
An Efficient Micropayment Channel on
Ethereum

Hisham S. Galal, Muhammad ElSheikh, and Amr M. Youssef

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, Québec, Canada

Abstract Blockchain protocols for cryptocurrencies offer secure pay-
ment transactions, yet their throughput pales in comparison to central-
ized payment systems such as VISA. Moreover, transactions incur fees
that relatively hinder the adoption of cryptocurrencies for simple daily
payments. Micropayment channels are second layer protocols that allow
efficient and nearly unlimited number of payments between parties at
the cost of only two transactions, one to initiate it and the other one
to close it. Typically, the de-facto approach for micropayment channels
on Ethereum is to utilize digital signatures which incur a constant gas
cost but still relatively high due to expensive elliptic curve operations.
Recently, ElSheikh et. al have proposed a protocol that utilizes hash
chain which scales linearly with the channel capacity and has a lower
cost compared to the digital signature based channel up to a capacity of
1000 micropayments. In this paper, we improve even more and propose a
protocol that scales logarithmically with the channel capacity. Further-
more, by utilizing a variant of Merkle tree, our protocol does not require
the payer to lock the entire balance at the channel creation which is an
intrinsic limitation with the current alternatives. To assess the efficiency
of our protocol, we carried out a number of experiments, and the results
prove a positive efficiency and an overall low cost. Finally, we release the
source code for prototype on Github1.

Keywords: Micropayment Channel, Ethereum, Merkle Tree.

1 Introduction

Cryptocurrencies such as Bitcoin [8] and Etheruem [11] enable secure payment
transactions between parties using blockchain technology. The major innovation
that made the success of Bitcoin was the Nakamoto consensus [8] that utilizes
Proof of Work (PoW) to enable distrusting peers to reach consensus. However,
this level of security comes at the cost of limited throughput and delayed con-
firmation. For example, the transaction throughput in Bitcoin and Ethereum
are roughly 5 and 20 transactions per second [1], respectively. Furthermore, it
was shown [5] that blockchain protocols based on PoW can hardly scale be-
yond 60 transactions per second without considerably weakening their security.

1 https://github.com/HSG88/Payment-Channel

https://github.com/HSG88/Payment-Channel

Additionally, the transaction fees are not constant and they vary significantly
based on the current price of the underlying coin, and also whether the network
faces high traffic of transactions. These limitations make applications such as
micropayments expensive to realize directly without further modification to the
consensus protocol.

A payment channel [3,6,7,9] is a protocol between two parties to send nearly
an unlimited number of payments interactions off-chain. To establish it, only two
transactions are required, one to open the channel (i.e., creating a smart contract
and funding it), and the second one to close it (i.e., reclaiming the funds). Fur-
thermore, a channel can have certain properties such as being a unidirectional
and monotonically increasing which allows us to have entirely off-line channel.
In other words, none of parties have to stay on-line to monitor changes on the
smart contract. All they have to watch for is the channel timeout. Furthermore,
a unidirectional and monotonically increasing payment channel is convenient for
a merchant and buyer scenario.

The de-facto standard payment channel protocols on Ethereum depend heav-
ily on digital signature schemes which incur a constant cost, yet a relatively high
one due to the cost of elliptic curve operations to verify the signature. Recently,
ElSheikh et. al [4] have proposed EthWord, a protocol that utilizes hash chain
to create an efficient payment channel as it scales linearly with the channel ca-
pacity (i.e., number of unit payments), and it has a lower gas cost up to roughly
a channel capacity of 1000 units of payments compared to the digital signature
based channels.

In this work, we improve even more on the efficiency and gas cost of the above
protocols and propose a scheme which scales logarithmically with the channel
capacity. Furthermore, the payer does not have to lock up the entire amount
in the construction of the payment channel, which is an intrinsic limitation
in the EthWord and digital signature based channels. Furthermore, as part of
our contribution, we also provide an open-source prototype on Github (https:
//github.com/HSG88/Payment-Channel) for the community to review it.

The rest of this paper is organized as follows. Section 2 provides a brief review
of a digital signature based channel construction referred to as Pay50, and the
hash chain based channel EthWord. In Section 3, we present the cryptographic
primitives utilized in the proposed scheme. Then, in Section 4, we provide the
design for our approach and compare its efficiency and cost to the other con-
structions. Finally, we present our conclusions in Section 5.

