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Abstract. Trapdoor DDH groups are an appealing cryptographic prim-
itive where DDH instances are hard to solve unless provided with addi-
tional information (i.e., a trapdoor). In this paper, we introduce a new
trapdoor DDH group construction using pairings and isogenies of super-
singular elliptic curves. The construction solves all shortcomings of pre-
vious constructions as identified by Seurin (RSA 2013). We also present
partial attacks on a previous construction due to Dent—Galbraith, and
we provide a formal security definition of the related notion of “trapdoor
pairings”.
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1 Introduction

The hardness of computing discrete logarithms and related problems (including
the computational and decisional Diffie-Hellman problems in various groups)
has supported the security of numerous cryptographic protocols for more than
40 years. While the decisional Diffie-Hellman (DDH) problem can be solved by
solving a discrete logarithm problem, the converse is not known to be true. There
are instances of groups equipped with bilinear pairings, where the discrete loga-
rithm problem is believed to be hard but the decisional Diffie-Hellman problem
can be solved efficiently.

Trapdoor DDH groups are a cryptographic primitive introduced by Dent—
Galbraith in 2006 [I2]. Formally, a trapdoor DDH group involves two descrip-
tions of a single group. With either description of the group, the usual group
operations, including inversion, can be computed efficiently, and solving the dis-
crete logarithm problem and computational Diffie-Hellman problem must be
hard. Crucially, the decisional Diffie-Hellman problem must also be hard to
solve when provided only with the first description of the group, and easy with
the second description. The second description can then be used as a trapdoor
in a cryptographic protocol, conferring to its owner the power to solve DDH
instances.

To the best of our knowledge, there are only two constructions of trapdoor
DDH groups in the literature. Dent—Galbraith [I2] use supersingular elliptic



curves with equations y? = 2% + x defined over RSA rings Zy. Another con-
struction by Dent—Galbraith was broken in [24]. Seurin [31I] uses the group of
quadratic residues modulo N? where again N is an RSA modulus.

Two more constructions based on the RSA and factoring assumptions are
provided by Seurin [31]], but these are static trapdoor DDH group constructions,
where the trapdoor can only solve DDH challenges involving a fixed pair of group
elements g, g”.

Trapdoor DDH groups have been used by Dent—-Galbraith to build an iden-
tification scheme [I2], and by Prabhakaran-Xue to build statistically hiding
sets [28]. Seurin further constructs convertible undeniable signature schemes
with delegatable verification from static trapdoor DDH groups [31]. In his pa-
per, Seurin identifies several features that existing constructions (including his)
are lacking, and which could be key to enable “powerful applications of trapdoor
DDH groups” [31], Section 1.4].

Our contributions. We provide a new construction of trapdoor DDH groups
which has all the features identified by Seurin. Our construction uses a random
supersingular curve with a large prime as the group order, and an isogeny be-
tween this curve and a curve with a known distortion map as a trapdoor. Security
relies on the hardness of solving the Decisional Diffie-Hellman problem on a ran-
dom supersingular elliptic curve, and the hardness of solving the Computational
Diffie-Hellman problem when the trapdoor is known. Interestingly, hardness of
DDH implies both hardness of the discrete logarithm problem on the curve and
hardness of computing an isogeny between a random supersingular curve and a
“special” one, with a known distortion mapEI Our construction solves all open
problems of Seurin [31I]: the group has public and prime order, hashing onto
the group is efficient, and the trapdoor DDH solver always outputs the correct
result.

We also provide attacks on the parameters suggested by Dent—Galbraith in
their remaining construction, when used in specific applications. We explain how
to increase the parameters or modify the scheme to thwart the attack. While
these counter-measures defeat both our attacks and previous attacks, we argue
that choosing secure parameters for this construction remains a delicate task.

As an additional contribution, we formally define a notion of trapdoor pair-
ings which was only implicit in the work of Dent—Galbraith. A trapdoor pairing
construction immediately leads to a trapdoor DDH construction, and our new
trapdoor DDH groups are in fact trapdoor pairings. However by using trap-
door pairings we are able to improve the efficiency of an identification protocol
provided in [I2] as an application, while relying on a seemingly weaker compu-
tational assumption.

Other constructions based on pairings and isogenies. Pairings and isogeny prob-
lems have both considerable applications in cryptography, and since they are

3 We stress that DDH is easy for a supersingular curve with a known distortion map,
but finding a distortion map on a random curve is believed to be a hard prob-
lem [26/13]. See also Section



both built on elliptic curves, combining them to construct further protocols is a
natural idea.

The first work in that direction is due to Koshiba and Takashima [21]. They
provided a framework and security definitions for cryptographic protocols in-
volving pairings and isogenies, called isogenous pairing groups. They also present
key-policy attribute-based encryption schemes based on their framework. We re-
mark that our trapdoor DDH construction does not entirely fit in Koshiba and
Takashima’s framework: in our construction the pairing is “hidden” and hard
to evaluate, whereas in their framework the pairing can be publicly evaluated.
Besides, the framework implicitly uses an asymmetric pairing e : Gy X Gy — G
with G; # Go, while we use a symmetric pairing. Finally, we remark that their
framework seems to be built with the publicly computable Weil pairing in mind
(the Weil pairing is degenerate when G; = Gs), and our construction uses a
modified Weil pairing instead.

More recently, De Feo, Masson, Petit and Sanso have constructed a Verifi-
able Delay Function (VDF) that also uses both pairings and isogenies [I1]. As in
our new trapdoor DDH group, the VDF uses an isogeny from a “special” super-
singular elliptic curve to another “random” curve, and a pairing on the image
curve. This construction however differs crucially from ours as their isogeny is
not secret and it is of extremely large degree (and of course Verifiable Delay
Functions and Trapdoor DDH groups are different primitives). The pairing used
is also the Weil pairing, so it cannot be used to solve DDH instances.

