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Abstract

Private Function Evaluation (PFE) enables two parties to jointly execute a computation
such that one of them provides the input while the other chooses the function to compute.
According to the traditional security requirements, a PFE protocol should leak no more infor-
mation, neither about the function nor the input, than what is revealed by the output of the
computation. Existing PFE protocols inherently restrict the scope of computable functions to
a certain function class with given output size, thus ruling out the direct evaluation of such
problematic functions as the identity map, which would entirely undermine the input privacy
requirement. We observe that when not only the input z is confidential but certain partial
information g(z) of it as well, standard PFE fails to provide meaningful input privacy if g and
the function f to be computed fall into the same function class.

Our work investigates the question whether it is possible to achieve a reasonable level of
input and function privacy simultaneously even in the above cases. We propose the notion
of Controlled PFE (CPFE) with different flavours of security and answer the question affir-
matively by showing simple, generic realizations of the new notions. Our main construction,
based on functional encryption (FE), also enjoys strong reusability properties enabling, e.g.
fast computation of the same function on different inputs. To demonstrate the applicability
of our approach, we show a concrete instantiation of the FE-based protocol for inner product
computation that enables secure statistical analysis (and more) under the standard Decisional
Diffie-Hellman assumption.

Keywords: Cryptographic Protocols, Private Function Evaluation, Functional Encryp-
tion, Oblivious Transfer, Secure Data Markets

1 Introduction

Secure two-party computation (2PC) a.k.a. secure function evaluation (SFE) protocols enable
two parties, Alice and Bob, to compute a function of their choice on their private inputs without
disclosing their secrets to each other or anyone else (see Fig. . In real life, however, the
participants not necessarily have interchangeable roles. We call private function evaluation (PFE)
a protocol if one party can alone choose the function to evaluate, while the other provides the
input to it (see Fig. while both of them intends to hide their contribution. PFE can be
realized by invoking 2PC after the function was turned into data. A universal function [Val76] is a
“programmable function” that can implement any computation up to a given complexity. It takes

*This is the full version of [HBSN19]. In case of citing our work, please cite the proceedings version.
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Figure 1: Comparison of the ideal functionality of different concepts for secure function evaluation,
realized with the help of a trusted third party (TTP). The key difference lies in which information
Alice and Bob can or cannot have access to.

two inputs, the description of the function to be computed and the input to it. By evaluating a
public universal function using 2PC, all feasibility results extend from 2PC to PFE. Improving
efficiency turns out to be more challenging. Indeed, universal functions cause significant — for
complex computations even prohibitive — overhead, and the elimination of this limitation was the
primary focus of PFE research [KS08, [KS16].

In this work, we initiate the study of a security issue that — to the best of our knowledge —
received no attention earlier. More concretely, we focus on the opportunities of the input provider
to control the information leakage of her input. As PFE guarantees Bob that his function is
hidden from Alice, he can learn some information about the input of Alice such that it remains
hidden what was exactly revealed. Disclosing the entire input by evaluating the identity function
is typically ruled out by the restriction that the computable function class has shorter output
length than input length. At the same time, the following question arises: is it really possible to
determine the computable function class so that no function is included which could reveal sensitive
information about the input? We argue that most often exceptions occur in every function class, so
measures are required to also protect such partial information besides the protection of the input
as a whole. As intentional partial information recovery does not cause anomalies when only the
function provider, Bob receives the function’s output, later on we consider this scenario.

For a simple and illustrative example, let us recall one of the most popular motivating applica-
tions for PFE. In privacy-preserving credit checking [PSS09) §7], Alice feeds her private data to a
Boolean function of her bank (or another service provider) that decides whether she is eligible for
credit or not. Using PFE for such computation allows Alice to keep her data secret and the bank
to hide its crediting policy. Notice that the function provider can extract any binary information
about the input and use it, e.g. to discriminate clients. The leaked partial information can be, e.g.
gender or the actual value of any indicator variable about the data that should not be necessary to
reveal for credit checking. Our goal is to enable Alice to rule out the leakage of specific sensitive
information in PFE without exposing what partial information she wants to hide.

1.1 Our Contributions

Our contributions can be summarized as follows.

e We initiate the study of partial information protection in the context of private function
evaluation.

e To take the first step, we put forward the notion of Controlled PFE (CPFE) and formally
define its security (see Fig. [Ld|for its ideal functionality). We also devise a relaxed definition,
called rCPFE (see Fig. that guarantees weaker (but still reasonable) k-anonymity style
function privacy leading to a trade-off between security and efficiency.

e Then we show conceptually simple, generic realizations of both CPFE and rCPFE. In the
latter case, we utilize the modified function privacy guarantee (through using functional
encryption) to enable the reusability of the protocol messages in case of multiple function



evaluations. As a result, in our rCPFE when evaluating the same function(s) on multiple,
say d inputs, the communication and online computation overhead only increases with an
additive factor proportional to d instead of a multiplicative factor as in ordinary PFE.

e To demonstrate the practicality of the rCPFE approach, we instantiate our generic protocol
for the inner product functionality enabling secure statistical analysis in a controlled manner
under the standard Decisional Diffie-Hellman (DDH) assumption. Our proof of concept
implementation shows that the reusability property indeed results in a significant performance
improvement over the state of the art secure inner product evaluation method [DSZ15].

