
(ଶ௞)

 Server 𝑆ଵ computes the following：

─ [𝛼ଶ𝛽ଶ𝛾ଶ𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതതതതതതതതതതത′଴
(ଶ௞)

=
[ఈభఈమఉభఉమఊభఊమఒబఒభఒమ]ᇱതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത

బ
(మೖ)

ఈభఉభఊభ
+ [0ᇱ

ଵ]തതതതതത
଴
(ଶ௞)

=

[𝛼ଶ𝛽ଶ𝛾ଶ𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതതതതതതതതതതത
଴
(ଶ௞ିଵ)

+ [0଴ଵ]തതതതതതത
଴
(ଶ௞)

─ [𝛼ଶ𝛽ଶ𝛾ଶ𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതതതതതതതതതതത′ଷ
(ଶ௞)

=
[ఈభఈమఉభఉమఊభఊమఒబఒభఒమ]ᇱതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത

య
(మೖ)

ఈభఉభఊభ
+ [0ᇱ

ଵ]തതതതതത
ଷ
(ଶ௞)

=

[𝛼ଶ𝛽ଶ𝛾ଶ𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതതതതതതതതതതത
ଷ
(ଶ௞ିଵ)

+ [0଴ଵ]തതതതതതത
ଷ
(ଶ௞)

─ [0଴ଵ]തതതതതതത
ଵ
(ଶ௞)

=
[଴బ]തതതതതത

భ
(మೖ)

ఈభఉభఊభ
+ [0ᇱ

ଵ]തതതതതത
ଵ
(ଶ௞)

─ [0଴ଵ]തതതതതതത
ଶ
(ଶ௞)

=
[଴బ]തതതതതത

మ
(మೖ)

ఈభఉభఊభ
+ [0ᇱ

ଵ]തതതതതത
ଶ
(ଶ௞)

─ [0଴ଵ]തതതതതതത
ସ
(ଶ௞)

=
[଴బ]തതതതതത

ర
(మೖ)

ఈభఉభఊభ
+ [0ᇱ

ଵ]തതതതതത
ସ
(ଶ௞)

─ [0଴ଵ]തതതതതതത
ହ
(ଶ௞)

=
[଴బ]തതതതതത

ఱ
(మೖ)

ఈభఉభఊభ
+ [0ᇱ

ଵ]തതതതതത
ହ
(ଶ௞)

 Server 𝑆ଶ computes the following：

─ [𝛼଴𝛽଴𝛾଴𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതതതതതതതതതതത′ଵ
(ଶ௞)

=
[ఈబఈమఉబఉమఊబఊమఒబఒభఒమ]ᇱതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത

భ
(మೖ)

ఈమఉమఊమ
+ [0ᇱ

ଶ]തതതതതത
ଵ
(ଶ௞)

=

[𝛼ଶ𝛽ଶ𝛾ଶ𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതതതതതതതതതതത
ଵ
(ଶ௞ିଵ)

+ [0ଵଶ]തതതതതത
ଵ
(ଶ௞)

35

─ [𝛼଴𝛽଴𝛾଴𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതതതതതതതതതതത′ସ
(ଶ௞)

=
[ఈబఈమఉబఉమఊబఊమఒబఒభఒమ]ᇱതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത

ర
(మೖ)

ఈమఉమఊమ
+ [0ᇱ

ଶ]തതതതതത
ସ
(ଶ௞)

=

[𝛼଴𝛽଴𝛾଴𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതതതതതതതതതതത
ସ
(ଶ௞ିଵ)

+ [0ଵଶ]തതതതതത
ସ
(ଶ௞)

─ [0ଵଶ]തതതതതത
଴
(ଶ௞)

=
[଴భ]തതതതതത

బ
(మೖ)

ఈమఉమఊమ
+ [0ᇱ

ଶ]തതതതതത
଴
(ଶ௞)

─ [0ଵଶ]തതതതതത
ଶ
(ଶ௞)

=
[଴భ]തതതതതത

మ
(మೖ)

ఈమఉమఊమ
+ [0ᇱ

ଶ]തതതതതത
ଶ
(ଶ௞)