Outline. The remaining of this paper is organized as follows. In Section [2| we
provide preliminary background on elliptic curves, computational assumptions,
trapdoor DDH groups, and previous constructions. In Section [3| we describe our
new trapdoor DDH group and we introduce the definition of trapdoor pair-
ing, which the new construction satisfies. We also analyze the security of our
construction, suggest concrete parameters, and briefly discuss applications. We
describe our attacks on Dent—Galbraith’s first construction in Section |4 and we
conclude the paper in Section

2 Preliminaries

2.1 Elliptic curves

We recall some basic facts about elliptic curves over finite fields. For a detailed
exposition of the mathematics of elliptic curves, see [32]. Let Ep, Es be elliptic
curves defined over a finite field ;. An isogeny between E; and Es is a surjective
morphism which sends the point of infinity of E; to the point of infinity of Fs.
An isogeny induces a group homomorphism from F; to FEs. The degree of the
isogeny is its degree as a finite map of curves. When the isogeny is separable,
then the degree of the isogeny is equal to the cardinality of its kernel. Given an
isogeny ¢ from FE; to E5 of degree d, there exists another isogeny ngS from Ey
to By of degree d called the dual isogeny with the property that ¢ o ¢ = [d],
where [d] denotes multiplication by d on Es. We say that two elliptic curves are



isogenous if there exists an isogeny between them. By a theorem of Tate [33],
two elliptic curves defined over I, are isogenous if and only if they have the same
number of points over Fj,.

An isogeny from an elliptic curve E to itself is called an endomorphism of
FE, and the endomorphisms of an elliptic curve form a ring under addition and
composition. A well-known theorem of Deuring states that the endomorphism
ring of an elliptic curve defined over a finite field is either an order in a quadratic
number field (such curves are called ordinary) or a maximal order in a quater-
nion algebra (such curves are called supersingular). Another way to distinguish
ordinary and supersingular curves is through their number of points over their
field of definition. An elliptic curve defined over F,x (where p is a prime number)
is supersingular if and only if |E(F,«)| = 1 mod p, or equivalently, if and only if
the trace of Frobenius is divisible by p. One can compute the number of points
of an elliptic curve using Schoof’s algorithm and its variants [30]. In particular,
one can test supersingularity in polynomial time.

Let £ be a prime number different from p. Two elliptic curves are ¢-isogenous
if there exists an isogeny of degree ¢ between them (note that this is a symmetric
relation as an isogeny and its dual have the same degree). Thus one can consider
the f-isogeny graph of an isogeny class of elliptic curves, where the vertices
correspond to isomorphism classes of elliptic curves and there is an edge between
two vertices for every isogeny of degree £ between. The f-isogeny graph in the
case of supersingular curves is connected, ¢ + 1-regular and has the Ramanujan
property [27].

Let G, G be groups. In practice G will be a subgroup of an elliptic curve and
G a subgroup of a finite field, so we write G additively and Gy multiplicatively.
A symmetric pairing is a bilinear map e : G x G — G, such that:

L e(P1+ P2, Q) = e(P1,Q)e(P2, Q).
2. €(P7Q1 + QQ) = 6(P7Q1)6(P7 QQ)

The group Gr is called the target group.

Let E be an elliptic curve defined over a finite field of characteristic p and
let m be an integer coprime to p. Let E[m] denote the m-torsion subgroup of E.
When G = E[m] and Gr is the multiplicative group of the mth roots of unity,
then a well-known example of such a pairing is the Weil pairing. However, the
Weil pairing has the property that e(P, P) = 1 for any point P on E. This is
inconvenient as this implies that the Weil pairing is degenerate when restricted to
a cyclic subgroup of the curve. One can remedy this by taking an endomorphism
¢ of E (in this context such a map is called a distortion map) and by instead
considering the modified Weil pairing é(P, Q) = e(P, ¢(Q)) where e denotes the
WEeil pairing. This way, for a general point P and a non-scalar endomorphism,
the point ¢(P) is not in the subgroup generated by P.



2.2 Computational assumptions

We first recall the definitions of the discrete logarithm, the decisional and compu-
tational Diffie-Hellmann problems. In the following, we consider groups written
with multiplicative notation.

Let G be a group. The discrete logarithm problem (DLP) is the following:
Given g,h € G, find x (if one exists) such that ¢g* = h. In the computational
Diffie-Hellmann problem (CDH) one is given a tuple (g, g% ¢°) € G* and has to
compute ¢?. In the decisional Diffie-Hellmann problem the input is a quadruple
(9,9% 9" z) € G* and one has to decide whether z = g?°. We call a tuple of the
form (g, g%, g°,¢?") a DDH tuple.

We now define corresponding hardness assumptions. We shorten determin-
istic polynomial time to DPT and probabilistic polynomial time to PPT. We
say that a function f(\) is negligible, and write f(\) = 0, if for any positive
polynomial p(A) there exists an integer N > 0 such that for all A > N we have
f) < ﬁ. We denote the order of g € G by |g].

Definition 1 Let Gen be an algorithm that takes as input a security parameter
1* and returns (G,n, g), where G is a group of order n, and g € G.

— The DLP assumption holds with respect to Gen if for all PPT algorithms A,
we have that

Pr[(G,n,g) < Gen(1*);h + (g); 2 + A(G,n,g,h) : h=g*| = 0.

— The CDH assumption holds with respect to Gen if for all PPT algorithms A,
we have that

Pr [(G,n,9) + Gen(1*);a,b < Zjy; 2 < A(G,n,9,9% ¢°) : 2 = g*°] ~ 0.

