
Spy Based Analysis of Selfish Mining

Attack on Multi-Stage Blockchain

Donghoon Chang , Munawar Hasan , and Pranav Jain

Dept. of Computer Science and Engineering, Indraprastha
Institute of Information Technology Delhi, India

{donghoon, munawar1440, pranav16255}@iiitd.ac.in

Abstract

In this paper, we present selfish mining attack on the multi-stage
blockchain proposed by Palash Sarkar. We provide detailed analysis of
computational wastage of honest miners and biased rewards achieved by
the selfish pool. In our analysis, we introduce a spy inside an honest pool
which is a trivial task. Our spy is responsible for leaking the informa-
tion of the stage mining from the honest pool to the selfish pool. In our
analysis, we consider all the possible configurations of mining namely se-
quential, parallel and pipelining. In all of these configurations, we show
through our mathematical equations as to how a selfish miner can succeed
in wasting the computation power of the honest miner and how he can in-
fluence the reward of mining. For completeness, we provide an algorithm
for performing a selfish mining attack on all the scenarios on multi-stage
blockchain.
To thwart selfish mining on multi-stage blockchain we redesign the original
verification algorithm by introducing a new parameter called the crypto-
stamp. We present a new algorithm that uses crypto-stamp during the
verification process of the mined stages or blocks and is able to detect
with high probability whether the stages or blocks were kept private or
not.

1 Introduction

Bitcoin [1] is a cryptocurrency which has gained a lot of popularity over the last
few years. The driving force behind the bitcoin is the blockchain which provides
immutability over the stored data. Bitcoin network is based on trustless, per-
missionless and decentralized environment. Mining is the process of approving
any transaction in the bitcoin network. Miners are required to solve a crypto
puzzle which is considered computationally hard to solve. Further, if the major-
ity of the miners are honest, it is practically impossible for the dishonest miners

1

to solve the crypto puzzle before the honest miners can mine; often referred
to as 51% rule. Such mining approaches are commonly called proof of work.
The miners gets reward upon successfully solving the crypto puzzle. To solve a
crypto puzzle, it requires a lot of computational power and hence is not feasible
for any individual to mine in solitary, instead joining a mining pool is useful to
increase the chances of the reward.

Eyal et. al [2] showed that majority rule is not enough to reward only honest
miners. He showed that collusion is possible in Bitcoin’s decentralized network
leading to loss of reward and wastage of computational power for honest min-
ers. The idea is to keep mined block in the private pool rather than releasing
it to the public network. This way the honest miners will continue to mine for
the block that are public while the miners on the private pool will keep min-
ing on their private block as the head. When this private chain is strategically
released to public network, it will lead to forks in the public chain and power
wastage for the honest miner. Further, depending on the strategy of the release
of the private chain, its miners can also have unfair advantage in rewards. This
phenomenon is referred as selfish mining. There by different researchers have
shown results related to selfish mining in several scenarios and several platforms
[4, 5, 6, 7].

Recently Palash Sarkar in [3] presented a completely new blockchain archi-
tecture by splitting a single blockchain into several stages. This provided several
degree of parallelism inside a single block of the blockchain. Palash Sarkar also
claim that this strategy also removes the possibility of the selfish mining. In
this paper, we will show that selfish mining is still possible using a malicious
user called spy.

Mining pools use a system that is based on shares which are blocks with
proof of works for a different difficulty than the network difficulty. Mining pools
will set the difficulty for a given miner to be something that is reasonable for it
to achieve. So when that miner mines, it is looking for a block hash that meets
the pool difficulty. Once it does, it submits the block. That submitted block,
although likely not valid to the Bitcoin network, meets the pool difficulty and
is known as a share.
So mining pools will count the shares and give weight to each share based upon
the difficulty that it was mined at. In this way, the mining pool can determine
how much work each miner has done on average and pay them accordingly once
a block is actually found.
Blocks are found when a share meets both the pool difficulty and network dif-
ficulty.

