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Abstract. Privacy-preserving machine learning enables secure outsourc-
ing of machine learning tasks to an untrusted service provider (server)
while preserving the privacy of the user’s data (client). Attaining good
concrete efficiency for complicated machine learning tasks, such as train-
ing decision trees, is one of the challenges in this area. Prior works on
privacy-preserving decision trees required the parties to have comparable
computational resources, and instructed the client to perform computa-
tion proportional to the complexity of the entire task.

In this work we present new protocols for privacy-preserving decision
trees, for both training and prediction, achieving the following desirable
properties:
1. Efficiency: the client’s complexity is independent of the training-set

size during training, and of the tree size during prediction.
2. Security: privacy holds against malicious servers.
3. Practical usability: high accuracy, fast prediction, and feasible train-

ing demonstrated on standard UCI datasets, encrypted with fully
homomorphic encryption.

To the best of our knowledge, our protocols are the first to offer all these
properties simultaneously.
The core of our work consists of two technical contributions. First, a new
low-degree polynomial approximation for functions, leading to faster pro-
tocols for training and prediction on encrypted data. Second, a design of
an easy-to-use mechanism for proving privacy against malicious adver-
saries that is suitable for a wide family of protocols, and in particular,
our protocols; this mechanism could be of independent interest.
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1 Introduction

Outsourcing computation to a service provider with powerful platforms and ad-
vanced analytic skills is desirable by many organizations, in particular, for tasks
that require heavy computation and vast amounts of storage. Example of pop-
ular tasks that are being outsourced, are training and prediction of machine
learning models. However, outsourcing cleartext data poses a threat to the data
confidentiality that may conflict with propriety issues, users privacy, or may
even be forbidden by law. The machine learning revolution of the last decade
boosted the need for outsourcing computation with privacy guarantees. The field
of privacy-preserving machine learning is a lively research area addressing this
privacy threat by employing secure-computation techniques in order to perform
machine learning tasks on an untrusted service provider (server) while preserving
the privacy of the user’s data (client).

Decision trees and random forests, in particular, are among the most popu-
lar machine learning techniques, used for numerous applications in healthcare,
remote diagnostics, spam filtering, etc. Similarly to other machine learning tech-
niques, decision trees are used for prediction and require training. Prediction
using a decision tree model is the process of assigning a class label (or a like-
lihood score for each class label), when given an unlabeled data instance. The
complexity of prediction is proportional to the tree depth d. Training a decision
tree model is the process of producing a decision tree, when given a training
dataset of labeled examples. The goal of training is to produce a tree that would
yield accurate predictions on new unlabeled data instances. The complexity of
training is proportional to the training dataset size n and the tree size m. Simi-
larly, for random forests, training produces an ensemble of trees, and prediction
aggregates scores from all trees in the forest to produces a prediction.

In secure outsourcing for decision trees, a client wishes to outsource the
computation of decision tree based prediction or training, while aided by a server
so that: (1) the server does not have any input or output in the functionality; and
(2) the server has a vast (but bounded) amount of computational resources. In
this setting, the goal is to design protocols that minimize the client’s computation
at the server’s expense while maintaining client’s data privacy. In particular, it
is desirable that the client’s complexity would be sub-linear in the time it takes
to compute the outsourced task. Furthermore, it is desirable to achieve privacy
that holds against malicious servers.

In prior works on secure computation of decision trees prediction and train-
ing, the proposed protocols involved parties of comparable computational re-
sources. Furthermore, most prior works consider only semi-honest servers.1 See
Section 1.3 and Table 1. In particular, in the client-server settings, both client
and server have comparable asymptotic complexity; this limits the deployment
of prior protocols on weak clients.

1 A semi-honest adversary follows the protocol’s specification but may try to learn
additional information from its view of the protocol’s transcript. A malicious ad-
versary may follow any arbitrary attack strategy. Both adversaries are probabilistic
polynomial time.
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The question motivating this work is whether there are maliciously secure pro-
tocols for decision tree training and prediction with sub-linear client complexity.
Moreover, can both client and server exhibit reasonable experimental performance
on standard dataset?

1.1 Our Contribution

Our contribution is two-fold, comprised of both our protocols and our proposed
proof mechanism, as detailed below.

Contribution 1: decision tree prediction and training protocols. In this
work we affirmatively answer the above question by presenting the first protocols
for secure computation of decision tree based training and prediction that attain
all the following: (1) sub-linear client complexity ; (2) privacy against malicious
adversaries; and (3) practical usability as demonstrated by our experimental
results. See Table 1 and Section 6.

Elaborating on the above, the client’s complexity in our prediction protocol
is proportional only to the size of the input data instance and the outputted
prediction,2 while being independent of the decision tree size (cf. at least pro-
portional to the tree’s depth or size in prior works); the client’s complexity in
our training protocol is proportional to the decision tree size, while being inde-
pendent of the training set size (cf. proportional to the product of tree size and
training dataset size in prior works);3 the privacy in both our protocols holds
against malicious adversaries (cf. only semi-honest adversaries in prior training
protocols). We implemented our protocols and ran benchmarks on standard UCI
datasets demonstrating the applicability of our protocol by exhibiting:

– High accuracy comparable to training and prediction on cleartext data.

– Fast prediction (seconds) on encrypted unlabeled data instances.

– Feasible training (minutes to hours) on encrypted training dataset with up
to 10,000 examples.

These results can easily be extended to random forests.

To formally address the security guarantee of our protocols, we use a gen-
eral and simple definition that captures privacy against malicious servers for
outsourcing protocols, similar to Definition 2.6.2 in [18]. We refer to protocols
satisfying our definition as privacy-preserving outsourcing protocols.

2 To emphasize our protocol’s complexity independently of its black-box use of a fully
homomorphic encryption, we omit the polynomial overhead in the security parameter
due to processing ciphertexts.

3 We address here the online training phase where the decision tree is constructed,
assuming a previously uploaded training dataset of encrypted labeled examples.
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Table 1. Comparison of decision tree prediction and training protocols for d
and m the tree’s depth and size respectively, and n the number of labeled examples in
the training set. In row [12], t is the binary representation length of data instances.

Prediction

Scheme Communication Complexity Malicious
Rounds Bandwidth Client Server Adversary?

[9,5,8,34,21,25] constant ≥ 2 Ω(m) Ω(m) Ω(m) 7

[38] constant ≥ 2 Ω(m) Ω(m) Ω(m) 3

[12] t+ 3 Ω(m) Ω(m) Ω(m) 7

[35] 4d Ω(d2) Ω(d2) Ω(d2) 7

This Work 1 O(1) O(1) O(m) 3

Training

Scheme Communication Complexity of Malicious
Rounds Bandwidth each Data Owner Adversary?

Prior Work Ω(d) Ω(m logn) Ω(mn) 7

[28,13,37,39,15,32,36,20,29]

This Work d O(m) O(m) 3

Contribution 2: easy-to-use proof mechanism. We devised an easy-to-use
mechanism for proving that an outsourcing protocol is privacy-preserving (see
Theorem 1, Section 4) that can be applied on a wide family of outsourcing proto-
cols (see Definition 6, Section 4). We exemplify how to use our proof mechanism
in the analysis of our decision tree protocols (see Section 5). We believe this
mechanism could be of service to the wider community of software engineers de-
veloping privacy-preserving outsourcing protocols in attaining rigorous privacy
analysis.

Elaborating on the above, our easy-to-use mechanism for proving security is
suitable for any client-server outsourcing protocol, parameterized by family of
functions G = {Gn}n∈N over some domain Dn, that uses a fully homomorphic
encryption (FHE) scheme E in the following three-stage structure:

1. Client’s input outsourcing phase, where client’s input is encrypted and out-
sourced to the server.

2. Server’s computation phase, where the server performs some local computa-
tion and is allowed to interact with the client only by sending (ciphertext, n),
and receiving Enc(Gn(Dec(ciphertext))) in response.

3. Client’s output phase, where the server sends to the client a last message
that the client processes to produce the output.

We call such protocols (E , G)-aided outsourcing protocols.

Our mechanism for proving a (E , G)-aided outsourcing protocol is privacy-
preserving requires proving only the following simple and standard properties
on the protocol, the family of functions, and the encryption scheme:
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– Correct protocol: The client and server are probabilistic polynomial-time
algorithms that, when adhering to the protocol specifications, produce the
correct output.

– Length preserving functions: The family of functions G is polynomial-time
computable, and it is length preserving in the sense that |Gn(x0)| = |Gn(x1)|
for all n ∈ N and x0, x1 ∈ Dn.

– Secure encryption: The encryption scheme E is CPA-secure, and circuit-
private for the family G.

Our main theorem proves that satisfying the above simple properties implies
that the protocol is privacy-preserving; See Theorem 1, Section 4.

1.2 Our Techniques

Soft-step function. As a central component in our protocols, we devised a low-
degree polynomial approximation for step functions (aka, soft-step functions),
by using the least squares method. We then show how to utilize this soft-step
function for fast and accurate prediction and training over encrypted data. To
achieve better accuracy in our algorithms and protocols, the approximation uses
a weighting function that is zero in a window around the step and constant
elsewhere. See Sections 3,5, and the overview below.