— The DDH assumption holds with respect to Gen if for all PPT algorithms A,
we have that

Pr

(G,n,g) < Gen(1Y);a,b + Zjg 5 20 = g™ 21 < (g); N
b ich=ch*| — ~ 0.
ch < {0,1};ch” «+ A(G,n, 9,9 9", zch) 2

We also define computational problems related to isogenies between elliptic
curves.

Definition 2 Let Ey and Es be two uniformly random supersingular elliptic
curves defined over a finite field F,. Let £ be a prime number and d be be a

positive integer. The isogeny problem is to compute an isogeny ¢ between FE;
and Es of degree £°.

Remark 1. As usually £¢ is large, one also asks for an efficient representation of
the isogeny, i.e., as a composition of low degree isogenies (and not as a pair of
rational functions).



Definition 3 Let E be an uniformly random supersingular elliptic curve de-
fined over a finite field Fy. The endomorphism ring problem asks for a set of
endomorphisms of E which generate the endomorphism ring as an abelian group.

We briefly discuss these computational problems in the context of supersin-
gular elliptic curves.

Discrete logarithm problem. Menezes-Okamoto-Vanstone [23] proposed the fol-
lowing method (referred to as MOV reduction) for reducing the discrete log-
arithm problem on elliptic curves to the discrete logarithm problem on finite
fields. Let E be an elliptic curve defined over a finite field F, and let P be a
point of order n. Let @ be a point from the subgroup generated by P. In order
to find x such that @ = P the idea is to find the smallest integer k (called
the embedding degree) for which E[n] C E(F, ) and use the Weil pairing on E
to reduce the elliptic curve discrete logarithm instance to a discrete logarithm
instance on Fx. For general elliptic curves, this reduction does not run in poly-
nomial time as k may be too large. However, for supersingular curves it can be
proven that k& < 6 and the reduction does run in polynomial time [23]. This
means that for supersingular curves there exist subexponential algorithms for
solving the discrete logarithm problem.

Isogeny and endomorphism ring computation problems. The only known algo-
rithms for the isogeny problem run in exponential time, even with the use of
a quantum computer. The running time of the best known algorithm is O(d%)
(see [14]) where d is the degree of the desired isogeny. The computational hard-
ness of this problem has been exploited in various protocols [TOT6TII93]. The
complexity of the problem does not change if one of the two curves is fixed.

The endomorphism computation problem is closely related to the isogeny
problem, as shown in [26/13]. Computing distortion maps (non-scalar endomor-
phisms) seems to be as hard as the endomorphism ring problem as a small
number of endomorphisms will in general generate the full endomorphism ring,
unless they satisfy some exceptional conditions. More precisely, one can use a
variant of Schoof’s point counting algorithm as in Kohel [20, Theorem 81] to
compute the Gram matrix associated to a set of maps, and deduce an abstract
representation of the endomorphism ring as a Z-basis of elements of B, o, (the
quaternion algebra ramified at p and at infinity).

While the endomorphism ring computation problem is believed to be hard
for random curves, the problem is actually easy for some “special” curves such
as the curve y> = 23 + z, or more generally any curve defined over F, with
a small degree non-scalar endomorphism. We note that in [I7], an algorithm
to produce distortion maps of elliptic curves is given. However, it uses the CM
method, which is efficient only for small discriminants. The supersingular curves
constructed this way are therefore exactly the “special” curves above. Note that
by taking a random isogeny walk we have a negligible probability that the final
curve is a special one.



Decisional Diffie-Hellmann problem. On special curves, and more generally
when we know a distortion map for a curve, we can build a pairing for which
e(P,P) # 1. In such cases we can solve the DDH problem on the curve using
the observation that A = aP, B = bP, Z = abP for some a,b if and only if
e(A,B) =e(Z,P).

It is somewhat folklore belief that the Decisional Diffie-Hellman problem is
easy for all supersingular curves (see e.g. [34, Theorem 6]), however we stress
that this is only known to hold when provided with a distortion map for the
curve. Without this distortion map, the Weil pairing is useless to solve the DDH
problem on a curve since e(P,zP) = 1 for any x, and DDH remains a plausible
hard problem. As discussed above, computing a distortion map for a uniformly
random curve is also believed to be hard.

Computational Diffie-Hellman Problem. While a pairing and distortion maps
together can help to solve the Decisional Diffie-Hellman problem on a curve, the
Computational Diffie-Hellman problem remains a plausible hard problem in this
context. When DDH is easy, the assumption that CDH is hard has been called
the gap Diffie-Hellman assumption in the cryptography literature [IJ.

2.3 Trapdoor DDH groups

Trapdoor DDH groups were first introduced by Dent—Galbraith [I2]. Intuitively,
trapdoor DDH groups are a cryptographic construction in which knowledge
of the trapdoor gives its owner the ability to solve DDH instances which are
otherwise intractable. Formal definitions have appeared in Dent—Galbraith [12],
Seurin [31] and Prabhakaran—Xue [29], with different security requirements in
all papers. Here we recall the definition provided in [31]. We denote by DDHg
the set of DDH tuples of a group G.

Definition 4 A trapdoor DDH group is a pair of algorithms (Gen, Solve) with
the following properties. The trapdoor DDH group generator algorithm Gen is a
PPT algorithm which takes as input a security parameter 1* and outputs a tuple
(G, P,7) where G is a group, P € G is a group element of order 22| and T is
a trapdoor, such that:

(i) Hardness of DDH without the trapdoor: the DDH problem is hard for the
group generator Gen’ which outputs only (G, P).
(ii) Hardness of CDH with the trapdoor: the CDH problem is hard for Gen.

