
Efficient Attribute-based Proxy Re-Encryption with
Constant Size Ciphertexts

Arinjita Paul, S. Sharmila Deva Selvi and C. Pandu Rangan

Theoretical Computer Science Lab,
Department of Computer Science and Engineering,

Indian Institute of Technology Madras, Chennai, India.
{arinjita,sharmila,prangan}@cse.iitm.ac.in

Abstract. Attribute-based proxy re-encryption (ABPRE) allows a semi-trusted
proxy to transform an encryption under an access-policy into an encryption un-
der a new access policy, without revealing any information about the underlying
message. Such a primitive facilitates fine-grained secure sharing of encrypted data
in the cloud. In its key-policy flavor, the re-encryption key is associated with an
access structure that specifies which type of ciphertexts can be re-encrypted. Only
two attempts have been made towards realising key-policy ABPRE (KP-ABPRE),
one satisfying replayable chosen ciphertext security (RCCA security) and the other
claiming to be chosen ciphertext secure (CCA secure). We show that both the sys-
tems are vulnerable to RCCA and CCA attacks respectively. We further propose
a selective CCA secure KP-ABPRE scheme in this work. Since we demonstrate
attacks on the only two existing RCCA secure and CCA secure schemes in the lit-
erature, our scheme becomes the first KP-ABPRE scheme satisfying selective CCA
security. Moreover, our scheme has an additional attractive property, namely collu-
sion resistance. A proxy re-encryption scheme typically consists of three parties: a
delegator who delegates his decryption rights, a proxy who performs re-encryption,
and a delegatee to whom the decryption power is delegated to. When a delegator
wishes to share his data with a delegatee satisfying an access-policy, the proxy can
collude with the malicious delegatee to attempt to obtain the private keys of the
delegator during delegation period. If the private keys are exposed, security of the
delegator’s data is completely compromised. The proxy or the delegatee can obtain
all confidential data of the delegator at will at any time, even after the delegation
period is over. Hence, achieving collusion resistance is indispensable to real-world
applications. In this paper, we show that our construction satisfies collusion resis-
tance. Our scheme is proven collusion resistant and selective CCA secure in the
random oracle model, based on Bilinear Diffie-Hellman exponent assumption.

Keywords: proxy re-encryption, key-policy, attribute-based encryption, random
oracle, bilinear map.

1 Introduction

In traditional proxy re-encryption (PRE) systems [1,5], the communication model is one-
to-one, in the sense that a message can be re-encrypted only towards a particular public
key. In practice, however many scenarios require the re-encryption functionality without

exact knowledge of the set of intended recipients. One such major application is data shar-
ing in untrusted cloud storage. In the cloud, a data owner may wish to share his encrypted
data with users satisfying a specified access policy. In order to enable such expressive and
fine-grained data sharing, Liang et al. [16] introduced the notion of attribute-based proxy
re-encryption (ABPRE). ABPRE is an extension of the traditional PRE primitive to its
attribute-based counterpart. The notion of PRE was introduced by Blaze, Bleumer and
Strauss [5] to provide delegation of decryption rights. ABPRE designates a semi-trusted
proxy to transform ciphertexts of users (delegators) satisfying an access policy into ci-
phertexts of users (delegatee) satisfying a new access policy. The proxy performs the
conversion as a service upon receiving a special key construct called re-encryption key
from the delegator, and while transforming the ciphertext, the proxy should not learn
anything about the underlying message.

ABPRE integrates the notion of PRE with attribute-based encryption (ABE) to effec-
tively enhance the flexibility of delegation of decryption capability. ABE is a generalization
of Identity-Based Encryption (IBE), introduced by Sahai and Waters [22] wherein a user’s
identity is generalized to a set of descriptive attributes instead of a single string. ABE
has two variants: Key-Policy ABE (KP-ABE) and Ciphertext-Policy ABE (CP-ABE). In
KP-ABE systems, the private key captures an access structure that specifies which type
of ciphertexts the key can decrypt, while ciphertexts are labeled with attribute sets. Its
dual, CP-ABE associates a user’s private key with a set of attributes, while ciphertexts
are embedded with access policy information. In light of the above, ABPRE can be classi-
fied into key-policy ABPRE (KP-ABPRE) and ciphertext-policy ABPRE (CP-ABPRE).
Based on the direction of delegation, ABPRE systems are classified into unidirectional
and bidirectional schemes. Additionally, based on the number of re-encryptions permit-
ted, ABPRE systems are classified into single-hop and multi-hop schemes. In this work,
we focus on unidirectional single-hop key-policy ABPRE schemes.

A cloud storage system may typically contain two kinds of encrypted data. The first
kind termed first-level ciphertext, is the information that a user A encrypts under his
attribute set W1 and is likely to share with users identified by an attribute set W2. Such
an information is subject to re-encryption by the cloud, which performs the conversion
upon getting the re-encryption key from user A. The second kind termed as second-
level ciphertext is the re-encrypted data, converted by the cloud towards an access policy
fulfilled by attribute set W1 of user A, delegated by another user C. Such an encrypted file
can not be further re-encrypted in a single hop scenario. The only way to illegally decrypt
such ciphertexts is when a malicious user B with attributes W2 and a cloud possessing a
re-encryption key collude to obtain the private key corresponding to an access structure
satisfied by W1. Again, the re-encryption rights are enabled for a bounded, fixed period
and malicious parties may want to decrypt ciphertexts of A even beyond that period.
Collusion attack [1] refers to such an act where a colluding delegatee and cloud extract
the private key of the delegator, causing harm to the delegator in every possible manner,
such as unauthorised access to his sensitive data, identity theft and illegal delegation
of decryption power. Thus, achieving collusion resistance is one of the major important
problems in KP-ABPRE schemes. Collusion-resistant KP-ABPRE has many real-world
applications such as blockchain based distributed cloud data storage and sharing, online
medical service systems, online payment systems among others [15].

Note that achieving this powerful functionality of fine-grained access control comes at
a cost. In a typical implementation of any previous construction of KP-ABPRE in the

2

literature, the size of the ciphertext grows linearly with the size of the attribute set em-
bedded by the sender. Also, the re-encryption and decryption time is proportional to the
number of attributes involved of the receiver. Reducing the ciphertext size and compu-
tation cost is highly beneficial in scenarios with low-bandwidth requirements and limited
computing power. In this paper, we study KP-ABPRE in light of achieving collusion
resistance and constant size ciphertexts.

Related Work and Contribution

In this work, we address the problem of designing collusion-resistant non-interactive at-
tribute based PRE in the key-policy setting supporting rich access policies such as mono-
tonic access structures, proposed in [14]. To integrate PRE to ABE setting, Liang et al. [16]
first defined the notion of attribute-based PRE and proposed a CP-ABPRE scheme in the
standard model, proven CPA-secure under Augment Decisional Bilinear Diffie-Hellman
assumption. Chung et al. [7] gives a detailed study of the existing attribute based PRE
schemes in their work.

Li et al. [14] proposed the first KP-ABPRE scheme wherein matrix access structure
is used to provide key-policy. Their construction is unidirectional, multi-use, collusion-
resistant and is proven CPA-secure based on the Bilinear Decisional Diffie Hellman (DBDH)
assumption. Note that, their construction relies on a trusted authority for the generation
of the re-encryption keys, making the scheme highly infeasible. Since the same trusted
authority is responsible for the generation of private keys, achieving delegation with the
involvement of the trusted authority is trivial but impractical. Their work is extended
in [13] to achieve an RCCA-secure KP-ABPRE scheme with matrix access structure to re-
alize key-policy. Their design is unidirectional, multi-use and is claimed to be adaptively
RCCA-secure based on DBDH assumption, with the same drawback of entrusting the
trusted authority with the generation of re-encryption keys. Note that RCCA (replayable
chosen ciphertext attack) is a weaker variant of CCA tolerating a “harmless mauling”
of the challenge ciphertext. In 2015, Ge et al. [12] designed a unidirectional single-hop
CCA-secure KP-ABPRE scheme supporting monotonic access structures, without ran-
dom oracles under the 3-weak decisional bilinear Diffie–Hellman inversion(3-wDBDHI)
assumption. However, note that, their construction does not adhere to the standard
definition of KP-ABPRE. In essence, their scheme is a variation of conditional proxy
re-encryption [23]. In their design, a first-level ciphertext C is labelled with a set of de-
scriptive conditions W , encrypted towards an individual public key pki, decryptable only
using its corresponding private key ski. Here, every re-encryption key is generated using
an access structure tree T associated with conditional keywords. That is, C can only be
re-encrypted towards another public key pkj specified in the re-encryption key RKi,T ,j
only if W (used to label C) satisfies the access tree T of the re-encryption key. Their sys-
tem enables one-to-one communication subject to conditions specified via access trees in
re-encryption key, rather than a many-to-many transformation enabled by KP-ABPRE.
Recently, Ge et al. [11] proposed an adaptive CCA-secure collusion resistant KP-ABPRE
scheme that supports any monotonic access structures on users’ keys. Their scheme is
claimed to be secure in the standard model based on subgroup decision problem for 3
primes and composite order bilinear pairings.

Our contribution in this work is twofold. Firstly, we demonstrate two attacks on the
security of the existing KP-ABPRE schemes in the literature. We show that the recent KP-

3

ABPRE construction of Ge et al. [11] is vulnerable to CCA attack. We also demonstrate
an RCCA attack on the KP-ABPRE scheme due to Li et al. [13], which claims to be
RCCA secure. Consequently, only one result due to Li et al. [14] achieves attribute based
proxy re-encryption in the key-policy setting, which is CPA secure in the random oracle
model. In [8], Cohen et al remarks on the inadequacy of CPA security in proxy re-
encryption. Besides, the difficulty in achieving a CCA-secure KP-ABPRE scheme has
been discussed in [13]. Our second contribution lies in designing the first construction of a
selective CCA secure KP-ABPRE scheme in the selective model of security. Our scheme
is proven secure under the Decisional Bilinear Diffie Hellman Exponent assumption in
the random oracle model. All the previous attempts to construct KP-ABPRE schemes
admitting expressive re-encryption and decryption policies produce ciphertexts whose
size grows linearly with the number of attributes embedded in the ciphertext for both
levels of encryption. This paper proposes the first KP-ABPRE result allowing monotonic
access structure with constant size ciphertext, based on the KP-ABE framework of Rao
et al. [21] and BLS short signature [6]. Also, the scheme enjoys the feature of constant
number of exponentiations during encryption, and constant number of bilinear pairings
during encryption, re-encryption and decryption. This is especially useful in applications
that have low bandwidth requirements and limited computing power.

2 Preliminaries

2.1 Bilinear Maps and Hardness Assumptions

Definition 1. (Bilinear Maps) Let G0 and G1 be two finite cyclic groups of prime
order p. A bilinear map is an efficient mapping ê : G0×G0 → G1 which is both: (bilinear)
for all a, b ε Z∗p and g, h ε G0, ê(ga, hb) = ê(g , h)ab; and (non-degenerate) if G0 = 〈g〉,
then G1 = 〈ê(g , g)〉.

Definition 2. (n-Decisional Bilinear Diffie-Hellman Exponentiation assump-
tion [21]) The n-decisional bilinear diffie-hellman exponentiation (n-DBDHE) assump-

tion is, given the elements {g, gb, ga, ga2 , · · · , gan , gan+2

, · · · , ga2n} ∈ G0 and Z ∈ G1,

there exists no PPT adversary which can decide whether Z = ê(g, g)b(a
n+1) or a ran-

dom element from G1 with a non-negligible advantage, where g is a generator of G0 and
a, b ∈R Z∗p.

2.2 Access Structure and Linear Secret Sharing Schemes

Definition 3. (Access Structure [3]) Let P = {P1, P2, · · · , Pn} be a set of parties.
A collection A ⊆ 2P is monotone if ∀B,C, if B ∈ A and B ⊆ C, then C ∈ A. An access
structure (respectively, monotone access structure) is a collection (respectively, monotone
collection) A of non-empty subsets of P, i.e., A ⊆ 2P\{φ}. The sets in A are called the
authorized sets, and the sets not in A are called the unauthorized sets.

In the context of ABE, the role of parties is taken by attributes. Thus, an access structure
A contains all the authorized set of attributes. In this paper, we work with monotone
access structures. Next, we define Linear Secret-Sharing Scheme (LSSS)-realizable access
structure, used to specify access control policies over user attributes.

4

Definition 4. (Linear Secret Sharing Scheme) [4] Let P be a set of parties. Let
M be a matrix of size l × k, called the share generating matrix. ρ : [l] → P is a row-
labeling function that maps rows in M to attributes in A. A secret sharing scheme Π for
access structure A is called linear in Zp represented as (M,ρ) if it consists of the following
polynomial time algorithms:

– Share(M,ρ, s): To generate shares of a secret s ∈ Zp, it chooses z2, z3, · · · , zk
R← Zp

and sets v = (s, z2, z3, · · · , zk)T . It outputs (M ·v) as the vector of l shares. The share
λi = (Mi · v) belongs to an attribute ρ(i), where MT

i is the ith row of M .
– Reconstruct(M,ρ,W): This algorithm accepts as input (M , ρ) and a set of attributes
W ∈ A. Let I = {i|ρ(i) ∈ W}. It outputs a set {ωi : i ∈ I} of secret reconstruction
constants such that

∑
i∈I ωi · λi = s, if {λρ(i) : i ∈ I} is a valid set of secret shares of

the secret s according to Π.