Protocols overview. Our protocols are composed of three main phases: (1) Client’s
data outsourcing phase, where the client generates keys (pk, sk) for a (leveled)
FHE scheme E , publishes pk, keeps sk secret, and then the client (or any other
data-source) can use the public key pk to encrypt and upload data to the server.
(2) Server’s computation phase, where the bulk of the computation occurs by
the server. In our prediction protocol, the server homomorphically evaluates the
(possibly, encrypted) decision-tree on the encrypted data instance, and sends
the encrypted outcome to the client. In our training protocol, this phase is an
interactive protocol between the client and server, with d rounds of communica-
tion (for d the tree’s depth), communication bandwidth and client’s complexity
O(ksL ·m), and server’s complexity O(ksL ·m · n) (for k the dimension of the
labeled data examples, aka, the number of features, L the number of class labels,
and s the number of thresholds considered for each tree node). (3) Client’s out-
put phase, where the client receives the encrypted output from the server, and
decrypts to produce her output.

We elaborate on the server’s computation phase in our training protocol. The
standard approach for decision tree training on cleartext data is to construct
the tree layer-by-layer, starting from the root. For each node a feature and
threshold are chosen to locally optimize the classification of the training set, as
measured by the conditional entropy or the Gini Impurity; we use the latter.
This (feature,threshold) selection is composed of two steps. First the training
set is processed, based on the tree constructed thus far, to generate a small
set of data aggregates. Second, the feature and threshold are selected based on
these aggregates. In our privacy-preserving protocol, first the server processes
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the (encrypted) training data and the (encrypted) tree constructed thus far, to
produce the (encrypted) small set of data aggregates, and sends these aggregates
to the client. The client decrypts, selects the best choice of (feature,threshold),
encodes and encrypts them to be sent back to the server. To reduce round
complexity, the tree is constructed in a breath-first-search (BFS) manner, so
that aggregates for all nodes in the same layer are all sent together in a single
message.

The heart of our novel technique lies in how the server computes the new ag-
gregates. In standard protocols for decision tree training, each node is associated
with a test “x[i] < θ”, directing to its left child all examples with x[i] ≤ θ and to
its right child all those with x[i] > θ. When computing on encrypted data, com-
puting this hard-threshold is computationally demanding. Note that threshold
can be viewed as a function accepting value 0 (left) on all values smaller than θ,
and 1 (right) otherwise (aka, step function). We propose to replace this thresh-
old with a soft-step function. The soft-step function is a low-degree polynomial
approximating the step function. Our use of this soft-step function considerably
improves the computational overhead when computing on encrypted data, with-
out compromising accuracy. Likewise, we employ the soft-step function in our
prediction protocol as our central tool for achieving fast homomorphic evaluation
of the decision tree.

Easy-to-use mechanism for proving security. The security guarantees of our
protocols are obtained via our easy-to-use mechanism presented in Theorem 1.
That is, we prove the following simple properties. Correctness of our protocols,
when assuming honest behavior. Length preserving functions are computed in
the interaction with the client, specifically, the client’s selection of the best (fea-
ture,threshold) during training is length preserving. Secure encryption is used
in the sense that it is CPA-secure and circuit-private for the family of functions
computed by the client. Our proof of Theorem 1 shows that the above three
properties imply that our protocols are privacy-preserving.

We prove Theorem 1 in two steps. In the first step, we define a stronger vari-
ant of CPA-security that we call Function-CPA, and show that Function-CPA is
sufficient to guarantee privacy for (E , G)-aided outsourcing protocols. The notion
of Function-CPA secure encryption extends the CPA game to include queries to
a family of functions G = {Gn}n∈N as follows: in addition to the standard CPA
game, the adversary has access to a Enc(G(Dec(·))) oracle, that receives queries
of the form (ciphertext, n) and response with Enc(Gn(Dec(ciphertext))). The secu-
rity requirement demands that no efficient adversary can win the Function-CPA
game with probability noticeably greater than 1

2 . Then, in the second step of the
proof, we show that any circuit-private CPA-secure FHE scheme is Function-CPA
secure.

We note that Theorem 1 can be instantiated directly with any Function-CPA
secure FHE scheme, avoiding the need for circuit-privacy.
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1.3 Prior Work

Secure computation of decision tree based prediction and training in prior works
addressed parties of comparable computational resources.

For prediction, the prior works [9,5,8,38,12,34,21,25,35] addressed settings
where the client’s input is an unlabeled example, the server’s input is a decision
tree, the client’s output is the prediction for the input example and the server has
no output. The privacy goal, informally, is that the server (respectively, client)
learns no new information on client’s input (resp. server’s input). The privacy
holds only against semi-honest adversaries in all prior work, except Wu et al. [38]
that prove privacy against malicious adversaries as well. The complexity, for both
client and server, grows asymptotically in the complexity of the tree. See Table 1.

For training, the prior works [28,13,37,39,15,32,36,20,29] addressed federated
learning against semi-honest adversaries. Namely, the training dataset of n la-
beled examples is distributed among two or more parties (Data Owners) who
engage in a secure multi-party computation to construct a decision tree from
the union of their datasets. The privacy goal, informally, is that no information
leaks on their private dataset, beyond what can be inferred from the trained de-
cision tree. The complexity, for every party, is proportional to her input dataset;
namely, Ω(n) complexity (on an evenly distributed training dataset and a con-
stant number of parties). See Table 1.

Function approximation for secure outsourcing. A common approach for FHE
based secure machine learning is to approximate functions that are computation-
ally heavy for FHE. This approach is widely used for approximating continuous
activation functions, such as ReLU , Sigmoid and Tanh, with low degree polyno-
mials and utilizing these polynomials in training logistic regression models over
encrypted dataset, and recently by [19] in neural networks. In particular, the
approximation technique in [24,23,26] for training a logistic regression model
considered least squares fitting polynomials (i.e., minimizing MSE). Another
technique is the minimax approximation, used in [7,19] with Chebyshev polyno-
mials and in [10] with the Remez Algorithm [30]. Experimental results presented
in these works show that approximating with polynomials of degree at most 9
is sufficient for the ReLU , Sigmoid and Tanh functions.

Paper organization. Section 2 contains basic definitions and notations. In Section
3 we present a machine learning algorithms for training and prediction of ap-
proximated decision trees. In Section 4 we present a simple sufficient conditions
on protocols to imply privacy. Section 5 presents privacy-preserving protocols for
training and prediction of decision trees. Section 6 presents empirical evaluation
of our protocols in terms of accuracy , and runtime. Finally, in Section 7 we
conclude with a discussion of open problems.

2 Preliminaries

Throughout the rest of the paper, we use the following notation and definitions.
For n ∈ N, let [n] denote the set {1, . . . , n}. A function g : N→ R+ is negligible
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if it tends to zero faster than any inverse polynomial, i.e., for all c ∈ N there
exists kc ∈ N such that for every k > kc it holds that g(k) < k−c. We use
neg(·) to denote a negligible function if we do not need to specify its name. A
L-dimensional binary vector y = (y1, . . . , yL) is a 1-hot encoding of ` ∈ [L], if
the `’th entry is the only non zero entry in y.

A random variable A is a function from a finite set S to the non-negative
reals with the property that

∑
s∈S A(s) = 1. A probability ensemble X =

{X(a, n)}a∈{0,1}∗,n∈N is an infinite sequence of random variables indexed by
a and n ∈ N. Two distribution ensembles X = {X(a, n)}a∈{0,1}∗,n∈N and Y =
{Y (a, n)}a∈{0,1}∗,n∈N are said to be computationally indistinguishable, denoted
by X ≈c Y , if for every non-uniform polynomial-time algorithm D there exists
a negligible function neg such that for every a ∈ {0, 1}∗ and every n ∈ N,

|Pr[D(X(a, n)) = 1]− Pr[D(Y (a, n)) = 1]| ≤ neg(n)

.

2.1 Decision Trees

A decision tree is a mapping t : Rk → {1, . . . , L} implemented as a binary tree,
where each internal node corresponds to a partitioning of the input space along
one dimension, and leaf nodes have a label (value from {1, . . . , L}) associated
with them. A tree t is evaluated on an input x by traversing a path in the tree
starting from the root, using the partitioning rule at each node to decide how to
continue. When a leaf is reached, the label associated with it is returned as t(x).

The structure of a decision tree is typically learned in order to fit to a given
dataset – a set of n pairs {(x(i), y(i))}ni=1 for which we ideally want to have:
∀i : t(x(i)) = y(i). The task of finding the optimal tree, that is the tree of a given
depth for which the maximal number of the aforementioned equalities hold, is
known to be NP-complete [27]. Heuristics used in practice to obtain decision
trees given a dataset rely on optimizing the local quality of each partitioning
(i.e. each node), by selecting the dimension and threshold value that divide the
data into partitions that are each “as pure as possible”. The motivation behind
this local criterion is that if all data points that arrive to the same leaf have the
same label, then by assigning this label to the leaf we are able to categorize this
region perfectly. Several measures of purity are commonly used, and we describe
the Gini impurity measure in greater detail in Section 3.