Solve is a DPT algorithm which takes as input (G, P, ) and a tuple (X,Y,Z,T) €
G*, either accepts (outputs 1) or rejects (outputs 0), and satisfies the following:

(iii) Completeness: for all (G, P,T) possibly output by Gen, Solve always accepts
if (X,Y, Z,T) € DDHg.



(iv) Soundness: for any PPT adversary A, we have that:

(G, P,7) + Gen(1*); (X,Y, Z) + (P)*; 1+ Solve(G,P,7;X,Y,Z,T)

p :
g T « AG,P; X,Y,Z) A(X,Y,Z,T) ¢ DDHg

~ 0.

We say that the trapdoor DDH group has perfect soundness when Solve al-
ways rejects on input a non-DH tuple (X,Y,Z,T), i.e. the above probability
18 zero.

The definitions of Seurin and Dent—Galbraith are almost identical, except
that the hardness of CDH with the trapdoor is not required explicitly in the def-
inition of Dent—Galbraith. Nevertheless, their constructions satisfy this property.
Prabhakaran—Xue additionally impose a Strong RSA assumption and a Diffie-
Hellman Knowledge of Exponent assumption on the trapdoor DDH group [29].
These extra assumptions seem plausible for the specific construction of Dent—
Galbraith [I2] and needed for their application, but they also seem to restrict
the range of possible constructions. For example, the Strong RSA assumption
does not hold in a group of known order. We note that a group of known order
is among Seurin’s open problems, and in particular the Strong RSA assumption
does not hold for our new construction in Section [3

2.4 Previous constructions

We briefly sketch previous constructions of trapdoor DDH groups. The first one
is the most relevant one for this paper.

Dent-Galbraith’s “hidden pairing” construction [1Z]. Choose p1,ps two large
primes congruent to 3 mod 4, such that there are large primes r; | p; + 1. Let
N := p1ps and let E be an elliptic curve defined by the equation y? = 2% +x over
the ring Z . Note that the curve is supersingular, with a well-known distortion
map ¢ : E = E : (z,y) — (—z,ty) where (> = —1. The number of points of
E over Zy is (p1 + 1)(p2 + 1). Let P be a point of order rir and G be the
group generated by P. The key observation is that a quadruple (P,aP,bP,Z)
in F(Zy) is a valid DDH tuple if and only if reduces to a valid DDH tuple in
E(Fp,) and E(F,,). The DDH trapdoor in this construction is the factorization
of N: given p; and po one can solve the DDH problem using the modified Weil
pairing described in Section since a distortion map on F is known. On the
other hand, it seems that without the factorization of N the DDH problem on
E(Zy) is hard.

Dent-Galbraith’s second construction [I2]. A second construction was proposed
in Dent—Galbraith’s paper, based on Frey’s idea of disguising an elliptic curve
with a Weil descent. However, this construction was subsequently broken in [24].



Seurin’s construction based on composite residuosity [F1)]. Choose two safe primes
p1 and po, namely p; = 2p] + 1 and py = 2pf, + 1 where pi, p} are prime. The
group G is the group of quadratic residues modulo N2, where N = p;p,. The
trapdoor is the factorization of N. The group G is cyclic of order Np/p,. Let g
be a generator of G. Given y € G, the partial discrete logarithm problem asks
for the discrete logarithm of y modulo N (and not modulo Np)p}). As shown by
Paillier [25], one can solve partial discrete logarithms in G given the factorization
of N, hence one can also solve Diffie-Hellman problems. On the other hand, the
security of the construction is based on the hardness of the CDH problem in G
given the factorization of IV, as well as on the DDH and partial CDH problems
in G [31].

Seurin [31] also introduced the definition of a static trapdoor DDH scheme
where the trapdoor can only be used to solve the DDH problems involving a
specific pair of elements (g, g*) € G

Seurin’s static trapdoor DDH construction based on the RSA problem [31|]. Let
p1, P2, N be the same as in the previous construction. Let Jy denote the subgroup
of Z n consisting of those elements whose Jacobi symbol is 1. This is a cyclic group
of order m = (p1 — 1)(p2 —1)/2. Let g be a generator of Jy. Generate a random
x € [0;m — 1]. The trapdoor is (m,1/z mod m), or equivalently, 2 and the
factorization of N. Using the trapdoor one can recognize DDH instances of the
form (g, g%, g¥, g*) where g and g* are fixed beforehand. Indeed, (g, g%, g¥, ¢*) is
a DDH tuple if ond only if (¢%)'/* = ¢g¥. However, without the knowledge of the
trapdoor, this is RSA inversion which seems to be a hard problem.

Seurin’s static trapdoor DDH construction based on signed quadratic residues
Let N = p1po, where p; and p, are safe primes congruent to 3 modulo 4. Let
J& = Jn/{1,—1}. The group Jy is cyclic of order m = (p; — 1)(p2 — 1)/4 and
let g be a generator of Ji;. Let € [0;m — 1]. The trapdoor is ¢ := 2z &+ m
(note that the computation of m is equivalent to factoring N). Then an instance
(9,9%,¢%,9%) is a DDH tuple if and only if (¢¥)! = (¢7)? as squaring in J5 is
injective.

2.5 Seurin’s open problems

In his “open problems” Section [31], Section 1.4], Seurin highlighs some short-
comings of previous trapdoor DDH constructions:

“Two key features of trapdoor DDH groups are perfect soundness (the
property that the algorithm for solving the DDH problem with the trap-
door perfectly distinguishes DH tuples from non-DH tuples), and the pos-
sibility to securely hash into the group [...]. However, none of the two
candidates for TDDH groups (the hidden pairing-based proposal of [12],
and [Seurin’s construction]) fulfills both requirements. We think that pro-
viding a plausible candidate possessing both properties is the key to enable
powerful applications of TDDH groups.