3 Definition of KP-ABPRE

Definition 5. (Key-Policy Attribute-Based Proxy Re-Encryption (KP-ABPRE))
A single-hop unidirectional KP-ABPRE scheme consists of the following seven algorithms:

– Setup(1κ, U): A PPT algorithm run by a certification authority CA that takes the
unary encoding of the security parameter κ and an attribute universe description U
as inputs. It outputs the public parameters as params and a master secret key MSK.

– KeyGen(MSK, (M,ρ), params): A PPT algorithm run by CA that takes as input
the master secret key MSK, an access structure (M,ρ) for attributes over U and
the public parameters params. It outputs a private key SK(M,ρ) corresponding to the
access structure (M,ρ).

– Encrypt(m,W, params): A PPT algorithm that takes as inputs a message m ∈ M,
an attribute set W and params. It outputs a ciphertext C, termed as first-level ci-
phertext, which can be further re-encrypted.

– Decrypt(C, SK(M,ρ), params): A deterministic algorithm that takes as input a first-
level ciphertext C encrypted under attribute set W , a private key SK(M,ρ), and params.
If W |= (M,ρ), it outputs the message m ∈ M, else output an error symbol ⊥ indi-
cating C is invalid.

– ReKeyGen(SK(M,ρ), (M,ρ), (M ′, ρ′), params): A PPT algorithm run by the dele-
gator that takes as input a private key SK(M,ρ) corresponding to an access struc-
ture (M,ρ), an access structure (M ′, ρ′) and params. It outputs a re-encryption key
RK(M,ρ)→(M ′,ρ′), that can perform re-encryption of ciphertexts under attribute set
W |= (M,ρ) towards attribute set W ′ |= (M ′, ρ′).

– ReEncrypt(C,RK(M,ρ)→(M ′,ρ′), params): A PPT algorithm run by the proxy that
takes as input a first-level ciphertext C encrypted under an attribute set W , a re-
encryption key RK(M,ρ)→(M ′,ρ′) and params. It outputs a re-encrypted ciphertext D
if W |= (M,ρ) or an error symbol ⊥ indicating C is invalid. The ciphertext D cannot
be further re-encrypted, also termed as second-level ciphertext.

– ReDecrypt(D,SK(M ′,ρ′), params): A deterministic algorithm that takes as input a
second-level ciphertext D encrypted under an attribute set W ′, a private key SK(M ′,ρ′)

and params. If W ′ |= (M ′, ρ′), it outputs the message m ∈ M or an error symbol ⊥
indicating D is invalid.

5

The consistency of a KP-ABPRE scheme for any given public parameters params, private
keys SK(M,ρ) ← KeyGen(MSK, (M,ρ), params), SK(M ′,ρ′) ← KeyGen(MSK, (M ′, ρ′),
params) and re-encryption keysRK(M,ρ)→(M ′,ρ′) ← ReKeyGen(SK(M,ρ), (M,ρ), (M ′, ρ′),
params) and ∀m ∈M, the following equations hold:

1. Consistency between encryption and decryption:
Decrypt(C, SK(M,ρ), params) = m, where C ← Encrypt(m,W, params).

2. Consistency between encryption, proxy re-encryption and decryption:
ReDecrypt((ReEncrypt(C,RK(M,ρ)→(M ′,ρ′), params)), SK(M ′,ρ′), params) = m, where
C = Encrypt(m,W, params) and W |= (M,ρ).

4 Security Model

Our game-based definitions of selective security of a single-hop unidirectional KP-ABPRE
against chosen ciphertext attack are adaptations of the definitions of CCA security for
KP-ABPRE systems in [12]. A KP-ABPRE scheme is IND-PRE-CCA secure if no PPT
adversary has a non-negligible advantage in the below game defined next between the
challenger C and adversary A. In this model, the adversary A needs to fix the target
access structure (M∗, ρ∗) beforehand in the Initialization phase.

Game Template of IND-PRE-CCA security:

• Initialization: A outputs a target access structure (M∗, ρ∗) on which it wishes to
be challenged. C runs Setup(1κ, U) and sends the public parameter params to A.
• Phase 1: A issues queries to the following oracles simulated by C:
− Private Key Extraction(OSK(M,ρ)): On input of an access structure (M,ρ), com-

pute its corresponding private key SK(M,ρ) and return to A.
− Re-encryption Key Generation(ORK((M,ρ), (M ′, ρ′))): Given two access struc-

tures (M,ρ) and (M ′, ρ′)) as input, compute the re-encryption keyRK(M,ρ)→(M ′,ρ′)

and return it to A.
− Re-Encryption(ORE(C, (M,ρ), (M ′, ρ′))): On input of a first-level ciphertext C,

access structures (M,ρ) and (M ′, ρ′), compute re-encryption key RK(M,ρ)→(M ′,ρ′)

and the second level ciphertext D ← ReEncrypt(C,RK(M,ρ)→(M ′,ρ′), params).
Return D to A.

− Decryption(ODec(C, (M,ρ))): Given a first level ciphertext C and an access struc-
ture (M,ρ) as input, decrypt the ciphertext to obtain m ∈M. Return m or ⊥ if
the ciphertext is invalid.

− Re-Decryption(ORD(D, (M ′, ρ′))): Given a second level ciphertext D and an ac-
cess structure (M ′, ρ′) as input, decrypt the ciphertext to obtain m ∈M. Return
m or ⊥ if the ciphertext is invalid.

• Challenge: A decides whether it wants to be challenged with a first level or a second
level ciphertext. It outputs two equal length messages m0 and m1 in M to C. On
receiving {m0,m1}, C picks ψ ∈ {0, 1} at random, an attribute set W ∗ |= (M∗, ρ∗)
and generates a challenge ciphertext and returns to A.
• Phase 2: A issues queries to the oracles similar to Phase 1, subject to constraints as

discussed later.
• Guess: A outputs its guess ψ′ ∈ {0, 1}.

6

The actual construction of the challenge ciphertext and the constraints on the queries of
A simulated by C are defined based on the type of ciphertext that A opts for. Due to the
existence of two levels of ciphertexts, namely first level and second level ciphertexts, the
security game and different adversarial constraints at both levels are shown next.

CCA-Security Game 1 ExpIND−PRE−CCAA,1 (κ)

(M∗, ρ∗)← A, params ← Setup(κ);

(m0,m1, St)← AOSK ,ORK ,ORE ,ODec,ORD (params);

ψ εR {0, 1}, C∗ ←Encrypt(mψ,W |= (M∗, ρ∗),params);

ψ′ ← AORK ,ORE ,ODec,ORD (C∗, St); //query constraints are shown in Section 4.1

if ψ = ψ′ return 1, else return 0

Game 1: IND-PRE-CCA security game for first level ciphertext. Note that St is
the state information maintained by A.

CCA-Security Game 2 ExpIND−PRE−CCAA,2 (κ)

(M∗, ρ∗)← A, params ← Setup(κ);

(m0,m1,St)← AOSK ,ORK ,ODec,ORD (params);

ψ εR {0, 1}, C∗ ←Encrypt(W |= (M∗, ρ∗),mψ,params);

ψ′ ← AORK ,ODec,ORD (C∗, St); //query constraints are shown in Section 4.2

if ψ = ψ′ return 1, else return 0

Game 2: IND-PRE-CCA security game for second level ciphertext.

4.1 First Level Ciphertext Security:

For the first-level ciphertext security, C interacts with A as per the game template shown
above (Game 1), with the following adversarial constraints, where the challenge ciphertext
is C∗ =Encrypt(mψ,W, params) and W |= (M∗, ρ∗):

− OSK(M∗, ρ∗) should not be queried by A.
− ORK((M∗, ρ∗), (M ′, ρ′)) must not be queried if OSK(M ′, ρ′) has already been queried.
− OSK(M ′, ρ′) must not be queried if ORE(C∗, (M∗, ρ∗), (M ′, ρ′)) has already been

queried.
− OSK(M ′, ρ′) must not be queried if ORK((M∗, ρ∗), (M ′, ρ′)) has already been queried.
− ORE(C∗, (M∗, ρ∗), (M ′, ρ′)) must not be queried if OSK((M ′, ρ′)) has already been

queried.
− ODec(C∗, (M∗, ρ∗)) cannot be queried by A.
− ORD(D, (M ′, ρ′)) cannot be queried for second level ciphertext D re-encrypted to-

wards (M ′, ρ′) where D is a challenge derivative (defined next) of C∗.

7

Definition 6. Challenge Derivative[11] A challenge derivative of C∗ in the CCA set-
ting is inductively defined as below:

– Reflexivity: C∗ is a challenge derivative of itself.
– Derivative by re-encryption: D is a challenge derivative of C∗ if D ← ORE(C∗, (M∗, ρ∗),

(M ′, ρ′)).
– Derivative by re-encryption key: D is a challenge derivative of C∗ if RK (M∗,ρ∗)→(M ′,ρ′)

← ORK((M,ρ), (M ′, ρ′)) and D = ReEncrypt(C∗, RK(M,ρ) →(M ′,ρ′), params).

Definition 7. The advantage of any PPT adversary A denoted by AdvA in winning
the above IND-PRE-CCA game (Game 1) for first level ciphertext which we term as
ExpIND−PRE−CCAA,1 (κ) is shown as

AdvIND−PRE−CCAA,1 :=

∣∣∣∣Pr[ExpIND−PRE−CCAA,1 (κ)
]
− 1

2

∣∣∣∣
where the probability is over the coin tosses of challenger C and adversary A.

The scheme is IND-PRE-CCA secure for the first level ciphertext against any t-time
adversary A that makes atmost qSK , qRK , qReEnc, qDec and qRD queries to OSK , ORK ,
ORE , ODec and ORD oracles respectively, if the advantage of A is negligibly small:
AdvIND−PRE−CCAA,1 ≤ ε.

4.2 Second Level Ciphertext Security:

For the second-level ciphertext security game (Game 2), the adversarial constraints on A
are given below, where the challenge ciphertext is D∗ =ReEncrypt(C,RK(M ′,ρ′)→(M∗,ρ∗),
params) and C is a first level encryption of mψ under the delegator’s attribute set W ′

satisfying access structure (M ′, ρ′). Note that for single-hop KP-ABPRE schemes, A is
given access to all possible re-encryption keys. As a result, there is no need to provide A
with the re-encryption oracle.

– OSK((M∗, ρ∗)) should not be queried by A.
– ORD(D∗, (M∗, ρ∗)) must not be queried.

Definition 8. The advantage of any PPT adversary A denoted by AdvA in winning
the above IND-PRE-CCA game (Game 2) for second level ciphertext which we term
ExpIND−PRE−CCAA,2 (κ) is shown as

AdvIND−PRE−CCAA,2 :=

∣∣∣∣Pr[ExpIND−PRE−CCAA,2 (κ)
]
− 1

2

∣∣∣∣
where the probability is over the coin tosses of challenger C and adversary A.

The scheme is IND-PRE-CCA secure for the second level ciphertext against any t-
time adversary A that makes atmost qSK , qRK , qReEnc, qDec and qRD queries to OSK ,
ORK , ODec and ORD oracles respectively, if the advantage of A is negligibly small:
AdvIND−PRE−CCAA,2 ≤ ε.

8

DSK-Security Game ExpDSKA (κ)

(M∗, ρ∗)← A, params ← Setup(κ);

(SK(M∗,ρ∗), St)← AOSK ,ORK (params); //query constraints shown in Section 4.3

if SK(M∗,ρ∗) is a valid private key of (M∗, ρ∗), return 1, else return 0

Game 3: DSK security game for KP-ABPRE schemes.

4.3 Collusion Resistance:

Collusion-resistance, also termed as delegator secret key security (DSK security) prevents
a colluding proxy and delegatee to recover private keys of the delegator in full. The game
template for DSK security is shown below, adapted from [19], illustrated in Game 3.

– Setup: A outputs a challenge access structure (M∗, ρ∗). C generates the public pa-
rameters params using the Setup algorithm and returns it to A.

– Queries:A issues queries to the Private Key Extraction(OSK(M,ρ)) and Re-encryption
Key Generation(ORK((M,ρ), (M ′, ρ′))) oracle adaptively. It cannot query for the pri-
vate key of the target access structure (M∗, ρ∗).

– Output: A returns SK(M∗,ρ∗) as the private key of the target access structure
(M∗, ρ∗). A wins the game if SK(M∗,ρ∗) is a valid private key of (M∗, ρ∗).

Definition 9. The advantage of any PPT adversary A denoted by AdvA in winning the
DSK-security game given above (Game 3) which we term ExpDSKA (κ) is shown as

AdvDSKA := Pr[A wins]

where the probability is over the coin tosses of challenger C and adversary A.