Our contribution is based on the Multi-Stage Blockchain architecture pro-
posed by Palash Sarkar [3]. We first provide an in depth analysis of the selfish
mining attack on Multi-Stage Blockchain using a spy in section 5. A spy is a
miner which joins a mining pool and leaks some information to other mining

pool. We then introduce a new parameter called the crypto-stamp, using which
we design the multi-stage blockchain in a way that will prevent selfish mining.

2 Preliminaries

In this section, we provide the notions and definitions needed to describe and
analyze the multi-stage blockchain in light of spy.

The honest miners are the miners that work in a fixed pattern and follow the
blockchain’s protocol. The selfish miners work in a way which leads to wastage
of computational power of honest miners. Let the pool of honest miners be
called as the honest pool, and the pool of selfish miners be called as the self-
ish pool. A spy is a malicious user inside the honest pool which is responsible
for leaking information of stage mining to the selfish pool. In this paper, we
consider only one honest and one selfish pool to be working in the blockchain
network.

We say that a block/stage is known to the network if the proof of work of
the block/stage is known and can be verified by anyone in the network. A
block/stage is said to be mined if its proof of work is verified and valid. A
block/stage is said to be kept private if it is mined but not known to the
network. Revealing a stage/block means making known a previously private
stage/block. We will explain the meaning of blocks, stage and proof of work in
detail in section 3.

3 Multi-Stage Blockchain

A blockchain is a distributed ledger which stores immutable records [1] in form of
blocks. Each block consists of data over which immutability is required. Palash
Sarkar introduced a new design rationale for blockchain called the multi-stage
blockchain [3] where he introduced the concept of stages inside the block such
that a block is divided into k stages where k ≥ 1. If k = 1, there is no distinc-
tion between a stage and a block. Bitcoin [1], a decentralized crypto-currency
is based on a blockchain with k = 1. From here on we will concentrate on
multi-stage blockchain. Moreover single-stage blockchain is a special case of
multi-stage blockchain and would inherit the idea provided in this paper.

In multi-stage design approach, each of the k stages inside the block has
to perform proof of work rather than just a single proof of work per block as
in the case of the blockchain design of the bitcoin. Similarly, the verification
process in multi-stage design is also split into k parts where each part is verified
separately.

3.1 Architecture

In this section, we describe the overall architecture of the multi-stage blockchain.
We will be using similar notation as described in [3].

3.1.1 Blockchain

Denoting the ith block of the multi-stage blockchain by Bi, the multi-stage
blockchain is of the form:

B0 ← B1 ← ...← Bk−1 ← Bk ← Bk+1 ← ...

where Bi ← Bi+1 means that Bi+1 is dependent on Bi and Bi+1 cannot be
mined if Bi is not already mined.
Blocks B0, B1,...,Bk−1 are the genesis blocks while the blocks Bk, Bk+1,... are
general blocks. The blockchain starts growing only after the genesis blocks are
present.

3.1.2 Block

We will denote Bn as the nth block of the blockchain. Thus Bn is a general
block if n ≥ k and a genesis block if n < k.
In the subsequent subsections, we will explain the general and genesis blocks in
detail.

3.1.2.1 General Block

A general block Bn(n ≥ k) consists of the following information:

Bn

tn,k−1, ηn,k−1, τn,k−1, an,k−1, cn,k−1

.

.

.
tn,1, ηn,1, τn,1, an,1, cn,1

tn,0, ηn,0, τn,0, an,0, cn,0

Ln
bdigestn

n

where,

• n is the block number.

• bdigestn is the nth block’s digest.

• Ln is the list of transactions in the nth block.

• for the nth block and 0 ≤ j ≤ k − 1,

– tn,j is the target for stage j.

– ηn,j is the nonce corresponding to the proof-of-work for stage j.

– τn,j is the timestamp for the completion (when the block is revealed
to the network) of stage j.

– an,j is the address to which the reward for completing stage j is to
be assigned.

– cn,j is the reward given to an,j for completing stage j.