A related open problem is whether there exists a plausible construction of
a trapdoor DDH group with publicly known (ideally prime) order, since
they are usually simpler to use in cryptography.”

In Section [4] we will highlight further issues with Dent—Galbraith’s construction,
namely attacks on the parameters suggested, in the context of some applications.
Interestingly, our new trapdoor DDH group construction will both avoid these
issues and solve all of Seurin’s open problems.

3 New trapdoor DDH groups from pairings and isogenies

In this section, we first describe our new trapdoor DDH construction. We then
provide our new security definition of “trapdoor pairing” satisfied by both our
construction and Dent—-Galbraith’s one. We finally discuss the security of our
construction and we suggest concrete parameters.

3.1 Our construction
As is widely known, a nmon-degenerate symmetric pairing
e:GxG— Gy.
can be used to solve a DDH instance (P,aP,bP,T) € G* by checking whether
e(P,T) =e(aP,bP).
Let us now consider an elliptic curve E and the Weil pairing
e: E[m] x E[m] = w,,

where p,, C IFpk is the group of m-th roots of unity. The Weil pairing is de-
generate, meaning that e(P, P) = 1, and so by itself is it not useful to solve
DDH problems. This has been solved by using a distortion map, that is, an en-
domorphism ¢ : E — E such that ¢(P) ¢ (P). We then define a new pairing
as

e(P,Q) = e(P,9(Q)),

which is used instead of the Weil pairing.

The key observation of our new construction is that the ability to compute a
non-degenerate symmetric pairing relies on the knowledge of a distortion map.
Moreover for a random supersingular elliptic curve obtaining this map is a hard
problem, and so it constitutes a suitable trapdoor for a trapdoor pairing group.

We now provide a more detailed description of the new construction. Let ¢ be
a small prime. Generate a prime p such that ¢ := p? + p+ 1 is also a prime. Use
Broker’s Algorithm [2] to build a special curve Ey with ¢ points over F 2, together
with a distortion map ¢ : Ey — FEy. Note that Broker focuses on constructing the
curve, but his method ensures that the curve has a small degree endomorphism,
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which can then be recomputed by exhaustive search on the isogenies of that
degreeﬁ Let e = 2[log, p]. Choose a random isogeny ¢ : Ey — E of degree ¢¢
(i.e., a random walk of length e in the ¢-isogeny graph, following [4]).

The public group G is given by the curve E and the trapdoor information
T is some representation of the isogeny ¢. There are various ways to represent
this isogeny, see for example [16].

We define a pairing € : E X E — p, C Fps by

e(P,Q) = e((P), o(¢(Q)));

where e is the Weil pairing on FEy. Given the trapdoor information, one can
efficiently evaluate this pairing.

We observe that unlike previous constructions in [I2J3T], ours has the follow-
ing useful features:

— The group order is a prime number.
— The group order can be publicly revealed.
— There is an efficient hashing algorithm into the group.

We note that these are all the properties requested by Seurin (see [3I, Sec-
tion 2.4]).

3.2 Trapdoor pairings

In our new construction, the trapdoor does not only allow to solve DDH in-
stances, but also the ability to evaluate a non-degenerate symmetric pairing. We
now formalize this property with a new definition.

We first identify a computational problem that is harder than DDH and bet-
ter captures the power of being able to compute a pairing. Essentially, given
group elements, a pairing allows a multiplication of their discrete logarithms.
This translates into solving decisional problems which consist of checking a
quadratic equation in the exponent. Note that although the corresponding com-
putational problems remain hard, they are easy if we allow the output to be in
the target group of the pairing. In particular, we consider the following compu-
tational problem.

Definition 5 Let G be a group and P € G, and let e : GXG — G be a pairing.
We call the Target Computational Diffie-Hellman (Target CDH) problem the
problem consisting on, given G, P,aP,bP for uniformly random a,b, computing

9.9 € Gr,

where g # 1 must be output beforeﬂ receiving aP,bP.

4 Alternatively, one could impose the condition p = 3 mod 4, use the curve y? = 2>+,
and work with a subgroup of prime order.

! The reason for asking for g is that, since the pairing will not be available to all parties,
it is not immediate to produce a canonical generator of Gr from the generator of G.
We ask for it in advance so that it does not depend on aP,bP.

11



Note that a symmetric non-degenerate pairing can be used to solve the Target
CDH problem by computing g = e(P, P) and g** = e(aP, bP). This implies that
both Dent—Galbraith’s first construction and our new construction are not only
trapdoor DDH groups, but also trapdoor pairings.

Breaking the Target CDH problem implies breaking the DDH problem, so the
Target CDH problem is at least as hard as the DDH problem, but nevertheless
it is still easy given an efficiently computable pairing.

We now formalize the idea of trapdoor pairings by mimicking the previous
trapdoor DDH definition, but replacing the requirement that DDH should be
solvable with the trapdoor with our harder problem.

Definition 6 A trapdoor Target CDH group is a pair of algorithms (Gen, Solve)
with the following properties. The trapdoor pairing group generator algorithm Gen
is a PPT algorithm which takes as input a security parameter 1* and outputs a
tuple (G, Gy, P,7) where G and Gr are the descriptions of two group, P € G is
a group element of order 22N | and T is a trapdoor information, such that:

(i) Hardness of DDH without the trapdoor: the DDH problem is hard for the
group generator Gen’ which outputs only (G,Gr, P), both in G and Gr.

(i) Hardness of CDH with the trapdoor: the CDH problem is hard for Gen, both
in G and Gr.

Solve is a DPT algorithm which takes as input (G,Gr, P,7) and a tuple
(X,Y) € G2, and outputs (g,u) € G%, and satisfies the following:

(iii) Completeness: for all (G, Gy, P, T) possibly output by Gen, and if X = aP,Y =
bP, Solve always outputs (g,u) € G2 such that u = g*°.
(iv) Soundness: for any PPT adversary A, the we have that

(G,Gr, P,7) + Gen(1*); (aP,bP) + (P)?