2.2 CPA-Secure Encryption

We give the standard definition for CPA-security (adapted from [22]).
Consider the following experiment defined for public-key encryption scheme

E = (Gen,Enc,Dec) and adversary A:
The CPA indistinguishability experiment EXPcpaA,E(λ):

1. Gen(1λ) is run to obtain keys (pk, sk).
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2. Adversary A is given pk as well as oracle access to Encpk(·). The adversary
outputs a pair of messages x0, x1 with |x0| = |x1|. (These messages must be
in the plaintext space associated with pk.)

3. A random bit b ∈ {0, 1} is chosen, and the ciphertext c ← Enc(pk, xb) is
computed and given to A. We call c the challenge ciphertext. A continues
to have access to Encpk()̇.

4. A outputs a bit b′.
5. The output of the experiment is define as 1 if b′ = b, and 0 otherwise.

Definition 1 (CPA-security). A public key encryption scheme E = (Gen,Enc,Dec)
has indistinguishable encryptions under chosen-plaintext attacks (or is CPA-
secure) if for all probabilistic polynomial-time adversaries A there exists a neg-
ligible function neg such that:

Pr[EXPcpaA,E(λ) = 1] ≤ 1

2
+ neg(λ)

where the probability is taken over the random coins used by A, as well as the
random coins used to generate (pk, sk), choose b, and generate the encryptions.

2.3 Fully Homomorphic Encryption

We give standard definitions for fully-homomorphic encryption (FHE) and cir-
cuit privacy (adapted from [6] and [17]).

Definition 2 (public-key FHE scheme). A homomorphic (public-key) en-
cryption scheme E = (Gen,Enc,Dec,Eval) with message space M is a quadruple
of PPT algorithms as follows (λ is the security parameter):

– Key generation (pk, sk)← Gen(1λ): Outputs a public encryption key pk and
a secret decryption key sk.

– Encryption c ← Enc(pk, µ): Using the public key pk, encrypts a message
µ ∈M into a ciphertext c.

– Decryption µ ← Dec(sk, c): Using the secret key sk, decrypts a ciphertext c
to recover the message µ ∈M.

– Homomorphic evaluation ĉ ← Eval(C, (c1, . . . , c`), pk): Using the public key
pk, applies a circuit C :M` →M to c1, . . . , c`, and outputs a ciphertext ĉ.

The scheme is said to be secure if it is CPA-secure. It is fully homomorphic,
if for any efficiently computable circuit C and any set of inputs to the circuit
x1, . . . , x`, letting (pk, sk)← Gen(1λ), and ci ← Enc(pk, xi), it holds that:

Pr[Dec(sk,Eval(C, (c1, . . . , c`), pk)) 6= C(x1, . . . , x`)] = neg(λ)

The scheme is compact if the decryption circuit’s size only depends on λ.

Definition 3 (Circuit Private Homomorphic Encryption [16]). We say
that a homomorphic encryption scheme E = (Gen,Enc,Dec,Eval) is circuit-
private for circuits in G̃ if, for any keypair (pk, sk) output by Gen(1λ), any
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circuit G̃i ∈ G̃, and any fixed ciphertexts c1, . . . , c` that are in the image of Enc
for plaintexts x1, · · · , x`, the following distributions (over the random coins in
Enc and Eval) are indistinguishable:

Enc
(
pk, G̃i(x1, · · · , x`)

)
≈ Eval

(
G̃i, (c1, . . . , c`), pk

)
3 Decision Trees with Low Degree Approximation

In this section we present algorithms for training and prediction of decision trees.
The algorithms are tailored to being evaluated over encrypted data, in the sense
of avoiding complexity bottlenecks of homomorphic evaluation.

The key component in our algorithms is a low degree polynomial approxi-
mation for the step function “x < θ” (aka, soft-step function); See Section 3.1.
The obtained low degree approximation is used to replace the step function
at each tree node in our new prediction and training algorithms, presented in
Sections 3.2-3.3.

3.1 Low Degree Approximation of a Step Function

We construct a low-degree polynomial approximation for a step function. Specif-
ically, we consider the step function I0 : R→ {0, 1} with threshold zero, defined
by: I0(x) = 1 if x ≥ 0 and I0(x) = 0 otherwise.

There are several convenient methods for replacing piece-wise continuous
functions with limited-degree polynomial approximations. One approach is to
starts off with considering the appropriate space of functions as a metric space,
and then finding a polynomial of the desired degree that minimizes the deviation
from the target function in this metric. Natural choices of metrics are the uniform
error, integral square error, and integral absolute error. We aim to replace a
step function with a soft-step function, i.e., a polynomial approximation. In
choosing these polynomials we opt for the mean square integral solution, due
to its extendability. That is, the soft-step function would be the solution to the
following optimization problem:

φ = min
p∈Pn

∫ 2

−2
(I0(x)− p(x))

2
dx (1)

where Pn is the set of polynomial functions of degree at most n over the reals.
Setting the interval of the approximation to be [−2, 2] is sufficient once we have
pre-processed all data to be in the range [−1, 1]. A soft-step at θ ∈ [−1, 1] is of
the form φ(x− θ), and thus x− θ ∈ [−2, 2].

However, in many cases the sensitivity to error in the approximation is not
uniform in the domain. Errors at an interval around the threshold may harm the
overall result of the algorithm less, compared to errors away from the threshold
value. Adding an importance-weighting of the approximation interval leads to
the following optimization problem:

φ = min
p∈Pn

∫ 2

−2
(I0(x)− p(x))

2
w(x) dx (2)
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Fig. 1. Polynomial approximations of the step function in [−2, 2], with varying poly-
nomial degrees (rows) and width of neglected window around the transition (columns).
We approximate with polynomials that have zero terms in all coefficients of even degree
greater than 1.

with a weighting function w(x) ≥ 0 ∀x ∈ [−2, 2] and
∫ 2

−2 w(x) dx = 1. We note
that the unique solution to this problem is obtained by the projection of I0 onto
Pn, in the w-weighted norm (see Chapter II in [31]), or alternatively by applying
polynomial regression (minimizing MSE) on a discrete set of points sampled
proportionally to w.

Experiments with polynomials which are solutions to (2) with various weight
functions and degrees show that by neglecting an interval around the threshold
we are able to obtain tighter approximations to the linear phases of the step
function, which overall benefit the trees constructed with them. More specifically,
by using weighting functions that are zero in a window around the step and
constant otherwise, a trade-off is obtained between the slope of the transition
and tightness of approximation at the edges of the interval (Figure 1). For larger
slopes (smaller neglected windows) the approximation polynomial reaches the
0 − 1 plateau faster, but at the price of overshooting and oscillations around
the linear parts of the step function. While this can be remedied by choosing
very high degree polynomial, computational considerations (especially with FHE
arithmetic) lead us to favor smaller degree polynomials.

Approximating in L∞-norm: The problem of polynomial approximation in L∞-
norm is of great importance in signal processing. The standard way of solving
such problems is by applying the Remez Algorithm [30]. This approach required
higher degree polynomials to obtain the same level of errors in our case, and
therefore we chose the L2 optimization.
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3.2 Prediction of Decision Trees with Soft-Step Function

We present our algorithm for prediction of decision trees, where the step function
is replaced with its soft-step function counterpart. Moreover, the procedure we
describe in this section can also be used as a “recipe” for converting an existing
tree model to a polynomial form of low degree. This recipe by itself might be of
independent interest.

The methodology described in this section is performed on a given, already
trained, tree. Traditionally, a tree model is evaluated on a new example x ∈ Rk by
traversing a single path from root to leaf according to the input data. Interpreted
as a product of indicators, traversal from node v can be written recursively as:

v.value(x) = Iv.θ(x[v.feature])·v.right.value(x) +

(1− Iv.θ(x[v.feature]))·v.left.value(x)
(3)

where v.right.value(x) and v.left.value(x) are the recursive evaluations of the
right and left sub-trees respectively on the input data x. The step function
Iv.θ(x[v.feature]) is 1 if the statement evaluated at the node is true, and oth-
erwise 0, i.e., if the value of the designated feature specified by v.feature in x
is larger than the threshold v.θ. Replacing the step function with its polyno-
mial approximation (i.e., the soft-step function φ obtained via Equation 2), this
becomes:

v.value(x) = φ (x[v.feature]− v.θ) ·v.right.value(x) +

(1− φ (x[v.feature]− v.θ)) ·v.left.value(x)
(4)

Due to the symmetry of φ() it holds that,

φ (v.θ − x[v.feature]) = (1− φ (x[v.feature]− v.θ)) (5)

Using Equation 4 recursively from the root node, and adding a stopping
criterion when reaching a leaf leads to the full tree evaluation procedure, as
described in Algorithm 1. Informally, this is a Depth-First-Search that computes
a linear combination of the values associated with each of the tree leaves, with
coefficients based on the product of soft-step function evaluated along the path
leading from the root to that leaf. We note that Algorithm 1 naturally extends
to evaluation of base-classifiers for random forests and tree boosting, hence our
method supports these common tree-based machine learning methods as well.

