
A trip between creation and destruction of

non-commutative public key exchange protocols

Borja Gómez

November 7, 2019

Abstract

Conventional asymmetric key exchange protocols rely on computing el-
ements in commutative groups, where the employed trapdoor-permutation
function is commutative, allowing Alice and Bob to compute the same ele-
ment in G as changing the orders of the variables or elements doesn’t alter
the output. The research found in this paper is focused on the analysis
of key exchange protocols found in non-commutative cryptography, some-
times called group-based cryptography. Variations of these schemes made
by the author are also included. Concretely, four schemes are presented
using matrices over finite fields and permutation groups containing all the
theory to break these schemes along with its pseudo-code and implemen-
tations in Mathematica.

1 Introduction

Non-commutative cryptography arises from the research made by M. R. Mag-
yarik and N. R. Wagner [1] where in 1985 they presented a public key cryp-
tosystem based on the word problem. From there, a series of new cryptographic
schemes where devised [2][3][4][5][9] Some of these methods have been partially
or fully solved in [6][7][8] What is important to know is that non-commutative
cryptographic schemes can be used to encipher/decipher, authenticate and ex-
change keys. However, at some point, they must use material from a commuta-
tive algebraic structure. This is why some people says that commutativity will
always be present. The other relevant reason is that the security of the cryp-
tosystems that use non-commutative protocols has not being studied as much
as in commutative schemes.

1.1 Motivation

Non-commutativity is an interesting property as it is not found in the con-
ventional cryptosystems like RSA, DH, ECC, DSA, Elgamal The author
started his interest on non-commutative Cryptography back in 2016. Using the
Symmetric Group as the platform group the trapdoor function composed the

1

permutations of Alice and Bob with their private values into a third shared per-
mutation that’s equal to both parties. As a consequence of studying research
from other authors more key exchange protocols were developed and analyzed.
The field looks promising as Multivariate Public Key Cryptography, both direc-
tions have not been extensively analyzed like in cryptosystems based on integer
factorization and discrete logarithm problems. Major credit is for the authors
of [10] as the information they provide is what inspired this research.

2 Key Exchange protocols

There are multiple key exchange protocols found in literature. Normally these
protocols are classified by the underlying problem where they are based. Almost
every protocol has a modified version by changing the properties of subgroups
A,B ≤ G. These protocols are based on the following group-theoretic problems:

• (subgroup restricted) conjugacy-search problem

• decomposition problem

• factorization-search problem

These problems can be redefined to their decisional branch. Then instead
of searching for an element that satisfies the desired properties, they decide
whether or not such elements exist. Let’s start by enumerating some of these
protocols that later will be analyzed:

2.1 Protocols based on the conjugacy-search problem

2.1.1 Koo, Lee et al key exchange protocol

The protocol developed by Ko, Lee et al [2] is a good introduction to show
how non-commutative cryptographic protocols work. It is very inspired in the
Diffie-Hellman key exchange. The protocol depends on the conjugacy search
problem as the transformation function is the conjugation in G. Let gx denote
the conjugation of g by x ∈ G, thus gx = x−1 · g · x. Select A,B ≤ G to
commute elementwise, then to build their public keys Alice and Bob select
private elements a ∈ A, b ∈ B.

pubA = ga

pubB = gb

sharedA = (gb)a = a−1(b−1gb)a

sharedB = (ga)b = b−1(a−1ga)b

2

2.2 Protocols based on the decomposition-search

2.2.1 Twisted protocol

The main idea that can be extracted from [4] is that two subgroups A,B of G
are selected both commuting elementwise. Alice chooses a1 ∈ A and b1 ∈ B.
Same does Bob for a2, b2. They compute their public key as follows:

g ∈ G A ≤ G,B ≤ G
pubA = a1gb1

pubB = b2ga2

To compute the shared key the same method as the previous protocol is
utilized. Alice appends to the left a1 and to the right b1 in pubA. Same does
Bob on pubA but with his own private values b2, a2 in this order.

sharedA = a1(b2ga2)b1 = a1b2ga2b1

sharedB = b2(a1gb1)a2 = a1b2ga2b1

it is a slight modification of the common decomposition problem which can
be stated as:

pubA = a1ga2

pubB = b1gb2

sharedA = a1(b1gb2)a2 = a1b1ga2b2

sharedB = b1(a1ga2)b2 = a1b1ga2b2

2.2.1.1 Modified twisted with commutative subgroups

The author found a new variant where A,B ≤ G are selected to not commute
elementwise. It results that this variant is included in [10] pp 45 point 4.2.3.
Then a1a2 = a2a1 and b1b2 = b2b1 must commute. Publish the central element
g and subgroups A,B ≤ G such that ab 6= ba.

pubA = a1gb1

pubB = a2gb2

sharedA = a1(a2gb2)b1 = a1a2gb1b2

sharedB = a2(a1gb1)b2 = a1a2gb1b2

2.2.2 Protocols based on factorization-search

This protocol is very similar to the twisted but with the exception that the
central element g is eliminated. Thus restriction on A,B ≤ G is mantained to

3

commute elementwise. To compute their public keys, Alice selects a1 ∈ A, b1 ∈
B same does Bob with a2, b2..

pubA = a1b1

pubB = a2b2

sharedA = b1(a2b2)a1 = a2a1b1b2

sharedB = a2(a1b1)b2 = a2a1b1b2

2.2.2.1 Using commutative subgroups not commuting elementwise

Select A,B ≤ G but with the condition that they do not commute elementwise.
Let A = CG(a1), B = CG(b1) then the protocol description is stated as:

pubA = a1b1

pubB = a2b2

sharedA = a1(a2b2)b1 = a1a2b1b2

sharedB = a2(a1b1)b2 = a1a2b1b2

2.3 Stickel’s protocol

The idea of the protocol [5] is to exponentiate two generators of two distinct
subgroups of G, then multiply the result. Two generators a ∈ A, b ∈ B are given
such that A,B ≤ G. The goal is that Alice and Bob compute the same element
in G. For that, define na = OrdG(a), nb = OrdG(b) so Alice and Bob choose
private positive integer values a1, b1 and a2, b2 to compute their respective public
keys:

pubA = aa1bb1 a1 < na, b1 < nb

pubB = aa2bb2 a2 < na, b2 < nb

Alice picks up pubB and appends aa1 to the left and bb1 to the right. Bob
does the same but with his private pair a2, b2.

sharedA = aa1(aa2bb2)bb1 = aa1+a2bb1+b2

sharedB = aa2(aa1bb1)bb2 = aa1+a2bb1+b2

Both users obtain the same element as powers of the same element commute.
But since ab 6= ba the attacker cannot obtain such expression by multiplying
pubApubB = aa1bb1aa2bb2 . He must find out one of the two private exponent
tuples utilized in the scheme. However, the implementation details are given in
a different manner as seen in [10] pp 47.