) ab
: =~ 0.
(g,u)  Solve(G, Gr, P, 7;aP,bP) urg

Pr

We say that trapdoor Target CDH group has perfect soundness when the
above probability is zero.

An alternative, perhaps more natural definition could require the Target CDH
problem to be hard without the trapdoor, as opposed to the DDH problem in
Definition |5, We chose to require hardness of DDH (implying hardness of Target
CDH) so that trapdoor pairings are naturally trapdoor DDH groups as well.
The only difference between them lies in the power provided by the trapdoor: a
DDH solver in Definition [4} and a stronger Target CDH solver in Definition

3.3 Security of our new construction

We now prove that our new construction is a trapdoor pairing in the above sense
(hence it is also a trapdoor DDH group).

We first recall a random walk result that will be useful in the proof. This is
a particular case of Theorem 1 from [I6].
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Theorem 1 (Random walk theorem) Let p be a prime number, let N, be
the number of vertices in the supersingular isogeny graph, and let jo be a super-
singular invariant in characteristic p. Let j be the final j-invariant reached by a
random walk of degree n = (¢ from jo. Then for every j-invariant j we have

<2\/Ze
(+1)

By taking e > 2(1 + €) log, p, it is easy to see that the right-hand side in the
equation above is smaller than 2/p!™¢, for any € > 0, so the output distribution
of the random walk is close to uniform (the statistical distance is negligible).

.~ 1
PY[J:J}*V

p

Theorem 2 Let p be a large prime chosen as above. Suppose that the DDH
problem in E is hard, and the CDH problem in E is hard even with the trapdoor.
Then the construction above is a secure trapdoor pairing group.

Proof: It is clear from the discussion above that the Target CDH problem can
be solved efficiently when the trapdoor is known, and by assumption the CDH
problem is hard.

Without the trapdoor, solving DDH in G is exactly the DDH problem on
the curve E. While E is not a uniformly random curve, it is the output of a
random walk, which is close to uniformly random so that the two problems are
equivalent, as long as the walk is long enough. [J

We now argue that the two assumptions of Theorem [2| are plausible. First,
the DDH has been widely studied and used in the literature, and is believed to
hold when a symmetric pairing is not available, and as discussed in Section [2.2
the DDH problem is easy for supersingular curves only when a distortion map
is known.

We remark that constructing a curve with a distortion map is easy: one can
choose a special curve, or do a random walk from one of these special curves
as in our trapdoor pairing construction. On the other hand given a randomly
chosen supersingular curve over IF,2, computing a distortion map appears to be
a difficult problem as discussed in Section [2.2]

Conversely, given the endomorphism ring of a curve E, one can also compute
an isogeny between Ey and E (see [26]13]), and any such isogeny can be used as
a trapdoor in our scheme.

While DDH is easy on F with the trapdoor, the CDH problem still appears
to be hard on F, and is a standard assumption in pairing-based cryptography.
Moreover, given the trapdoor the CDH problems on the curves Ey and E are
equivalent, as we can use a trapdoor ¢ : Ey — E to send a CDH instance
(P,aP,bP) in Ey to (p(P),(aP),p(bP)). Note that scalar multiplication com-
mutes with any isogeny, so this is a CDH instance on FE.

3.4 Choice of parameters

Let A be the security parameter. There are two main ways to break the security
of the construction: recovering the trapdoor or solving the discrete logarithm
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problem. The first approach amounts to finding a non-scalar endomorphism on
FE or an isogeny to Ejy. Recall that for supersingular elliptic curves, the best
known algorithm has complexity O(pz) (see [14]).

As for the discrete logarithm problem, one can apply the MOV reduction [23]
to reduce any discrete logarithm problem over either Fy or E to a discrete
logarithm problem over F,s (note that the reduction from E is only available if
the trapdoor is known, but nevertheless we do not want a party that knows the
trapdoor to be able to solve CDH). The best algorithm for computing discrete
logarithms in finite fields of large characteristic is the number field sieve and its
variants [I819], which have complexity L,(1/3). On the other hand, the best
algorithms for solving the discrete logarithm directly in the curve are the generic
ones, with complexity O(ql/ 2). One should therefore choose logp = 2(A3) to
avoid these attacks. In the next section we propose a partial attack on Dent—
Galbraith’s construction and compare our trapdoor pairing scheme to previous
ones.

Dent—Galbraith’s construction. Since the trapdoor is the factorization of N,
which in turn can be obtained from the factorization of rirs, as explained
in Section EL we need to ensure that this is hard. We must therefore choose
log(rima) = (M) to prevent the number field sieve, and since we require
ri < /Di, we need at least N = pipy = 2((r1r2)?). We refer to Section
for a discussion of the case r; = ro and potential further attack developments.

Seurin’s construction. This construction also relies on the factorization of N =
p1p2, S0 we must ensure that log N = 2(A3). Then the DDH trapdoor group is
of order Np}ph ~ N2.

We note that our new construction is comparable to the previous proposals
in terms of efficiency, while satisfying a stronger definition than Seurin’s con-
struction and some desirable properties missing in previous constructions. Also,
choosing parameters is more straightforward than in Dent—Galbraith’s construc-
tion, as the new construction is in a prime-order group, hence we do not need to
account for potential factorization attacks, as those described described in the
next section.

3.5 Applications

We considered two applications of our construction, and more generally of trap-
door pairings. We briefly discuss these applications here and refer to appendix
for details.