─ [0ଵଶ]തതതതതത
ଷ
(ଶ௞)

=
[଴భ]തതതതതത

య
(మೖ)

ఈమఉమఊమ
+ [0ᇱ

ଶ]തതതതതത
ଷ
(ଶ௞)

─ [0ଵଶ]തതതതതത
ହ
(ଶ௞)

=
[଴భ]തതതതതത

ఱ
(మೖ)

ఈమఉమఊమ
+ [0ᇱ

ଶ]തതതതതത
ହ
(ଶ௞)

5-2. Here, we show the process for the second round. In order to differentiate with the
first round, we denote the value of 0ᇱ

௜ used as 0”௜.

 Server 𝑆଴ computes the following：

─ [𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതത′ଵ
(ଶ௞)

=
[ఈబఉబఊబఒభఒబఒమ]തതതതതതതതതതതതതതതതതതതതതതതᇱభ

(మೖ)

ఈబఉబఊబ
+ [0”଴]തതതതതത

ଵ
(ଶ௞)

= [𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതത
ଵ
(ଶ௞ିଵ)

+ [0ଵଶ଴]തതതതതതതത
ଵ
(ଶ௞)

─ [𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതത′ସ
(ଶ௞)

=
[ఈబఉబఊబఒభఒబఒమ]തതതതതതതതതതതതതതതതതതതതതതതᇱర

(మೖ)

ఈబఉబఊబ
+ [0"଴]തതതതതത

ସ
(ଶ௞)

= [𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതത
ସ
(ଶ௞ିଵ)

+ [0ଵଶ଴]തതതതതതതത
ସ
(ଶ௞)

─ [0ଵଶ଴]തതതതതതതത
଴
(ଶ௞)

=
[଴భమ]തതതതതതത

బ
(మೖ)

ఈబఉబఊబ
+ [0"଴]തതതതതത

଴
(ଶ௞)

─ [0ଵଶ଴]തതതതതതതത
ଶ
(ଶ௞)

=
[଴భమ]തതതതതതത

మ
(మೖ)

ఈబఉబఊబ
+ [0"଴]തതതതതത

ଶ
(ଶ௞)

─ [0ଵଶ଴]തതതതതതതത
ଷ
(ଶ௞)

=
[଴భమ]തതതതതതത

య
(మೖ)

ఈబఉబఊబ
+ [0"଴]തതതതതത

ଷ
(ଶ௞)

─ [0ଵଶ଴]തതതതതതതത
ହ
(ଶ௞)

=
[଴భమ]തതതതതതത

ఱ
(మೖ)

ఈబఉబఊబ
+ [0"଴]തതതതതത

ହ
(ଶ௞)

 Server 𝑆ଵ computes the following：

─ [𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതത′ଶ
(ଶ௞)

=
[ఈభఉభఊభఒభఒబఒమ]തതതതതതതതതതതതതതതതതതതതതതതᇱమ

(మೖ)

ఈభఉభఊభ
+ [0"ଵ]തതതതതത

ଶ
(ଶ௞)

= [𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതത
ଶ
(ଶ௞ିଵ)

+ [0ଶ଴ଵ]തതതതതതതത
ଶ
(ଶ௞)

─ [𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതത′ହ
(ଶ௞)

=
[ఈభఉభఊభఒభఒబఒమ]തതതതതതതതതതതതതതതതതതതതതതതᇱఱ

(మೖ)

ఈభఉభఊభ
+ [0"ଵ]തതതതതത

ହ
(ଶ௞)

= [𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതത
ହ
(ଶ௞ିଵ)

+ [0ଶ଴ଵ]തതതതതതതത
ହ
(ଶ௞)

─ [0ଶ଴ଵ]തതതതതതതത
଴
(ଶ௞)

=
[଴మబ]തതതതതതത

బ
(మೖ)

ఈభఉభఊభ
+ [0"ଵ]തതതതതത

଴
(ଶ௞)

─ [0ଶ଴ଵ]തതതതതതതത
ଵ
(ଶ௞)

=
[଴మబ]തതതതതതത

భ
(మೖ)