1.2 Applications

We believe that in most PFE applications, the evaluated function class also permits the leakage of
potentially sensitive partial information about the input as our above example demonstrates this
even for very restricted Boolean functions. To motivate our inner product rCPFE, we mention two
of its possible application scenarios.

Logistic Regression Evaluation. The linear part of logistic regression computation is an inner
product of the input and weight vectors. Our inner product rCPFE can help to rule out
weight vectors that are unlikely to belong to a model but are base vectors that could reveal
a sensitive input vector element.

Location Privacy. Let us assume that a “data broker” (DB) periodically collects location-based
information in vector form, where vector elements correspond to information related to spe-
cific positions. Such data can be important for service providers (SP), offering location-based
services, without the proper infrastructure to collect the necessary data. During their inter-
action that can be an inner product ComputationE the SP should hide the location of its
users, while the DB may want to protect the exact information in specific locations or to ad-
just higher price if specific measurements are used. These can be achieved by having control
over the possible queries of SP.

1.3 Related Work

Some PFE variants share ideas with our concepts. Semi-private function evaluation (semi-PFE)
[PSS09, [KKW17] for instance, also relaxes the function privacy requirement of PFE by revealing
the topology of the function being evaluated. While this relaxation also leads to a useful trade-off
between function privacy and efficiency, unfortunately, the available extra information about the
function does not necessarily allow Alice to rule out the evaluation of functions that are against
her interest.

Selective private function evaluation (SPFE) [CIK™01] deals with a problem that is orthogonal
to the one considered in this paper. Namely, SPFE also aims to conceal information that is leaked
in PFE. However, instead of protecting Alice (the data owner), it intends to increase the security
of Bob by hiding from Alice the location of the function’s input in her database via using private
information retrieval (PIR).

Leaving the field of PFE and comparing our work to related problems in secure computation, we
find that hiding the computed function raises similar issues in other contexts. [BGJS16] put forth
the notion of verifiable obfuscation that is motivated by the natural fear for executing unknown
programs. The goal here is similar than in our setting: some assurance is required that the hidden
functionality cannot be arbitrary. However, the fundamental difference between our CPFE and the
verifiable obfuscation and verifiable FE of [BGJS16] is that while the latter ones enforce correctness
when an obfuscator or authority may be dishonest, CPFE tries to disable semi-honest parties to
evaluate specific functions (i.e. to handle exceptions in PFE).

I E.g. multiplying the data vector with a position vector (that is non-zero in all positions representing locations
close to the user — possibly containing weights depending on the distance — and zero otherwise) can give useful
information.



The functionality is parametrized by two integers k& < m, and two parties: a sender S and a
receiver R.

FUNCTIONALITY:

On input my, ..., m, messages from S and an index set {i1,...,ix} C [n] from R
e S obtains no output,
e R receives m;,, ..., m;, but nothing else.

Figure 2: Ideal functionality ]:OT]? of k out of n OT.

Our rCPFE is built upon functional encryption (FE) in a black-box manner. This generalization
of traditional encryption was first formalized by [BSW11]. While general-purpose FE candidates
IGGH™ 13, [GGHZ16] currently rely on untested assumptions like the existence of indistinguisha-
bility obfuscation or multilinear maps, our application does not require such heavy hammers of
cryptography (see details in §2.2)). In the context of FE, [NAP™14] raised the question of control-
lability of function evaluation. The essential difference, compared to our goals, is that they want
to limit repeated evaluations of the same functiorﬂ that they solve with the involvement of a third
party.

Finally, we sum up the state of the art of private inner product evaluation. The provably
secure solutions are built either on partially homomorphic encryption schemes [GLLMO04, [DC14]
or 2PC protocols [DSZ15] but public-key inner product FE [ABCP15] is also capable of the same
task. At the same time, several ad-hoc protocols achieve better performance in exchange for some
information leakage (see, e.g. [ZWHT15| and the references therein), but these constructions lack
any formal security argument.

2 Preliminaries

In this section, we briefly summarize the relevant background for the rest of the paper. We will
always assume that the participants of the considered protocols are semi-honest, i.e. while following
the protocol honestly, they try to recover as much information from the interactions as they can.
We also use the OT-hybrid model that assumes that the parties have access to an ideal process
that securely realizes oblivious transfer, which we discuss in more detail in

2.1 Oblivious Transfer

Oblivious transfer (OT) is one of the most fundamental primitives in cryptography and a corner-
stone of secure computation. It enables transferring data between two parties, the sender (S) and
the receiver (R, a.k.a. chooser), in a way that protects both of them. S can be sure that R only
obtains a subset of the sent messages, while R is assured that S does not know which messages he
selected to reveal. In Fig. 2] the ideal functionality of k out of n OT [CT05] is represented that we
are also going to rely on.