4

2.3.1 Alternative definition

Let w be public. In order to build their public keys, Alice chooses c1 in the
centralizer of the group. Bob does the same with c2.

w ∈ G c1, c2 ∈ CG
pubA = c1a

a1wbb1 a1 < na, b1 < nb

pubB = c2a
a2wbb2 a2 < na, b2 < nb

The shared key is computed in the same way appending to left-right but
in this case with have an extra value that commutes with every element of the
group. Thus both parties end up having:

sharedA = c1a
a1(c2a

a2wbb2)bb1 = c1c2a
a1+a2wbb1+b2

sharedB = c2a
a2(c1a

a1wbb1)bb2 = c1c2a
a1+a2wbb1+b2

2.3.2 Twisted Stickel’s using commutative subgroups not commut-
ing elementwise

This variant is obtained when combining the modified twisted protocol with
commutative subgroups seen in 2.2.1.1 and Stickel’s protocol. Let A =< a >
,B =< b > such that A,B ≤ G and ab 6= ba. Then Alice and Bob choose
private exponents (a1, b1) and (a2, b2) then setup their public keys as:

pubA = aa1gbb1 a1, b1 < OrdG(a)

pubB = aa2gbb2 a2, b2 < OrdG(b)

sharedA = aa1(aa2gbb2)bb1 = aa1+a2gbb1+b2

sharedB = aa2(aa1gbb1)bb2 = aa1+a2gbb1+b2

And the attacker cannot obtain any information as multiplying pubA · pubB
doesn’t give the required expression in sharedA, sharedB since elements of A,B
don’t commute elementwise. Note that this protocol can be converted to the
general approach using subgroups A,B ≤ G that commute elementwise.

3 Cryptanalysis of key exchange protocols

Four distinct key exchange protocols are presented . The first one is a working
protocol based on the factorization-search using matrices over a finite field.
The second presentation is based on the Koo Lee et al on permutation groups
but instead of conjugation using exponentiation. The third one is the Stickel’s

5

protocol using permutation groups where the private exponents of (a1, b1, a2, b2)
can be recovered with a specific technique. The fourth case is a combination of
the twisted protocol and Stickel’s. Real case examples can be found in every
scheme, along with pseudo-code.

3.1 Factorization-search protocol using matrices in GL(n, q)

The following key exchange algorithm was discovered and broken by the author
of this research. It is based on the factorization-search using commutative sub-
groups, found in 2.3.1. Factorization-search depends on ”factoring” an element
into a product of two elements in G.

In this case Alice and Bob work with matrices in GL(n, p) which is the
general linear group over the finite field Fq where q = pn. The goal of Alice
and Bob is to compute the same shared secret using matrices from two distinct
commuting spaces but not commuting elementwise.

Alice chooses matrices A,B ∈ Fn×np where AB 6= BA. She computes the
matrix Q1 = AX −XA,Q2 = BY − Y B which contains linear polynomials in
each term (i, j). This representation is used to extract and build the coefficient
matrix of the system Q1 = 0, Q2 = 0. Computing the transpose of the nullspace
yields nsQ1 = Null(Q1)T , nsQ2 = Null(Q2)T ,∈ Fn2×n

p where both bases send
a vector of size n to a vector of size n2 in Fp, which can be represented as a
n × n matrix that satisfies AX − XA = 0 and inherently AX = XA in the
case of nsQ1, same for nsQ2 with BY −BA = 0. A formal presentation of the
protocol is given below.

Let φ be the map that sends a vector of size n2 to a n× n matrix:

φ : Fn
2×1

p 7→ Fn×np

Alice chooses private matrices A,B ∈ Fn×np . Computes nsQ1, nsQ2 and
sends her public key (AB,nsQ1, nsQ2) to Bob. Bob chooses x, y ∈ Fnp which
are the private values used to construct C,D using nsQ1 and nsQ2 respectively.

nsQ1 = Null(AX −XA)T

nsQ2 = Null(BY − Y B)T

pubA = (AB,nsQ1, nsQ2)

C = φ(nsQ1 · x)

D = φ(nsQ2 · y)

pubB = CD

sharedA = A(CD)B = ACBD

sharedB = C(AB)D = ACBD

Alice and Bob obtain the same expression but the attacker doesn’t as (AB)(CD) =
ABCD and (CD)(AB) = CDAB because BC 6= CB,DA 6= AD. At a first
glance an attacker would put his eye on the input of nsQ1, nsQ2 as it is a vector

6

of size n over Fp thus q = pn possible tuples for selecting the right matrix C or
D. The same construction can be applied in K = R but is results in an infinite
space of commuting matrices with coefficients that are floating numbers, where
in the author’s opinion working in a finite field is a better option for precision
and efficiency.

3.1.1 A complete example

To familiarize and ease the reading process an example is given with matrices
of size 3× 3 over F2. These are matrix elements in GL(3, 2):

Alice chooses her private matrices A,B ∈ F 3×3
p :

A =

 1 0 1
1 1 0
0 1 0

B =

 1 1 1
1 0 1
1 1 0

To build her public key pubA she computes the product AB and the com-

muting spaces by calculating the transpose of the nullspace of Q1 and Q2, which
she calls nsQ1, nsQ2 ∈ F 9×3

2 .

AB =

 0 0 1
0 1 0
1 0 1

nsQ1 =

1 1 0
0 0 1
0 1 0
0 1 1
1 1 0
0 0 1
0 0 1
0 1 0
1 0 0

nsQ2 =

1 0 0
0 1 0
0 1 0
0 1 0
1 0 0
0 0 1
0 1 0
0 0 0
1 0 0

7

Now she sends her public key pubA = (AB,nsQ1, nsQ2) to Bob. Bob selects
two private tuples x, y ∈ F 3

2 and computes C and D by evaluating these vectors
on nsQ1 or nsQ1 which output a 9×1 vector that needs to be stated as a n×n
matrix, this is why the map φ is important.

x = (1, 0, 1), y = (1, 1, 0)

φ(nsQ1 · x) = C =

 1 1 0
1 1 1
1 0 1

φ(nsQ2 · y) = D =

 1 1 1
1 1 0
1 0 1

Bob computes the product CD and sends his public key pubB = (CD) to

Alice.

CD =

 0 0 1
1 0 0
0 1 0

Alice and Bob compute the same shared value:

sharedA = A(CD)B = ACBD =

 0 1 1
0 0 1
1 1 1

sharedB = C(AB)D = ACBD =

 0 1 1
0 0 1
1 1 1

3.1.2 Complete Cryptanalyisis

As said before, the key exchange algorithm that’s being described is completely
broken using an attack based in linear algebra. The attacker can compute an
alternative and distinct pair C ′ 6= C,D′ 6= D where its product is the same as
Bob’s public key thus C ′D = CD. In the end, the attacker succeeds in the key
exchange being able to impersonate Bob. Even using PKI, Bob is not able to
modify the handshake but passively computes pubB = CD thus he can compute
sharedB using Alice’s public key pubA.