ఈభఉభఊభ
+ [0"ଵ]തതതതതത

ଵ
(ଶ௞)

─ [0ଶ଴ଵ]തതതതതതതത
ଷ
(ଶ௞)

=
[଴మబ]തതതതതതത

య
(మೖ)

ఈభఉభఊభ
+ [0"ଵ]തതതതതത

ଷ
(ଶ௞)

─ [0ଶ଴ଵ]തതതതതതതത
ସ
(ଶ௞)

=
[଴మబ]തതതതതതത

ర
(మೖ)

ఈభఉభఊభ
+ [0"ଵ]തതതതതത

ସ
(ଶ௞)

 Server 𝑆ଶ computes the following：

─ [𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതത′଴
(ଶ௞)

=
[ఈమఉమఊమఒభఒబఒమ]തതതതതതതതതതതതതതതതതതതതതതതᇱబ

(మೖ)

ఈమఉమఊమ
+ [0"ଶ]തതതതതത

଴
(ଶ௞)

= [𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതത
଴
(ଶ௞ିଵ)

+ [0଴ଵଶ]തതതതതതതത
଴
(ଶ௞)

36

─ [𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതത′ଷ
(ଶ௞)

=
[ఈమఉమఊమఒభఒబఒమ]തതതതതതതതതതതതതതതതതതതതതതതᇱయ

(మೖ)

ఈమఉమఊమ
+ [0"ଶ]തതതതതത

ଷ
(ଶ௞)

= [𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതത
ଷ
(ଶ௞ିଵ)

+ [0଴ଵଶ]തതതതതതതത
ଷ
(ଶ௞)

─ [0଴ଵଶ]തതതതതതതത
ଵ
(ଶ௞)

=
[଴బభ]തതതതതതത

భ
(మೖ)

ఈమఉమఊమ
+ [0ᇱ

ଶ]തതതതതത
ଵ
(ଶ௞)

─ [0଴ଵଶ]തതതതതതതത
ଶ
(ଶ௞)

=
[଴బభ]തതതതതതത

మ
(మೖ)

ఈమఉమఊమ
+ [0′ଶ]തതതതതത

ଶ
(ଶ௞)

─ [0଴ଵଶ]തതതതതതതത
ସ
(ଶ௞)

=
[଴బభ]തതതതതതത

ర
(మೖ)

ఈమఉమఊమ
+ [0′ଶ]തതതതതത

ସ
(ଶ௞)

─ [0଴ଵଶ]തതതതതതതത
ହ
(ଶ௞)

=
[଴బభ]തതതതതതത

ఱ
(మೖ)

ఈమఉమఊమ
+ [0′ଶ]തതതതതത

ହ
(ଶ௞)

6. Server 𝑺𝒊 collects that ൣ𝟎ଚ…ଚା𝒌ି𝟏൧തതതതതതതതതതതതത
𝒊ା𝟏

(𝟐𝒌)
, ൣ𝟎ଚ…ଚା𝒌ି𝟏൧തതതതതതതതതതതതത

𝒊ା𝟏ା𝒌

(𝟐𝒌)
corresponds to itself, adds

them together and computes [𝝀𝟏𝝀𝟎𝝀𝟐]തതതതതതതതതതതത"𝒊ା𝟏
(𝟐𝒌), [𝝀𝟏𝝀𝟎𝝀𝟐]തതതതതതതതതതതത"𝒋ା𝟏ା𝒌

(𝟐𝒌) .

 Server 𝑺𝟎 computes the following：

─ [𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതത"ଵ
(ଶ௞)

= [𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതത
ଵ
(ଶ௞ିଵ)

+ [0଴ଵଶ]തതതതതതതത
ଵ
(ଶ௞)

+ [0ଵଶ଴]തതതതതതതത
ଵ
(ଶ௞)

+ [0ଶ଴ଵ]തതതതതതതത
ଵ
(ଶ௞)

─ [𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതത"ସ
(ଶ௞)

= [𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതത
ସ
(ଶ௞ିଵ)

+ [0଴ଵଶ]തതതതതതതത
ସ
(ଶ௞)