The jth stage of a general block Bn is defined as the tuple
(tn,j , ηn,j , τn,j , an,j , cn,j).
Let snj be the jth stage (0 ≤ j < k) of nth block Bn (n ≥ k). Then, a general
block Bn can be interpreted as a block consisting of sn0 , s

n
1 , ..., s

n
k−1.

3.1.2.2 Genesis Block

For the blockchain network to start, the initial k blocks need to be defined.
A genesis block Bn(n < k) consists of the following information:

Bn

tn, ηn, τn, an, cn

bdigestn

n

The block digests are defined as follows

bdigest0 = H0(0, t0, a0, c0, τ0, η0)

bdigesti = Hi(bdigestn−1, n, tn, an, cn, τn, ηn)

∀ 0 < n < k

The verification condition is
bdigestn < tn

3.1.3 Proof of Work

Let {H0, H1,,Hk−1} denote a set of predefined hash functions for each of
the k stages.
Let RH(Ln) be a root hash tree of the list of transactions.

The proof of work of various stages are defined as follows,

gn,0 = H0(bdigestn−k, n,RH(Ln), tn,0, an,0, cn,0, τn,0, ηn,0

gn,j = Hj(bdigestn−k+j , gn,j−1, tn,j , an,j , cn,j , τn,j , ηn,j

∀ 0 < j < k

Finally, bdigestn is set equal to gn,k−1.

Verification conditions for the proof of work of the different stages of general
block Bn(n ≥ k) are:

gn,j < tn,j

∀ 0 ≤ j ≤ k − 1

4 Block Mining in Multi-Stage Blockchain

We assume that the first k blocks (genesis blocks) B0,B1,...,Bk−1 have been
mined and added to the network. The general blocks Bn(n ≥ k) are mined and
added after the k genesis blocks.
Every block has k stages. In order to mine a block, the miners need to com-
plete proof of work of all the k stages. As every jth stage depends on (j − 1)th

stage (0 < j < k), the block is mined as soon as proof of work of last stage is
completed.

A stage s is said to be dependent on another stage/block if the proof of work of s
cannot be completed without knowing the hash output/digest of the stage/block
on which s is dependent.
Let snj be the jth stage (0 < j < k) of nth block Bn (n ≥ k). Then, according
to the structure of the general blocks, snj (0 < j < k) depends on:

• j − 1th stage of block Bn (snj−1)

• n− kth block Bn−k

while sn0 (first stage of nth block) depends only on:

• n− kth block Bn−k

Bn−k Bn−k+1 Bn−k+2 4 5 6 Bn−2 Bn−1

sn0 sn1 sn2 4 5 6 snk−2 snk−1Bn

Figure 1: The figure shows the dependency of every stage of block Bn.
M ← N depicts that N is dependent on M.

In the next section, we are going to explain different possible ways in which
miners could work in the multi-stage blockchain.

4.1 Ways of Mining

Multi-stage blockchain supports multi-block mining which means that a miner
can start working on the stages of a block even if the previous block is not com-
pletely mined (proof of work of all stages of previous block are not completed)
as the first stage of a block Bn depends on the digest of the block Bn−k and
not the previous block.

The following are the different ways of mining that the honest pool can fol-
low.

4.1.1 Honest Pool Withholding Stages

An honest miner M can try to mine on the stages privately and reveal the block
only when it has mined all the stages.
As mentioned in [3], if an honest miner keeps the mined stages privately, it runs
the risk that the other miners can together mine the block earlier. Then, the
entire work done by M in obtaining proofs of works of various stages will be
wasted and will result in no return.
Therefore, no miner would try to mine the stages privately. It will immediately
reveal the stage of which it has completed the proof of work.