3.3 Training Decision Trees with Soft-Step Function

In this section we specify our training algorithm for decision trees. The training
algorithm is given a dataset (X ,Y) containing n labeled examples, each x ∈ X
associated with a label from [L]. For x ∈ X we will use yx as shorthand for the
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Algorithm 1 Tree Prediction Function

A node v is a data structure containing the following fields: feature and θ denoting
the feature and the threshold associated with the node, leaf value is the value in case
v is a leaf. In addition, v.right and v.left denote the right and left sub-trees of v,
respectively. x ∈ [−1, 1]k is a single data instance.

function Tree Predict(v, x)
if v is a leaf then

return v.leaf value
else

return φ
(
x[v.feature]− v.θ

)
· Tree Predict(v.right, x) +

φ
(
v.θ − x[v.feature]

)
· Tree Predict(v.left, x)

end if
end function

label associated with x. The indicator function isEQ(yx, `) is 1 if yx is equal to
`, and 0 otherwise.

For the root node, the standard training considers the split obtained from
using the i-th feature with the threshold θ. The examples in the dataset are
divided into two sets: {x ∈ X |x[i] ≥ θ} and X \ {x ∈ X |x[i] ≥ θ}. The number
of examples |{x ∈ X |x[i] ≥ θ}| =

∑
x∈X Iθ(x[i]). The training procedure aims

to build trees with local objectives based on the number of examples of each
label that flow to each side at a split, to this end for the right hand side we
define:

right[i, θ][`] =
∑
x∈X

Iθ(x[i]) · isEQ(yx, `)

total right[i, θ] =
∑
`∈L

right[i, θ][`]
(6)

where the left hand side is defined in similar manner with (1−Iθ(x[i])). Note that
right[i, θ], and left[i, θ] are L-dimensional vectors that contain the total number
of examples x ∈ X of each of the labels that flow to each side of the split.
Based on Equation 6, the weighted Gini Impurity for this split is calculated (the
Gini Impurity is weighted by the volume of data that the split sends to each of
the children nodes):

ĨG[i, θ] =
∑

side∈{right,left}

(
1−

∑
`∈L

[
side[i, θ][`]

total side[i, θ]

]2)
· total side[i, θ] (7)

At each node in the training procedure, the feature and threshold are cho-
sen in order to minimize the weighted Gini impurity of the resulting split. In
order to minimize the number of splits to consider, a common approach is to
select the possible threshold values on a grid. A scaling pre-processing procedure
guarantees that all features value are within the correct range.
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The split finding procedure proceeds as follows: for each feature i and each
candidate threshold θ on the grid, compute ĨG[i, θ], and select the best fea-
ture and threshold, i.e., those that minimize ĨG[i, θ]. Once the best feature and
threshold value are determined, denoted by i∗ and θ∗, we can move on to the
successive sub-trees. The training procedure associates with each node a set of
indicators W = {wx}x∈X , so that wx is a bit indicating if example x is partic-
ipating in the training of a sub-tree rooted at this node, and W is updated for
the children nodes as follows:

∀x ∈ X : wright
x = wx · Iθ∗(x[i∗]) (8)

is the set of indicators of the right-hand sub-tree, since wright
x is 1 iff both wx is 1

(meaning this is an example x that was considered in the current sub-tree), and
the example x flows right in this split. Likewise, it is defined for the left-hand
sub-tree. Therefore, the analog of Equation 6 for training internal nodes is:

right[i, θ][`] =
∑
x∈X

wx · Iθ(x[i]) · isEQ(yx, `)

left[i, θ][`] =
∑
x∈X

wx · (1− Iθ(x[i])) · isEQ(yx, `)
(9)

In our approach, we avoid the (expensive) comparison operation by replacing
the step function Iθ(·) with the low-degree polynomial approximation φ(·) in
Equations 6, 7,8, 9, see Algorithm 2 for details.

Notice that our approximated version of Equation 8 has real valued weights
instead of boolean indicators. This means that every example reaches every node,
and is evaluated at all nodes. Rather than hard splitting the data (partitioning
to right and left children at each split) we have a soft partition of the data, where
the two children nodes get a part of each data point, weighted differently (but
with weights that sum to 1). In order to efficiently keep track of the weight of each
data example at each node, we keep a weights set W while traversing the tree
during training. All weights are initialized to 1, and recursively multiplied by the
polynomial approximation at the current node before passing on to the children
nodes. The details of the training algorithm are presented in Algorithm 2.

4 Privacy-Preserving Outsourcing

In this section we present our main theorem, that provides an easy mechanism
for proving security of outsourcing protocols. As an intermediate step towards
establishing our mechanism, we identify and formally define a stronger notion
of secure public-key encryption called Function-CPA (that might be of indepen-
dent interest), and show that FHE encryption schemes satisfy it. In addition, we
present a definition of privacy-preserving outsourcing computation in Section 4.1
that is similar to Definition 2.6.2 of [18], but with adjustment to the outsourcing
setting.
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Algorithm 2 Tree Training Function

(X ,Y) is a dataset and W is a set of weights, s.t. ∀x ∈ X : wx ∈ R and yx ∈ [L]
are the weight (initially 1) and the label associated with the example x ∈ [−1, 1]k,
respectively. We denote by k and L the number of features and labels in the associated
problem, respectively. We denote by S the set of considered thresholds. The parameter
maximal depth is the depth of the trained tree, the variable depth is initialized to 1.
The function Gini(·) in Figure 2 computes the weighted Gini impurity and return the
best threshold and feature.

function Tree Train((X ,Y), w, depth)
if reached maximal depth then . leaf node

label← arg max
`∈[L]

∑
x∈X

wx · isEQ(yx, `)

else
for each feature i do . search best split for this node

for each threshold θ do
for each label ` do

right[i, θ][`]←
∑
x∈X wx · φ(x[i]− θ) · isEQ(yx, `)

left[i, θ][`]←
∑
x∈X wx · φ(θ − x[i]) · isEQ(yx, `)

end for
end for

end for
i∗, θ∗ ← Gini({right[i, θ], left[i, θ]}i∈[k],θ∈S) . See Figure 2

∀x ∈ X : wright
x ← wx · φ(x[i∗]− θ∗)

Tree Train((X ,Y), {wright
x }x∈X , depth+ 1) . build right-side sub-tree

∀x ∈ X : wleft
x ← wx · φ(θ∗ − x[i∗])

Tree Train((X ,Y), {wleft
x }x∈X , depth+ 1) . build left-side sub-tree

end if
end function

4.1 Privacy-Preserving Outsourcing Computation

We consider a natural setting of the standard models for secure computation
called the secure outsourcing model. In particular, we have a server, that might
be malicious, who interacts with a client and performs some computation for it.

The model is motivated by settings where a weak client, denoted by Clnt,
delegates some computation to a powerful server Srv. In contrast to classical
delegation, where integrity of computation is the main concern, our setting fo-
cuses on protecting client’s private information from the server who wishes to
learn as much as possible about the client’s input.

Secure outsourcing protocols have an analogous motivation to zero-knowledge
proofs. Zero-knowledge proofs guarantee the privacy of the prover’s secret infor-
mation, while enabling the prover to prove statements about this information.
Similarly, secure outsourcing protocols aim to guarantee privacy of client’s data,
while enabling the server to perform heavy computation related to this client’s
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Procedure: Gini impurity computation.

We denote by k and L the number of features and labels in the associated problem,
respectively. We denote by S the set of considered thresholds. The function computes
the weighted Gini impurity and returns the best threshold and feature.
Given a set of L-dimensional vectors {right[i, θ], left[i, θ]}i∈[k],θ∈S proceed as follows:

1. for each threshold θ ∈ S and each feature i ∈ [k] compute

total right[i, θ]←
∑
`∈L

right[i, θ][`]

total left[i, θ]←
∑
`∈L

left[i, θ][`]

ĨG[i, θ]←
(

1−
∑
`∈L

[
right[i, θ][`]

total right[i, θ]

]2)
· total right[i, θ]

+

(
1−

∑
`∈L

[
left[i, θ][`]

total left[i, θ]

]2)
· total left[i, θ]

2. compute the selected feature and threshold at the node, i.e., return

i∗, θ∗ ← arg min
i,θ

ĨG[i, θ]

Fig. 2. The weighted Gini impurity computation.

data. We capture client’s data privacy via the inability of any server to distin-
guish executions done over different client’s data. More formally:

Interactive Outsourcing Protocols. An interactive outsourcing protocol 〈Clnt,Srv〉
for computing a function F proceeds in the following manner:

– At the beginning of the protocol, Clnt and Srv receive the security parameter,
and in addition Clnt receives input x and Srv has no input.