First, we build an identification scheme that improves on a previous con-
struction by Dent—Galbraith [12] that was based on trapdoor DDH groups. The
protocol by Dent—Galbraith has to be iterated several times in order to achieve
soundness, while our protocol allows for arbitrarily long challenges. Our im-
proved construction highlights how using a trapdoor pairing in place of a general
trapdoor DDH group leads to a more efficient scheme.
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We also discuss ElGamal voting and similar protocols, and warn against the
use of random supersingular curves in such protocols. Indeed, we show how a
construction similar to ours could then be used as a backdoor to break anonymity
in these contexts.

4 Partial attacks on Dent—Galbraith’s construction

Dent—Galbraith’s hidden pairing construction uses pairings on elliptic curves
defined over RSA rings. As already pointed out in [I5], selecting parameters for
such constructions may be tricky. We now demonstrate this by showing attacks
on the construction when the group order is revealed. Note that Dent—Galbraith
suggest to reveal this information in some applications, for example to allow
delegation of the pairing computation.

4.1 Case r17r2 known and small, r; # ro

We first give a simple attack on the parameters suggested by Dent—Galbraith
(p; ~ 2°'2 and r; ~ 2'60) for their construction.

Let p1,p2, 1,72 as in Dent—Galbraith’s construction, and assume that r1 # 79
(this condition is not explicitly required in their paper, but it is implied by their
later statement that P has order 7173). With r; ~ 2160 the product r17y can be
easily factored with current techniques, so we can assume knowledge of r; and
ro. We can then apply a technique from [I5, Section 4] to factor N. Namely, we
choose a random value x € Zy and assume this is the z-coordinate of a point @
on the curve (this will be true with a probability roughly 1/4). We then apply
x-only addition and doubling formulae to compute the z-coordinate of [r1]Q.
With overwhelming probability this leads to the point at infinity modulo p; but
not modulo ps, hence a factor of N can be recovered as in the elliptic curve
factorization method [22].

To defeat this attack one can choose parameters such that r; and 5 cannot be
computed from their product 172, and make sure other attacks are not feasible.
One condition stated in [12] is that r; < |/p;, so the attack requires to at least
double the size of p; and ps.

An a priori plausible alternative way to defeat the attack is to enforce r| = rs.
In this case E(Zy) is the direct product of two cyclic groups of order p; + 1 and
similarly G is the direct product of two cyclic groups of order r. With this
configuration, multiplying any point in G by r gives the point at infinity modulo
both p; and p,, hence no factor is recovered. We now consider this case more
thoroughly.

4.2 Case r; = ro a known prime

The setting for a known r := r; = 75 was in fact already studied in [I5], and the
best attack presented there has a complexity O(N/4/r). Taking p; and py with
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512 bits and r with 160 bits leads to a cost of 296 for this attack, which seems
impractical today.

However, we now present an alternative attack in this setting, using Cop-
persmith’s techniques for finding small integer roots of bivariate polynomials [5]
and its generalizations by Coron [GU7Ig]. E| In order to factor N, we only need to
find x and y such that

N=(re—1)(ry —1),
i.e., we are looking for roots of the bivariate polynomial
p(x,y) =1—N —rax —ry +rizy.

For the parameters above there is a root (zg,%0) such that |zo| < 2352 and
ol < 272,

We will use the following theorem from [B, Corollary 2].

Theorem 3 (Coppersmith) Let p(z,y) € Z[z,y] be a bivariate irreducible
polynomial of maximum degree § in each variable. Let X,Y be upper bounds
on the desired integer solution (xo,yo) and let W = maxz; j {|pi;| XY7}. If

XY < w2/ 39)

then in time polynomial in (log W,2%) one can find an integer solution (xq, o)
to the equation p(x,y) = 0 such that |xo| < X, |yo| < Y.

An easy calculation shows that we cannot apply Theorem [3| directly here:
indeed our polynomial p has degree 1 in each variable, and we have XY = 2704
and W2/3 &~ N2/3 ~ 2683 However, we can still apply the theorem by guessing
a few bits of both  and y and iterating Coron’s algorithm. Specifically, we set
x = 222" + ¢; and y := 2'2y' + ¢ where 0 < ¢; < 2'2 and we try to find
a solution for each admissible pair (c1,cz). With this approach we now have
bounds X =Y = 2340 on 2’ and g/, and we still have W?2/3 ~ N2/3 a~ 2683 Ag
there are 2'2 choices for each of the ¢;, we only need to run the algorithm from
[7] at most 22 times to find p; and ps.

One way to defeat this attack in practice is to increase the number of guesses
needed; we now estimate the parameters needed to guarantee that this is bigger
than 280, Assume r is a k bit integer and the p; are k + ¢ bit primes, where
k and ¢ are positive integers. Then XY is a 2/ bit integer and the number of
bits of W23 is 4(k + ¢). In order to achieve the desired security we need that
20 — 80 > 3(k +¢) or £ > 2k 4 120. When 7 has k = 160 bits, we need p; with
at least £ + k > 600 bits, hence N should have at least 1200 bits.

5 This attack can be readily extended when 71 # 72, but in that case the attack from
the previous section will be simpler.
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4.3 Potential extensions

In the previous subsections we have merely applied existing results from the
literature to demonstrate that the parameters suggested by Dent—Galbraith are
insecure when the group order is revealed. We expect more elaborate and ded-
icated algorithms to give better results and to require further increases of the
parameters.

In particular, we expect further lattice attacks to exist in the case r1 # 1o
when R := ryry is known but cannot be efficiently factored (the setting originally
proposed by Dent—Galbraith, but with bigger parameters). In this case we have
two equations (with variables x,y,r1,72):

{N = (riz —1)(rey — 1),

R = rre.

One could apply multivariate generalizations of Coppersmith’s method and de-
duce new constraints on the parameters’ sizes; we leave this to further work.