The scheme is DSK secure against any t-time adversary A that makes atmost qSK and
qRK queries to OSK and ORK oracles respectively, if the advantage of A is negligibly
small: AdvDSKA ≤ ε.

5 Analysis of a CCA-secure KP-ABPRE scheme

5.1 Review of the Scheme due to Ge et al. [11]

The CCA-secure KP-ABPRE scheme due to Ge et al [11] consists of the following algo-
rithms. It is based on composite order bilinear pairing.

– Setup(1κ, U): The setup algorithm chooses a bilinear group G0 of order N = p1p2p3.
Let Gpi denote the subgroup of G0 of order pi. It chooses α, φ ∈ ZN , g, ĝ1, ĝ2 ∈ Gp1 ,
X3 ∈ Gp3 . For each attribute i, it picks si ∈ ZN and computes Ti = gsi . Let SYM be a
CCA-secure one-time symmetric encryption scheme, and Sig = (G,S,V) be a strongly
unforgeable one-time signature scheme. H1 : G1 → Z∗N and H2 : G1 → {0, 1}∗ are
collision-resistant hash functions. The master secret key is MSK = (α,X3). The pub-
lic parameters are params = (N, g, ĝ1, ĝ2, ĝ2

φ, ê(g, g)α, Ti, SYM, (G,S,V),H1,H2).

9

– KeyGen(MSK, (M,ρ), params): Given as input an access structure (M,ρ), the
trusted authority picks a random vector µ such that µ · 1 = α. For each row Mx

of the matrix M , it chooses rx ∈ ZN and Wx, Vx ∈ Gp3 and computes the private key
as: ∀Mx ∈ {M1, · · ·Ml} : Kx,1 = gMx·µT rxρ(x)Wx, Kx,2 = grxVx.

– Encrypt(m,W, params): To encrypt a message m ∈ G1 under an attribute set W ,
the sender encrypts as shown below:

1. Set C1 = W . Select a one-time signature pair (svk, ssk)← G.

2. Pick s ∈ ZN and compute C0 = m · ê(g, g)αs, C2 = gs,∀i ∈W : Ci = T si , C3 =
(ĝ1

svkĝ2
φ)s. Run the sign algorithm σ ← S(ssk, (C0, C2, Ci, C3)).

3. Return the original ciphertext C = (svk, C0, C1, C2, Ci, C3, σ).

– ReKeyGen(SK(M,ρ), (M,ρ), (M ′, ρ′), params): The delegator generates a re-encryption
key from access structure (M,ρ) to (M ′, ρ′), as shown below:

1. Choose θ ∈ Zp and δ ∈ G1. For each row Mx of the matrix M , compute:

rk1 = K
H1(δ)
x,1 · T θρ(x), rk2 = K

H1(δ)
x,2 , rk3 = gθ.

2. Select an attribute set W ′ where W ′ |= (M ′, ρ′).

3. Select a one-time signature pair (svk′, ssk′)← G.

4. Pick s′ ∈ ZN and compute rk4 = δ · ê(g, g)αs
′
, rk5 = gs

′
,∀i ∈W ′ : rk6,i =

T s
′

i , rk7 = (ĝ1
svk′ ĝ2

φ)s
′
.

5. Run the sign algorithm σ′ ← S(ssk′, (rk4, rk5, rk6i, rk7)).

6. Return RK(M,ρ)→(M ′,ρ′) = (rk1, rk2, rk3, S
′, svk′, rk4, rk5, rk6,i, rk7, σ

′).

– ReEncrypt(C,RK(M,ρ)→(M ′,ρ′), params): On input of an original ciphertext C, the
proxy re-encrypts C towards access structure (M ′, ρ′) as below:

1. Check if the following equations hold:

V(svk, σ, (C0, C2, Ci, C3))
?
= 1, ê(C2, ĝ1

svkĝ2
φ)

?
= ê(g, C3).

2. If the above check fails, return ⊥. Else, if W |= (M,ρ), compute reconstruction

constants ωx such that
∑
ρ(x)∈W ωxMx = 1. ComputeQ =

∏ ê(C2,rk1)
ωx

(ê(Cρx ,rk2)ê(Cρ(x),rk3))
ωx .

3. Pick a random key ∈ G1 and compute Φ1 = SYM.Enc(H2(key,G)), where G =
(C||(W ′, svk′, rk4, rk5, rk6,i, rk7, σ′)||Q).

4. Select an attribute set W ′′ such that W ′′ |= (M ′, ρ′) and a one-time signature pair
(svk′′, ssk′′)← G. Choose s′′ ∈ ZN and compute C ′′0 = key · ê(g, g)αs

′′
, C ′′2 = gs

′′
,

∀i ∈ W ′′ : C ′′i = T s
′′

i , C ′′3 = (ĝsvk
′′

1 ĝφ2)s
′′
. Run the sign algorithm to generate

σ′′ ← S(ssk′′, (C ′′0 , C
′′
2 , C

′′
i , C

′′
3)). Denote Φ2 = (W ′′, svk′′, C ′′0 , C

′′
2 , C

′′
i , C

′′
3 , σ

′′).

5. Return the re-encrypted ciphertext D = (Φ1, Φ2).

– Decrypt(C, SK(M,ρ), params): In order to decrypt a first-level ciphertext C, the
decryption algorithm proceeds as below:

1. Check the validity of the ciphertext using equations (1) and (2).

2. If the check fails, output ⊥ and aborts. Otherwise if W 6|= (M,ρ), output ⊥ and
aborts. Else, compute reconstruction constants ωx such that

∑
ρ(x)∈W ωxMx = 1.

Next, compute the plaintext m = C0

/∏
ρ(x)∈S

ê(C2,Kx,1)
ωx

ê(Cρ(x),Kx,2)ωx
.

– ReDecrypt(D, sk(M ′,ρ′), params): To decrypt a second-level ciphertextD = (Φ1, Φ2),
the decryption algorithm proceeds as below:

10

• Check if the following equations hold:

V(svk′′, σ′′, (C ′′0 , C
′′
2 , C

′′
i , C

′′
3))

?
= 1, ê(C ′′2 , ĝ

svk′′

1 ĝφ2)
?
= ê(g, C ′′3).

If the checks fail, output ⊥ and abort. Further, if W ′′ 6|= M ′′, output ⊥ and
abort. Compute the reconstruction constants ω′′ such that

∑
ρ(x′)∈W ′′ ω

′′
xM

′′
x = 1.

Compute key = C ′′0

/∏
ρ(x′)∈W ′′

ê(C′′2 ,Kx′,1)
ω′′x

ê(C′′
ρx′ ,Kx′,2)

ω′′x
.

• Run the decryption algorithm G = SYM.Dec(H2(key), Φ1).
• Check if the equations (1) and (2) hold. If fails, return ⊥ and abort. Otherwise,

perform the following checks:

V(svk′, σ′, (rk4, rk5, rk6,i, rk7))
?
= 1, ê(rk5, ĝ

svk′

1 ĝφ2)
?
= ê(g, rk7).

If fails, return ⊥ and abort. If W ′ 6|= (M ′, ρ′), return ⊥ and abort.
• Compute the reconstruction constants ω′x such that

∑
ρ(x′)∈W ′ ω

′
xM
′
x = 1. Next,

compute δ = rk4

/∏
ρ(x′)∈W ′

ê(rk5,Kx′,1)
ω′x

ê(rk6,ρ(x′),Kx′,2)
ω′x
.

• Compute QH1(δ)
−1

= ê(g, g)sα and output the plaintext m = C0/ê(g, g)sα.

5.2 Attack on the scheme

In this section we present a CCA-attack on the scheme due to Ge et al [11]. Note that
the following attack is launched in the second-level ciphertext CCA-security game. In
Phase 1 of the security game, the challenger C provides the adversary A with all possible
re-encryption keys in the system, as per the security definition in [11]. Let D∗ = (Φ∗1, Φ

∗
2)

be the challenge ciphertext generated by C, which is the re-encryption of message mψ

(selected randomly by C during challenge phase) from a delegator’s attribute set satisfying
access structure (M ′, ρ′) towards target access structure (M∗, ρ∗). The CCA attack is
demonstrated below.

1. A parses the re-encryption keyRK(M ′,ρ′)→(M∗,ρ∗) = (rk∗1 , rk
∗
2 , rk

∗
3 ,W

∗, svk′∗, rk∗4 , rk
∗
5 ,

rk∗6,i, rk
∗
7 , σ
′∗).

2. A creates a first-level decryption query for a ciphertext generated as below:
– Set C0 = rk∗4 , C1 = W ∗, C2 = rk∗5 and C3 = rk∗7 .
– For all attributes i ∈W ∗, set Ci = rk∗6,i. Set the signature σ = σ′∗.
– The ciphertext CA1 = (svk′∗, C0, C1, C2, Ci, C3, σ) is passed a parameter to the

first level decryption oracle provided by the challenger.
3. The challenger decrypts the ciphertext CA1 using Decrypt algorithm to extract δ∗

used in the generation of re-encryption key corresponding to challenge ciphertext D∗.
4. A parses challenge ciphertext component Φ∗2 = (W ′′∗, svk′′∗, C ′′∗0 , C ′′∗2 , C ′′∗i , C ′′∗3 , σ′′∗).
5. Using this second-level challenge ciphertext, the adversary now creates another de-

cryption query for a first level ciphertext generated as below:
– Set C0 = C ′′∗0 , C1 = W ′′∗, C2 = C ′′∗2 and C3 = C ′′∗3 .
– For all attributes i ∈W ′′∗, set Ci = C ′′∗i . Set the signature σ = σ′′∗.
– The ciphertext CA2 = (svk′′∗, C0, C1, C2, Ci, C3, σ) is passed a parameter to the

first level decryption oracle provided by the challenger.

11

6. On decryption of CA2, A receives key∗ used in generation of the challenge ciphertext
D∗. Therefore, A can now recover G∗ using the symmetric decryption algorithm
G∗ = SYM.Dec(H2(key∗), Φ∗1).

7. A parsesG∗ = (C||(W ∗, svk∗, rk∗4 , rk∗5 , rk∗6,i, rk∗7 , σ∗)||Q) and then parses C = (svk, C0,
C1, C2, Ci, C3, σ).

8. Finally A computes mψ = C0

QH1(δ)−1 as per ReDecrypt() algorithm.

This completes the description of the attack. A can recover the original message mψ re-
encrypted by C towards a target access structure (M∗, ρ∗) in the challenge ciphertext D∗,
which successfully breaks the CCA security of the scheme.

6 Analysis of an RCCA-secure KP-ABPRE scheme

6.1 Review of the scheme due to Li et al. [13]

The selectively RCCA-secure KP-ABPRE scheme due to Li et al. [13] consists of the
following algorithms.

– Setup(1κ, U): The setup algorithm takes as input the universe description U , where
U = {0, 1}∗ and security parameter κ. It chooses groups G0,G1 of prime order p.
Let g by a generator of G0. It randomly picks values α ∈ Zp and g1, h ∈ G0, and
sets MSK = α. k is a parameter determined by κ and {0, 1}k is the message space
M. Three cryptographic hash functions are chosen as follows: F : {0, 1}∗ → G0,
H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → {0, 1}k. The public parameters params =
〈g, g1, h, gα, F,H1, H2, ê(g, h)α〉.

– KeyGen(MSK, (M,ρ), params): On input of an access structure (M,ρ) where l×k is
the size of access structure M , the trusted authority executes Share(M,ρ, α) to obtain
l sets of shares λρ(i) = Mi ·v, where it picks y2, · · · yn ∈ Zp and sets v = (α, y2, · · · yn).
It chooses r1, · · · rl ∈ Z∗p and computes the private key SK(M,ρ) as below:

K11 = hλρ(1) · F (ρ(1))r1 ,K21 = gr1 , · · · ,K1l = hλρ(l) · F (ρ(l))rl ,K2l = grl

It outputs SK(M,ρ) along with the description of (M,ρ).
– Encrypt(m,W, params): Given as input a message m ∈ M and an attribute set
W , the first-level encryption algorithm randomly picks R ∈ G1 and computes s1 =
H1(R,m) and r = H2(R). It computes the first level encryption C as below:

C0 = R · ê(g, h)αs1 , C1 = gs1 , C2 = gs11 , C3 = r ⊕m, {Cx = F (x)s1 ,∀x ∈W}

It outputs ciphertext C = 〈C0, C1, C2, C3, {Cx,∀x ∈W},W 〉.
– ReKeyGen(SK(M,ρ), (M,ρ), (M ′, ρ′), params): To generate a re-encryption key from

an access structure (M,ρ) to (M ′, ρ′), the trusted authority calls the KeyGen al-

gorithm and chooses d ∈ Z∗p at random and computes gαd, {gλρ(i)d1 } where λρ(i) for
i = 1 to l is the set of l shares corresponding to the access structure (M,ρ). It picks
an attribute W ′ |= (M ′, ρ′) and encrypts gαd with the attributes of W ′ by computing
CT1 = Encrypt(gαd,W ′, params). It picks random r′1 · · · r′l ∈ Zp and recomputes
the re-encryption key RK(M,ρ)→(M ′,ρ′) as follows:

rk11 = hλρ(1) · F (ρ(1))r
′
1 · gλρ(1)d1 , rk21 = gr

′
1 , · · · , rk1l = hλρ(l) · F (ρ(l))r

′
l · gλρ(l)d1 , rk2l = gr

′
l

It returns the re-key as RK(M,ρ)→(M ′,ρ′) = ({rk1i, rk2i for i=1 to l}, CT1).