– Then Clnt and Srv execute the protocol, and upon receiving the last message
from Srv, Clnt produces an output y, and Srv has no output.

An execution of this protocol with client’s input x is denoted throughout
this paper by 〈Clnt(x),Srv〉. A interactive outsourcing protocol is a protocol
that satisfies the completeness and privacy conditions defined below.

Definition 4 (View and output). Let 〈Clnt,Srv〉 be an interactive outsourcing
protocol. Then:

– Srv’s view of 〈Clnt(x),Srv〉 is the random variable V iewSrv(Clnt(x),Srv) =
(m1, . . . ,mt; r) consisting of all the messages m1, . . . ,mt exchanged between
Clnt and Srv together with the string r containing all the random bits that
Srv has read during the interaction.

16



– Clnt’s output in 〈Clnt(x),Srv〉 is a random variable denoted by OutClnt(Clnt(x),Srv).

Formally, we define privacy for outsourcing computation as follows:

Definition 5 (Privacy-preserving outsourcing protocol). An interactive
outsourcing protocol 〈Clnt,Srv〉 is privacy-preserving for a function F : A → B
if Srv and Clnt are PPT machines and there exists a negligible function neg(·)
such that for all λ ∈ N, the following holds:

Completeness: For all x ∈ A,

Pr[OutClnt(Clnt(x),Srv)(1λ) = F (x)] = 1− neg(λ).

Privacy: For all x0, x1 ∈ A with |x0| = |x1|, for any PPT distinguisher D and
every PPT server S∗ it holds that:

|Pr[D(V iewS∗(Clnt(x0), S∗)(1λ)) = 1]−Pr[D(V iewS∗(Clnt(x1), S∗)(1λ)) = 1]| ≤ neg(λ)

where the probability is taken over the random coins of Clnt and Srv.

We note that although Definition 5 is defined with respect to deterministic
functions, it can be easily extended to handle randomized functionalities. In
Sections 5.1 and 5.2 we present our protocols for prediction and training for tree
based models and prove their security in terms privacy-preserving outsourcing
protocols.

4.2 An Easy-to-Use Mechanism

In this section we present our main theorem, a mechanism for proving privacy
for a broad family of protocols, we call this family function-aided outsourcing
protocols. We present simple sufficient conditions on protocols for being privacy-
preserving outsourcing protocols. We first define function-aided outsourcing pro-
tocols as follows:

Definition 6 ((E , G)-aided outsourcing protocol). Let E = (Gen,Enc,Dec)
be a public-key encryption scheme with a message spaceM = {Mn}n∈N. Let G =
{Gn : Dn →M}n∈N be a family of functions. An interactive outsourcing protocol
Π = 〈Clnt,Srv〉 for computing a function F is called (E , G)-aided outsourcing
protocol if it has the following three stage structure:

1. Client’s input outsourcing phase: Clnt runs (sk, pk) ← Gen(1λ), and
encrypts its input x, i.e., cx ← Encpk(x). Then Clnt sends cx and pk to Srv.

2. Server’s computation phase: Srv performs some computation, and in
addition it may interact with Clnt by sending it tuples of the form (e, i) (where
e is an encryption and i ∈ N) and receiving in response Encpk(Gi(Decsk(e))).
In case of an error the response is Encpk(Gi(x)) for an arbitrary x← Di.

3. Client’s output phase: Server sends to Client the last message of the
protocol. Upon receiving this message, the Client produces an output.
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To formally state our main theorem, we first need to define the class of
admissible functions for function-aided outsourcing protocols.

Definition 7 (Admissible functions). A family of functions G = {Gn : Dn →
M}n∈N is called admissible if for all n ∈ N the following holds:

– Gn is polynomial-time computable by a Turing machine M .

– |Gn(x0)| = |Gn(x1)| for all x0, x1 ∈ Dn.

– for all x ∈ Dn it holds that |x| = n.

Let G̃ denote the class of polynomial-size circuits corresponding to G. In
more detail, defining G̃ is motivated for the purpose of later employing the FHE
notion of circuit-privacy. The correspondence here is in the sense that for every
n ∈ N and x ∈ Dn, Gn(x) = G̃n(x). Finally, G̃ is efficiently computable given a
Turing machine for G due to classical results in complexity theory; See [4].

Theorem 1 (Main theorem). Let E = (Gen,Enc,Dec,Eval) be an FHE en-
cryption scheme with a message space M = {Mn}n∈N. Let G = {Gn : Dn →
M}n∈N be a family of functions. Let Π be (E , G)-aided outsourcing protocol for
a function F : A → B. Π is a privacy-preserving outsourcing protocol for F if
the following holds:

1. Π has PPT Client and Server and satisfies completeness with respect to F
as defined in Definition 5.

2. G is family of admissible functions.

3. E is CPA-secure encryption scheme that satisfies circuit-privacy for circuits
in G̃.

For the proof of our main theorem, we define and a new security property of
public-key encryption, called function-chosen-plaintext attack (or Function-CPA
security). This notion aims at capturing a stronger variant of CPA-security where
the adversary is allowed to query not only encryption queries but also decrypt-
function-encrypt queries. Concretely, the security is defined with respect to a
family of functions, where the adversary may submit a ciphertext together with
a function identifier and receive in response an encryption that is produced as fol-
lows: the submitted encryption is first decrypted, then the requested function is
calculated on the plaintext and the result is being encrypted and returned to the
adversary. More formally, we define the Function-CPA security via Function-CPA
experiment as follows:

Given a public-key encryption scheme E = (Gen,Enc,Dec) with a message
space M = {Mn}n∈N, a family of admissible functions G = {Gn : → M}n∈N,
and an adversary A, consider the following experiment:

Function-CPA indistinguishability experiment EXPFcpaA,E,G(λ):

1. Gen(1λ) is run to obtain a key-pair (pk, sk)
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2. Adversary A is given pk as well as oracle access to an encryption oracle
Encpk(·) and a decryption-function-encryption oracle Encpk(G(Decsk(·))).
The queries to the Encpk(G(Decsk(·))) oracle are pairs of the form: a ci-
phertext e and a function index i; the response returned from the oracle is
e′ ← Encpk(Gi(Decsk(e))) (in case of an error, the oracle returns the encryp-
tion of Gi(x) for an arbitrary x← Di).
The adversary outputs a pair of messages x0, x1 ∈M with |x0| = |x1|.

3. A random bit b ∈ {0, 1} is chosen, and then the ciphertext c← Encpk(xb) is
computed and given to A. We call c the challenge ciphertext. A continues
to have access to Encpk(·) and Encpk(G(Decsk(·))).

4. A outputs a bit b′ .
5. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

Definition 8 (Function-CPA). A public-key encryption scheme E = (Gen,Enc,Dec)
with a message space M = {Mn}n∈N is Function-CPA secure with respect to a
family of admissible functions G = {Gn : Dn → M}n∈N if for all PPT adver-
saries A, there exists a negligible function neg(·) such that for all λ ∈ N, the
following holds:

Pr[EXPFcpaA,E,G(λ) = 1] ≤ 1

2
+ neg(λ).

where the probability is taken over the random coins used by A, as well as the
random coins used to generate (pk, sk), choose b, and the encryptions.

Now we are ready to show that any CPA-secure circuit private FHE encryption
scheme is also Function-CPA-secure.

Theorem 2. Let E = (Gen,Enc,Dec,Eval) be a CPA-secure FHE encryption
scheme with a message space M = {Mn}n∈N. Let G = {Gn : Dn → M}n∈N
be family of admissible functions. If E satisfies circuit-privacy for circuits in G̃
then E is Function-CPA secure public-key encryption scheme with respect G.

Proof. Given a family of admissible functions G = {Gn : Dn →M}n∈N. Given a
CPA-secure FHE encryption scheme E = (Gen,Enc,Dec,Eval) with message space
M = {Mn}n∈N and satisfying circuit-privacy for circuits in G̃.

Let A be some PPT adversary for EXPFcpaA,E,G. We construct an adversary

Acpa for EXPcpaAcpa,E that behaves as follows: The adversary Acpa will run inter-
nally A and relay messages between the challenger and A, with the exception
that Encpk(G(Decsk(·))) queries are answered using Eval. That is, Acpa does the
following:

– upon receiving pk from challenger, forward it to A.
– any Encpk(·) type query from A is redirected to the challenger and the re-

sponse is given back to A. Any (e, i) tuple for Encpk(G(Decsk(·))) query is

answered by computing e′ ← Evalpk
(
G̃i, e

)
(if Eval fails encrypt Gi(x) for

an arbitrary x← Di).
– once A generates x0, x1 forward them to the challenger and return the re-

sponse c← Encpk(xb) to A.
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– output the b′ that A outputs.

The adversary Acpa is PPT due to A being a PPT adversary, G̃ an efficiently
computable family of circuits, and the efficiency of Eval.