2 Related Work

Pay50. To argue the simplicity of building payment channels on Ethereum, Di
Ferrante [2] showed how to construct one using only ‘50 lines of code’ Solidity
implementation of a uni-directional, monotonic channel. Simply, the payer ini-
tializes a smart contract with the payee’s address, a timeout value, and deposits
some balance. Once it is deployed, the smart contract constructor stores the
payer’s address in order to verify the digital signatures of off-chain payments via

2

https://github.com/HSG88/Payment-Channel
https://github.com/HSG88/Payment-Channel

calling ecrecover (an op-code in Ethereum that returns the signer’s address).
After the deployment, the payer can send digitally signed payments messages to
the payee off-chain. The payee verifies the digital signature, and on success, the
payee provides the service or the item to the payer. At a later point of time but
before the channel timeout, the payee sends the last signed payment message to
the smart contract which releases the amount on successful verification.

EthWord [4] builds mainly on PayWord [10] and it depends significantly
on a hash chain which is constructed by iteratively applying a public one-way
hash function H on a secret random number s. More precisely, assume that
Hi(s) = H(Hi−1(s)) for i ∈ [1, n] (i.e, the length of the hash chain is n). The
last hash value in the chain Hn(s) is referred to as the tip. Furthermore, since the
utilized hash function H is assumed to have the preimage resistance property,
then it is computationally infeasible for an adversary to find any preimage in the
chain given its tip. In the context of payments, the payer creates a hash chain
of length n which represents the maximum number of possible payments. Then,
the payer creates a channel by deploying a smart contract on Ethereum, passing
the tip, the payee address, and timeout value as parameters. Later, the payer
can send units of payments by revealing a preimage value deeper in the chain.
For example, to pay i units, the payer sends Hn−i(s) to the payee. The payee
can verify it off-chain by iteratively hashing Hn−i(s) i times, and see if the result
equals the tip. Before the channel timeout, the payee sends the latest Hn−i to
reclaim i units once the smart contract has verified it. Similar to Pay50, after
the timeout, the smart contract sends the remaining balance back to the payer.

3 Preliminaries

Merkle Tree. is a core component of the blockchain protocols. In Ethereum [11],
Merkle trees aggregate the hashes of transactions, states, and receipts in a
particular block so that the root becomes a binding commitment to all these
values in that block. Technically speaking, a Merkle tree is a balanced bi-
nary tree in which the leaf nodes hold values and each non-leaf node stores
H(LeftChild||RightChild), where H is a collision-resistant hash function. Prov-
ing the membership of a value in the tree can be achieved with a logarithmic size
proof (in terms of the number of leaves), known as a Merkle proof. For example,
given a Merkle tree M with a root r, to prove that a value x ∈ M , the prover
creates a Merkle proof π by retrieving the siblings of each node on the path
from x to r. The verifier iterates over the nodes in πi to construct a root r′ and
accepts the proof if r′ = r. It is worth noting that since M is a binary tree, then
the proof size |π| = log2(n) as shown in Fig. 1.

The extension to our scheme that enables the payer to add funds to the
channel depends on a variant of Merkle tree which is not strictly balanced. The
objective is to append new values to the tree while at the same time maintain
correct Merkle proofs for the old values. More precisely, to append a new set
of m values to an existing Merkle tree Mn with n leaves and root rn. First, we
generate a Merkle tree Mm with a root rm from the m values. Then, we combine

3

a b c d

Ha Hb Hc Hd

Hab Hcd

Habcd

Figure 1: An example illustrating the Merkle proof for element c ∈ M which
consists of the nodes Hd and Hab

the Merkle trees Mn and Mm to generate a new tree M ′ that contains the roots
rn and rm as the child nodes of its root r′. Note that we still preserve the
correctness of Merkle proofs for values in Mn by augmenting any valid Merkle
proof π for elements in Mn with the root rm to be valid with respect to M ′.

4 Protocol Design and Implementation

Assume that Alice runs an online service for which she accepts (ether) currency
on a micro-level (e.g., a very low fraction of ether that costs less than one
dollar). Bob is interested in that service and he wants to utilize it. However,
sending transactions to the Ethereum blockchain has a minimum cost of 21000
gas [11] which becomes too expensive for Bob as the number of interactions
between him and Alice increases. To make it efficient and also cheap, Alice and
Bob can utilize an off-chain payment channel. There are three phases in our
protocol from the initiation to completion.