12

– ReEncrypt(C,RK(M,ρ)→(M ′,ρ′), params): Given as input a first-level ciphertext C
and a re-encryption keyRK(M,ρ)→(M ′,ρ′), the re-encryption algorithm executes Recon-
struct (M,ρ,W) to obtain a set {ωi : i ∈ I} of secret reconstruction constants where
I = {i ∈ [l] : attρ(i) ∈W}. If W |= (M,ρ), then the relation

∑
i∈I ωiλρ(i) = α implic-

itly holds. It computes the re-encrypted ciphertext componentD4 =
ê(C1,

∏
i∈I rk

ωi
1i)∏

i∈I ê(rk2i,C
ωi
ρ(i)

)
=

ê(g, h)s1αê(g, g1)(s1αd). It sets D0 = C0, D1 = C1, D2 = C2, D3 = C3, D5 = CT1 and
outputs second level ciphertext D = 〈D0, D1, D2, D3, D4, D5〉.

– Decrypt(C or D,SK(M ′,ρ′), params): If the input to this algorithm is a first level ci-
phertext C encrypted under (M,ρ), the decryption algorithm invokes ReEncrypt(C,
RK(M,ρ)→(M ′,ρ′), params) to obtain D = 〈D0, D1, D2, D3, D4, D5〉. If the input is a
second level ciphertext D and a private key SK(M ′,ρ′), the algorithm first decrypts
D5 = 〈C ′0, C ′1, C ′2, C ′3, {C ′x},W ′〉 by checking if W ′ |= (M ′, ρ′) and computing the set
of reconstruction constants {ω′i : i ∈ I} where I = {i ∈ [l] : attρ(i)′ ∈ W ′} using
Reconstruct (M ′, ρ′,W ′) such that

∑
ρ′(i)∈W ′ ω

′
iM
′
i = 1 holds implicitly. It computes

CT2 =
ê(C′1,

∏
i∈I K

ω′i
1i)∏

i∈I ê(K2i,C
′ω′
i

ρ(i)
)

= ê(g, h)s1α. It extracts gαd = D0/CT2. It computes CT3 =

ê(gαd, D2) = ê(g, g1)s1αd. Next, it computes R = D0 ·CT3/D4, m = D3⊕H2(R) and

s = H1(R,m). If D0
?
= R · ê(g, h)αs and D4

?
= ê(g, h)s1α · ê(gαd, gs1)1 , it outputs m.

otherwise return ⊥.

6.2 Attack on the scheme

In this section, we present an RCCA-attack on the scheme due to Li et al [13]. The fol-
lowing attack is launched in the first-level ciphertext RCCA-security game. Suppose that
C∗ = 〈C∗0 , C∗1 , C∗2 , C∗3 , {C∗x},W ∗〉 is the challenge ciphertext generated by C, which is the
encryption of message mψ (selected randomly by C during challenge phase from messages
{m0,m1}) towards a delegator’s attribute set W ∗ |= (M∗, ρ∗) where (M∗, ρ∗) is the target
access structure. The RCCA attack launched by the adversary A is demonstrated below:

1. The adversary A picks β ∈ Z∗p at random.

2. It computes C0” = C∗0 · ê(g, h)αβ = R · ê(g, h)α(s
∗
1+β).

3. It computes C1” = C∗1 · gβ = gs
∗
1+β and C2” = C∗2 · g

β
1 = g

s∗1+β
1 .

4. It picks C3” ∈ {0, 1}k at random.
5. For all x ∈W ∗, it computes {Cx” = C∗x · F (x)β = F (x)s

∗
1+β}.

6. It constructs a first level ciphertext C” = 〈C0”, C1”, C2”, C3”, {Cx”},W ∗〉.
7. It queries the re-encryption oracle ORE(C”, (M∗, ρ∗), (M ′, ρ′)) such that OSK(M ′, ρ′)

is already queried upon for the access structure (M ′, ρ′).
8. The returned second level ciphertext is D = 〈D0, D1, D2, D3, D4, D5〉, such that the

ciphertext component D4 = ê(g, h)α(s
∗
1+β) · ê(g, g1)(s

∗
1+β)αd.

9. A parses D5 = 〈C ′0, C ′1, C ′2, C ′3, {C ′x},W ′〉. Since SK(M ′,ρ′) is known to A, it computes
the set of reconstruction constants {ω′i : i ∈ I} where I = {i ∈ [l] : attρ(i)′ ∈ W ′} by
invoking Reconstruct (M ′, ρ′,W ′) such that

∑
ρ′(i)∈W ′ ω

′
iM
′
i = 1 implicitly holds and

further computes CT2 =
ê(C′1,

∏
i∈I K

ω′i
1i)∏

i∈I ê(K2i,C
′ω′
i

ρ(i)
)

= ê(g, h)s1α.

10. It extracts gαd = D0/CT2 and computes CT3 = ê(gαd, D2) = ê(g, g1)(s
∗
1+β)αd.

13

11. It computes R∗ = D0 · CT3/D4 and r∗ = H2(R∗).
12. Finally, A computes mψ = r ⊕ C∗3 .

Note that, as per the security definition of RCCA-secure PRE by Libert et al. [18],
the adversary cannot issue decryption queries for any second level ciphertext D if De-
crypt(D,SK(M ′,ρ′)) ∈ {m0,m1} (such an adversarial constraint is not imposed in the
security game of CCA secure PRE [11], and the adversary is allowed to issue such de-
cryption queries). Accordingly, the adversary A does not query the decryption of any
challenge ciphertext derivative in the above attack. In fact, the ciphertext component C ′′3
is picked at random. The RCCA attack could be launched due to the absence of cipher-
text validation in the re-encryption algorithm of the given construction. A can recover
the original message mψ encrypted by the challenger towards the target access structure
(M∗, ρ∗) as a first level challenge ciphertext C∗, which successfully breaks the RCCA
security of the scheme. This completes the description of the attack.

7 Our Unidirectional CCA-secure KP-ABPRE Scheme

7.1 Technical Overview of Construction

The starting points of our construction are the the KP-ABE scheme of Rao et al. [21]
which relies on the threshold public key encryption framework of Qin et al. [20] to de-
sign the basic construction realising monotone LSSS access structure and BLS short
signature [6]. Constant size first-level ciphertexts are achieved by increasing the pri-
vate key size by a factor of |W |, where W is the set of distinct attributes associated
with the access structure embedded in the private key. The CA first chooses a ran-
dom exponent α ∈ Z∗p as the master secret key and computes the public component
Y = ê(g, g)α. The first-level ciphertext of a message m ∈ M and an attribute set W is
generated using the “Hashed El-Gamal” [9,10] encryption system. First, a random string
σ ∈ {0, 1}lσ is chosen and s = H1(m||σ) is computed. Then the ciphertext components
C0 = (m||σ) ⊕ H2(Y s), C1 = gs, C2 = gs1 and C3 =

(
h0
∏
atty∈W hy

)s
are computed.

Component C4 =
(
H3(W,C0, C1, C2, C3)

)s
can be viewed as a BLS signature signing

the components (C0, C1, C2, C3,W) used during decryption/re-encryption to check well-
formedness of the first-level ciphertexts. H1,H2 and H3 are cryptographic hash functions
defined in our construction. Finally, C = 〈C0, C1, C2, C3, C4,W 〉 is returned as the first-
level ciphertext.

At the second-level, constant size ciphertexts is achieved by increasing the re-encryption
key size by a factor of |W |, where W is the set of distinct attributes associated with the
access structure (M,ρ) embedded in the private key of the delegator. To delegate de-
cryption rights towards an access structure (M ′, ρ′), the delegator chooses strings δ ∈
{0, 1}lm , γ ∈ {0, 1}lσ , picks an attribute set W ′ |= (M ′, ρ′) and computes s′ = H1(δ||γ).
Next, it computes re-encryption key components rk4 = (δ||γ) ⊕ H2(Y s

′
), rk5 = gs

′
,

rk6 =
(
h0
∏
atty∈W ′ hy

)s′
and computes a BLS signature rk7 =

(
H5(W ′, rk4, rk5, rk6)

)s′
on the components (rk4, rk5, rk6,W

′). We construct our re-encryption key in such a way
that the string (δ||γ) is blinded with a random salt and can only be removed by a delegatee
with private key SK(M ′,ρ′) such that W ′ |= (M ′, ρ′) during decryption of the re-encrypted
ciphertexts. The private key Ki of delegator can be retrieved from the re-encryption key
component rk1i only by users with the knowledge random element θ (chosen by delega-
tor). This clearly makes it infeasible to retrieve the private key of the delegator from the

14

re-encryption key and provides collusion-resistance. The CCA-security of the second-level
ciphertext follows from the two integrated “hashed” CCA-secure El-Gamal encryptions
(D1, D3) in the second-level ciphertext D = (D0, D1, D2, D3, D4, D5, D6,W

′).

7.2 Our Construction

– Setup(1κ, U): The algorithm chooses two bilinear groups G0,G1 of prime order p. Let
g and g1 be generators of G0, and ê : G0×G0 → G1 denote an admissible bilinear map.
It chooses a random exponent α ∈ Z∗p and computes Y = ê(g, g)α. It picks h0 ∈ G0

and for every attribute atty ∈ U , picks hy ∈ G0. lm and lσ are parameters determined
by κ, {0, 1}lm is the size of the message spaceM. Let |U | = n be the attribute universe
size. Five cryptographic hash functions, modelled as random oracles in the security
proof are chosen as follows: H1 : {0, 1}lm+lσ → Z∗p,H2 : G1 → {0, 1}lm+lσ ,H3 :

{0, 1}∗×G3
1 → G0,H4 : {0, 1}lm → Z∗p,H5 : {0, 1}∗×G2

1 → G0. The public parameters
returned are params = 〈G0,G1, ê, p, g, g1, h0, h1, · · ·hn, Y,H1,H2,H3,H4,H5〉. The
master secret key MSK is α.

– KeyGen(MSK, (M,ρ), params): On input of an access structure (M,ρ) where l× k
is the size of matrix M , the CA executes Share(M,ρ, α) to obtain a set of l shares
λρi = Mi · v, where v ∈R Zkp, such that v · 1 = α. Note that 1 = (1, 0, · · · , 0) is a
vector of length k. For each row Mi of the matrix M , it picks ri ∈ Z∗p and computes:

Ki = gλρ(i)(h0hρ(i))
ri ,K ′i = gri , K ′′i = {K ′′iy : K ′′iy = hriy ,∀y ∈ [n]\{ρ(i)}}.

It returns SK(M,ρ) = 〈(M,ρ), {∀i ∈ [l] : Ki,K
′
i,K

′′
i }〉 to the user.

– Encrypt(m,W, params): Given as input a message m ∈M and an attribute set W ,
the first-level encryption algorithm encrypts m as below:
• Select σ ∈ {0, 1}lσ .
• Compute s = H1(m||σ).
• Compute C0 = (m||σ)⊕H2(Y s).
• Compute C1 = gs, C2 = gs1.
• Compute C3 =

(
h0
∏
atty∈W hy

)s
.

• Compute C4 =
(
H3(W,C0, C1, C2, C3)

)s
.

• Return the first-level ciphertext C = 〈C0, C1, C2, C3, C4,W 〉.
– Decrypt(C, SK(M,ρ), params): On input of a first level ciphertext C and a private

key SK(M,ρ), the decryption algorithm works as below:
1. First check if the ciphertext is well-formed as below:

ê(g, C2)
?
= ê(g1, C1) (1)

ê(g, C3)
?
= ê(C1, h0

∏
atty∈W

hy), (2)

ê(g, C4)
?
= ê(C1,H3(W,C0, C1, C2, C3)). (3)

2. If the checks fail, output ⊥ and abort.
3. Otherwise, execute Reconstruct (M,ρ,W) to obtain a set {ωi : i ∈ I} of secret

reconstruction constants where I = {i ∈ [l] : attρ(i) ∈ W}. If W |= (M,ρ), then
the relation

∑
i∈I ωiλρ(i) = α implicitly holds.