Note that all the interaction of A is perfectly simulated besides the queries
to Encpk(G(Decsk(·))) that are simulated using Eval. However, circuit privacy of
E guarantees that the response is indistinguishable from decrypting, applying Gi
and encrypting the result. More formally, we define a series of hybrid executions
that gradually move between EXPFcpaA,E,G experiment (where Encpk(G(Decsk(·)))
oracle is used) to EXPcpaAcpa,E experiment (where Eval is used). Let q denote an
upper bound on the number of queries done by A, we define q + 2 hybrids as
follows:

Hybrid HFunction-CPA is defined as the execution of EXPFcpaA,E,G.
Hybrid H0 is defined as Hybrid HFunction-CPA with Encpk(G(Decsk(·))) oracle us-

ing circuit family G̃ instead of function family G. We denote this experiment
as EXPFcpaA,E,G̃.

Hybrid Hi is defined for i ∈ [q]. The hybrid Hi is defined as EXPFcpaAi,E,G̃
, where

Ai’s last i queries are answered using Eval instead of oracle Encpk(G̃(Decsk(·))).

Note that Hybrid Hq is equivalent to the CPA-experiment EXPcpaAcpa,E .
We will show that each consecutive pair of hybrids are indistinguishable

and, since we have only polynomially many hybrids, the indistinguishability will
follow. The only difference between HFunction-CPA and H0 is the use of circuits
G̃ in H0 instead of functions G in HFunction-CPA. By the construction of G̃, each
function in G is replaced with an equivalent circuit (in term of functionality)
and used instead of the function in H0. Therefore,

Pr[EXPFcpaA,E,G(λ) = 1] = Pr[EXPFcpaA,E,G̃(λ) = 1].

In each pair of adjacent hybrids Hi−1 and Hi for i ∈ [q] the difference is
that in Hi the i’th query is done using Eval instead Encpk(G̃(Decsk(·))) oracle.

In this case the indistinguishability follows from E being circuit private for G̃.
Therefore,

|Pr[EXPFcpaAi,E,G̃
(λ) = 1]− Pr[EXPFcpaAi−1,E,G̃

(λ) = 1]| ≤ neg(λ).

Since q is polynomial in λ and Pr[EXPcpaAcpa,E(λ) = 1] = Pr[EXPFcpaAq,E,G̃
(λ) = 1]

we conclude that:

Pr[EXPcpaAcpa,E(λ) = 1] ≤ 1

2
+ neg(λ)

As required.

Proof (Proof of Theorem 1). By Theorem 2 it follows that E is Function-CPA
secure with respect to G. For Theorem 2 to follow it is sufficient to show that
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Π satisfies the privacy condition of Definition 5. Assume by contradiction that
privacy does not hold for Π. That is, there exists efficiently samplable x0, x1 ∈ A
with |x0| = |x1|, a PPT distinguisher D, a malicious server S, and a polynomial
p(·) such that:

Pr[D(V iewS(Clnt(x1), S)(1λ)) = 1]

−Pr[D(V iewS(Clnt(x0), S)(1λ)) = 1] ≥ p(λ) .
(10)

We construct an adversary A that violates the Function-CPA security of E .
That is, A participates in EXPFcpaA,E,G as follows:

1. upon receiving pk output x0, x1.

2. upon receiving cx ← Encpk(xb) behave exactly as S behaves while execut-
ing Π starting from the Client’s input outsourcing phase on (cx, pk) from
Clnt. Every intermediate outgoing message (e, i) to Clnt, is redirected to
Encpk(G(Decsk(·))) oracle and the response is treated as if it was coming
from Clnt.

3. let SA denote the part ofA associated with the execution of Π (i.e., behaving
as the adversary S), and let V iewSA be its view.

4. run the distinguisher D on V iewSA and output whatever D outputs.

Adversary A is PPT due to x0, x1 being efficiently samplable and S and D
being PPT.

We denote by 〈Chal(x0),A〉 the execution of EXPFcpaA,E,G with bit b = 0 being
selected by the challenger (similarly for b = 1). Note that the interaction of A
with Encpk(G(Decsk(·))) oracle is identical to the interaction of S with Clnt in
Step 2 of Π. Moreover, since A behaves exactly as S in Π it holds that for every
b∗ ∈ {0, 1},

Pr[D(V iewS(Clnt(xb∗), S)(1λ)) = 1] = Pr[D(V iewSA(Chal(xb∗),A)) = 1] (11)

From Equations 10 and 11 it follows that:

Pr[D(V iewSA(Chal(x1),A)(1λ)) = 1]

−Pr[D(V iewSA(Chal(x0),A)(1λ)) = 1] ≥ p(λ)
(12)

Therefore, we obtain that:
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Pr[EXPFcpaA,E,G(λ) = 1]

=
1

2
·
(

Pr[EXPFcpaA,E,G(λ) = 1|b = 1] + Pr[EXPFcpaA,E,G(λ) = 1|b = 0]
)

=
1

2
·
(

Pr[D(V iewSA(Chal(x1),A)(1λ)) = 1] + Pr[D(V iewSA(Chal(x0),A)(1λ)) = 0]
)

=
1

2
+

1

2
·
(

Pr[D(V iewSA(Chal(x1),A)(1λ)) = 1]− Pr[D(V iewSA(Chal(x0),A)(1λ)) = 1]
)

≥ 1

2
+

1

2
· p(λ)

Where the last inequality follows from Equation 12. Combining this with
A being PPT we derive a contradiction to E being Function-CPA secure with
respect to G.

5 Prediction and Training on Encrypted Data

In this section we present our secure protocols for prediction and training of tree
based models. The protocols are an adaptation of Algorithms 1, 2 in Section 3
to the interactive setting. We easily derive the security of our protocols using
Theorem 1.

5.1 Decision-Tree based Prediction over Encrypted Data

In this section we show how the tree prediction algorithm (Algorithm 1) can
be executed as a protocol between a client and a server on client’s input data
instance, while maintaining client’s input privacy. First, we present our privacy-
preserving outsourcing protocol for prediction on cleartext trees (Figure 3). Then
we extend our protocol to handle encrypted trees, providing privacy guarantee
for both the data instance and the tree model. We note that our protocol can
be executed on any tree based model such as Random Forest or Boosted Tree
algorithms for instance.

We show that the Protocol P = 〈ClntP,SrvP〉 (Figure 3) is a privacy preserving
outsourcing protocol for Tree Prediction Function (Algorithm 1). More formally,

Theorem 3. If E = (Gen,Enc,Dec,Eval) is a CPA-secure FHE encryption scheme,
then the protocol P = 〈ClntP,SrvP〉 (Figure 3) is single-round privacy-preserving
outsourcing protocol for Tree Prediction Function (Algorithm 1).

Proof. We use Theorem 1 to prove that P = 〈ClntP,SrvP〉 is privacy-preserving
outsourcing protocol. The protocol P = 〈ClntP,SrvP〉 is (E , G)-aided outsourcing
protocol for Tree Prediction Function, with G = ∅. Therefore, G is admissible
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Shared parameters: Let E = (Gen,Enc,Dec,Eval) be FHE encryption scheme and
let φ be the soft-step function from Equation 1 in Section 3. We denote by k and L
the number of features and labels in the associated problem, respectively.
A tree T = (V,E) and security parameter λ. In the tree T each node v ∈ V is a data
structure containing the following fields: feature and θ denoting the feature and the
threshold associated with the node, and leaf value that is a L-dimension vector of
values in R if v is a leaf and ⊥ otherwise. In addition, each node has v.right and
v.left that denote the right and left children of v, respectively.,
Client’s input: a normalized data instance x ∈ [−1, 1]k where k is the number of
features associated with the instance.
Client’s output: a label ` ∈ L.

The protocol P = 〈ClntP, SrvP〉 for prediction over trees proceeds as follows:

1. Client’s input outsourcing phase:
(a) ClntP runs Gen(1λ) to obtain a secret key, public key pair (sk, pk).
(b) ClntP encrypts each entry in x and obtains ciphertext vector cx. Then cx is

sent together with pk to SrvP.
2. Server’s computation phase: the server SrvP recursively computes the sub-

routine Enc Predict(v, cx) in Figure 4 starting from the root node. Let res be the
recursion result, i.e., a L-dimensional vector res returned at the root.

3. Client’s output phase: SrvP sends res to ClntP, who decrypts it and outputs
label← arg max`∈L p res` (where p res is the decryption res).

Fig. 3. The prediction protocol P = 〈ClntP, SrvP〉 for trees. The protocol instructs the
sever to traverse the tree and homomorphically calculate a value for each path in the
tree, and returns to client the weighted sum of the leafs. The predicted label for the
input is the arg max of the weighted sum.

Subroutine Enc Predict(v, cx) where cx is a ciphertext and v is a note in V .

1. if v is not a leaf, compute homomorphically and return

Evalpk
(
φ, cx[v.feature]− v.θ

)
· Enc Predict(v.right, cx)

+Evalpk
(
φ, v.θ − cx[v.feature]

)
· Enc Predict(v.left, cx)

2. otherwise return v.leaf value.