While being a public-key primitive, so-called OT-extension protocols enable rather efficient OT
evaluation. To do so, the participants first pre-compute a limited number of “base-OTs” with
certain inputs that are independent of their real inputs. Then using the obtained values, they can
evaluate a much larger number of OTs by executing more efficient symmetric-key operations only.
This kind of efficiency improvement automatically applies to our protocols after substituting plain
OT, with OT-extension with the same functionality [KKRT16, RR17].

2 In FE schemes, the control over the computable functions is in the hand of the master secret key holder, so
this is not an issue unlike in PFE.



2.2 Functional Encryption

As we already introduced, FE is a generalized encryption scheme that enables certain computations
on hidden data for authorized parties. Both public- and secret-key variants are known, but here we
limit ourselves to the secret-key setting that suffices for our purposes. An sk-FE scheme consists
of the following four algorithms.

FE.Setup(A\) — (mskeg, ppre) Upon receiving a security parameter A it produces the public system
parameters ppre and the master secret key mskgg.

FE.Enc(mskgg, z) — ct The encryption algorithm takes the master secret key mskgg and a message
z and outputs a ciphertext ct.

FE.KeyGen(mskrg, f) — fsky The key generation algorithm can be used to generate a functional
secret key fsks for a function f with the help of the mskre.

FE.Dec(ct, fsky) — y Having a functional secret key fsky (for function f) and a ciphertext ct (cor-
responding to x), the decryption outputs the value y.

The correctness of FE requires that if fsk; and ct were indeed generated with the corresponding
algorithms using inputs f and x respectively, then y = f(x) must hold. Regarding security, in this
work we are going to use the non-adaptive simulation-based security definition of FE [GVW12],
which we recall in Appendix[A] We note that while the SIM security of FE is impossible to realize
in general [BSW11], for several restricted — yet important — cases it is still achievable, e.g. when
the number of functional keys are a priori bounded [GVW12], or when the computable function
class is restricted [ALS16]. As our applications also use these restrictions, known FE impossibility
results do not affect the way we use FE.

3 General Approaches for Securing Partial Input Informa-
tion in PFE

In this part, we introduce the notion of controlled PFE and in formally define its security
in different flavours. Next, in §3.21{3.3] we propose two general protocols satisfying these security
requirements.

3.1 Definitional Framework

Our first security definition for controlled PFE captures the intuitive goal of extending the PFE
functionality with a blind function verification step by P; to prevent unwanted information leak-
age. See the corresponding ideal functionality Feprg in Fig. ] that we call controlled PFE, and
the security definition below. For the ease of exposition, later on we denote the inputs of the
participants as inp = ({2 }ic[q), Fa, {fj}jek)) with the corresponding parameters.

Definition 1 (SIM security of CPFE wrt. semi-honest adversaries). Let II denote a Controlled
PFE (CPFE) protocol for a function class F with functionality Feprr (according to Fig. @ We
say that I1 achieves SIM security against semi-honest adversaries, if the following criteria hold.

e Correctness: the output computed by Il is the required output, i.e.
Prloutput™ (1%, inp) # Fcpre(inp)] < negl()).
e Function Privacy: there exists a probabilistic polynomial time (PPT) simulator Sp,, s.t.
{Sp, (1 {iiciap Fa) baw,7a =~ {viewp (1%,inp) bra, 1, 74
e Data Privacy: there exists a PPT simulator Sp,, s.t.

{Sp, (W {fi}sem (Wi Yieajem bag, = {views, (1%, inp)x e, 7). 7a



PARAMETERS: participants Pp, P, a class F = {f : X — YV} of deterministic functions [and an
integer k > kJ

FUNCTIONALITY:

On inputs z1,...,zq € X and F4 C F from Py; and Fpg = {f1,..., fx} C F from P,
e P receives no output, [or Py receives Fr s.t. Fp C Fr C F and |Fr| = &/
e P, obtains {y; ; = fi(®i)}ie(a jew) € Y U{L} for

J 1 otherwise.

Flas) = {fj(ifz') if fj & Fa

Figure 3: Ideal functionalities for Feprr and Frcprr (see the extensions in brackets) formulated
generally for multiple inputs and multiple functions.

where inp = ({zi}icra), Fa {fi}jem) fi € F,Fa C F,m € Xy, ; € YU{L}, and A € N.

We also propose a relaxation of Def. [1| which on the one hand gives up perfect function privacy
but on the other, allows us to construct efficient protocols while still maintaining a k-anonymity
style guarantee for function privacy. As SIM security alone cannot measure how much information
is leaked by a set of functions, we formulate an additional requirement to precisely characterise
function privacy.