15

4. Compute: E1 =
∏
i∈I

(
Ki ·

∏
atty∈W,y 6=ρ(i)K

′′
i,y

)ωi
, E2 =

∏
i∈I(K

′
i)
ωi

5. Compute the plaintext:

(m||σ) = C0 ⊕H2

(
ê(C1, E1)

ê(C3, E2)

)
. (4)

6. If C1
?
= gH1(m||σ), return the plaintext m, else return ⊥.

– ReKeyGen(SK(M,ρ), (M,ρ), (M ′, ρ′), params): To generate a re-encryption key from
an access structure (M,ρ) to (M ′, ρ′), the re-encryption key generation algorithm
computes the re-key RK(M,ρ)→(M ′,ρ′) as follows:

1. Choose θ ∈ Zp. Pick δ ∈ {0, 1}lm and γ ∈ {0, 1}lσ . For each row Mi of the matrix
M of size l × k, compute:

rk1i = K
H4(δ)
i ·

(
h0hρ(i)

)θ
, rk2i = (K ′i)

H4(δ) · gθ,

rk3i = {rk3iy : rk3iy =
(
K
′′H4(δ)
iy · hθy

)
,∀y ∈ [n]\{ρ(i)}}.

2. Compute s′ = H1(δ||γ).
3. Compute rk4 = (δ||γ)⊕H2(Y s

′
).

4. Compute rk5 = gs
′
.

5. Pick an attribute set W ′ |= (M ′, ρ′).

6. Compute rk6 =
(
h0
∏
atty∈W ′ hy

)s′
.

7. Compute rk7 =
(
H5(W ′, rk4, rk5, rk6)

)s′
.

8. Return the re-encryption keyRK(M,ρ)→(M ′,ρ′) = ({∀i ∈ [l] : rk1i, rk2i, rk3i}, rk4, rk5,
rk6, rk7,W

′).
– ReEncrypt(C,RK(M,ρ)→(M ′,ρ′), params): Given as input a first-level ciphertext C

and a re-encryption key RK(M,ρ)→(M ′,ρ′), the re-encryption algorithm re-encrypts the
first-level ciphertext as below:
1. It checks the validity of the ciphertext C using Equations 1, 2, 3.
2. Check the validity of the re-encryption key by checking if the following equations

hold:

ê(g, rk6)
?
= ê(h0

∏
atty∈W ′

hy, rk5) (5)

ê(rk7, g)
?
= ê(H5(W ′, rk4, rk5, rk6), rk5). (6)

If the above checks fail, return ⊥.
3. Else if W |= (M,ρ), compute a set {ωi : i ∈ I} of secret reconstruction con-

stants where I = {i ∈ [l] : attρ(i) ∈ W} using Reconstruct (M,ρ,W) such that∑
ρ(i)∈S ωiMi = 1 implicitly holds. Compute re1 =

∏
i∈I

(
rk1i·

∏
atty∈W,y 6=ρ(i) rk3i

)ωi
,

re2 =
∏
i∈I(rk2i)

ωi

4. Next, compute:

D0 =
ê(C1, re1)

ê(C3, re2)

= Y sH4(δ). (7)

16

5. Set ciphertext components: D1 = C0, D2 = C1, D3 = rk4, D4 = rk5, D5 = rk6,
D6 = rk7. Return second level ciphertext D = 〈D0, D1, D2, D3, D4, D5, D6,W

′〉.
– ReDecrypt(D,SK(M ′,ρ′), params): In order to decrypt a second-level ciphertext D,

the decryption algorithm proceeds as below:

1. Check if the ciphertext is well-formed by checking the following equations:

ê(D4, h0
∏

atty∈W ′
hy)

?
= ê(g,D5) (8)

ê(D6, g)
?
= ê(H5(W ′, D3, D4, D5), D4). (9)

2. If the check fails, abort and return ⊥.

3. Otherwise, if W ′ |= (M ′, ρ′), compute the set of reconstruction constants {ω′i :
i ∈ I} where I = {i ∈ [l] : attρ(i)′ ∈W ′} using Reconstruct (M ′, ρ′,W ′) such that∑
ρ′(i)∈W ′ ω

′
iM
′
i = 1 holds implicitly. Compute:

E′1 =
∏
i∈I

(
Ki ·

∏
atty∈W ′,y 6=ρ(i)

K ′′i,y

)ω′i
, E′2 =

∏
i∈I

(K ′i)
ω′i

4. Compute δ as below:

(δ||γ) = D3 ⊕H2

(
ê(D4, E

′
1)

ê(D5, E′2)

)
. (10)

5. If D4
?
= gH1(δ||γ) does not hold, return ⊥. Else, extract plaintext as below:

(m||σ) = D1 ⊕H2(D
1/H4(δ)
0). (11)

6. If D2
?
= gH1(m||σ), output m, otherwise return ⊥.

7.3 Correctness

The consistency of our KP-ABPRE scheme is as shown below:

– Correctness of first-level decryption from Equation (4):

RHS = C0 ⊕H2

(
ê(C1, E1)

ê(C3, E2)

)
= C0 ⊕H2

(
ê(gs,

∏
i∈I(g

λρ(i)hri0 h
ri
ρ(i)

∏
atty∈W,y 6∈ρ(i) h

ri
y)ωi)

ê(hs0
∏
atty∈W hsy,

∏
i∈I(g

ri)ωi)

)
= (m||σ)⊕H2(Y s)⊕H2(ê(g, g)αs).

= (m||σ).

= LHS.

17

– Correctness of computation of ciphertext component D0 from Equation (7):

RHS =
ê(C1, re1)

ê(C3, re2)

=
ê
(
gs,
∏
i∈I
(
rk1i ·

∏
atty∈W,y 6∈ρ(i) rk3i

)ωi)
ê((h0

∏
atty∈W hy)s,

∏
i∈I(rk2i)

ωi)

=
ê(gs,

∏
i∈I(g

λi·ωi)H4(δ)) · ê(gs, (h0
∏
atty∈W hy)(riH4(δ)+θ)ωi)

ê((h0
∏
atty∈W hy)s,

∏
i∈I(g

riH4(δ)+θ)ωi)

= ê
(
gs, g(

∑
i∈I ωiλρi)H4(δ)

)
= Y sH4(δ)

= LHS.

– Correctness of re-decryption in computing δ from Equation (10):

LHS = D3 ⊕H2

(
ê(D4, E

′
1)

ê(D5, E′2)

)

= D3 ⊕H2

(
ê(gs

′
,
∏
i∈I(g

λρ(i)h
r′i
0 h

r′i
ρ(i)

∏
atty∈W,y 6∈ρ(i) h

r′i
y)ω

′
i)

ê(hs
′

0

∏
atty∈W ′ h

s′
y ,
∏
i∈I(K

′
i)
ω′i)

)
= (δ||γ)⊕H2(ê(g, g)αs

′
)⊕H2(ê(g, g)s

′α)

= (δ||γ).

= RHS.

– Correctness of re-decryption from Equation (11):

RHS = D1 ⊕H2(D
1/H4(δ)
0)

= (m||σ)⊕H2(Y s)⊕H2((Y sH4(δ))1/H4(δ))

= (m||σ)

= LHS.

7.4 Security Proof

Proof Sketch We now give an intuitive proof sketch of selective CCA security of our
scheme for both first-level and second-level ciphertexts in the random oracle model,
based on the n-Decisional Bilinear Diffie-Hellman Exponentiation (n-DBDHE) assump-
tion. We first analyse the security for first-level ciphertexts. As per the Random Or-
acle Model, the Challenger handles the adversarial queries as follows: hash queries by
oracles H1, · · · ,H5, private key extraction queries by oracle OSK(M,ρ), re-encryption
key generation queries by oracle ORK((M,ρ), (M ′, ρ′)), re-encryption queries by oracle
ORE(C, (M,ρ), (M ′, ρ′)), decryption queries by oracle ODec(C, (M,ρ)) and re-decryption
queries by oracle ORD(D, (M ′, ρ′)). In the above oracles, the Challenger injects the hard
problem instance into the query responses to Oracles H3 and private key extraction or-
acle OSK(M,ρ) respectively. The first-level and second-level decryption oracles return

18

message m or ⊥ as per the protocol and the remaining oracles return uniformly random
elements from the respective domains.

The Challenger picks α′ ∈R Z∗p and implicitly sets msk as α = α′+an+1, where an+1 is

not known to the Challenger. It computes Y = ê(g, g)α
′ · e(ga, gan) = ê(g, g)α, as proven

in the Initialization Phase of the security proof in Section 7.5. For an oracle query to
H3(W,C0, C1, C2, C3), the Challenger picks υ ∈R Z∗p and injects the hard problem instance

by computing value µ = (ga
n

)υ. It returns µ as the value of H3(W,C0, C1, C2, C3). It is
easy to follow that the computed value µ ∈ G0 is identically distributed as the real hash
value from the construction. For a private key extraction query for access structure (M,ρ),
if the target attribute set W ∗ |= (M,ρ), the Challenger aborts and returns “failure”. Oth-
erwise, it computes the private keys by appropriately injecting the 2n given values of the
hard problem instance at applicable points, as discussed in Phase 1 description in Sec-
tion 7.5. The detailed analysis shows that the keys computed are identically distributed
as the keys generated by the KeyGen algorithm in the construction. In the Challenge
Phase, the challenger picks ψ ∈ {0, 1} at random and encrypts mψ under target attribute
set W ∗ to form challenge ciphertext C∗ = (C∗0 , C

∗
1 , C

∗
2 , C

∗
3 , C

∗
4 ,W

∗), demonstrating that
the ciphertext computed is identically distributed as the ciphertext generated by the
Encrypt algorithm in the construction. In particular, the hard problem instance Z is in-
jected into the ciphertext component C∗0 , computed as C∗0 = (mψ||σ∗)⊕H2(Z · ê(gb, gα′)),
where σ∗ ∈R {0, 1}lσ . Therefore, once the adversary A produces its guess ψ′ ∈ {0, 1},
if ψ′ = ψ, A wins the game and the Challenger decides ê(gb, ga

n+1

) = Z, else Z is
random. The security game for second-level ciphertexts proceeds in a similar way as
the first-level security game. The computation of the challenge second level ciphertext
D∗ = (D∗0 , D

∗
1 , D

∗
2 , D

∗
3 , D

∗
4 , D

∗
5 , D

∗
6 ,W

∗) shown in the Challenger Phase in Section 7.6 in-
dicates that the ciphertext computed is identically distributed as the ciphertext generated
by the ReEncrypt algorithm in the construction. In particular, the hard problem instance
is injected in the ciphertext component D∗3 , where D∗3 = (δ∗||γ∗) ⊕ H2(Z · ê(gb, gα′)) =
(δ∗||γ∗)⊕H2(Y s

′
), as proven in the Challenge Phase in Section 7.6. Therefore, once the

adversary A produces its guess ψ′ ∈ {0, 1}, if ψ′ = ψ, A wins the game and the Challenger

decides ê(gb, ga
n+1

) = Z, else Z is random.

Lemma 1. [2] Let (M,ρ) be an LSSS realising access structure A over a set of par-
ties P. Let M be a share generating matrix of size l × k. For an attribute set W ⊂
U such that W 6∈ A, there exists a polynomial time algorithm that outputs a vector
w = (−1, w2, w3, · · · , wk) ∈ Zkp such that for all rows Mi where ρ(i) ∈ W , it holds
that Mi · w = 0.

7.5 First Level Ciphertext Security

Theorem 1. If a (t, ε)IND-PRE-CCA adversary A has a non-negligible advantage ε
in breaking the CCA security of the given KP-ABPRE scheme for first level ciphertext,
with access to random oracles H1,H2,H3,H4,H5, then there exists an algorithm C that
solves the n-DBDHE problem with advantage ε′ within time t′ where,

ε′ ≥ 1

qH2

(
2ε− qH1

2lm+lσ
− qReEnc

p
− qDec

(qH1

(2lm+lσ)
+

1

p

))
,

19

t′ ≤ t+ (qH3
+ qH5

+ (n+ 2)lqSK + (n+ 6)lqRK + 7qReEnc + 3qDec + 5qRD)te

+ (8qReEnc + 8qDec + 6qRD)tbp.

where l is the number of rows in access structure (M,ρ), n is the size of attribute uni-
verse and te, tbp denote the time taken for exponentiation and bilinear pairing operations
respectively.

Proof. If an adversary A that asks atmost qHi random oracle queries to Hi where i ∈
{1, 2, · · · , 5} breaks the IND-PRE-CCA security for the first level ciphertexts of the KP-
ABPRE scheme, we show that we can construct a PPT algorithm C that can break the
n-DBDHE assumption with non-negligible advantage. The algorithm C accepts as input
the n-DBDHE challenge 〈(g, gb, ga, ga2 , · · · , gan , gan+2

, · · · , ga2n) ∈ G, T ∈ G1〉 and plays
the role of a challenger in the following CCA-game with the adversary A.

– Initialization: The adversary A shares the target access structure (M∗, ρ∗) with
the challenger C on which it wishes to be challenged and the challenger C picks any
W ∗ |= (M∗, ρ∗) as the target attribute set. C generates the public parameters as
follows. It picks α′ ∈R Z∗p, and implicitly sets msk α = α′ + an+1. It computes

Y = e(g, g)α
′ · e(ga, gan).

In fact, Y = e(g, g)α
′
· e(ga, ga

n

)

= e(g, g)α
′+(an+1)

= e(g, g)α.