Fig. 4. The subroutine Enc Predict(·, ·) operating recursively on a node and ciphertext
pair. The subroutine is an adjustment of Algorithm 1 to operate over encrypted data.

and any FHE scheme is circuit-private for (the corresponding, empty, family of
circuits) G̃. Completeness of P follows from the correctness of E as 〈ClntP,SrvP〉
computes exactly the same function as described in Algorithm 1.

To conclude the proof it remains to show that ClntP, and SrvP are PPT, which
follows from the construction. More formally, SrvP’s complexity is proportional
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to the number of nodes in the tree, denoted bym. The number of basic operations
(additions and multiplications) performed by SrvP is constant for each internal
node, and O(L) for each leaf. Therefore, the total number of basic operation
is O(m · L), and since each operation takes polynomial-time the SrvP is PPT.
The client ClntP only performs a single Enc and Dec operation, which takes
polynomial-time in the input size.

Maintaining the tree private. For certain applications it is required that the
tree, used for prediction, remains hidden from the server. The protocol in Figure
3 can be easily modified to keep the data instance as well as the tree private.
Concretely, in a setting where privacy of the tree in needed, the tree will be
transmitted encrypted to the server (not necessary by the client), and the same
protocol as in Figure 3 will be executed with the following changes:

– the tree T = (V,E) is encrypted as follows: for each v ∈ V the threshold v.θ
is encrypted and v.feature is first transformed into a 1-hot encoding vector
of dimension k and then each entry in this vector is encrypted. We denote
by ṽ.θ the encrypted threshold associated with node v, and by ṽ.feature the
encrypted 1-hot encoding associated with node v.

– step 1 in Figure 4: let cx be an encryption of input data x as described in
Figure 3. Compute:

Evalpk
(
φ,
( ∑
i∈[k]

cx[i] · ṽ.feature[i]
)
− ṽ.θ

)
We note that the proof of Theorem 3 can be applied to show that the modified

protocol is privacy-preserving outsourcing protocol for Tree Prediction Function
(Algorithm 1 in Section 3). Moreover, the modified protocol requires the server
to compute only k additional multiplications and additions per node, and the
overall multiplicative depth required for the tree grows only by 1.

5.2 Decision-Tree Training over Encrypted Data

In this section we present our privacy-preserving outsourcing protocol for train-
ing trees (and Random Forests). Our protocol is a careful adaptation of Algo-
rithm 2 to the client-server setting in a way that the computational burden is
almost fully on the server, with constant communication complexity and a num-
ber of rounds proportional to tree depth. Concretely, the client is responsible for
computing, at each node, the final step of the impurity measure, which depends
on the number of features, labels, and considered thresholds by the algorithm.

Although the protocol in Figure 5 is presented with respect to Gini impurity
measure, it can be instantiated with other standard impurity measures, such as
entropy.

Now we are ready to show that Protocol T = 〈ClntT,SrvT〉 is a privacy
preserving outsourcing protocol for Tree Training Function (Algorithm 2, Sec-
tion 3). More formally, denoting by ˜Gini the class of polynomial-size circuits
corresponding to the Gini function in in Figure 2,
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Shared parameters: Let E = (Gen,Enc,Dec,Eval) be a FHE encryption scheme and
let φ be the soft-step function from Equation 1 in Section 3. We denote by k and L
the number of features and labels in the associated problem, respectively. We denote
by S the set of considered thresholds. We use the notation and variable names from
Algorithm 2, where J·K denotes the encrypted version.
A security parameter λ and maximal depth bound.
Client’s input: a set of n examples X and the corresponding labels Y where each
example x ∈ X is in [−1, 1]k and the corresponding yx ∈ Y is a 1-hot encoding of the
label.
Client’s output: tree T = (V,E), where each node v ∈ V is a data structure
containing the following fields: feature ∈ [k] and θ ∈ S denoting the feature and the
threshold associated with the node, and leaf value that is a L-dimension vector of
values in R if v is a leaf. In addition, each note has v.right and v.left that denote
the right and left children of v, respectively.
The protocol T = 〈ClntT,SrvT〉 for training over trees proceeds as follows:

1. Input outsourcing phase:
(a) ClntT runs Gen(1λ) to obtain a secret key, public key pair (sk, pk).
(b) ClntT encrypts each x ∈ X and the corresponding yx ∈ Y (i.e., each entry in x

and y). ClntT obtains a set of ciphertexts CTXT = {cx, cyx}x∈X ,yx∈Y where
each ciphertext cx is an encryption of example x and cyx is an encryption
of x’s label yx. Then CTXT is sent together with pk to SrvT.

2. Computation phase: We denote by Wv a set of weights {JwxK}x∈X associated
with each node v, where each JwxK ∈Wroot is initialized to Encpk(1). In addition,
we initialize a variable d to 0, this variable represents the currently constructed
tree depth.
For each depth d ≤ maximal depth and for each node v to be constructed at
depth d, the server SrvT computes the sub-protocol Enc Train(CTXT,Wv, d) in
Figure 6. The set of weights Wv for node v is calculated at creation of v’s parent
node and contains Jwright

x K if v is the right child and Jwleft
x K otherwise. Once v is

created, v’s parent node is updated to contain a pointer to v, in the appropriate
right or left field.

3. Output phase: SrvT sends to ClntT the trained tree JTK, where each node con-
sists of Ji∗K and JθK associated with the node. ClntT decrypts JTK and outputs
the cleartext tree.

Fig. 5. The training protocol T = 〈ClntT, SrvT〉 for constructing a single tree. The
protocol can be executed in parallel to train a Random Forest.

Theorem 4. If E = (Gen,Enc,Dec,Eval) is CPA-secure FHE encryption scheme
that satisfies circuit-privacy for ˜Gini, then the protocol T = 〈ClntT,SrvT〉 (Fig-
ure 5) is a d-round privacy-preserving outsourcing protocol for Tree Training
Function (Algorithm 2), where d is the trained tree depth.

Proof. Let E = (Gen,Enc,Dec,Eval) be a CPA-secure FHE encryption scheme
that satisfies circuit-privacy for ˜Gini. The protocol T = 〈ClntT,SrvT〉 is an
(E ,Gini)-aided outsourcing protocol for Tree Training Function, for Gini defined
in 2. We show that it satisfies the requirements of Theorem 1.
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Sub-protocol Enc Train(CTXT,W, d) where CTXT is a set of ciphertexts containing
encrypted examples and labels, W is a set of encrypted weights {JwxK}x∈X for the
node to be constructed, and d is the depth of the constructed node. We use the
notation and variable names from Algorithm 2, where J·K denotes the encrypted
version.
For the currently constructed node v at depth d, the sub-protocol proceeds as follows:

1. if d reached maximal depth, SrvT computes homomorphically v.leaf value =∑
x∈XJwxK · cyx .

2. otherwise, SrvT proceed as follows:
(a) for each threshold θ ∈ S and each feature i ∈ [k] homomorphically compute

and send to ClntT the following L-dimension vectors of ciphertexts:

Jright[i, θ]K←
∑
x∈X

JwxK · Evalpk
(
φ, cx[i]− θ

)
· cyx

Jleft[i, θ]K←
∑
x∈X

JwxK · Evalpk
(
φ, θ − cx[i]

)
· cyx

(b) ClntT decrypts Jright[i, θ]K and Jleft[i, θ]K for each threshold θ ∈ S and each
feature i ∈ [k] and computes the Gini function in Figure 2. Let i∗ be the 1-
hot encoding representation of the selected feature and let θ∗ be the selected
threshold.

(c) ClntT encrypts i∗ and θ∗ and sends the ciphertexts to SrvT (if any error
occurs during decrypt or during calculation then it encrypts Gini(x) for an
arbitrary x of the appropriate length). Let Ji∗K be the encryption of i∗, i.e.,
a k-dimensional vector of ciphertexts, and let Jθ∗K be the encryption of θ∗.

(d) SrvT sets v.feature = Ji∗K and v.θ = Jθ∗K and for each x ∈ X computes:

Jwright
x K← JwxK · Evalpk

(
φ,
( ∑
j∈[k]

cx[j] · Ji∗K[j]
)
− Jθ∗K

)
Jwleft

x K← JwxK · Evalpk
(
φ, Jθ∗K−

( ∑
j∈[k]

cx[j] · Ji∗K[j]
))

Fig. 6. The sub-protocol Enc Train(·, ·, ·) operating on a set of ciphertexts of examples
and corresponding labels, set of weights, and the current treated depth. The subroutine
is an adaptation of Algorithm 2 to a protocol that operates over encrypted data.
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– ClntT,SrvT are PPT:
• SrvT’s complexity: In each node for each potential threshold (we have
|S| potential thresholds), and feature (k features), the SrvT performs L
homomorphic multiplication per example and n homomorphic additions,
where n is the number of examples. Another k homomorphic multipli-
cations and additions are performed after receiving a response from the
ClntT. Therefore SrvT performs O(|S| · k ·L ·n) homomorphic operations
per node, and has O(m · |S| · k · L · n) · poly(λ) total complexity (where
poly(λ) accounts for the complexity of each homomorphic operation).