4.1 Channel Setup

This phase starts with Bob generating a secret random number s0. Suppose that
he estimates the number of maximum units of payments (i.e., channel capacity)
he is willing to make is n. Note that we explain later how he can increase this
number in case he wants to utilize the service more than he expected. Then, Bob
uses a pseudo random number generator with the seed s0 to create a sequence of
random numbers (s1, ..., sn)). After that, he creates a Merkle tree M to bind the
elements ((1||s1), ..., (i||si), ..., (n||sn)) where every element is the concatenation
of a value i ∈ [1, n] and a random number si. We also assume that there is a
minimum unit of payment u, (e.g., u = GWei = 1× 10−9 ether).

At this moment, Bob deploys a smart contract on Ethereum to act as a
trusted third party that holds Bob’s balance and settles the final payment trans-
action to Alice. To deploy it, Bob passes the following parameters that control
the payment channel between him and Alice to the smart contract constructor:

1. Alice’s address Aadr on Ethereum.

4

2. A timeout value Tout before the channel is closed.
3. The root r of the Merkle tree M .

Additionally, Bob has to deposit an amount balance = n×u ether in the smart
contract to be held in escrow, and pay Alice when she submits a valid Merkle
proof.

4.2 Off-chain Payments

Every time Bob wants to utilize Alice’s service, he sends her a new Merkle proof
πi for an amount of i units. To generate the proof πi, Bob runs Algorithm 1 which
takes a Merkle tree M , an amount i, and the seed value s0 as parameters. We

Algorithm 1 Create Merkle Proof πi for an amount i and random seed s0

1: function CreateMerkleProof(M, i, s0)
2: πi ← []
3: si ← PRNG(s0, i)
4: node = H(i||si)
5: while node 6= M.root do
6: neighbour ←M.GetNeighbour(node)
7: πi.Append(neighbour)
8: node←M.GetParent(node)
9: end while

10: return πi

11: end function

start by generating the corresponding random value si. Then, si is concatenated
to the amount i before feeding the result to the hash function H. Doing so prevents
Alice from guessing the pre-images of the leaves in MT . In our implementation,
we utilize Keccak256 as the hash function H due to its built-in support in the
Ethereum virtual machine as an op-code. Then, we append the neighbour node
of each node in the path from the leaf to the root r to the proof πi.

After receiving the proof πi, Alice has to verify it before providing the new
service to Bob. So she calls Algorithm 2, and she decides to accept or reject
based on the output. Note that, Algorithm 2 is also one of the functions in the
smart contract that settles the payment to Alice. Essentially, Alice has to only
keep track of the latest πi (i.e., the proof for largest i amount). Once, Alice and
Bob agree that there is no more payment interactions going between them and
before the channel timeout, Alice sends πi to the smart contract which will verify
it and releases the payment to Alice.

4.3 Channel Termination

At this phase, Alice cannot issue any payment request to the smart contract as
the channel has reached its timeout. However, Bob can reclaim his remaining

5

Algorithm 2 Verify Merkle Proof πi for a Merkle tree with root r, amount i,
and a random number si

1: function VerifyMerkleProof(πi, i, si, r)
2: node = H(i, si)
3: for j ← 1 to size(πi) do
4: if node < πi,j then
5: node← H(node||πi,j)
6: else
7: node← H(πi,j ||node)
8: end if
9: end for

10: if node = r then
11: return true
12: else
13: return false
14: end if
15: end function

funds by calling selfdestruct. Typically, this will disable the smart contract
from processing any further transactions. However, the smart contract can be
alternatively designed to allow for reusing it for new payment channels without
destructing it. Nonetheless, in our implementation, we chose a similar design to
Pay50 and EthWord in order to make fair comparisons.

4.4 Dynamic Refund Extension

One major advantage for our approach compared to the other alternatives is the
ability to add more fund as Bob wants while the channel is open. In other words,
Bob is not required to lock the full amount of balance which can be a substantial
value at the time the channel construction. Toward this end, when required, Bob
creates a new Merkle tree M2 with a root r2 that binds the additional m amounts
of payments. Then, he sends r2 to the smart contract along with the additional
balance. The smart contract combines the old root r1 with r2 and hash the result
to create a new root r′. Note that, since Ethereum is a public blockchain, then
Alice can see the transaction carrying r2. Therefore, she can still generate a valid
proof for previous payments by augmenting the r2 to the Merkle proof πi for
i ∈ [1, n]. In other words, Alice can still guarantee that she can reclaim her latest
payments even if Bob acted maliciously and generated a bogus root r2 for a fake
tree M2.