Let g1 = gβ , where β ∈R Z∗p is known to the challenger C. For all attributes atty ∈ U ,
C computes hy as below:
• Pick ty ∈ Z∗p.
• Compute hy = ga

n+1−y · gty .
The challenger C picks t0 ∈R Z∗p and computes h0 = (

∏
atty∈W∗ hy)−1·gt0 . It maintains

two lists LSK and LRK to store the list of private keys and the re-encryption keys
generated by C and contain tuples of the form :
• LSK : 〈(M,ρ), SK(M,ρ)〉.
• LRK : 〈(M,ρ)(M ′, ρ′), RK(M,ρ)→(M ′,ρ′)〉.

Both the lists are initially empty. C returns params : 〈p, g, g1, ê, Y, h0, h1, · · · , hn,H1,H2,
H3,H4,H5〉.

– Phase 1: Oracle Queries: C responds as shown below:
-H1(m||σ): C maintains a list LH1 that contains tuples of the form 〈m ∈ {0, 1}lm , σ ∈
{0, 1}lσ , s ∈ Z∗p〉. If the given query already appears in LH1

in a tuple 〈m,σ, s〉, re-
turn the predefined value s. Otherwise, pick s ∈R Z∗p, add tuple 〈m,σ, s〉 to LH1

and
respond with H1(m||σ) = s.

-H2(χ): C maintains a list LH2 that contains tuples of the form 〈χ ∈ G1, ν ∈
{0, 1}lm+lσ 〉. If the given query already appears in LH2

in a tuple 〈χ, ν〉, return the
predefined value ν. Otherwise, pick ν ∈R {0, 1}lm+lσ , add tuple 〈χ, ν〉 to LH2

and
respond with H2(χ) = ν.

20

-H3(W,C0, C1, C2, C3): C maintains a list LH3
that contains tuples of the form 〈W,C0 ∈R

{0, 1}lm+lσ , C1 ∈ G0, C2 ∈ G0, C3 ∈ G0, υ ∈ Z∗p, µ ∈R G0〉. If the given query already
appears in LH3 in a tuple 〈W,C0, C1, C2, C3, υ, µ〉, return the predefined value µ. Oth-
erwise, pick υ ∈R Z∗p and compute µ = (ga

n

)υ. Next, add tuple 〈W,C0, C1, C2, C3, υ, µ〉
to LH3

and respond with H3(W,C0, C1, C2, C3) = µ.

-H4(δ): C maintains a list LH4 that contains tuples of the form 〈δ ∈ {0, 1}lm , τ ∈ Z∗p〉.
If the query already appears in LH4 in a tuple 〈δ, τ〉, return the predefined value τ .
Else if δ = δ∗, output “failure” and abort. Otherwise, pick τ ∈R Z∗p, add tuple 〈δ, τ〉
to LH4

and respond with H4(δ) = τ .

-H5(W ′, rk4, rk5, rk6): C maintains a list LH5
that contains tuples of the form 〈W ′, rk4 ∈

{0, 1}lm+lσ , rk5 ∈ G0, rk6 ∈ G0, ϑ ∈ Z∗p, η ∈ G0〉. If the query already appears in
LH5 in a tuple 〈W ′, rk4, rk5, rk6, ϑ, η〉, return the predefined value η. Otherwise, pick
ϑ ∈R Z∗p, compute η = (ga

n

)ϑ, add tuple 〈W ′, rk4, rk5, rk6, ϑ, η〉 to LH5
and return η.

-Private Key Extraction OSK(M,ρ): When A queries for the private keys cor-
responding to an access structure (M,ρ) such that W ∗ 6|= (M,ρ), C searches list LRK
for a tuple 〈(M ′, ρ′), (M,ρ), RK(M ′,ρ′)→(M,ρ)〉 such that W ∗ |= (M ′, ρ′). If such a
tuple exists, C outputs “failure” and aborts. Otherwise, C checks if the given query
already exists in list LSK in a tuple 〈(M,ρ), SK(M,ρ)〉. If not present, for each row Mi

of the matrix M where attρ(i) ∈W ∗, there exists a vector w = (−1, w2, · · · , wk) ∈ Zkp
such that Mi · w = 0, as per Lemma 1. The challenger C picks z′2, z

′
3, · · · , z′k ∈R Z∗p

and sets v′ = (0, z′2, z
′
3, · · · , z′k) ∈ Zkp. It implicitly sets v = −(α′+ an+1)w+ v′. Next,

it generates the private keys corresponding to each row Mi as per the following two
cases.
• If attρ(i) ∈W ∗: From Lemma 1, note that Mi ·w = 0 holds good. The share λρ(i)

is computed as below:

λρ(i) = Mi · v
= −(α′ + an+1)(Mi · w) +Mi · v′

= Mi · v′.

The challenger C picks ri ∈R Z∗p and computes the private keys as below:

Ki = gλρ(i)(h0hρ(i))
ri ,K ′i = gri ,

K ′′i = {K ′′iy : K ′′iy = hriy ,∀y ∈ [n]\{ρ(i)}}.

• If attρ(i) 6∈W ∗: The challenger C picks r′i ∈R Z∗p and implicitly sets ri = aρ(i)(Mi ·
w) + r′i and computes the private keys as below:

- Ki = g(Mi·v′)−α′(Mi·w) · (h0hρ(i))r
′
i · (gaρ(i))t0·(Mi·w)

· (
∏
atty∈W∗ g

aρ(i)·ty · gan+1−y−ρ(i)
)(Mi·w) · (gaρ(i))tρ(i)·(Mi·w)

- K ′i =
(
ga

ρ(i))(Mi·w)
· gr′i

- K ′′i = {K ′′iy : K ′′iy =
((
ga

ρ(i))ty · gan+ρ(i)+1−y)(Mi·w) · hr
′
i
y ,∀y ∈ [n]\{ρ(i)}}

Observe that the private keys computed are identically distributed as the keys
generated by the KeyGen algorithm in the construction. In fact, we have:

21

Ki = g(Mi·v′)−α′(Mi·w) · (h0hρ(i))r
′
i · (ga

ρ(i)

)t0·(Mi·w)

·
(∏
atty∈W∗

ga
ρ(i)·ty · ga

n+1−y−ρ(i)
)(Mi·w)

·
(
ga

ρ(i))tρ(i)·(Mi·w)

= g(Mi·v′)−α′(Mi·w) · (h0hρ(i))r
′
i · g−a

n+1(Mi·w)

· (h0)a
ρ(i)(Mi·w) · (ga

ρ(i)

)tρ(i)(Mi·w) · ga
n+1(Mi·w)

= gMi·v′−α′(Mi·w) · g−a
n+1(Mi·w) · (h0hρ(i))r

′
i

· (h0)a
ρ(i)(Mi·w) · (gtρ(i) · ga

n+1−ρ(i)
)a
ρ(i)(Mi·w)

= gMi·v′−α′(Mi·w) · g−a
n+1(Mi·w) · (h0hρ(i))a

ρ(i)(Mi·w)+r′i

= gλρ(i) · (h0hρ(i))ri .

K ′i =
(
ga

ρ(i))(Mi·w) · gr
′
i

= ga
ρ(i)(Mi·w)+r′i

= gri .

K ′′i =
((
ga

ρ(i))ty · gan+ρ(i)+1−y)(Mi·w) · hr
′
i
y

= (gty · ga
n+1−y

)a
ρ(i)·(Mi·w) · hr

′
i
y

= h
aρ(i)(Miw)+r′i
y .

= hriy .

C returns the private keys 〈∀i ∈ [l] : Ki,K
′
i,K

′′
i 〉 to A. It is straightforward to note

that the challenger C performs atmost (n + 2)l exponentiation operations for every
invocation to the private key extraction oracle.

Re-encryption Key Generation(ORK((M,ρ), (M ′, ρ′))): On input of two access
structures (M,ρ) and (M ′, ρ′), the challenger C checks if the given query already
appears in list LRK in a tuple 〈(M,ρ), (M ′, ρ′), RK(M,ρ)→(M ′,ρ′)〉. If not present, C
generates the re-encryption key as below:
• If W ∗ |= (M,ρ) and 〈M ′, ρ′, SK(M ′,ρ′)〉 ∈ LSK such that the private keys of access

structure (M ′, ρ′) has already been queried upon, output “failure” and abort.
• Otherwise, check if the private key SK(M,ρ) already appears in LSK . If not present,

invoke OSK(M,ρ) to generate the private keys corresponding to (M,ρ).
• Generate re-encryption keys as per ReKeyGen protocol.

22

• Update list LRK with the tuple 〈(M,ρ), (M ′, ρ′), RK(M,ρ)→(M ′,ρ′)〉 and return
RK(M,ρ)→(M ′,ρ′).

It is straightforward to note that the challenger C performs atmost (n+ 6)l exponen-
tiation operations for every invocation to the re-encryption key generation oracle.

-Re-Encryption(ORE(C, (M,ρ), (M ′, ρ′))): On input of a first level ciphertext C
encrypted under an attribute set W satisfying (M,ρ), re-encrypt using the following
steps:
• Check ciphertext validity using Equations 1, (2), (3).
• If they hold, check list LH3

for tuple 〈W,C0, C1, C2, C3, υ, µ〉 such that µ = (ga
n

)υ

for some known υ ∈ Z∗p.
• Compute:

X = ê((C4)1/υ, ga) · ê(C1, g
α′)

= ê((ga
n

)s, ga) · ê(gs, gα
′
)

= e(g, g)s·α

= (Y)s.

• Pick δ ∈ {0, 1}lm , γ ∈ {0, 1}lσ , θ ∈ Z∗p.
• Compute D0 = XH4(δ).
• Set D1 = C0, D2 = C1.
• Compute s′ = H1(δ||γ).
• Compute D3 = (δ||γ)⊕H2(Y s

′
), D4 = gs

′
.

• Pick any attribute set W ′ |= (M ′, ρ′).

• Compute D5 =
(
h0
∏
atty∈W ′ hy

)s′
.

• Compute D6 =
(
H5(W ′, D3, D4, D5)

)s′
.

• Return ciphertext D = (D0, D1, D2, D3, D4, D5, D6,W
′).

It is straightforward to note that the challenger C performs atmost 7 exponentiation
and 8 bilinear pairing operations for every invocation to the re-encryption oracle.

-Decryption(ODec(C, (M,ρ))): On input of a first level ciphertext C encrypted under
an attribute set W |= (M,ρ), decrypt as shown below:
• Check ciphertext validity using Equations 1, (2) and (3).
• If they hold, check list LH3

for tuple 〈W,C0, C1, C2, C3, υ, µ〉 such that µ = (ga
n

)υ

for some known υ ∈ Z∗p.
• Compute:

X = ê((C4)1/υ, ga) · ê(C1, g
α′)

= (Y)s.

• Search list LH2 for a tuple 〈X, ν〉 and compute (m||σ) = C0 ⊕ ν.

• Search list LH1 for a tuple 〈m,σ, s〉. If C1
?
= gH1(m||σ), return the plaintext m,

otherwise return ⊥.
It is straightforward to note that the challenger C performs atmost 3 exponentiation
and 8 bilinear pairing operations for every invocation to the decryption oracle.

-Re-Decryption(ORD(D, (M ′, ρ′))): On input of a second level ciphertext D en-
crypted under attribute set W ′ |= (M ′, ρ′), decrypt as shown below:

23

• Check ciphertext validity using Equations (8) and (9).
• If they hold, check list LH5 for tuple 〈W ′, D3, D4, D5, ϑ, η〉 such that η = (ga

n

)ϑ

for some known ϑ ∈ Z∗p.
• Compute:

X ′ = ê((D6)1/ϑ, ga) · ê(D2, g
α′)

= ê((ga
n

)s
′
, ga) · ê(gs

′
, gα

′
)

= ê(g, g)s
′(an+1+α′)

= ê(g, g)s
′α

= (Y)s
′
.

• Search list LH2 for a tuple 〈X ′, ν′〉 and compute (δ||γ) = D3 ⊕ ν′.
• If D4

?
= gH1(δ||γ), compute the plaintext (m||σ) = D1 ⊕H2(D

1/H4(δ)
0).

• If D2
?
= gH1(m||σ), return m, otherwise return ⊥.

It is straightforward to note that the challenger C performs atmost 5 exponentiation
and 6 bilinear pairing operations for every invocation to the re-decryption oracle.

– Challenge: A outputs two messages (m0,m1) to C. The challenger C picks ψ ∈ {0, 1}
at random and encrypts mψ under attribute set W ∗ as below:

• Pick σ∗ ∈ {0, 1}lσ .
• Implicitly define H1(mψ||σ∗) = b.

• Compute C∗0 = (mψ||σ∗)⊕H2(Z · ê(gb, gα′)).
• Compute C∗1 = gb, C∗2 = (gb)β , C∗3 = (gb)t0 .
• Set H3(W ∗, C∗0 , C

∗
1 , C

∗
2 , C

∗
3) = gk, where k ∈R Z∗p.