+ [0ଵଶ଴]തതതതതതതത
ସ
(ଶ௞)

+ [0ଶ଴ଵ]തതതതതതതത
ସ
(ଶ௞)

 Server 𝑺𝟏 computes the following：

─ [𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതത"ଶ
(ଶ௞)

= [𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതത
ଶ
(ଶ௞ିଵ)

+ [0଴ଵଶ]തതതതതതതത
ଶ
(ଶ௞)

+ [0ଵଶ଴]തതതതതതതത
ଶ
(ଶ௞)

+ [0ଶ଴ଵ]തതതതതതതത
ଶ
(ଶ௞)

─ [𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതത"ହ
(ଶ௞)

= [𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതത
ହ
(ଶ௞ିଵ)

+ [0଴ଵଶ]തതതതതതതത
ହ
(ଶ௞)

+ [0ଵଶ଴]തതതതതതതത
ହ
(ଶ௞)

+ [0ଶ଴ଵ]തതതതതതതത
ହ
(ଶ௞)

 Server 𝑺𝟐 computes the following：

─ [𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതത"଴
(ଶ௞)

= [𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതത
଴
(ଶ௞ିଵ)

+ [0଴ଵଶ]തതതതതതതത
଴
(ଶ௞)

+ [0ଵଶ଴]തതതതതതതത
଴
(ଶ௞)

+ [0ଶ଴ଵ]തതതതതതതത
଴
(ଶ௞)

─ [𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതത"ଷ
(ଶ௞)

= [𝜆ଵ𝜆଴𝜆ଶ]തതതതതതതതതതത
ଷ
(ଶ௞ିଵ)

+ [0଴ଵଶ]തതതതതതതത
ଷ
(ଶ௞)

+ [0ଵଶ଴]തതതതതതതത
ଷ
(ଶ௞)

+ [0ଶ଴ଵ]തതതതതതതത
ଷ
(ଶ௞)

7. Servers 𝑆௜ distribute 0"௜ using (𝑘, 𝑁) Shamir’s method, compute the following for
𝑗 = 0, … ,2, and send 𝑅௜,௝ to servers 𝑆௝.

 Server 𝑆଴ computes the following and sends 𝑅଴,ଵ, 𝑅଴,ଶ to 𝑆ଵ and 𝑆ଶ, respectively.

─ 𝑅଴,଴ = 𝑎଴,ଵ × [𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത"ଵ
(ଶ௞)

+ 𝑎଴,ସ × [𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത"ସ
(ଶ௞)

+ [0"଴]തതതതതത
଴
(௞)

─ 𝑅଴,ଵ = 𝑎ଵ,ଵ × [𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത"ଵ
(ଶ௞)

+ 𝑎ଵ,ସ × [𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത"ସ
(ଶ௞)

+ [0"଴]തതതതതത
ଵ
(௞)

─ 𝑅଴,ଶ = 𝑎ଶ,ଵ × [𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത"ଵ
(ଶ௞)

+ 𝑎ଶ,ସ × [𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത"ସ
(ଶ௞)

+ [0"଴]തതതതതത
ଶ
(௞)

 Server 𝑆ଵ computes the following and sends 𝑅ଵ,଴, 𝑅ଵ,ଶ to 𝑆଴ and 𝑆ଶ, respectively.

─ 𝑅ଵ,଴ = 𝑎଴,ଶ × [𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത"ଶ
(ଶ௞)

+ 𝑎଴,ହ × [𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത"ହ
(ଶ௞)

+ [0"ଵ]തതതതതത
଴
(௞)

─ 𝑅ଵ,ଵ = 𝑎ଵ,ଶ × [𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത"ଶ
(ଶ௞)

+ 𝑎ଵ,ହ × [𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത"ହ
(ଶ௞)

+ [0"ଵ]തതതതതത
ଵ
(௞)

─ 𝑅ଵ,ଶ = 𝑎ଶ,ଶ × [𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത"ଶ
(ଶ௞)

+ 𝑎ଶ,ହ × [𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത"ହ
(ଶ௞)

+ [0"ଵ]തതതതതത
ଶ
(௞)

 Server 𝑆ଶ computes the following and sends 𝑅ଶ,଴, 𝑅ଶ,ଵ to 𝑆଴ and 𝑆ଵ, respectively.