4.5 Evaluation

To assess our approach, we created experiments to check the efficiency and gas
cost associated with Pay50, EthWord, and our approach. We also created off-chain
clients to interact with the smart contract of each one. To our expectation, the

6

efficiency of our approach as indicated by its gas cost far outweighs the corre-
sponding cost of Pay50 and EthWord. The results shown in Fig. 2 indicate that

 32

 34

 36

 38

 40

 42

 44

 46

 256 512 1024 2048 4096

x 104

C
os

t
(g

a
s)

Channel Capacity

PayMerkle
EthWord

Pay50

 34.9

 35

 35.1

 35.2

 35.3

 35.4

 35.5

 8 16 32 64 128

Figure 2: The total gas cost of payment channel creation and settlement for
different channel capacities.

our approach is better than Pay50 virtually on all practical channel capacities,
however, it is slightly behind EthWord when the the channel capacity is lower
than 256, due to the added cost of Merkle proof size and the code logic to verify
it. However, our approach scales much better after that level as the gas cost of
EthWord increases at a much faster pace, and stays behind Pay50 once the chan-
nel capacity is above 1000. Interestingly, invoking the dynamic refund extension
in our solution costs 28,941 gas which is much cheaper than the cost to deploy
a new EthWord payment channel (318,953 gas).

It is also worth noting that the size of the Merkle proof is taken into account
by the gas cost of the channel termination transaction. Hence, by achieving an
overall lower gas cost, this implies that the cost for the increased parameters
size in our protocol compared to the constant single parameter in EthWord and
Pay50 is paid off by the efficiency of verifying the Merkle proofs compared to
processing the hash chain in EthWord and verifying digital signature in Pay50.
Concretely, the largest non-realistic capacity is 2256, which requires a Merkle
proof of 256 hashes. Therefore, the Merkle proof size in bytes is 256× 32 bytes
= 8-Kbytes. From the yellow paper of Ethereum, the fee for every non-zero byte
is 68 gas. As a result, the maximum possible Merkle proof size will incur a total
gas cost of 557, 056 gas which is approximately 8% of the current block gas limit.

7

5 Conclusion

One way to improve the throughput of PoW based blockchains is by utilizing
second layer improvements such as payment channels. Furthermore, payment
channels increase the adoption of cryptocurrencies for simple payments as it re-
quires only two transactions to be committed to the blockchain while allowing
an unlimited number of transactions off-chain. The de-facto standard for pay-
ment channels is to utilize digital signatures which incur a constant cost, yet
relatively high one compared to hash-based solutions such as EthWord. In this
work, we further improved upon the efficiency of these schemes and proposed
a solution, based on Merkle trees, that scales logarithmically with the number
of payments. Additionally, our approach does not require the payer to lock the
entire amount of balance at the time of the channel construction. In other words,
the payer can add up funds at later points of time at a much cheaper cost than
recreating new payment channels as found in previous proposals such as Pay50

and EthWord. For future work, we will investigate how to scale our approach to
build payment networks between multiple parties, and also add the ability to
make a bidirectional channel.

References

1. Blockchain explorer: Number of transactions per day in bitcoin and ethereum,
2019. https://www.blockchain.com/explorer.

2. M. Di Ferrante. Ethereum payment channel in 50 lines of code. Medium, June
2017.

3. S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski. Perun: Virtual payment
hubs over cryptocurrencies. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 327–344, 2019.

4. M. Elsheikh, J. Clark, and A. M. Youssef. Deploying payword on ethereum. In In-
ternational Conference on Financial Cryptography and Data Security Workshops,
BITCOIN, VOTING, and WTSC (To Appear). Springer, 2019.

5. A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Capkun.
On the security and performance of proof of work blockchains. In Proceedings
of the 2016 ACM SIGSAC conference on computer and communications security,
pages 3–16. ACM, 2016.

6. L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais. Sok: Off
the chain transactions. IACR Cryptology ePrint Archive, 2019:360, 2019.

7. A. Miller, I. Bentov, R. Kumaresan, C. Cordi, and P. McCorry. Sprites and
state channels: Payment networks that go faster than lightning. arXiv preprint
arXiv:1702.05812, 2017.

8. S. Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system. 2008.
9. J. Poon and T. Dryja. The bitcoin lightning network: Scalable off-chain instant

payments, 2016.
10. R. L. Rivest and A. Shamir. Payword and micromint: Two simple micropayment

schemes. In International workshop on security protocols, pages 69–87. Springer,
1996.

11. G. Wood. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper, 151:1–32, 2014.

8

https://www.blockchain.com/explorer

	An Efficient Micropayment Channel on Ethereum