Definition 2 (SIM security of relaxed CPFE wrt. semi-honest adversaries). Let II denote a relazed
CPFE (rCPFE) protocol for a function class F with functionality Fycprr (according to Fig. @)
We say that II achieves SIM security against semi-honest adversaries, if the following criteria hold.

e Correctness: the output computed by Il is the required output, i.e.
Prloutput™(\, &, inp) # Frcprr(k,inp)] < negl()).

e Function Privacy: is defined in two flavours:

— k-relaxed function privacy holds, if 3 Sp,, a PPT simulator, s.t.

{SPl (1>\7 R, {xl}ze[d] ’ fA)}A,H,Im-FA ~ {Vieng (1/\7 R, inp)})\,n,mi,fj,]:A .

— Strong k-relazed function privacy holds if besides the existence of the above Sp,, it also
holds that for any PPT A:

Pr[A(aux, Fg) € Fp] — % < negl(})

where aux € {0,1}* denotes some a priori known auxiliary information about Fp.

e Data Privacy: there exists a PPT simulator Sp,, s.t.
{Sp, (A, &, {fj }je[k]7 {yg,j}ie[d],je[k]}x,n,fj ~ {VieWI;Z (A, K, inp)}A,mwi,fj,fA

where inp = ({x; }icra), Fas {fi}iem), fi € F, Fa CF, a4 € X,yaj € YU{L}, and \,xk € N,



Protocol IIEFFE

PARAMETERS: A parametrizing security, a function class F = {f : X — Y}, and a universal
circuit UC' for the function class F
INPUTS:

e Pi:x, FaCF

o P feF
ProT1ocoL:
Using a secure two-party computation protocol, P; and P, executes the following computation
on their inputs:

o If f € Fu, return L to both P; and Ps.

e Otherwise compute the universal circuit UC(f,x) = f(z) € Y outputting L to P; and
f(l‘) to PQ.

Figure 4: General 2PC-based CPFE

3.2 Universal Circuit-based CPFE

The natural approach for realizing CPFE comes from the traditional way of combining universal
circuits and SFE to obtain PFE. Fig. [ shows how the same idea with conditional evaluation leads
to CPFE in the single input, single function setting. The following theorem is a straightforward
consequence of the security of SFE.

Theorem 1. The CPFE protocol of Fig. [{] is secure according to Def. [1} if the used SFE protocol
is SIM secure in the semi-honest model.

The main drawback of this approach is that when extending the protocol to handle multiple
inputs or functions, its complexity will multiplicatively depend on the number of inputs or functions
because of the single-use nature of 2PC.

3.3 Reusable Relaxed CPFE from FE

We observe that the notion of rCPFE not only allows the input provider to verify the functions to
be evaluated but also opens the door for making parts of the protocol messages reusable multiple
times, thus leading to significant efficiency improvements.

A naive first attempt to realize rCPFE is to execute the computation on the side of P;. Upon
receiving a s function descriptions (including both the intended and dummy functions) P; can
easily verify the request and evaluate the allowed ones on her input. The results then can be
shared with P, using an OT scheme achieving both the required data and function privacy level.
Unfortunately, the x function evaluations lead to scalability issues. The subsequent natural idea
is to shift the task of function evaluation to P, to eliminate the unnecessary computations and
to hide the output from P; entirely. Since at this point P; has both the inputs and the functions
to evaluate, the task resembles secure outsourcing of computation where function evaluation must
be under the strict control of P;. These observations lead us to the usage of FE and the protocol
in Fig. [f] in which both ciphertext and functional keys can be reused in multiple computations.
When instantiated with the FE scheme of [GVW12], IIE*PFE can be used for all polynomial sized
functions in theory (in practice verifying the circuits would be a bottleneck).

Theorem 2. The protocol of Fig. [3]is SIM secure according to Def. [ achieving k-relazed function
privacy for k function queries by Ps, if the underlying FE scheme is k-query non-adaptive SIM
secure (k-NA-SIM) for a single message and the used OT protocol is SIM secure against semi-
honest adversaries.



Protocol IIFPFE

PARAMETERS: &, A parametrizing security and function class F = {f : X — YV}
INPUTS:
e Pi:xy,...,xq € X, Fqg CF

° PQI fB :{f17~~'afk} CF
ProToOCOL:
ONLINE PHASE

Step I. To initiate the evaluation of functions in Fg, P»
(1) samples k — k functions randomly: {f; s F }r<i<x,

(2) takes a random permutation on x elements to set Fr := (f1,..., f.), where f; =
Jo—1(i) so that each f; ends up at position (i) in the sequence,
(3) finally, sendsﬂFR to Py.