37

─ 𝑅ଶ,଴ = 𝑎଴,଴ × [𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത"଴
(ଶ௞)

+ 𝑎଴,ଷ × [𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത"ଷ
(ଶ௞)

+ [0"ଶ]തതതതതത
଴
(௞)

─ 𝑅ଶ,ଵ = 𝑎ଵ,଴ × [𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത"଴
(ଶ௞)

+ 𝑎ଵ,ଷ × [𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത"ଷ
(ଶ௞)

+ [0"ଶ]തതതതതത
ଵ
(௞)

─ 𝑅ଶ,ଶ = 𝑎ଶ,଴ × [𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത"଴
(ଶ௞)

+ 𝑎ଶ,ଷ × [𝜆଴𝜆ଵ𝜆ଶ]തതതതതതതതതതത"ଷ
(ଶ௞)

+ [0"ଶ]തതതതതത
ଶ
(௞)

8. Servers 𝑆௜ compute [𝜆]തതതത
௜
(௞)

= ∑ 𝑅௝,௜
ேିଵ
௝ୀ଴ , and obtain [𝜆]തതതത

௜
(௞). However, note that 𝜆 =

𝜆଴𝜆ଵ𝜆ଶ.

 Server 𝑆଴ computes the following:

─ [𝜆]തതതത
଴
(௞)

= 𝑅଴,଴ + 𝑅ଵ,଴ + 𝑅ଶ,଴

 Server 𝑆ଵ computes the following:

─ [𝜆]തതതത
ଵ
(௞)

= 𝑅଴,ଵ + 𝑅ଵ,ଵ + 𝑅ଶ,ଵ

 Server 𝑆ଶ computes the following:

─ [𝜆]തതതത
ଶ
(௞)

= 𝑅଴,ଶ + 𝑅ଵ,ଶ + 𝑅ଶ,ଶ

Appendix 2

The adversary manipulated servers that it had taken over to perform different processes
than as shown in Section 4.1, causing each server to obtain incorrect shares of [𝜆"]തതതതത

௜.
Here, suppose that 𝜆" = 𝜆 + 𝛿଴ and the value of 𝛿଴ can be known. For example, in step
7 of Section 4.1, when different 𝑅′௜,௝ than 𝑅௜,௝ is sent to server 𝑆௝ and if the difference
is assumed to be the share of each server, 𝛿଴ can be obtained by solving the shares.
Because shares of each server shown in Section 4.1 are constructed by adding all the
values in Steps 6 to 8, the difference will be in the form of addition, but not in the form
of 𝜆" = 𝜆𝛿଴ as explain below. For example, for ease of understanding, suppose that
[𝜇ଵ]തതതതത

௜ are correct and the information 𝜆௜/𝜇ଵ,௜ given by servers that had been manipulated
by the adversary to be 𝜌଴𝜆௜/𝜇ଵ,௜. By this, the reconstructed value of shares [𝜆′]തതതതത

௜ ob-
tained from equation (3) will be 𝜌଴𝜆. Therefore, if the equation shown below is estab-
lished, equations (3) and (4) will also be established.

𝜆 + 𝛿 = 𝜌଴𝜆 (5)

In order to establish equation (5), the adversary needs to learn about 𝜌଴ = 1 + 𝛿/𝜆.
However, from the proof of security against Adversary 2, because the adversary cannot
learn about 𝜆, the adversary will also not be able to learn about 𝜌଴. In addition, in Steps
4 and 5, even if it is being divided by different 𝛼௜𝛽௜𝛾௜ and sent to the next server, if
addition is performed in the next server, 𝛿଴ cannot be learn in the form of 𝜆" = 𝜆𝛿଴.
Furthermore, even in the event where the players do not provide correct values of
𝛼௜ , 𝛽௜ , 𝛾௜ in Steps 1 to 3, it will be the same as when it is being divided with different
values of 𝛼௜𝛽௜𝛾௜.