To succeed in the impersonation, the attacker knows that CD = φ(nsQ1 ·
x)φ(nsQ2 · y). He writes up the algebraic expression of the product, which
can be generalized for arbitrary parameters since it’s linear. As the output
of multiplying nsQ1 · x gives a n2 vector, every coordinate of C is a n linear
combination of the i-th row of nsQ1 with the coordinate vector x.

8

Ci,j =

n∑
k=1

nsQ1((i−i)j+j,k)xk

Di,j =

n∑
k=1

nsQ2((i−i)j+j,k)yk

Now he computes the product of the algebraic expressions of C,D:

(CD)i,j =

n∑
k=1

Ci,kDk,j

As every element in C or D is a linear combination on nsQ1 or nsQ2 the
attacker obtains a summation of distinct products in CDi,j where every product
is a linear combination itself on one of these nullspaces As a result, every position
in CD combines both unknown tuples x = (x1, · · · , xn), y = (y1, · · · , yn). The
attacker wants to obtain alternative matrices C ′, D′ that satisfy the equivalence
C ′D′ = CD,C ′ 6= C,D′ 6= D. With all the aforementioned information he
knows that any position (CD)i,j may carry all the combinations of products xiyj
thus every arbitrary position is decomposable into n unknown linear factors and
n linear coefficients. The attacker is versed on Linear Algebra, realizing that he
can mount an attack to recover the product xiyjwith n terms of the product
CD. Moreover, take the previous example case. Attacker defines x ∈ F 3

2 with
binary integer values and recover the associated binary integer tuple y ∈ F 3

2 .
Let’s evaluate the whole algebraic procedure that an attacker does to mount
such an attack:

C ′ = φ(nsQ1 · (x1, x2, x3)) =

 x1 + x2 x3 x2
x2 + x3 x1 + x2 x3
x3 x2 x1

D′ = φ(nsQ2) · (y1, y2, y3) =

 y1 y2 y2
y2 y1 y3
y2 0 y1

C ′D′ =

 y1(x1 + x2) + x2y2 + x3y2 y2(x1 + x2) + x3y1 y2(x1 + x2) + x2y1 + x3y3
y2(x1 + x2) + y1(x2 + x3) + x3y2 y1(x1 + x2) + y2(x2 + x3) y3(x1 + x2) + y2(x2 + x3) + x3y1

x1y2 + x2y2 + x3y1 x2y1 + x3y2 x1y1 + x2y3 + x3y2

The attacker setups x′ = (1, 1, 1) where x 6= x′ then the coefficient matrix

A ∈ F 9×3
2 is obtained by substituting x′ in the algebraic expression of C ′D′. As

we are in linear algebra, it’s possible to express the whole attack in a system
involving y′ as the unknown tuple in the LHS, the product matrix CD with
binary integer coefficients as a n2 vector in the RHS and the aforementioned
coefficient matrix A in the LHS multiplying by the left, this is A.y′ = b. Note
that A is a 9 × 3 matrix thus the system is overdetermined as there are more
equations than variables. It has a solution by Rouche-Capelli’s Theorem and
with any CAS software it’s easily solvable.

9

A.y′ = φ−1(CD)

A =

0 1 1
1 0 0
1 0 1
0 0 1
0 0 0
1 0 0
1 1 1
1 1 0
1 1 1

b = φ−1(CD) = {0, 0, 1, 1, 0, 0, 0, 1, 0}

Solving the system gives y′ = (0, 1, 1). Now the attacker knows that this
new pair x = (1, 1, 1)′, y = (0, 1, 1)′ satisfies that C ′D′ = CD obtaining both
matrices C ′D′ using nsQ1, nsQ2 as follows:

C ′ = φ(nsQ1 · x′) =

 0 1 1
0 0 1
1 1 1

D′ = φ(nsQ2 · y′) =

 0 1 1
1 0 1
1 0 0

C ′D′ = CD =

 0 0 1
1 0 0
0 1 0

sharedATTK = C ′(AB)D′ = sharedA = sharedB

The algebraic property where this attack is based can be stated as:

sharedATKK = sharedA = sharedB ⇐⇒ ∃x′, y′ ∈ Fnp :

C ′D′ = CD = φ(nsQ1 · x′) · φ(nsQ2 · y′) ∧ C ′A = AC ′ D′B = BD′

It is not sufficient to find a pair C ′D′ = CD since the shared key requires that
C ′ commutes with A and D′ with B. The attacker could also solve the system
by selecting an arbitrary vector x′ and matrix C ′, where C ′ is invertible thus
D′ = C ′−1(CD), solving for y′ on nsQ2 ·y′ = φ−1(D′). However, sometimes the
values of x′, y′, C ′, D′ exists but BD′ 6= D′B and this cases are frequent when
solving by the inverse method. Thus is better to stick with the system derived
from the algebraic expansion of the product of C ′D′, because it grants a solution
when the overdetermined system can be solved, this is, when the selected x′ by
the attacker makes the system solvable.

10

3.1.3 Conclusion

Creating a protocol that enables Alice and Bob to compute a shared secret is
easily made when you know general Math and Cryptographic theory but crypt-
analysing it is not trivial as there could be multiple ways to break it into smaller
problems that can be solvable, depending on their time-space complexity. In this
case the cryptographic protocol was based on the Factorization-Search where
the elements of the platform group are matrix elements from the general linear
group of dimension n over F2. It’s broken since every aspect of the scheme is
linear resulting thus the public key setup procedure can be reversed and tracked
down into a linear system of equations giving the private values x, y ∈ Fn2 .

3.2 A protocol based in the Discrete Logarithm Problem
using permutations

The author broke an own made scheme based on Diffie-Hellman using elements
of a permutation group. It results that the authors of [9] released a cryptosystem
using the symmetric group as the platform group, which they claim that’s secure
enough.

The protocol defined in this section shares the main characteristics with [9].
However, the scheme in [9] enciphers and the protocol explained below doesn’t,
as it is a key exchange protocol. The key to break both schemes is how an
attacker solves the discrete logarithm in permutation groups.

3.2.1 Permutation groups and Cryptography

The problem with permutation groups is that the number of symbols make com-
putations harder to perform. Moreover, it’s unfeasible, for example, to represent
a cyclic group of the typical Diffie-Hellman KE protocol, where p = 2q + 1, be-
ing p a safe-prime and q a Sophie-Germain prime of at least 1024 bit. The
permutation group P represented by g would be cyclic of q elements and q
symbols. Imagine a permutation element composed of 1 cycle of approximately
21024 elements. Then permutation groups are not useful in the cryptnalatytic
part of the standard Diffie-Hellman definition. However, elements of permuta-
tion groups have very nice conditions when operating with them, for example:
multiplication, exponentiation and conjugation can be decomposed to extract
information. In addition, either we can obtain the permutation representation
of an arbitrary group G or the representation of G as a subgroup of GL(n, Fq),
which can be helpful to build simple examples that may help. Now the ques-
tion is: why are permutation groups used here? Well, the following protocol
satisfies some properties that could make it secure, but it works with permuta-
tion elements that are representable, which leads the attacker to discover some
attacks.