Step II. Upon receiving a function request Fr, P
(1
(2

) samples (mskgg, ppre) <—s FE.Setup()),
) N

(3) determines the index set of allowed functions I := {i | f; ¢ Fa},
)
)

encrypts the input data: ct; <—s FE.Enc(ppre, mskeg, z;) for all j € [d],

(4) generate functional keys fskfi s FE.KeyGen(pprg, mskeg, ﬁ) for all i € I.
(5

Step III. P; and P, invoke the ]—'OT:—functionality:

finally, sends ppre and {ct;};c[q to Pa.

(1) Py act as sender with k messages as input: m; = fskfi for i € I and m; = L for

ie k] \I
(2) Py act as receiver with input (o(1),...,0(k))
(3) P2 receives mey(1y, ..., Mgky Where my;) = fsky, or my;y = L if it was not an

allowed function (thus implicitly also obtaining the index set I N [k]).
OFFLINE PHASE

P, can evaluate the allowed functions from Fp on all input of P; by running
FE.Dec(fsky,, ct;) = fi(x;) for all i € I N [k].

Figure 5: General rCPFE construction.

The proof of the theorem is postponed to Appendix

Corollary 1. The protocol of Fig. @ also achieves strong k-relaxed function privacy if in of
all f; are sampled from the same distribution as the elements of Fp and aux = L.

4 Concrete Instantiation for Inner Products

To demonstrate the practicality of our approach, we instantiate our generic rCPFE protocol (Fig.
using the k-NA-SIM secure FE scheme of [ALS16] for the inner product functionality and the
semi-honest 1 out of k OT protocol of [Tze04]. Theorem 2] and the assumptions of [ALS16) [Tze04]
directly imply the following theorem.

3Depending on F and the sampling of the dummy functions, communication cost of transferring the function
descriptions can be reduced. In Appendix @ we describe such optimizations for the inner product function class.



Theorem 3. There is a SIM secure tCPFE protocol (according to Def. @ for inner product
computation, achieving k-relazed function privacy, if the DDH assumption holds.

Corollary 2. The inner product rtCPFE protocol derived from Hr}gPFE (on Fig. @ also achieves
strong k-relazed function privacy (as defined in Def. @) if aux = L and the dummy function vectors
are chosen from the same distribution as the real ones.

For the detailed description of the inner product rCPFE (or IP-rCPFE for short) we refer to
Appendix [C]

4.1 Performance and Possible Optimizations

For our IP-CPFE protocol, we prepared a proof of concept implementation using the Charm
framework [AGM™13|. To evaluate its performance in two scenarios, we compared its running
times and communication costs with that of the state of the art secure arithmetic inner product
computation method of the ABY framework [DSZ15]. For our experiments we used a commodity
laptop with a 2.60GHz Intel® Core™ i7-6700HQ CPU and 4GB of RAM.

Simulating regression model evaluation. In the first use-case, we do not assume that the
vectors have a special structure. The vectors to be multiplied can correspond to data and weight
vectors of a binary regression model, in which case it is likely that the same model (weight vector)
is evaluated over multiple inputs. Fig. and [6d] depict running times and overall communication
costs respectively depending on the number of inputs to the same model. Fig. and [6]] show the
cost of the dummy queries. In the same setting, our experiments show that without optimization
IP-rCPFE reaches the running time of ABY for x & 6200. For this scenario, we also propose a
method (denoted as rCPFE opt) to pre-compute the dummy function queries of thus
reducing both the online communication and computation costs. The key insight of this is that
sending a value together with dummy values is essentially the same as hiding the value with a one
time pad (OTP) and attaching the OTP key together with dummy keys. The gain comes from the
fact that the OTP keys can be computed and sent beforehand, moreover it is enough to transmit
the used seeds for a pseudo-random generator instead of the entire keys (see details in Appendix
. Security is not affected as long as aux = L.

Sparse vector products for location privacy. The location privacy scenario of implies
the usage of sparse query vectors. Fig. and show how the number of queries (k) affects
running time and message sizes respectively, when roughly 5% of the vector elements are non-zero.
We note that as queries are related to real-time user requests, batching these requests, as done in
of the protocol, can be unrealistic when data vectors are not changing in real time but,
e.g. periodically. Because of this, in our implementation, we allowed P, to repeat for a
single function and P; to answer the queries independently of encrypting the dataﬂ While sparsity
disables the above optimization, after masking the places of non-zero elements, the above idea can
be extended for sparse vectors as long as other structural properties are not known about the
vector in form of auxiliary information. For more details on the optimized variants, we refer to

Appendix [C.3]
5 Conclusion and Open Directions
In this work, we attempted to draw attention to the problem of possibly sensitive partial informa-

tion leakage in the context of private function evaluation. We proposed a definitional framework
for protocols that aim to prevent such leakage and showed both generic and concrete protocols to

4 We note that while our implementation is only a proof of concept without any code level optimization, ABY
has a very efficient and parallelizable implementation.