38

Therefore, the adversary will not be able to manipulate the verification from equa-
tions (3) and (4). In addition, the same can be said even if 𝜇ଵ" = 𝜇ଵ + 𝛿ଵ and 𝜆௜/𝜇ଵ,௜ =

𝜌଴𝜆௜/𝜌ଵ𝜇ଵ,௜.

Appendix 3: Ben-Or’s Degree Reduction Method (𝒌 = 𝟑)

Let the polynomial ℎ(𝑥) = ℎ଴ + ℎଵ𝑥 + ⋯ + ℎଶ௧𝑥ଶ௞ିଵ for 2𝑘 = 6 to be

ℎ(𝑥) = ℎ଴ + ℎଵ𝑥 + ℎଶ𝑥ଶ + ℎଷ𝑥ଷ + ℎସ𝑥ସ + ℎହ𝑥ହ

and let 𝑠𝑖 = ℎ(𝛼𝑖) for 𝛼௜ = 1, 2, 3, 4, 5, 6.

For 𝑖 = 0, 1, 2, 3, 4, 5 be the “shares” of ℎ(𝑥). Each 𝑃௜ holds an 𝑠௜.

Define the truncation of 𝑡(𝑥) = ℎ଴ + ℎଵ𝑥 + ⋯ + ℎ௧𝑥௞ିଵ for 𝑘 = 3 to be

𝑘(𝑥) = ℎ଴ + ℎଵ𝑥 + ℎଶ𝑥ଶ

and 𝑟௜ = 𝑘(𝛼௜) for 𝛼௜ = 1, 2, 3, 4, 5, 6.

Claim: Let 𝑆 = (𝑠଴, 𝑠ଵ, 𝑠ଶ, 𝑠ଷ, 𝑠ସ, 𝑠ହ) and 𝑅 = (𝑟଴, 𝑟ଵ, 𝑟ଶ, 𝑟ଷ, 𝑟ସ, 𝑟ହ) then there is a con-
stant 𝑛 × 𝑛 matrix 𝐴 such that

𝑅 = 𝑆 ∙ 𝐴

Proof (as shown in [5]):

Let 𝐻 be the 𝑛-vector

𝐻 = (ℎ଴, ℎଵ, ℎଶ, ℎଷ, ℎସ, ℎହ)

and let 𝐾 be the 𝑛-vector

𝐾 = (ℎ଴, ℎଵ, ℎଶ, 0, 0, 0)

Let 𝐵 be the 6 × 6 (Vandermonde) matrix, where 𝑏௜,௝ = 𝛼௝
௜ for 𝑖, 𝑗 = 0, 1, 2, 3, 4, 5.

𝐵 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝛼଴

଴ 𝛼ଵ
଴ 𝛼ଶ

଴ 𝛼ଷ
଴ 𝛼ସ

଴ 𝛼ହ
଴

𝛼଴
ଵ 𝛼ଵ

ଵ 𝛼ଶ
ଵ 𝛼ଷ

ଵ 𝛼ସ
ଵ 𝛼ହ

ଵ

𝛼଴
ଶ 𝛼ଵ

ଶ 𝛼ଶ
ଶ 𝛼ଷ

ଶ 𝛼ସ
ଶ 𝛼ହ

ଶ

𝛼଴
ଷ 𝛼ଵ

ଷ 𝛼ଶ
ଷ 𝛼ଷ

ଷ 𝛼ସ
ଷ 𝛼ହ

ଷ

𝛼଴
ସ 𝛼ଵ

ସ 𝛼ଶ
ସ 𝛼ଷ

ସ 𝛼ସ
ସ 𝛼ହ

ସ

𝛼଴
ହ 𝛼ଵ

ହ 𝛼ଶ
ହ 𝛼ଷ

ହ 𝛼ସ
ହ 𝛼ହ

ହ⎦
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
1 2଴ 3଴ 4଴ 5଴ 6଴

1 2ଵ 3ଵ 4ଵ 5ଵ 6ଵ

1 2ଶ 3ଶ 4ଶ 5ଶ 6ଶ

1 2ଷ 3ଷ 4ଷ 5ଷ 6ଷ

1 2ସ 3ସ 4ସ 5ସ 6ସ

1 2ହ 3ହ 4ହ 5ହ 6ହ⎦
⎥
⎥
⎥
⎥
⎤

Furthermore, let 𝑃 be the linear projection

𝑃(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ) = (𝑥଴, 𝑥ଵ, 𝑥ଶ, 0, 0, 0)