11

3.2.2 Protocol Description

The protocol consist on the Koo Lee et. al. version using permutation elements
of P ≤ Sn, but exponentiation is used instead of conjugation. Then it reduces
to the classic Diffie-Hellman approach using P as a platform group.

3.2.2.1 Building the permutation group P and its generator σ

Before proceeding to construct an example of a permutation group with enough
order using n symbols, those with experience in group-theory can find a more
general definition of σ =< P > in the point 3.3.1 or in Algorithms 1, 2.. The
definition explained here is thought to help the reader to build an efficient
permutation group P whose rate Deg(P)/|P | is optimal.

A permutation group P that has big order but a small quantity of symbols is
the same as having |P | big and Deg(P) small. The reader may be familiarized
with the concept that the order of an element σ ∈ P is the least common
multiple of the length of each cycle contained in it. This is for a permutation
σ ∈ P with k cycles:

OrdP (σ) = lcm(|c1|, · · · , |ck|)

We can exploit this definition to create a permutation generator of P that has
big order but small degree order, this is, the lcm is maximal for a given degree.
Let π(L) denote the number of primes below L, construct σ with π(L) cycles
each of prime length pi. Since prime factors don’t share any factor in common,
this is gcd(pi, pj) = 1 for any pair of prime numbers, thus maximal lcm in the
order formula. Then define the degree and order of σ as follows:

|P | = lcm(p1, · · · , pπ(L)) =

π(L)∏
i=1

pi Deg(P) =

π(L)∑
i=1

pi

Note that the permutation generator σ =< P > is composed of π(L) cycles
of prime length:

σ = c1, · · · , cπ(L), |ci| = pi, 1 ≤ i ≤ π(L)

3.2.2.2 Building public keys:

Alice selects private x < |P |, Bob does the same for y < |P |. Their public key
is calculated under exponentiation as follows:

pubA = σx

pubB = σy

12

3.2.2.3 Computing the shared secret:

As this protocol is based on the classic Diffie-Hellman approach there is no
mystery on how the secret material is computed:

sharedA = sharedB = (σx)y = (σy)x

3.2.3 Cryptanalysis

As said before, using representable permutation groups arise certain problems,
such that DLP turns out to be a solvable problem with the help of the Chinese
Remainder Theorem and some basic concepts of algebraic combinatorics.

3.2.3.1 Discrete logarithms on permutation groups

The author found a deadly point in the protocol description, concretely in the
public key generation part. By examining exponentiation on the permutation
generator σ by the private value x in the following way:

σ = c1, · · · , cπ(L)
σx = cx1 , · · · , cxπ(L)

σx = c
x≡|c1|x1

1 , · · · , c
x≡|cπ(L)|xπ(L)

π(L)

From the last definition of σx we recover a system of residues in distinct prime
fields Fpi where this system is solved using the Chinese Remainder Theorem.

x ≡p1 x1
· · ·
x ≡pπ(L)

xπ(L)

This is the rediscovery of the Pohllig-Hellman method but for permutation
groups, which recovers the private exponent x working on distinct cyclic groups
of prime order, so distinct xi that later come up together via CRT to form x.
As the reader may notice, for every cycle in σ, the private exponent x is reduced
modulo each cycle length thus x ≡ xi (mod pi) as pi is the length of the i-th
cycle on σ.

3.2.3.2 Solving DLP when exponent is coprime to order

When x is selected to be coprime with the order of P as gcd(x, |P |) = 1, the
cycles of σ don’t suffer any modification on their length, as x 6=|ci| 0. This con-
dition is very important to analyze discrete logarithms as it’s trivial to compare
σ with σx to check which displacement has been made between symbols of each
cycles, retrieving every xi and ending up mounting the aforementioned system
of residues on different prime fields.

13

3.2.3.3 Solving DLP when exponent is not coprime to order

When gcd(x, |P |) = d 6= 1 the thing changes a bit, using Lagrange’s theorem we
know that d | |P | so x must be either a single prime found in the factorisation
of |P | or a product of these. The number of cycles of length 1 in σx denote
the number of symbols that have been sent to themselves under exponentiation,
thus this number is the sum of the cycle lengths of cycles sent to the identity.
The number of cycles of length 1, nc1 is calculated as follows:

nc1 =
∑
∀pi∈x

pi

For finding x the attacker only must analyze the 1-cycles. This is trivial
and he finds x just by multiplying the prime length cycles that have been sent
to the identity in σx. The author finds that this case is easier to solve than
the case where the exponent is taken to be coprime with the order, as this case
doesn’t imply running an instance of CRT since obtaining the 1-cycles would
reveal their prime length, being deterministically solved.

3.2.3.4 An implementation case for cryptanalysis

Let’s construct a permutation group P using the limit L = 100, thus π(L) = 25
primes under 100. The degree and order are given as:

Deg(P) =

π(L)∑
i=1

= 1060

|P | =
25∏
i=1

pi = 2305567963945518424753102147331756070

The pseudocode to retrieve such partition of π(L) primes, its order and de-
gree can be expressed as follows:

Input: The parameter limit where primes will be selected
Output: Degree n, Order ord and the integer partition vector λ
Function GetRndPartitionDegree(limit) is

n← 0
ord← 0
nprimes← π(limit)
for i← 1 to nprimes do

λ[i]← NthPrime[i]
n← n+ λ[i]
ord← ord · lambda[i]

end
return (n, ord, λ)

end
Algorithm 1: Generating a random integer partition of prime numbers
under limit

14

Print λ to check that these primes are correct

λ = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97)

15

Let σ be the permutation generator of P , it has approximately

2log2(2305567963945518424753102147331756070) = 2120.79453

possible exponents but it is just composed of 1060 symbols and 25 cycles. Then
σ is easily representable as a cycle permutation using the provided pseudocode
that returns a permutation σ of degree n and cycle type λ:

Input: Degree n and an integer partition λ ` n
Output: Permutation σ of degree n whose cycle type is λ
Function GenRndPerm(λ, n) is

symbols← RandomSample[n]
offset← 1
σ ← ∅
for i← 1 to |λ| do

λi ← λ[i]
cλi ← List[λi]
k ← 1
for j ← offset to p+ offset do

cλi [k] = symbols[j]
end
σ ← σ · cλi
offset← offset+ λi

end
return σ

end
Algorithm 2: Generating random permutation of degree n and cycle type
λ

16

Let’s write the obtained representation of σ.