51t means that of |[Step 11| and |Step IIL|are repeated until the input data changes at the end of the
period.
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Figure 6: Comparisons of the overall running times and communication costs of
our rCPFE protocols with the ABY framework [DSZ15] and the naive OT-based approach for inner
product computation (¢ denotes vector dimension, d and k are the number of input and “function”
vectors, while  is the number of dummy vectors).

solve the problem. The main advantage of our FE-based protocol is that it turns the privacy sacri-
fice required by controllability into performance improvement whenever more function evaluations
are necessary.

Our work also leaves open several problems for future work. For instance, it would be important
to investigate the effects of having different types of auxiliary information about the evaluated
functions. Transmission and verification of dummy functions can be serious bottlenecks in our
rCPFE in case of complex functions, making further efficiency improvements desirable. A first
step towards this could be to find a way for restricting the set of forbidden functions — as most
often very simple functions are the only undesired ones. Finally, looking for different trade-offs
between function privacy and efficiency can also be interesting direction for future work.
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Appendix

A Simulation Security of Functional Encryption

For completeness we recall the simulation security of FE as defined in [GVW12].

Definition
scheme for

3 (¢-NA-SIM and ¢-AD-SIM Security of FE). Let FE be a functional encryption
a circuit family C = {C, : X, = YV, }ven. For every PPT adversary A = (A1, As) and

a PPT simulator S = (S1,82) consider the following two experiments:

Expz¥. () ExpEis (V)

1:  (ppre, mskre <—s FE.Setup(X) 1:  (ppre, mskrg) <—s FE.Setup())

2:  (x,st) +s AEEKeyGen(mSkFE")(PPFE) 2:  (x,st) +s ATE'KeyGen(mSRFE")(ppFE)
— Let (C4,...,Cq) be Ay’s oracle queries
— Let fsky, be the oracle reply to C;
— Let V := {y; = C;(x), Ci, fsky, }.

3: ct <sFE.Enc(ppre, x) s: (ct,st") <5 S1(ppre, V, A)

40 Bes AT (ppee, ct, st) b Bes A st (oo ot st)

5: output(S,x) 5: output(B,z)

We distinguish between two cases of the above experiment:
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1. The adaptive case, where:

o the oracle O(mskrg, -) = FE.KeyGen(mskgg, -) and

o the oracle O'(mskgg, st', ) is the second stage of the simulator, namely Sg”ﬁ(‘)(mskpg7 st’,-)
where U, (C) = C(x) for any C € C,.

The simulator algorithm So is stateful in that after each invocation, it updates the state st’
which is carried over to its next invocation. We call a simulator algorithm S = (S1,82)
admissible if, on each input C, Sa just makes a single query to its oracle U,(-) on C itself.
The functional encryption scheme FE is then said to be q-query-simulation-secure for one
message against adaptive adversaries (q-AD-SIM secure for short) if there is an admissible
PPT simulator S = (S1,82) such that for every PPT adversary A= (A1, A2) that makes at
most q queries, the following two distributions are computationally indistinguishable:

rea ¢ idea
{Boran} _ ~{Baln}

2. The non-adaptive case, where the oracles O(mskgg, -) and O(mskgg, st,-) are both the “empty
oracles” that return nothing: the functional encryption scheme FE is then said to be q-
query-simulation-secure for one message against non-adaptive adversaries (q-NA-SIM se-
cure, for short) if there is a PPT simulator § = (S1, L) such that for every PPT adversary
A = (A1, As) that makes at most q queries, the two distributions above are computationally
indistinguishable.

As shown by [GVW12| Theorem A.1.], in the non-adaptive setting (that we also use), ¢-NA-SIM
security for one message is equivalent to ¢-NA-SIM security for many messages.

B Proof of Theorem [2]

We prove Theorem [2| by showing that the protocol of Fig. [f] fulfils the requirements of Defini-
tion [2] with the assumption that the underlying FE and OT are SIM secure against semi-honest
adversaries.

Proof. As correctness directly follows from the correctness of the underlying FE and OT, we turn
our attention towards the security requirements. We argue input and weak relaxed function privacy
by showing that the view of both parties can be simulated (without having access to the inputs of
the other party) using the simulators guaranteed by the SIM security of FE and OT.

Corrupted P;: Weak Relaxed Function Privacy. Besides its input and output, the view of
P, consists of the received OT messages and the function query Fg. Simulation becomes trivial
because of the fact that the output of P; also contains Fg. Thus Sp, ((z1,...,z4), Fr) can return
Fr and the output of the sender’s simulator S5, guaranteed by the SIM security of OT. The
simulated view is clearly indistinguishable from the real one.