• Compute C∗4 = (gb)k.
• Return the ciphertext C∗ = (C∗0 , C

∗
1 , C

∗
2 , C

∗
3 , C

∗
4 ,W

∗).

Observe that the first-level ciphertext computed is identically distributed as the ci-
phertext generated by the Encrypt algorithm in the construction. In fact, we have:

C∗0 = (mψ||σ∗)⊕H2(Z · ê(gb, gα
′
))

= (mψ||σ∗)⊕H2(ê(gb, ga
n+1

) · ê(gb, gα
′
))

= (mψ||σ∗)⊕H2(ê(gb, gα))

= (mψ||σ∗)⊕H2(Y s).

C∗3 = (gb)to

= (gt0)b

= (gt0(
∏

atty∈W∗
hy)−1 · (

∏
atty∈W∗

hy))b

= (h0
∏

atty∈W∗
hy)s.

24

Phase-2: A continues to query the oracles maintained by C subject to the constraints
stated in the security model.

Guess: A eventually produces its guess ψ′ ∈ {0, 1}. If ψ′ = ψ, A wins the game and C
decides ê(g, g)b(a

n+1) = Z, else Z is random.

Probability Analysis: We first analyse the simulation of the random oracles. The sim-
ulation of the random oracles takes place perfectly unless the following events take place:

− EH1 : Event that (mψ, σ
∗) was queried to H1 function.

− EH2
: Event that (Z · ê(gb, gα′)) was queried to H2 function.

Next we analyse the simulation of the re-encryption oracle. The responses to A’s re-
encryption queries are perfect, unless A submits a valid second-level ciphertext without
having queried the hash function H3 (we denote this event by RErr). Since H3 acts as a
random oracle and A issues at most qReEnc re-encryption queries, we have Pr[RErr] =
qReEnc

p .
The simulation of the decryption oracle is perfect unless valid ciphertexts are rejected,

which occurs when A queries the decryption oracle without having queried H1 and H2.
Let Evalid denote the event that the ciphertext is a valid ciphertext. We have:

Pr[Evalid|¬EH2] = Pr[Evalid ∧ EH1 |¬EH2] + Pr[Evalid ∧ ¬EH1 |¬EH2]

≤ Pr[Evalid ∧ EH1 |¬EH2] + Pr[Evalid|¬EH1 ∧ ¬EH2]

≤ Pr[EH1
]

Pr[¬EH2]
+

1

p

≤ qH1

(2lm+lσ)
+

1

p
.

Let us denote EDEr denote that the event (Evalid|¬EH2
) occurs during the entire simu-

lation, and we obtain:

Pr[EDEr] ≤ qDec
(qH1

(2lm+lσ)
+

1

p

)
.

Let Eer denote the event (EH2 ∨ (EH1 |¬EH2) ∨ ERErr ∨ EDEr). If event Eer does not
happen, the adversaryA does not gain any advantage in guessing ψ due to the randomness
in the output of the random oracle H2. Therefore, Pr[ψ′ = ψ|¬Eer] = 1

2 . Note that:

Pr[ψ′ = ψ] = Pr[ψ′ = ψ|¬Eer]Pr[¬Eer] + Pr[ψ′ = ψ|Eer]Pr[Eer]

≤ 1

2
Pr[¬Eer] + Pr[Eer] =

1

2
+

1

2
Pr[Eer].

Also, Pr[ψ′ = ψ] ≥ Pr[ψ′ = ψ|¬Eer]Pr[¬Eer] ≥
1

2
− 1

2
Pr[Eer].

From the definition of the advantage of CCA adversary, we have:

ε = |Pr[ψ′ = ψ]− 1

2
|

≤ 1

2
Pr[Eer] =

1

2
Pr[(EH2

∨ (EH1
|¬EH2

) ∨ ERErr ∨ EDEr)].

25

Therefore, we obtain the following bound on Pr[EH2
] as:

Pr[EH2
] ≥ 2ε− Pr[EH1

|¬EH2
] + Pr[ERErr] + Pr[EDEr]

≥ 2ε− qH1

2lm+lσ
− qReEnc

p
− qDec

(qH1

(2lm+lσ)
+

1

p

)
Note that, if event EH2

occurs, then the challenger C solves the n-DBDHE instance with
advantage:

ε′ ≥ 1

qH2

Pr[EH2
]

≥ 1

qH2

(
2ε− qH1

2lm+lσ
− qReEnc

p
− qDec

(qH1

(2lm+lσ)
+

1

p

))
The reduction involves asking qH3

, qH5
, qSK , qRK , qReEnc, qDec and qReDec queries

to the H3 and H5 hash functions, private-key extraction, re-encryption key generation,
re-encryption, decryption and re-decryption oracles, and the number of exponentiations
done under these queries are 1, 1, (n + 2)l, (n + 6)l, 7, 3 and 5 respectively. Additionally,
the re-encryption, decryption and re-decryption oracles incur 8, 8 and 6 bilinear pairing
operations respectively. Hence, the total number of operations performed are (qH3

+qH5
+

(n+2)lqSK+(n+6)lqRK+7qReEnc+3qDec+5qRD)te+(8qReEnc+8qDec+6qRD)tbp where
te is the time taken for one exponentiation operation and tbp is the time taken for one
bilinear pairing operation. Therefore, we can bound the running time of the challenger
by:

t′ ≤ t+ (qH3
+ qH5

+ (n+ 2)lqSK + (n+ 6)lqRK + 7qReEnc + 3qDec + 5qRD)te

+ (8qReEnc + 8qDec + 6qRD)tbp.

This completes the proof of the theorem.

7.6 Second Level Ciphertext Security

Theorem 2. If a (t, ε)IND-PRE-CCA adversary A has a non-negligible advantage ε
in breaking the IND-PRE-CCA security of the given KP-ABPRE scheme for second
level ciphertext, with access to the random oracles H1,H2,H3,H4,H5, then there exists
an algorithm C that solves the n-DBDHE problem with advantage ε′ within time t′ where,

ε′ ≥ 1

qH2

(
2ε ·

(
1− qH4

2lm

)
− qH1

2lm+lσ
− qDec

(qH1

(2lm+lσ)
+

1

p

))
,

t′ ≤ t+ (qH3 + qH5 + (n+ 2)lqSK + (n+ 6)lqRK + 3qDec + 5qRD)te + (8qDec + 6qRD)tbp.

Proof. If an adversary A that asks atmost qHi random oracle queries to Hi where i ∈
{1, 2, · · · , 5} breaks the IND-PRE-CCA security for the second level ciphertexts of the
KP-ABPRE scheme, we show that we can construct a PPT algorithm C that can break
the n-DBDHE assumption with non-negligible advantage. The algorithm C accepts as
input the n-DBDHE challenge 〈(g, gb, ga, ga2 , · · · , gan , gan+2

, · · · , ga2n) ∈ G, T ∈ G1〉 and
plays the role of a challenger in the following CCA-game with the adversary A.

26

– Initialization: The adversary A shares the target access structure (M∗, ρ∗) with
the challenger C on which it wishes to be challenged and the challenger C picks any
W ∗ |= (M∗, ρ∗) as the target attribute set. C picks α′ ∈R Z∗p, and implicitly sets

msk α = α′ + an+1. It computes Y = e(g, g)α
′ · e(ga, gan) as shown in the first-level

ciphertext security game. Let g1 = gβ , where β ∈R Z∗p is known to the challenger C.
For all attributes atty ∈ U , C picks ty ∈ Z∗p. It compute hy = ga

n+1−y · gty . It picks

t0 ∈R Z∗p and computes h0 = (
∏
atty∈W∗ hy)−1 · gt0 . It picks δ∗ ∈ {0, 1}lm , used in

re-encryption key generation oracle. It maintains two lists LSK and LRK to store the
list of private keys and the re-encryption keys generated by C and contain tuples of
the form :
• LSK : 〈(M,ρ), SK(M,ρ)〉.
• LRK : 〈(M,ρ)(M ′, ρ′), RK(M,ρ)→(M ′,ρ′)〉.

Both the lists are initially empty. C returns the public parameters params : 〈p, g, g1, ê, Y,
h0, h1, · · · , hn,H1,H2,H3,H4,H5〉.

– Phase 1 (Oracle Queries): C responds to the oracle queries in the similar manner
as shown in the first-level ciphertext security game.

-Private Key Extraction OSK(M,ρ): When the adversary A queries for the pri-
vate keys corresponding to an access structure (M,ρ) such that W ∗ 6|= (M,ρ), C
checks if the given query already exists in list LSK in a tuple 〈(M,ρ), SK(M,ρ)〉. If not
present, for each row Mi of the matrix M where attρ(i) ∈ W ∗, there exists a vector

w = (−1, w2, · · · , wk) ∈ Zkp such that Mi · w = 0, as per Lemma 1. The challenger

C picks z′2, z
′
3, · · · , z′k ∈R Z∗p and sets v′ = (0, z′2, z

′
3, · · · , z′k) ∈ Zkp. It implicitly sets

v = −(α′ + an+1)w + v′. Next, it generates the private keys corresponding to each
row Mi as per the following two cases.
• If attρ(i) ∈ W ∗: From Lemma 1, note that Mi · w = 0 holds good. The share
λρ(i) is computed as λρ(i) = Mi · v = Mi · v′, as shown in the first-level ciphertext
security game. The challenger C picks ri ∈R Z∗p and computes the private keys as
below:

Ki = gλρ(i)(h0hρ(i))
ri ,K ′i = gri , K ′′i = {K ′′iy : K ′′iy = hriy ,∀y ∈ [n]\{ρ(i)}}.

• If attρ(i) 6∈W ∗: The challenger C picks r′i ∈R Z∗p and implicitly sets ri = aρ(i)(Mi ·
w) + r′i and computes the private keys as below:

- Ki = g(Mi·v′)−α′(Mi·w) · (h0hρ(i))r
′
i

·(gaρ(i))t0·(Mi·w)·(
∏
atty∈W∗ g

aρ(i)·ty ·gan+1−y−ρ(i)
)(Mi·w)·(gaρ(i))tρ(i)·(Mi·w).

- K ′i =
(
ga

ρ(i))(Mi·w)
· gr′i .

- K ′′i = {K ′′iy : K ′′iy =
((
ga

ρ(i))ty · gan+ρ(i)+1−y)(Mi·w) · hr
′
i
y ,∀y ∈ [n]\{ρ(i)}}.

Note that the private keys computed are identically distributed as the keys generated
by the KeyGen algorithm in the construction, as shown in the proof of DSK security.
C returns the private keys 〈∀i ∈ [l] : Ki,K

′
i,K

′′
i 〉 to the adversary A.

Re-encryption Key Generation(ORK((M,ρ), (M ′, ρ′))): On input of two access
structures (M,ρ) and (M ′, ρ′), the challenger checks if the given query already appears

27

in list LRK in a tuple 〈(M,ρ), (M ′, ρ′), RK(M,ρ)→(M ′,ρ′)〉. If not present, C generates
the re-encryption key as per the following two cases:
• If W ∗ 6|= (M,ρ) :

∗ Check if the private key SK(M,ρ) already appears in LSK . If not present,
invoke OSK(M,ρ) to generate the private keys corresponding to (M,ρ).

∗ Generate the re-encryption keys as per the ReKeyGen protocol.
∗ Return RK(M,ρ)→(M ′,ρ′).

• If W ∗ |= (M,ρ) :
∗ Let the matrix M be of size l × k. Pick z′2, z

′
3, · · · , z′k ∈ Z∗p and set v′ =

(1, z′2, z
′
3 · · · , z′k).

∗ Implicitly set v = (α′+an+1)v′, such that v = ((α′+an+1, (α′+an+1)z′2, · · · ,
(α′ + an+1)z′k) is a vector of length k. Compute the share λρ(i) as below:

λρ(i) = Mi · v
= (α′ + an+1)(Mi · v′).

∗ Pick γ ∈ {0, 1}lσ and θ′ ∈ Z∗p.
∗ For each row Mi of matrix M , pick r′i ∈ Z∗p. Implicitly, define ri = an+1 · r′i

and H4(δ∗) = a. Set θ = −(an+1 ·H4(δ∗)) · r′i+θ′. Compute the re-encryption
key components as below:

rk1i = (ga
n+2

)(Mi·v′) · (ga)α
′(Mi·v′) · (h0hi)θ

′

rk2i = gθ
′

rk3i = {rk3iy : rk3iy = (gn+1−y)θ
′
,∀y ∈ [n]\{ρ(i)}}

Observe that the re-encryption key components computed are identically dis-
tributed as the keys generated by the RekeyGen algorithm in the construction.
In fact, we have:

rk1i = (ga
n+2

)(Mi·v′) · (ga)α
′(Mi·v′) · (h0hi)θ

′

= gλρ(i)H4(δ
∗) · (h0hi)H4(δ

∗)ri+θ

= K
H4(δ

∗)
i (h0hi)

θ.

rk2i = gθ
′

= g(a
n+1·r′i·H4(δ

∗)+(−an+1·r′i·H4(δ
∗))+θ′)

= griH4(δ
∗)+θ

= (K ′i)
H4(δ

∗).

rk3i = {rk3iy : rk3iy = (gn+1−y)θ
′
,∀y ∈ [n]\{ρ(i)}}

= h
(an+1·r′i·H4(δ

∗)+(−an+1·r′i·H4(δ
∗))+θ′)

iy

= h
(riH4(δ

∗)+θ)
iy

= (K ′′iy)H4(δ
∗).