σ = (1, 2), (3, 4, 5), (6, 7, 8, 9, 10), (11, 12, 13, 14, 15, 16, 17), (18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28),

(29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41), (42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58),

(59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77), (78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,

90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100), (101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114,

115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129), (130, 131, 132, 133, 134, 135, 136,

137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,

159, 160), (161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,

180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197), (198, 199, 200,

201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221,

222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238), (239, 240, 241, 242,

243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263,

264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281), (282, 283,

284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303,

304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322,

323, 324, 325, 326, 327, 328), (329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341,

342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361,

362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381),

(382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401,

402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421,

422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440),

(441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459,

460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478,

479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497

, 498, 499, 500, 501), (502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515,

516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533,

534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551,

552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568),

(569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586,

587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604,

605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622,

623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639), (640,

641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659,

660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678,

679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697,

698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712), (713, 714, 715,

17

716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734,

735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753,

754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772,

773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791),

(792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810,

811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829,

830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848,

849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867,

868, 869, 870, 871, 872, 873, 874), (875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886,

887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905,

906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924,

925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943,

944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962,

963), (964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981,

982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000,

1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015,

1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030,

1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045,

1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060)

The reader can check himself that σ has in fact 1060 symbols and 25 cycles
each of prime length, i.e, the last cycle of σ has 97 symbols (the last prime under
100, thus cycle length 97).

Now we are in the position of working in the cryptanalysis of the key ex-
change protocol as the previous construction of P and σ is completed. Let’s try
to retrieve the private exponent x used by Alice. For that Alice selects x < |P |
in an interval [start, ord] which translated to pseudocode looks like:

Input: Interval start and multiplicative order of the permutation σ
Output: An exponent x that’s coprime with ord
Function GenRndExp(start, ord) is

found← false
x← ord
while not Coprime(x, ord) do

x← Rand(start, ord)
end
return x

end
Algorithm 3: Generating random exponents coprime with OrdG(σ)

18

i.e x = 1285784155774121654618741 = 1879·708892241·965297245219 which
none of those primes are in the prime factorization of |P | thus gcd(x, |P |) = 1.
Then Alice builds her public key via exponentiation as σx = σ1285784155774121654618741

which results in another permutation composed of 25 cycles maintaining their
prime length, as di | x ∧ di 6 | |P |. To retrieve x the trick is for each cycle ci,σ
on σ and ci,σx in σx calculate the distance from the first symbol of c(i,σ) to the
image of that symbol in c(i,σx), this is for two cycles of same length one in σ
and the other in σx the exponent xi is recovered measuring the distance from
symc(i,σ) to the image σx(symc(i,σ)) in the cycle c(i,σ). It is very simple and
the worst case is to iterate on pi symbols as pi is the cycle length of both c(i,σ)
and c(i,σx). Then conclude that the security of this protocol is not bounded by
the possible private exponent candidates, this is by |P | but by the permutation

group’s degree Deg(P) as the worst case would be to iterate on
∑π(L)
i=1 pi sym-

bols. Let c(25,σ) be the 25-th cycle on the generator σ and c(25,σx) be the 25-th
cycle on Alice’s public key permutation σx. We want to retrieve the exponent
x25 that contributes to the system of residues that hides x. First present these
two cycles as following:

c(25,σ) =

(964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980,

981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997,

998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011,

1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024,

1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037,

1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050,

1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060)

c(25,σx)

= (964, 970, 976, 982, 988, 994, 1000, 1006, 1012, 1018, 1024, 1030, 1036, 1042,

1048, 1054, 1060, 969, 975, 981, 987, 993, 999, 1005, 1011, 1017, 1023, 1029, 1035, 1041, 1047,

1053, 1059, 968, 974, 980, 986, 992, 998, 1004, 1010, 1016, 1022, 1028, 1034, 1040, 1046, 1052,

1058, 967, 973, 979, 985, 991, 997, 1003, 1009, 1015, 1021, 1027, 1033, 1039, 1045, 1051, 1057,

966, 972, 978, 984, 990, 996, 1002, 1008, 1014, 1020, 1026, 1032, 1038, 1044, 1050, 1056, 965,

971, 977, 983, 989, 995, 1001, 1007, 1013, 1019, 1025, 1031, 1037, 1043, 1049, 1055)

Take the first symbol in c25,σ, this is, symc(25,σ) = 964. Now calculate
the image of that symbol in σx, this is σx(symc(25,σ)) = σx(964) = 970. The
technique is to calculate how many positions are from 964 to 970 in c(25,σ),
which inherently is 6. Doing it for every cycle in σ, σx retrieves the complete
list of residues xi, starting from x1 to x25 over the prime fields F2 to F97. The

19

following pseudo-code illustrates the technique employed to solve the Discrete
Logarithm Problem in permutation groups:

Input: Public generator σ and permutation power σx

Output: The private exponent x
Function SolveDLP(σ,σx) is

for i← 1 to nc(σ) do
cσ ← σ[i]
cσx ← σx[i]
lencσ ← |cσ|
modlist[i]← lencσ
symcσ ← cσ[1]
symcσx ← σx(sym)
for j ← 1 to lencσ do

if cσ[i] = symcσx then
residues[i]← j − 1
break;

end

end

end
x← CRT (residues,modlist)
return x

end
Algorithm 4: Solving DLP on permutations groups

It is self-explanatory, using all the aforementioned concepts, ending on the
resolution of x applying the CRT. The list residues contains the 25 residues
that have been found.:

residues = (1, 2, 1, 4, 4, 7, 3, 16, 15, 11, 4, 26, 37, 22, 30, 11, 40, 37, 12, 6, 47, 73, 40, 13, 6)

where the i-th residue is taken in Fpi i.e the 5-th residue is 4 since x ≡11 x5 ≡ 4
where 11 is the 5-th prime.

In the end the real x is recovered, being the space of x composed of approxi-
mately 2120 candidates, which in the beginning of the analysis seemed good enough.
When gcd(x, |P |) 6= 1 the DLP is deterministcally solved just multiplying the
cycle prime length of cycles that have been sent to the identity.

3.2.4 Conclusion

We’ve seen how to solve the discrete logarithm problem in permutation groups
when the order of the group is composed by an increasing product of primes.
The trade-off between the order and degree is necessary to be able to represent
elements in P . But this approach causes a deadly impact on the probability
of breaking the scheme. The conclusion made is that this protocol cannot be
enhanced in any form as its security depends entirely on the number of sym-
bols, this is, bounded by Deg(P) and not by the order |P |. This is equal to
say that the Discrete Logarithm Problem in cyclic groups is bounded by the

20

minimal number of symbols of its permutation group representation. The num-
ber of symbols and cycles depends on the order of G, so it’s crucial that the
factorization of |G| does not contain a big quantity of factors.

Thus, demonstrating why in Diffie-Hellman is recommended that p = 2q+ 1
as the order of G is 2q a generator g is selected of order q that generates a cyclic
group of big order q, this is the same as having a permutation generator of 1
cycle of prime order q thus indecomposable in smaller cycles and rendering this
cryptanalysis useless since Deg(P) = |P | which is not representable. Then as
the final conclusion, DLP is bounded by Deg(P).