Corrupted P»: Input privacy. The following simulator Sp, simulates the view of a corrupt
Py, that consists of its input (f1,..., fr), output {y;"; = f;(x;)}ic(x).je(a), the used randomness
and the incoming messages. Sp, first determines the index set I* = {i | 3j : y;, # L} C
[k]. Next, it sets up the parameters of the ideal experiment according to Def. To do so, it
samples (mskeg™, ppre*) <—s FE.Setup(A\) and then for all i € I* generates functional secret keys
fsk}, <—s FE.KeyGen(ppre*, mskre™, f;). For the simulation of the FE ciphertexts (corresponding
to unknown messages), we can use the FE simulator Spp for many messages (implied by one-
message ¢-NA-SIM security [GVWI12]). Thus Sre(ppre*, {yi; = fi(z;), fi, sk}, Yicrs jeja, ) =
(ctj,...,cth) can be appended to the simulated view together with ppgg*. The incoming messages
of are simulated using the OT simulator 8%, for the receiver. Finally the output of
So7(M {fsk}, Yier- U{Li}icp\ 1) is appended to the simulated view.
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Now we show the indistinguishability of the real and simulated views. As the inputs and outputs
are the same in both cases, we have to compare the randomness and the incoming messages. First
notice that ppre and pprg™ are generated with different random choices. At the same time, these
cannot be told apart as otherwise the choices were not random. The rest of the incoming messages
depend on these parameters. Observe that I* = I N [k]. The security of the used FE scheme

guarantees that (ctj,...,ct}) even together with functional keys {fsk}, }ics- are indistinguishable
from (cty,...,ctq) with {fsky, }icsnx- Finally, the security of the OT simulation guarantees that
(msg®T, ... msg®T) and (msg®T", ..., msg®T") are indistinguishable. This also implies that func-

tional keys for the same functions (with respect to either pprg or ppee*) can be obtained both
from the real and simulated OT messages. In other words, FE ciphertexts and functional keys are
consistent in both cases (i.e. they allow one to obtain the same decryption outputs) due to the
correctness of the FE simulation, which concludes our proof. O

C Inner Product rCPFE and Its Optimizations
C.1 Assumption

For completeness, we recall the classical DDH assumption on which we base the security of our
rCPFE for inner product computation.

Assumption 1 (DDH). Let G be a multiplicative group of prime order p, g € G its generator
element and x,y € Z, uniformly random values. We say that the Decisional Diffie-Hellman
assumption holds in G if given (g,9%,9Y,g"), no probabilistic polynomial time (PPT) algorithm
can decide, with higher than % + negl(p) probability, whether v = xy or r is also a uniformly
random value from Z,.

C.2 Instantiating Our Generic rCPFE for Inner Products

The instantiation of Protocol IIFPFE (Fig. |5) with the DDH-based inner product FE scheme of
[ALS16] and the 1 out of n OT protocol of [Tze04] leads us to an inner product rCPFE protocol
for kK = 1. See details in Fig. [7] For simplicity, in our description we use the following notation:
g° = (¢®,...,g%) for g € G and ¥ € Zf,. T& denotes an efficient injective encoding algorithm
mapping messages m € {0, 1} to elements of G, so that m can be efficiently recovered from Z&(m).
For more details on injective encodings, see [FJT13].

We note that in DDH-based inner product FE schemes only a polynomial sized range of the

possible inner product results can be efficiently decrypted and our protocol inherits this property.

C.3 Optimizations of the Inner Product rCPFE
Figures [§ and [J] formally describes the optimisation ideas we sketched in
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Protocol HzcsFE

PARAMETERS: &, A parametrizing security and function class (-, -) : Zf, X Zf) — Ly
Inputs:

o P: ¥, = (xﬂ,...,xig) S ZII; for i € [d], FaC Z;;

o Py ﬁe Zf)
OUuTPUTS:

e P: Frst.ye€ FrC Zf) and |Fr| =k

o Py (x;,y) € Z, if v ¢ Fy and L otherwise
ProTOCOL:

ONLINE PHASE

Step I. To initiate an inner product computation with ¢, P> does the following:

(1) samples a random matrix Yy, s Z,(,”_l)w and appends ¥ after the last row form-
ing Y = (i) € 257,
picks a random permutation o on k elements to permute the rows o S.t.
2) pick d tati 1 te th fY
Y = (9i) = Wo-13s);) € ZEX,
(3) finally, sends Fr =Y to P;.
Step II. Upon receiving a function request Fgr, P;

(1) chooses a group G of order a A-bit prime p, with generators g, ho, h1 € G, selects
an injective encoding Z¢& : Zf, — G, and set pp = (G, p, g, ho, h1, ZE™Y)
(2) samples random S s Z, and 5,1 < Zf; to form mskeg = (S, 5,1),
(3) Vj € [d] samples random 7; <—sZ, and to encrypt &;, computes
Ctj = (Cj = gTj,dj = gsrj,gj = gfj+r(§+5't_)>
(4) determines the index set of allowed vector queries I := {i | §; ¢ Fa},
(5) generate functional keys for all i € I : fsk; = (S; = (7, ), Ty = (§;, 1)),
(6) sends pp and {ct;};eq to Po
Step III. P; and P, executes the following 1 out of x OT protocol:
(1) P, samples random 71’ <—s Z,,, computes R’ = halhclr('{) and sends R’ to P;.
(2) for ¢ € [k], Py samples k; <—sZ,, prepares m; s.t. m; = fskzj_ ifieland m; = L
for i ¢ I, then computes the OT messages to be sent to P:
msg’ " = (a; = g™, bi = TE(m,) - (R'/h")*).
OFFLINE PHASE