28

∗ Compute s′ = H1(δ∗||γ).
∗ Compute rk4 = (δ∗||γ)⊕H2(Y s

′
).

∗ Compute rk5 = gs
′
.

∗ Pick an attribute set W ′ |= (M ′, ρ′).

∗ Compute rk6 =
(
h0
∏
atty∈W ′ hy

)s′
.

∗ Compute rk7 =
(
H5(W ′, rk4, rk5, rk6)

)s′
.

∗ Return the re-encryption key RK(M,ρ)→(M ′,ρ′) = ({∀i ∈ [l] : rk1i,
rk2i, rk3i}, rk4, rk5, rk6, rk7,W ′) and update list LRK .

-Decryption(ODec(C, (M,ρ))): C responds to the decryption query for first-level ci-
phertexts in the same manner as shown in the first-level ciphertext security game.

-Re-Decryption(ORD(D, (M ′, ρ′))): C responds to the decryption query for second-
level ciphertexts in the same manner as shown in the first-level ciphertext security
game.

– Challenge: When A decides that Phase 1 is over, it outputs two messages (m0,m1)
to C. The challenger C picks ψ ∈ {0, 1} at random and re-encrypts mψ under an access
structure satisfying attribute set W ∗ as below:

• Pick θ∗ ∈ Z∗p, δ∗ ∈ {0, 1}lm and σ∗, γ∗ ∈ {0, 1}lσ .

• Compute s = H1(mψ||σ∗).

• Compute D∗0 = (ê(g, g)α
′ · e(ga, gan))sH4(δ

∗) = Y s·H4(δ
∗).

• Compute D∗1 = (mψ||σ∗)⊕H2(Y s).

• Compute D∗2 = gs.

• Implicitly define H1(δ∗||γ∗) = b.

• Compute D∗3 = (δ∗||γ∗)⊕H2(Z · ê(gb, gα′)).

• Compute D∗4 = gb.

• Compute D∗5 = (gb)t0 .

• Set H5(W ∗, D∗3 , D
∗
4 , D

∗
5) = gk, where k ∈R Z∗p.

• Compute D∗6 = (gb)k.

• Return the second level ciphertext D∗ = (D∗0 , D
∗
1 , D

∗
2 , D

∗
3 , D

∗
4 , D

∗
5 , D

∗
6 ,W

∗).

Observe that the second-level ciphertext computed is identically distributed as the
ciphertext generated by the ReEncrypt algorithm in the construction. In fact, we

29

have:

D∗3 = (δ∗||γ∗)⊕H2(Z · ê(gb, gα
′
))

= (δ∗||γ∗)⊕H2(ê(gb, ga
n+1

) · ê(gb, gα
′
))

= (δ∗||γ∗)⊕H2(ê(gb, ga
n+1+α′))

= (δ∗||γ∗)⊕H2(ê(gb, gα))

= (δ∗||γ∗)⊕H2(Y s
′
).

D∗5 = (gb)to

= (gt0)b

= (gt0(
∏

atty∈W∗
hy)−1 · (

∏
atty∈W∗

hy))b

= (h0
∏

atty∈W∗
hy)s

′
.

Phase-2: The adversary A continues to query the oracles maintained by C subject to the
constraints stated in the security model.

Guess: The adversary A eventually produces its guess ψ′ ∈ {0, 1}. If ψ′ = ψ, A wins the

game and C decides ê(g, g)b(a
n+1) = Z, else Z is random.

Probability Analysis: We first analyse the simulation of the random oracles. The sim-
ulation of the random oracles takes place perfectly unless the following events take place:

− EH1
: Event that (mψ, σ

∗) was queried to the H1 hash function.

− EH2
: Event that (Z · ê(gb, gα′)) was queried to H2 hash function.

– EH4
: Event that δ∗ was queried to the H4 oracle.

We have Pr[EH4
] =

(
qH4

2lm

)
. Let abort denote the event that C aborts the simulation.

Hence, Pr[¬abort] = Pr[¬EH4
] =

(
1− qH4

2lm

)
.

The simulation of the decryption oracle is perfect unless valid ciphertexts are rejected,
which occurs when A queries the decryption oracle without querying H1 and H2. Let
Evalid denote the event that the ciphertext is a valid ciphertext. Let EH1

and EH2
denote

the events that H1 and EH2
has been queried by A. Let us denote EDEr denote that

the event (Evalid|¬EH2) occurs during the entire simulation. As shown in the probability
analysis of the first level ciphertext, we obtain:

Pr[EDEr] ≤ qDec
(qH1

(2lm+lσ)
+

1

p

)
.

Let Eer denote the event (EH2 ∨ (EH1 |¬EH2) ∨ ERErr ∨ EDEr)|¬abort. If Eer does not
occur, the adversary A gains no advantage in guessing ψ due to the randomness in the
output of H2 oracle, i.e., Pr[ψ′ = ψ|¬Eer] = 1

2 . As shown in the probability analysis of

30

the first level ciphertext, by the definition of the advantage of CCA adversary, we have
the advantage:

ε = |Pr[ψ′ = ψ]− 1

2
|

≤ 1

2
Pr[Eer] =

1

2
Pr[(EH2 ∨ (EH1 |¬EH2) ∨ EDEr)|¬abort]

≤ 1

2
((Pr[EH2] + Pr[EH1 |¬EH2] + Pr[EDEr])/Pr[¬abort]).

Therefore, we obtain the following bound on Pr[EH2
] as:

Pr[EH2] ≥ 2ε · Pr[¬abort]− Pr[EH1 |¬EH2] + Pr[EDEr]

≥ 2ε ·
(

1− qH4

2lm

)
− qH1

2lm+lσ
− qDec

(qH1

(2lm+lσ)
+

1

p

)
Note that, if event EH2

takes place, the challenger C solves the n-DBDHE instance with
an advantage:

ε′ ≥ 1

qH2

Pr[EH2
]

≥ 1

qH2

(
2ε ·

(
1− qH4

2lm

)
− qH1

2lm+lσ
− qDec

(qH1

(2lm+lσ)
+

1

p

))

We bound the running time of the challenger by:

t′ ≤ t+ (qH3
+ qH5

+ (n+ 2)lqSK + (n+ 6)lqRK + 3qDec + 5qRD)te

+ (8qDec + 6qRD)tbp.

This completes the proof of the theorem. ut

Collusion Resistance

Theorem 3. [17] If a unidirectional single-hop KP-ABPRE scheme is IND-PRE-CCA
secure for first level ciphertexts, then it is collusion resistant as well.

8 Conclusion

Although several KP-ABPRE schemes have been proposed in the literature, to the best
of our knowledge, only one CCA-secure scheme due to Ge et al. has reported the collusion
resistant property. In this paper, we demonstrate a CCA-attack on their construction. We
also give a construction of the first unidirectional KP-ABPRE scheme with constant size
ciphertexts requiring a constant number of exponentiations in encryption, and constant
number of bilinear pairing operations during decryption and re-decryption while satisfying
selective CCA-security for first-level and second level ciphertexts. Also, the definition of
collusion resistance is met wherein a colluding proxy and delegatee cannot obtain the
private key of the delegator. Our work affirmatively resolves the problem of collusion
resistance by proposing a computationally efficient collusion resistant KP-ABPRE scheme
that supports monotonic access structures for fine-grained delegation of decryption rights.

31

References

1. Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy
re-encryption schemes with applications to secure distributed storage. In NDSS, 2005.

2. Nuttapong Attrapadung and Hideki Imai. Dual-policy attribute based encryption. In Ap-
plied Cryptography and Network Security, 7th International Conference, ACNS 2009, Paris-
Rocquencourt, France, June 2-5, 2009. Proceedings, pages 168–185, 2009.

3. Amos Beimel. Secure schemes for secret sharing and key distribution. PhD thesis, Israel
Institute of technology, Technion, Haifa, Israel, 1996.

4. John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryp-
tion. In 2007 IEEE Symposium on Security and Privacy (S&P 2007), 20-23 May 2007,Cal-
ifornia, USA, pages 321–334. IEEE Computer Society, 2007.

5. Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic proxy
cryptography. In International Conference on the Theory and Applications of Cryptographic
Techniques, pages 127–144. Springer, 1998.

6. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. J.
Cryptology, 17(4):297–319, 2004.

7. Pei-Shan Chung, Chi-Wei Liu, and Min-Shiang Hwang. A study of attribute-based proxy
re-encryption scheme in cloud environments. I. J. Network Security, 16(1):1–13, 2014.

8. Aloni Cohen. What about bob? the inadequacy of CPA security for proxy reencryption. In
Public-Key Cryptography - PKC 2019 - 22nd IACR International Conference on Practice
and Theory of Public-Key Cryptography, Beijing, China, April 14-17, 2019, Proceedings,
Part II, pages 287–316, 2019.

9. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. J. Cryptol., 26(1):80–101, 2013.

10. Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. In Advances in Cryptology, Proceedings of CRYPTO ’84, Santa Barbara, California,
USA, August 19-22, 1984, Proceedings, volume 196 of Lecture Notes in Computer Science,
pages 10–18. Springer, 1984.

11. Chunpeng Ge, Willy Susilo, Liming Fang, Jiandong Wang, and Yunqing Shi. A cca-secure
key-policy attribute-based proxy re-encryption in the adaptive corruption model for dropbox
data sharing system. Des. Codes Cryptography, 86(11):2587–2603, 2018.

12. Chunpeng Ge, Willy Susilo, Jiandong Wang, Zhiqiu Huang, Liming Fang, and Yongjun
Ren. A key-policy attribute-based proxy re-encryption without random oracles. Comput. J.,
59(7):970–982, 2016.

13. Keying Li, Jianfeng Wang, Yinghui Zhang, and Hua Ma. Key policy attribute-based proxy
re-encryption and RCCA secure scheme. J. Internet Serv. Inf. Secur., 4(2):70–82, 2014.

14. Keying Li, Yinghui Zhang, and Hua Ma. Key policy attribute-based proxy re-encryption
with matrix access structure. In 2013 5th International Conference on Intelligent Networking
and Collaborative Systems, Xi’an city, Shaanxi province, China, September 9-11, 2013, pages
46–50, 2013.

15. Kaitai Liang, Liming Fang, Duncan S Wong, and Willy Susilo. A ciphertext-policy attribute-
based proxy re-encryption scheme for data sharing in public clouds. Concurrency and Com-
putation: Practice and Experience, 27(8):2004–2027, 2015.

16. Xiaohui Liang, Zhenfu Cao, Huang Lin, and Jun Shao. Attribute based proxy re-encryption
with delegating capabilities. In Proceedings of the 4th International Symposium on Informa-
tion, Computer, and Communications Security, pages 276–286. ACM, 2009.

17. Benôıt Libert and Damien Vergnaud. Unidirectional chosen-ciphertext secure proxy re-
encryption. In International Workshop on Public Key Cryptography, pages 360–379. Springer,
2008.

18. Benôıt Libert and Damien Vergnaud. Unidirectional chosen-ciphertext secure proxy re-
encryption. IEEE Trans. Information Theory, 57(3):1786–1802, 2011.

32

19. Song Luo, Jian-bin Hu, and Zhong Chen. Ciphertext policy attribute-based proxy re-
encryption. In Miguel Soriano, Sihan Qing, and Javier López, editors, Information and
Communications Security - 12th International Conference, ICICS 2010, Barcelona, Spain,
December 15-17, 2010. Proceedings, volume 6476 of Lecture Notes in Computer Science,
pages 401–415. Springer, 2010.

20. Bo Qin, Qianhong Wu, Lei Zhang, Oriol Farràs, and Josep Domingo-Ferrer. Provably secure
threshold public-key encryption with adaptive security and short ciphertexts. Inf. Sci.,
210:67–80, 2012.

21. Y. Sreenivasa Rao and Ratna Dutta. Computational friendly attribute-based encryptions
with short ciphertext. Theor. Comput. Sci., 668:1–26, 2017.

22. Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Advances in Cryptology -
EUROCRYPT 2005, 24th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, pages 457–
473. Springer, 2005.

23. Jian Weng, Robert H. Deng, Xuhua Ding, Cheng-Kang Chu, and Junzuo Lai. Conditional
proxy re-encryption secure against chosen-ciphertext attack. In Proceedings of the 2009
ACM Symposium on Information, Computer and Communications Security, ASIACCS 2009,
Sydney, Australia, March 10-12, 2009, pages 322–332, 2009.

33

	Efficient Attribute-based Proxy Re-Encryption with Constant Size Ciphertexts
	 Arinjita Paul, S. Sharmila Deva Selvi and C. Pandu Rangan