3.3 Stickel’s Protocol on permutation groups

The author thought that one way to enhance the previous protocol would be
to change the way of computing public and shared keys in the key negotation-
exchange. Stickel’s protocol found in 2.2.1 fits well here because it’s based on
exponentiation where this depends on the DLP in permutation groups. As
seen before, this is fully deterministic and solvable, but Stickel’s combines two
exponentiations via multiplication, thus, it may hide the structure of both expo-
nentiations making it harder to recover one or more private keys. Nonetheless,
in the cryptanalysis section it is proven to be broken by an approach based
on set theory and combinatorics, a novel method that may have cryptanalytic
application in other schemes.

3.3.1 Protocol Description

The platform group now is G = Sn the symmetric group on n symbols. Two
permutations α, β are selected such that generate subgroups A,B ≤ G. To
construct an arbitrary generator, select a partition λ ` n and construct a cycle
of length λi for each partition symbol λi, each cycle containing unique symbols
from the set of n symbols. Head to 3.2.3.4 or in [9] for an example on how to
obtain such permutation. There’s a slight modification when computing shared-
public key when comparing this protocol to the previous one:

σ ∈ A ρ ∈ B a1, a2 < OrdG(σ) b1, b2 < OrdG(ρ)

pubA = σa1ρb1 pubB = σa2ρb2

sharedA = σa1(σa2ρb2)ρb1 = σa1+a2ρb1+b2

sharedB = σa2(σa1ρb1)ρb2 = σa1+a2ρb1+b2

Adding an extra non-commutative operation, the multiplication-composition
in Sn. This is, two elements that lie in different subgroups A,B ≤ G but their
multiplication lies in G. And this non-commutativity is what prevents the
attacker of obtaining sharedA, sharedB as multiplying public keys doesn’t give
any information to the attacker. This is explained in the Stickel’s protocol
description in [TODO REF].

21

3.3.2 Cryptanalysis

The goal is to recover either (a1, b1) or (a2, b2) as one of these pairs makes the
attacker succeed in the shared secret computation. We know that the DLP is
present here but hidden by multiplication on G. The public keys, apparently,
don’t give information on the structure of exponentiation in both generators
α, β. In the previous section only one generator was used, revealing how the
exponent x affects and shift symbols in cycles and this is crucial to recover
x. Now the attacker faces a harder scenario to solve, where first he must take
out the multiplication envelope to be able to start recovering any private expo-
nent. As we are in permutation groups it’s very important to understand how
permutation composition (multiplication) works.

3.3.2.1 Definition of right-to-left multiplication

The right-to-left multiplication for permutations αβ = δ can be written for
every symbol i as αβ(i) = δ(i) i.e β(i) = j → δ(i) = α(j). It is important
to analyze it as multiplication hides two exponentials that rely on the DLP.
Attacker knows (α, β, (αa1βb1), (αa2βb2)). It results that multiplication can be
decomposed to recover either (a1, b1) or (a2, b2) using simple set theory and
algebraic combinatorics.

3.3.2.2 Algebraically obtaining private exponents

A good practice when dealing with cryptnalaysis is to identify the reversal pro-
cedure of setting up public keys. The mathematical problem found in the rever-
sal procedure can believed to be hard as integer factorization or DLP in certain
groups, but that doesn’t prevent an analyst to know which algebraic expressions
break or recover private information. In this case, we have pubA = δ = αa1βb1 ,
so if we recover b1, by the inverse of the exponentiation on β by b1 we obtain
αa1βb1β−b1 = αa1 . As we have α, αa1 , then a1 is easily recoverable applying
the DLP solving method on permutation groups as shown in the previous pro-
tocol section 3.2.3.4, Algorithm 4. Summarizing, if b1 is recoverable then a1
is immediately obtained as DLP is trivial to solve when permutations can be
represented, as this is the case. Further, in this section, these algebraic expres-
sion are helpful in the cryptanalytic part as b1 or b2 is proven to be recoverable
under specific circumstances. The author focus on recovering (a1, b1) in Alice’s
public key δ = αa1βb1 .

3.3.2.3 Recovering b1 from the product αa1 · βb1

It has been theoretically proven that recovering the exponent b1 immediately
gives the remaining exponent a1, hence it is important to analyze the permuta-
tion product of both exponentiations in α, β because multiplication hides both
(a1, b1). The attacker knows pubA = δ = αa1βb1 . Then for an arbitrary symbol
i < Deg(Sn) let δ(i) = k, such that αa1(j) = k and βb1(i) = j. Thus there exists
a cycle c(k,α) on α that contains symbols j and k. Moreover, there exists a cycle

22

c(i,β) on β that contains i and j. Inherently define the intersection I(c(k,α),c(i,β))

of cycles c(k,α) and c(i,β) with cardinality r as:

I(c(k,α),c(i,β)) = c(k,α) ∩ c(i,β) = (j1, · · · , jr)

The intersection contains all the possible j’s such that c
Di,j
(i,β)(i) = j c

Dj,k
(k,α)(j) =

δ(i) = k., giving r exponents Di,j , which are the distances taking c(i,β) from i to
every j in the intersection. When r = 1 we know that there exists only one j in
c(i,β) that goes to c(k,α) and satisfies the aforementioned cycle-image relation.
The distance Di,j from i to j in c(i,β) determines the congruence

b1 ≡ Di,j (mod |ci,β |)

As the reader may know, an attack can be mounted where applying CRT re-
trieves the original b1 once the attacker recovered all the distances modulo each
cycle length in β. Because the exponentiation βb1 can be viewed as exponenti-
ating every cycle by separate, thus reducing the exponent b1 modulo each cycle
length.

It’s been proven that the protocol is broken solving two system of congru-
ences, one for b1 and the other for a1 if and only if every cycle c(i,β) has an
intersection on cycles c(δ(sym),α) for each symbol sym ∈ c(i,β) where r = 1. But
when r > 1 the thing changes a bit. It could happen that a particular cycle
c(i,β) intersects with r > 1 on c(δ(sym),α) for each symbol sym ∈ c(i,β) . Then
for every cycle containing the symbol i in β, this is c(i,β), take the minimum
intersection cardinality, this is, the least r, and this would give us r possible
distances Di,j . Eventually, when solving for b1 it would require

nc(β)∏
i=1

ri

systems of congruences where nc(β) denotes the number of cycles in β and ri
is the minimum cardinality found from intersecting c(i,β) and c(δ(sym),α) for
each symbol sym ∈ c(i,β). The complete algorithm to recover (a1, b1) when r = 1
is given in pseudo-code that is latter found in the Appendix which contains its
Mathematica code version.