P> can evaluate the inner products by executing the following steps:

(1) to extract the functional key from the OT messages, select msgg(TN) and compute

-1 r’
e <b0'(f€)/ao'(.‘£)) =K
(2) if 4 = L then output L, otherwise u = fSkﬁam = fsky = (Sk, Tk),

. g S T 2.0
(3) Vj € [d] compute (][, el (c;7 - d; 1) = g(&di)

(4) if the discrete log of g%} is contained in a predetermined range, it is computed
and returned as the output, otherwise L is returned.

Figure 7: An instantiation of the generic rCPFE construction for the inner product functionality.
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Protocol H?C_I;FE opt

Parameters: s, A\ parametrizing security, function class (-, -) : Zf; X ij — Zyp, and a pseudo-
random number generator PRG : {0,1}” — {0, 1}1°82P

Inputs:
o P ¥ = (xﬂ,...,a:ig) S Zf) for i € [d], Fa C Z‘i
o P ge Zﬁ

Protocol:

PRECOMPUTATION
Pre-Step I. P, samples ¢; ; < {0, 1}? for the PRG to compute ¢; ; = PRG(q; ;),Vi € [n],
J € €. Q= (qgi;) is kept locally, while Q" = (g; ;) is sent to P;.

Pre-Step II. P, computes Q = (g; ;) by evaluating PRG(q; ;) = ¢:j, Vi € [n], j € [€].

ONLINE PHASE
Step I. To generate function request Fg containing ¢, P

(1) chooses a random index i* +—s[n],
(2) encrypts ¢ with the i*th OTP key: ¢ = (y1 D ¢ix15---,Ye D ¢ix 0),
(3) finally, sends ¢, as a succinct description of Fg, to P;.
Step II. Upon receiving a function request Fr, P;
(0) decrypts Fg with all the OTP keys: g = W @G, Y D) Vien
(1)-(6) executesof H?C};FE (Fig. .
Step III. P, and P, executes the following 1 out of k OT protocol:

(1) P, samples random 7/ s Z,, computes R’ = b}y hi" and sends R’ to P;.
(2) Py acts as in[Step IIL|of H?CI;FE (Fig. .

OFFLINE PHASE
It is the same as in H?CF;FE (Fig. .

Figure 8: “OTP” optimization for the inner product rCPFE in case of uniformly distributed
function vectors of limited size.
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rCPFE sparse opt

Protocol H<. y

Parameters: k, A parametrizing security, function class (-,-) : Zf; X Zﬁ —+ Zyp, and a pseudo-
random number generator PRG : {0,1}” — {0, 1}°82P

Inputs:
o P: ¥; = (iﬂil,...,xie) S Zf) fori e [d], Fa C Zf,
) PQZ 376 Zf)

Protocol:

PRECOMPUTATION
Pre-Step I. P, does the following:
(1) samples PRG seed ¢f ; < {0,1}” to compute ¢; ; = PRG(q] ;), Vi € [n], j € [{],
(2) selects n random permutations ¥ = (oy,...,0,), each on £ elements,
(3) Q = (qi,;) is kept locally, while ¥ and Q" = (¢; ;) are sent to P;.
Pre-Step II. P; computes Q = (g; ;) by evaluating PRG(q; ;) = ¢i,5, Vi € [n],j € [(].
ONLINE PHASE
Step I. To generate request Fg for sparse ¢ (containing 0 < ¢ non-zero values), P,
(1) prepares the list of non-zero vector positions (ji,...,Jjs) s.t. y;, # 0, Ym € [d],
(2) chooses a random index i* s [n],
(3) computes Y := {(am = 04+ (Jm), bm = yj,, qi*m*(jm))}me[(g], where o;« € X,
(4) finally, sends Y, as a succinct description of Fg, to P;.
Step II. Upon receiving a function request Fg, P;

(0) prepares 3}2 vectors by setting 4 = by @ Gia,,, Vm € [0] and §;; = 0

. -1
0, (am)
otherwise,

(1)-(6) executes of I[N (Fig. [7).

Step III. P; and P, executes the following 1 out of x OT protocol:

(1) P, samples random 7/ ¢~ Z,, computes R’ = h}j hi" and sends R’ to P;.
(2) Py acts as in [Step IIL|of H?C};FE (Fig. .

OFFLINE PHASE

It is the same as in IV (Fig. [7).

Figure 9: “OTP” optimization for rCPFE for the inner product functionality in case of sparse
function vectors with uniformly distributed nonzero values.
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