We have

39

𝐻 ∙ 𝐵 = 𝑆
𝐻 ∙ 𝑃 = 𝐾

and

𝐾 ∙ 𝐵 = 𝑅

By this, we have

𝑆 ∙ (𝐵ିଵ𝑃𝐵) = 𝑅

Therefore, fixed constant matrix 𝐴 can be computed as follows:

𝐴 = (𝐵ିଵ𝑃𝐵) =

⎣
⎢
⎢
⎢
⎢
⎡
𝑎଴,଴ 𝑎ଵ,଴ 𝑎ଶ,଴ 𝑎ଷ,଴ 𝑎ସ,଴ 𝑎ହ,଴

𝑎଴,ଵ 𝑎ଵ,ଵ 𝑎ଶ,ଵ 𝑎ଷ,ଵ 𝑎ସ,ଵ 𝑎ହ,ଵ

𝑎଴,ଶ 𝑎ଵ,ଶ 𝑎ଶ,ଶ 𝑎ଷ,ଶ 𝑎ସ,ଶ 𝑎ହ,ଶ

𝑎଴,ଷ 𝑎ଵ,ଷ 𝑎ଶ,ଷ 𝑎ଷ,ଷ 𝑎ସ,ଷ 𝑎ହ,ଷ

𝑎଴,ସ 𝑎ଵ,ସ 𝑎ଶ,ସ 𝑎ଷ,ସ 𝑎ସ,ସ 𝑎ହ,ସ

𝑎଴,ହ 𝑎ଵ,ହ 𝑎ଶ,ହ 𝑎ଷ,ହ 𝑎ସ,ହ 𝑎ହ,ହ⎦
⎥
⎥
⎥
⎥
⎤

References

1. Araki T., Furukawa J., Lindell Y., Nof A., Ohara K.: High throughput semi-honest secure
three-party computation with an honest majority. Proceedings of CCS 2016. pp. 805-817.
ACM, Vienna, Austria (2016)

2. Beaver D.: Efficient Multiparty Protocols using Circuit Randomization. In: Feigenbaum J.
(eds) Advances in Cryptology — CRYPTO 1991. LNCS, vol 576, pp. 420-432. Springer,
Berlin, Heidelberg (1991)

3. Beaver D., Micali S., Rogaway P.: The round complexity of secure protocols. Proceedings
of the 22nd STOC. pp. 503-513. ACM, Baltimore, Maryland, USA (1990)

4. Bendlin R., Damgård I., Orlandi C., Zakarias S.: Semi-homomorphic Encryption and Mul-
tiparty Computation. In Paterson K. G. (eds) Advances in Cryptology-EUROCRYPT 2011.
LNCS, vol. 6632, pp. 169-188. Springer, Berlin, Heidelberg (2011)

5. Ben-Or M., Goldwasser S., Wigderson A.: Completeness Theorems for Non-Cryptographic
Fault-Tolerant Distributed Computation. Proceedings of the 20th STOC. pp. 1-10. ACM,
New York, NY, USA (1988)

6. Blakley G. R.: Safeguarding Cryptographic Keys. Proceedings of the AFIPS 1979 National
Computer Conference, Vol. 48, pp. 313-317 (1979)

7. Brakerski Z., Gentry C., Vaikuntanathan V.: (Leveled) Fully Homomorphic Encryption
without Bootstrapping. Proceedings of the 3rd ITCS. pp. 309-325. ACM, Cambridge, MA,
USA (2009)

8. Brakerski Z., Vaikuntanathan V.: Fully Homomorphic Encryption from Ring-LWE and Se-
curity for Key Dependent Messages. In: Rogaway P. (eds) Advances in Cryptology –
CRYPTO 2011. CRYPTO 2011. LNCS, vol 6841. Springer, Berlin, Heidelberg (2011)