23

Input: Public generators α, β and Alice’s public key: δ = αa1βb1

Output: The private exponent tuple (a1, b1)
Function SolveStickel’s(α,β, δ) is

for i← 1 to nc(g) do
cβ ← β[i]
lencβ ← |cβ |
modlist[i]← lencβ
for j ← 1 to lencg do

symcβ ← cβ [j]
k ← δ(symcβ)
cα ← FindSymInCycle(k, α)
I(cβ ,cα) ← cβ ∩ cα
r ← |I(cβ ,cα)|
if r = 1 then

symI(cβ,cα)
← I(cβ ,cα)[1]

found← false
residue← 0
while not found do

img ← β(i)
residue← residue+ 1
if img = symI(cβ,cα)

then

residues[i]← residue
found← true

end

end
break;

end

end

end
b1 ← CRT (residues,modlist)
αa1 ← αa1βb1β−b1

a1 ← SolveDLP (α, αa1)
return (a1, b1)

end

Algorithm 5: Recovering (a1, b1) from αa1βb1

It does what has been explained: if for every cycle in β we can found an
intersection with r = 1 then we know the reduced exponent modulo |c(i,β)|. Ob-
taining such reduced exponents for every cycle in β gives a system of residues
that’s solved applying CRT and returning b1. Then a1 is immediately re-
trieved as a consequence of obtaining b1. So we can compute the shared key as
sharedATTK = αa1(αa2βb2)βb1 .

24

3.4 Twisted Stickel’s Protocol on permutation groups

3.4.1 Protocol Description

Last protocol included in this paper is a combined version of the Twisted Pro-
tocol and Stickel’s, included in 2.2.3, where two subgroups A,B ≤ G are taken
not commuting elementwise thus ab 6= ba a ∈ A, b ∈ B. The definition of the
entire protocol is given as:

pubA = αa1gβb1

pubB = αa2gβb2

sharedA = αa1(αa2gβb2)βb1 = αa1+a2gβb1+b2

sharedB = αa2(αa1gβb1)βb2 = αa1+a2gβb1+b2

The principle is the same as in Stickel’s, multiplying both exponentiations
hides the exponents, but now, introduces a central publicly known element g.
How does this parameter really affect the security comparing to Stickel’s ap-
proach using permuation groups?

3.4.2 Cryptanalysis

It can be demonstrated that this modified twisted protocol is more vulnerable
that the previous protocol since every intersection found has cardinality r = 1
making it trivial to solve as only two systems of congruences are needed for
recovering (a1, b1) or (a2, b2). The proof can be given following the right-to-left
multiplication rule. Let δ = pubA = αa1gβb1 . Then for an arbitrary symbol
i decompose the image in δ as δ(i) = r αa1(k) = r g(j) = k βa1(i) = j.
Exploiting this decomposition to our favor is what does this protocol vulnerable.
Take the cycle c(i,β), now find all the cycles c(k,g) that contains any symbol k of
c(r,α) One of these cycles must intersect with c(i,β) and there is only one right
candidate as g(j) = k, since g is not taking any exponentiation. From here,
we know that r = 1 thus extract the distance Di,j modulo |c(i,β)| that goes
from i to j as seen also in 3.3.2.3. This is a tricky analysis, but decomposition
is what makes it understandable, viewing it as a triple intersection with the
condition g(j) = k and r = 1. For the rest of the analysis, it’s enough to
reuse the attacks presented in previous sections. Recover all distances to mount
a system of residues that’s solved by applying CRT, thus recovering b1. Now
recover ga1 and finally retrieve a1 by a simple system of congruences obtained
with the original DLP solving technique explained in 3.2.3.4, Algorithm 4. As
in the previous cases, an example is given to prove that it is solvable despite of
the magnitude of the used parameters.

25

4 Final Conclusion

We have seen distinct key exchange protocols that initially seemed good enough
to work with in Cryptography. The weaknesses found using permutation groups
have a common factor: platform groups where elements are given as permuta-
tions introduce a clear risk factor of being entirely solved. Operations like:
multiplication, exponentiation and conjugation are imminently decomposable.
Also, it’s been said that the discrete logarithm problem is bounded by the degree
of the platform group where the congruence lies. Hence obtaining a permutation
representation must not be possible for an attacker to solve the DLP.

Besides, the presented protocol based on factorization-search using matrices
over Fnp is proven to be vulnerable as every element presented in public keys is
decomposable into linear factors that make the private values recoverable. Using
matrices can be advantageous if the reversal procedure of setting up public keys
cannot be tracked down to a solvable system of linear equations. Which was
not the case, as the resulting system is overdetermined, having a solution when
x ∈ Fnp is selected correctly.

The short conclusion of this paper is that protocols based on decomposi-
tion, factorization-search and conjugation-search are interesting candidates to
research in non-commutative cryptography. But note that these protocols are
vulnerable if the platform group is isomorphic to a permutation group, where
the isomorphism must be known and computable. In addition, special care must
be taken when dealing with linearity and matrices.

26

5 Appendix: Implemented functions on Mathe-
matica

All the provided pseudo-code was first implemented in Mathematica then trans-
formed to symbolic pseudo-code. Mathematica’s language works with 1-index
instead of 0-index, that’s why in the pseudo-code it starts counting from 1.
The choice of Mathematica is obvious as it is a complete CAS that has all the
number theoretic and group theoretic related functions, which in C++ would
be easy to implement using alternative libraries like NTL, GMP between oth-
ers. However, this research is not focused on reinventing the wheel in another
language. Mathematica is enough to demonstrate and proof that these schemes
are vulnerable, being another strong point that the pseudo-code can be imple-
mented in whatever language of choice, thus being open for any researcher to
test on any platform-language.

5.1 Solving Stickel’s and permutation Diffie-Hellman

The following code solves the underlying problems where 3.2 and 3.3 are based.
Moreover it can be adapted to solve 3.4 as well as the underlying problem is
very similar.

First construct the list of primes so that permutation generators α, β have
the same cycle type, thus same order, but not necessarily generate the same
subgroup. From here we obtain the order and degree. Note that you can use
any integer partition in modlist.

In[1]:= modlist = Table[Prime[n],{n,25}]

{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97}

deg = Sum[modlist[[i]],{i, 1,25}]

1060

ord = Product[modlist[[i]],{i,1,Length[modlist]}]

2305567963945518424753102147331756070

Now define the primitives GenRndExp that returns a random exponent co-
prime with the order in the range [26, ord] and GenRndPerm that returns a
random permutation with cycle type consisting of the prime elements in mod-
list.