As this section demonstrates, selecting parameters for Dent—Galbraith’s trap-
door DDH group construction is far from trivial. Note that our new construction
does not have this issue as it uses supersingular curves over I, instead of Zy.

5 Conclusion and further work

In this paper, we presented a new trapdoor DDH group construction based on
supersingular elliptic curves and pairings. We also gave partial attacks on a
previous trapdoor DDH group construction, and we provided a formal security
definition for a related but more powerful primitive called “trapdoor pairing”
(which our new construction also satisfies). Our new construction has a number
of interesting properties; in particular it has all the properties identified by Seurin
in his “open problems” Section [31], Section 1.4] as crucial for applications.

Although trapdoor DDH groups were introduced in 2006, the number of
applications of it has been so far quite limited. Seurin [31] identified some lim-
itations of all the previous constructions (included their own), and hoped that
solving these would allow for more meaningful applications. Our new construc-
tion verifies all the properties required by Seurin, yet no obvious application
seems to arise.

The notions of trapdoor DDH groups and trapdoor pairings seem to fit quite
naturally with the idea of a distinguished party, which would use the trapdoor to
perform some special operation that is only allowed to him. This suggests that
trapdoor DDH groups might be useful in constructing schemes where there is
an authority figure. For example, in group signatures, members of the group can
sign messages anonymously on behalf of the group. There is a group manager
that is allowed to trace the signer, but is not able to produce forgeries. In this
setting, a manager with a trapdoor could maybe identify a signer by noticing a
DDH tuple that involves the user’s public key, the message and the signature.
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At the same time, hardness of DDH for the rest of the parties would keep the
signatures anonymous for them. We leave the development of such a scheme to
further work.
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A Identification scheme

By observing that we have not only a trapdoor DDH, but a more general trap-
door pairing construction, we can improve upon the Dent—Galbraith identifi-
cation scheme. Essentially, in their scheme a party has a secret pairing and
identifies itself by showing that it can distinguish if a challenge tuple is a DDH
tuple or not. As the prover can cheat with probability %, this protocol must be
repeated many times to ensure a negligible cheating probability. By relying on
a computational problem instead, we can remove the need for repetition.

— Setup. Let (G,Gr,P,7) < Gen(1*) be a trapdoor pairing group. The
prover’s secret key will be the trapdoor 7, which allows to compute a non-
degenerate pairing

e:GxG— Gr,

as described above. The public key is (G, G, P), where P «+ G.
— Interaction.
o The prover picks r < F,, and sends g = e(P, P)" to the verifier.
e The verifier picks a,b < F, and sends aP, bP to the prover.
e The prover computes u = e(aP,bP)", and sends u to the verifier.
The verifier accepts the proof if and only if u = g?.

Clearly a cheating prover can solve the Target CDH problem. By assumption
this will only happen with negligible probability, so there is no need to repeat
the protocol. We formalize the security in the following theorem.

Theorem 4 The identification scheme above is complete, sound and zero-knowledge
when instantiated in a trapdoor pairing group.

Proof: Completeness is easy to check, as
u = e(aP,bP)" = (e(P,P)")™ = ¢,

For soundness, assume that a cheating prover A can produce accepting
proofs. We build an adversary B to break the Target CDH problem as follows:
upon receiving (G, Gr, P), adversary B passes them to A, who answers with g.
B forwards g to the challenger and receives aP, bP, which are again sent to A,
who answers with u. Because the proof is accepting, we have that u = ¢g*°, so u
is a valid solution for the Target CDH problem.

We argue that the scheme is zero-knowledge, that is, no information about the
trapdoor pairing is leaked. To do so, we describe a simulator that produces, with-
out knowledge of the trapdoor, transcripts indistinguishable from transcripts
from honest executions of the scheme.
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— Simulator. Pick g <+ F,. Choose a,b <+ F,, and set u = g°*. The first
message of the transcript is g, the second is (aQ, bQ@), and the third is w.

Clearly the second message is distributed as in a real execution. In the third
message u is correctly distributed as long as g is correctly distributed, and g is
in both cases a uniformly random element of the target group. (I

B Breaking anonymity in ElGamal voting

We recall the ElGamal encryption schemeﬂ A group G and a generator P are
publicly known. A user’s secret key is sk = x < F,, and the corresponding public
key is pk = @@ = zP. To encrypt a message m € F,, we choose randomness
r < IF, and set

Encyr(m;r) = (rP,mP + rQ).

To decrypt a ciphertext (C,Cs), we compute
Decsk(C’l, CQ) = logP(C'g — .1301)

Note that the discrete logarithm of Cy — (' can be efficiently computed only
if the set of possible messages is small. This is often the case in voting, in which
the set of messages is a small set of candidates, or even just ‘yes’/‘no’.

We observe that an encryption, together with public information, contains a
DDH tuple. Indeed, consider

(P,pk,C1,Co — mP) = (P,xP,rP, zrP).

Hence, if someone can solve the DDH problem, and the set of possible mes-
sages is small enough, it is possible to identify the message by checking whether
(P, pk,Cy,Cy—mP) is a DDH tuple for each possible message m, until a positive
result is found.

This rules out the use of supersingular curves for electronic voting and sim-
ilar purposes, as the party that sets up the group G potentially has access to a
trapdoor that allows to open any vote. This idea extends naturally to other con-
texts. For example, usually zero-knowledge proofs involve using commitments,
and sometimes ElGamal encryption is used as a commitment there. We note
that a DDH or pairing trapdoor would allow to break the hiding property of the
commitment scheme, hence compromising the security of the zero-knowledge
proof and the protocols derived from it.

5 We present the variant known as lifted ElGamal, in which the message is an element
of F, instead of G.
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