9. Chaum D., Crépeau C., Damgård I.: Multiparty Unconditionally Secure Protocols. Proceed-
ings of the 20th STOC. pp. 11-19. ACM, Chicago, Illinois, USA (1988)

10. Cleve R.: Limits on the Security of Coin Flips When Half the Processors are Faulty. Pro-
ceedings of the 18th STOC. pp. 364-369. ACM, Berkeley, California, USA (1986)

40

11. Cramer R., Damgård I., Maurer U.: General Secure Multi-Party Computation from any Lin-
ear Secret-Sharing Scheme. In Preneel B. (eds) Advances in Cryptology-EUROCRYPT
2000. LNCS, vol 1807, pp. 316-334. Springer, Berlin, Heidelberg (2000)

12. Damgård I., Ishai Y., Krøigaard M.: Perfectly Secure Multiparty Computation and the Com-
putational Overhead of Cryptography. In Gilbert H. (eds) Advances in Cryptology-
EUROCRYPT 2010. LNCS, vol. 6110, pp. 445-465. Springer, Berlin, Heidelberg (2010)

13. Damgård I., Keller M., Larraia E., Pastro V., Scholl P., Smart N.P.: Practical Covertly Se-
cure MPC for Dishonest Majority – Or: Breaking the SPDZ Limits. In: Crampton J., Jajodia
S., Mayes K. (eds) Computer Security – ESORICS 2013. ESORICS 2013. LNCS, vol. 8134.
Springer, Berlin, Heidelberg (2013)

14. Gentry C.: A Fully Homomorphic Encryption Scheme, Ph.D Thesis, Stanford University,
Stanford, CA, USA (2009)

15. Kurihara J., Kiyomoto S., Fukushima K., Tanaka T.: A new (k,n)-threshold secret sharing
scheme and its extension. In Proceedings of ISC 2008. pp. 455-470, Springer, Berlin, Hei-
delberg (2008)

16. Mohd Kamal A. A. A, Iwamura K.: Conditionally Secure Multiparty Computation using
Secret Sharing Scheme for n<2k-1. Proceedings of the 15th PST. pp. 225-230. IEEE, Cal-
gary, AB, Canada (2017)

17. Shamir A.: How to Share a Secret. Communications of the ACM, Vol. 22, Issue 11, pp. 612-
613. ACM, New York, NY, USA (1979)

18. Sharemind, Cybernetica. https://sharemind.cyber.ee.
19. Shingu T., Iwamura K., Kaneda K.: Secrecy Computation without Changing Polynomial

Degree in Shamir’s (𝑘, 𝑛) Secret Sharing Scheme. Proceedings of the 13th ICETE. Vol. 1,
pp. 89-94. DCNET, Lisbon, Portugal (2016)

20. Tokita K., Iwamura K.: Fast Secure Computation based on Secret Sharing Scheme for n<2k-
1. Proceedings of the 4th MobiSecServ. pp. 1-5. IEEE, Miami Beach, FL (2018)

21. van Dijk M., Gentry C., Halevi S., Vaikuntanathan V.: Fully Homomorphic Encryption over
the Integers. In: Gilbert H. (eds) Advances in Cryptology – EUROCRYPT 2010. LNCS,
Vol. 6110, pp. 24-43. Springer, Berlin, Heidelberg (2010)

22. Watanabe T., Iwamura K., Kaneda K.: Secrecy Multiplication Based on a (𝑘, 𝑛)-Threshold
Secret-Sharing Scheme Using Only 𝑘 Servers. In Park J., Stojmenovic I., Jeong H., Yi G.
(eds) Computer Science and Its Applications. LNEE, Vol. 330, pp. 107-112. Springer, Ber-
lin, Heidelberg (2015)

23. Yao A. C.: Protocols for Secure Computations. Proceedings of the 23rd SFCS. pp. 160-164.
IEEE Computer Society, Chicago, IL, USA (1982)

24. Yao A. C: How to Generate and Exchange Secrets. Proceedings of the 27th SFCS. pp. 162-
167. IEEE Computer Society, Washington, DC, USA (1986)