• ClntT’s complexity: for each node, ClntT performs k · |S| operations of
Dec and Enc and computes Gini on cleartext. The total complexity of the
client is O(m ·k · |S|) ·poly(λ) (where poly(λ) accounts for the complexity
of each encryption and decryption operation). Note that the complexity
is independent of the number of examples n in the input dataset.

– Completeness: follows from the correctness of E as 〈ClntT,SrvT〉 computes
exactly the same function as described in Algorithm 2.

– Gini is a family of admissible function: each Gn in Gini has the same output
length for all inputs, i.e., a k-dimensional vector i∗ and a value θ∗ ∈ S.
Moreover, the calculation in Gini consists only of (plaintext) addition, mul-
tiplication and division, which is polynomial-time computable.

6 Experimental Results

We empirically evaluated our decision trees algorithms and protocols for both
accuracy and run-time performance. In Section 6.1 we report the accuracy of our
decision tree algorithms that employ a soft-step function (presented in Section 3),
in comparison to the accuracy of standard decision trees. In Section 6.2 we
report the concrete run-time performance of our privacy-preserving training and
prediction protocols (presented in Section 5).

Our accuracy and run-time performance evaluation is done with respect to
a single decision tree, and can naturally be extended to multiple trees (as in
random forests) where trees are trained/evaluated in parallel, each on a separate
CPU core. Random forests are commonly used to achieve accuracy improvement.

Our decision trees algorithms use in each node a soft-step function (instead of
the hard threshold). The soft-step function is realized by a degree 15 polynomial:

φ(x) =− 0.01404 · x15 + 0.24219 · x13 − 1.69826314 · x11 + 6.21807861 · x9

− 12.6979 · x7 + 14.32256 · x5 − 8.35912664 · x3 + 2.49621375 · x+ 0.5

To construct this polynomial, we first selected the polynomial that best ap-
proximates the step function as specified in Equation (2); we use in this equa-
tion a weighting function w : [−2, 2] → [0, 1] defined to be zero in the interval
[−0.2, 0.2] and a constant positive value elsewhere. Next, the resulting poly-
nomial is squashed and moved so that its image is in the appropriate range:
φ([−2, 2]) = [0, 1]. For the training algorithm and the corresponding training
protocol we use thresholds on a 0.05 grid in the [−1, 1] interval.
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The datasets on which we perform our empirical analysis, for both accuracy
and run-time estimation, are taken from the standard UCI repository datasets
[14]; See Table 2. These datasets range in size from very small (iris with 4 fea-
tures and 150 examples) to the moderate size common in real-world applications
(forest cover with 54 features and over half a million examples).

data set name # examples # features # labels

1 iris 150 4 3
2 wine 178 13 3
3 breast cancer 569 30 2
4 digits 1203 64 10
5 forest cover 581012 54 7

Table 2. UCI Datasets [14].

6.1 Evaluating Accuracy of our Decision-Tree Algorithms

We evaluate the accuracy of our decision trees algorithms that use the soft-
step function (aka, Algorithms 1 and 2) by comparing their predictive power to
standard trees, on the benchmark datasets (Table 2).

Accuracy was measured using a 3-fold cross-validation procedure. Each dataset
was randomly partitioned into three equal-size parts. Each of the three parts
serves as a test-set for a classifier trained on the remaining two. The overall ac-
curacy is calculated as the percentage of correct classification on test examples
(each example in the data is taken exactly once, so the accuracy reported is
simply the percentage of examples that were correctly classified).

Our experiments consisted of executing training to produce both soft and
standard trees, and executing prediction when using both soft and standard
trees as the model. We compared all four possible combinations of the former:

– standard-standard: both training and prediction are done using a standard
decision tree. (This is done using the python scikit-learn DecisionTreeClas-
sifier object).

– standard-soft: training is conducted in the standard way, prediction uses
soft-step function using Algorithm 1. This option simulates a scenario where
a standard tree model is used on encrypted data without re-training.

– soft-standard: training using Algorithm 2, but once the tree structure is
obtained, for prediction we first transform the soft tree to a standard tree
(by replacing each soft-step function by its hard threshold counterpart), and
then execute the prediction on the resulting standard tree. This simulates the
situation where training must be done on encrypted data, but the resulting
model is not kept secret, and henceforth may be used in the clear, and so
with standard hard thresholds.

– soft-soft: both training and prediction are done with our soft tree method.
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The results (Figure 7) show an overall comparable accuracy when comparing
all four training-testing alternatives in all four datasets tested, and for trees of
depth up to 5. Depth 0 trees are taken to be the majority-class baseline (i.e.,
a prediction of the majority class regardless of the input data, which is the
accuracy that is obtained without training a classifier, but with access to the
proportion of examples having each label ` ∈ [L]). Our results indicate that our
soft tree algorithm (Algorithm 1) is a valid replacement for standard decision
trees in terms of classification accuracy. This remains true with any combination
of training and prediction with standard and soft tree variants.

Fig. 7. Accuracy on UCI datasets of approximated vs. standard decision trees (regular
in legend).

6.2 Evaluating Running-Time on Encrypted Data

Both our training and prediction protocols were implemented on top of Mi-
crosoft SEAL [33] using CKKS homomorphic encryption scheme [11] that sup-
ports arithmetic over encrypted floating-point real numbers. SEAL supports
batching (also called, packing) a vector of messages into each ciphertexts with
support for (homomorphic) coordinate-wise operations on the packed messages.
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The number of messages that can be packed in each ciphertext is denoted by
slots; the value of slots depends on the parameters used to initialize the scheme.

The chosen SEAL parameters for the experiments were the following: security
level of 80 bits, irreducible polynomial degree poly modulus degree of 8192 (im-
plies number of slots in a single ciphertext 4096), and total number of bits of
primes is coeff modulus = 340. The coeff modulus were calculated using lwe-
estimator [1,2,3]. The corresponding ciphertext size is 0.56MB. Our protocols
were executed using soft-step function of degree 15 and tree depth 4.

Tree training experimental results. We executed the training protocol described
in Figure 5 on an AWS x1.16xlarge as the server. Our implementation construct
the tree in a BFS manner.

The input is encrypted using batching to pack many examples and their
corresponding labels into a small number of ciphertext. Specifically, for an input
of n labeled examples, each of dimension k (its number of features) and with
L possible label values, we proceed as follows. First, for each feature, we batch
the values associated with this feature in the input examples. Next, for each
input example we represent the corresponding label as a 1-hot encoding. Then,
for each index in L, we batch the values associated with this index in the labels
encoding. This allows the total amount of ciphertexts outsourced to the server
to be n

slots × k for the input examples and n
slots × L for the corresponding labels.

The implementation uses in memory storage to store the soft-step function
results, for each feature, for each threshold on the grid, and for each label in-
dex. Our storage based implementation approach required the use of x1.16xlarge
machine, that includes 976 GiB of RAM.

The input examples that were used for training were a random sub-sampling
of the corresponding UCI Datasets that were also used to test accuracy (see
Table 2). The timing results are given in Table 3.

dataset training # # Server time; training (minutes)
name examples features labels storage preparation tree construction total time

iris 100 4 3 4 15 19
wine 119 13 3 13 46 59
cancer 381 30 2 27 80 107
digits 1,203 64 10 77 589 665
cover 10,000 54 7 163 1058 1220

Table 3. Training depth 4 trees with 15-degree polynomial approximation. The servers
run-time results for each dataset are divided as following: (1) storage preparation:
the time it took to compute on the encrypted input examples the soft-step function;
(2) tree construction: the time it took the server to construct the decision tree; (3)
total time: servers total training time.

Tree prediction experimental results. We executed the tree prediction protocol
(Figure 3) on a single core of a PC with an Intel Core i7-4790 CPU and 16GB
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of memory. The prediction was on an encrypted unlabeled input example and
cleartext decision tree. Since prediction consists of a single full-traversal of the
tree, and each node considers a single entry in the input, the server’s complexity
is independent of the number of features in the input example. Hence, we used
randomly generated examples and trees for the prediction timing experiment.
The resulting prediction time over an encrypted sample was 2.3 seconds.

7 Conclusions

In this work, first we identify a wide family of outsourcing protocols for which
we can guarantee privacy against malicious servers via a simple mechanism de-
scribed in Theorem 1. Second, we design protocols for outsourcing decision tree
based prediction and training, where the client’s complexity is independent of
the tree size and the training dataset size respectively, and where privacy holds
against malicious servers. We implemented our protocols and performed exten-
sive experiments on standard UCI datasets encrypted with fully homomorphic
encryption, demonstrating high accuracy, fast prediction, and feasible training.

We leave as open problem the necessity of circuit-privacy for our mechanism.
The circuit-privacy requirement seems to be an artifact of our choice to prove
Theorem 1 using a generic reduction from Function-CPA to standard CPA secu-
rity. An alternative approach would be to directly prove Function-CPA security
for a concrete FHE scheme; this might eliminate the need for circuit-privacy.
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