In[2]:= GenRndExp[ord_]:=(

While[True,

num = RandomInteger[{2^64,ord}];

If [CoprimeQ[num,ord],Return[num];];

];

);

GenRndPerm[cyclen_,deg_]:=(

perm = Cycles[{}];

offset=1;

27

symbols = RandomSample[Range[deg]];

For[i=1,i<=Length[cyclen],i++,

p = cyclen[[i]];

l = Array[0&,p];

k=1;

For[j=offset,j<(p+offset),j++,

l[[k]]=symbols[[j]];

k++;

];

offset = offset + p;

perm = PermutationProduct[perm,Cycles[{l}]];

];

Return[perm];

);

Generate permutations α, β and private exponents x, y such that δ = αxβy

In[3]:= x =GenRndExp[ord]

2301666390105283089435372891658364533

y = GenRndExp[ord]

258716250145449892560235270619190979

alpha=GenRndPerm[modlist,deg]

beta = GenRndPerm[modlist,deg]

delta = PermutationProduct[PermutationPower[beta,y],PermutationPower[alpha,x]]

For obvious reasons, permutations are not entirely included here as it would
take too much space. Now we are in the position to solve the Stickel’s protocol,
this is recover (x, y) from δ = αxβy. For that call the method SolveStickels
which first retrieves y, recovers αx and solves for x calling the method SolveDLP.
Pseudo-code for SolveStickels can be found in 3.3.2.3, Algorithm 5. In the same
way, pseudo-code for SolveDLP can be found in 3.2.3.4 Algorithm 4.

Then first define SolveDLP method as SolveStickels rely on this one for
recovering x once y is known.

In[4]:= SolveDLP[perm_,powperm_] := (

newmodlist = Array[0&,Length[modlist]];

residues=Array[0&,Length[modlist]];

For[i=1,i <= Length[modlist],i++,

csigma = perm[[1]][[i]];

csigmax = powperm[[1]][[i]];

cyclen = Length[csigma];

newmodlist[[i]] = cyclen;

imgsymsigmax = csigmax[[2]];

For[j=1,j<=Length[csigma],j++,

If[csigma[[j]] == imgsymsigmax, Break[];];

];

residues[[i]]=j-1;

28

];

Print[ChineseRemainder[residues,newmodlist]];

);

FindCycSym[sym_,perm_]:=(

For[k=1,k<=Length[perm[[1]]],k++,

pcyc = perm[[1]][[k]];

For[m=1,m<=Length[pcyc],m++,

psym = pcyc[[m]];

If[psym == sym, Return[pcyc];];

];

];

);

Now define SolveStickels, as said it will recover both x, y.

In[5]:= SolveStickels[perm1_,perm2_,delta_,deg_]:=(

betalen = Length[perm2[[1]]];

newmodlist = Array[0&,betalen];

residues = Array[0&,betalen];

onelinedelta = PermutationList[delta,deg];

For[i=1,i<=betalen,i++,

cbeta = perm2[[1]][[i]];

newmodlist[[i]] = Length[cbeta];

For[j=1,j<=Length[cbeta],j++,

symbeta = cbeta[[j]];

imgsymdelta =onelinedelta[[symbeta]];

calpha = FindCycSym[imgsymdelta,perm1];

intcycalphabeta = Intersection[calpha,cbeta];

interlen = Length[intcycalphabeta];

If [interlen == 1,

intsym = intcycalphabeta[[1]];

onelinecbeta = PermutationList[Cycles[{cbeta}],deg];

img=symbeta;

residue=0;

While[True,

img = onelinecbeta[[img]];

residue++;

If[img == intsym, residues[[i]]=residue; Break[];];

];

Break[];

];

];

];

29

Now let’s recover both x, y by passing to SolveStickels the permutations
α, β, δ which are publicly known in the scheme.

In[6]:= SolveStickels[alpha,beta,delta,deg]

258716250145449892560235270619190979

2301666390105283089435372891658364533

It has recovered both x, y thus we are able to compute the same shared
values that Alice and Bob compute.

References

[1] Neal R. WagnerMarianne R. Magyarik A Public-Key Cryptosystem Based
on the Word Problem CRYPTO 1984: Advances in Cryptology pp 19-36

[2] K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J. Kang and C. Park New
Public-Key Cryptosystem Using Braid Groups CRYPTO 2000: Advances
in Cryptology pp 166-183

[3] Vladimir Shpilrain and Alexander Ushakov A new key exhcange protocol
based on the decomposition problem https://eprint.iacr.org/2005/

447.pdf

[4] Vladimir Shpilrain, Alexander Ushakov Thompson’s group and public key
cryptography https://arxiv.org/abs/math/0505487

[5] E. Stickel A New Method for Exchanging Secret Keys Third Interna-
tional Conference on Information Technology and Applications https:

//ieeexplore.ieee.org/document/1488999/

[6] Vladimir Shpilrain Cryptanalysis of Stickel’s Key Exchange Scheme JCSR
2008: Computer Science – Theory and Applications pp 283-288

[7] Adi Ben-Zvi, Arkadius Kalka, and Boaz Tsaban Cryptanalysis via algebraic
spans https://eprint.iacr.org/2014/041.pdf

[8] D. Garber, S. Kaplan, M. Teicher, B. Tsaban, U. Vishne Length-based
conjugacy search in the Braid group https://arxiv.org/abs/math/

0209267v2

[9] Adi Ben-Zvi, Arkadius Kalka, and Boaz Tsaban Cryptanalysis via algebraic
spans https://eprint.iacr.org/2014/041.pdf

[10] Alexei Myasnikov, Vladimir Shpilrain and Alexander Ushakov Non-
commutative Crtpyography and Complexity of Group-theoretic Problems
Mathematical Surveys and Monographs VOL 177

30

https://eprint.iacr.org/2005/447.pdf
https://eprint.iacr.org/2005/447.pdf
https://arxiv.org/abs/math/0505487
https://ieeexplore.ieee.org/document/1488999/
https://ieeexplore.ieee.org/document/1488999/
https://eprint.iacr.org/2014/041.pdf
https://arxiv.org/abs/math/0209267v2
https://arxiv.org/abs/math/0209267v2
https://eprint.iacr.org/2014/041.pdf

	Introduction
	Motivation

	Key Exchange protocols
	Protocols based on the conjugacy-search problem
	Koo, Lee et al key exchange protocol

	Protocols based on the decomposition-search
	Twisted protocol
	Modified twisted with commutative subgroups

	Protocols based on factorization-search
	Using commutative subgroups not commuting elementwise

	Stickel's protocol
	Alternative definition
	Twisted Stickel's using commutative subgroups not commuting elementwise

	Cryptanalysis of key exchange protocols
	Factorization-search protocol using matrices in GL(n,q)
	A complete example
	Complete Cryptanalyisis
	Conclusion

	A protocol based in the Discrete Logarithm Problem using permutations
	Permutation groups and Cryptography
	Protocol Description
	Building the permutation group P and its generator
	Building public keys:
	Computing the shared secret:

	Cryptanalysis
	Discrete logarithms on permutation groups
	Solving DLP when exponent is coprime to order
	Solving DLP when exponent is not coprime to order
	An implementation case for cryptanalysis

	Conclusion

	Stickel's Protocol on permutation groups
	Protocol Description
	Cryptanalysis
	Definition of right-to-left multiplication
	Algebraically obtaining private exponents
	Recovering b1 from the product a1 b1

	Twisted Stickel's Protocol on permutation groups
	Protocol Description
	Cryptanalysis

	Final Conclusion
	Appendix: Implemented functions on Mathematica
	Solving Stickel's and permutation Diffie-Hellman