4.1.2 Sequential Mining

In this way of mining, all the miners of the honest pool work on a single stage of
a single block at a time and do not move to the next block without completing
the previous block. Suppose that the miners start working on block Bn. Then,
all the miners will mine on a single stage and move to the next stage only when
the previous stage is mined. The miners will move to block Bn+1 once the last
stage of block Bn is mined. Therefore, the honest pool needs to complete proof
of work of all stages of the block Bn in order to move to the next block Bn+1.
Figure 2 illustrates an example of how the honest miners will mine.

Figure 2: An example to show the eligible stages for the miners to work on in
case of sequential mining.

As every block has k stages, the average time required to mine a block is equal
to kTseq, where Tseq is the average time to mine a stage in case of sequential
mining.

4.1.3 Parallel Mining

In parallel mining, the honest pool divides itself into groups to work on different
blocks simultaneously. Every different group starts working on a different block
and follows sequential mining in their own respective block.
Figure 3 illustrates an example of how the honest pool will mine.

Figure 3: The figure shows the blocks on which miners mine simultaneously by
dividing them into groups.

Suppose that the honest pool divides themselves into δ groups. Then, in time
kTpar, δ blocks are mined where Tpar is the average time taken by each group
of honest pool to mine a stage.

4.1.4 Pipelined Mining

In case of pipelined mining, the miners work on multiple stages simultaneously.
Suppose that the miners complete the proof of work of jth stage of general
block Bn (0 ≤ j ≤ k − 2). Then, the miners divides themselves to mine on the
following:

• (j + 1)th stage of block Bn

• jth stage of block Bn+1

That is, some miners start working on the next stage (snj+1) of the same block

(Bn) while some miners start working on the same stage (sn+1
j) of the next

block (Bn+1).
Figure 4 illustrates an example of how the honest miners will mine.

Figure 4: An example to show the eligible stages for the miners to work on in
case of pipelined mining.

Suppose proof of work of each stage in pipelined mining requires about Tpipe
seconds to be completed. Therefore, the time required to completely mine the
first general block (Bk) is kTpipe. But once a stage is completed, the honest
pool divides into two groups and one group of miners work on the next stage,
while the other group of miners shift to the same stage of the next block. Thus,
if block Bn (n ≥ k) is mined in kTpipe seconds, block Bi+1 will be mined in
(k + 1)Tpipe seconds. Consequently, every subsequent block is mined in Tpipe
seconds which makes the network very efficient.

4.1.5 Random Mining

The parameters of a stage are defined as the inputs that are required to compute
the hash of the stage to complete the proof of work. For example the parameters
of stage snj is the tuple (tn,j , ηn,j , τn,j , an,j , cn,j)
In case of random mining, the honest pool can start working on any stage whose
parameters are known. There is no fixed way of mining.
Figure 5 illustrates one of the many ways of how the honest pool can mine.

Figure 5: An example to show the eligible stages for the miners to work on in
case of random mining.

The time required to mine a block is not constant in this case. It depends on
the stages the honest pool chooses to work on.

5 Analysis of Multi-Stage Blockchain

In this section, we provide an in depth analysis of multi-stage blockchain in light
of selfish strategy. We explain the attack scenario that can be applied on each
and every way of mining discussed in section 3. We also do a mathematical
analysis to prove that the selfish strategy will in fact result in a profit for the
selfish pool.

5.1 Notations

Let α be the percentage of total hash power controlled by the selfish pool and
β be the percentage of total hash power controlled by the honest pool.
Considering only one honest and one selfish pool,

β = 1− α

Let λ be defined such that β = λ · α. Hence, λ is the ratio of hash power
controlled by honest pool and selfish pool.
In our analysis, we assume that the reward for mining a stage is 1.
Let the total revenue obtained by the honest pool be denoted by rhonest, while

the total revenue obtained by the selfish pool be denoted by rselfish.
The relative revenue of the selfish pool is defined as the ratio of the revenue that
selfish pool obtains and the total revenue obtained by all the pools working on
the blockchain network. Considering only one selfish and one honest pool, the
relative revenue of selfish pool is

Rselfish =
rselfish

rselfish + rhonest

5.2 Possible Selfish Mining Attacks

In the Bitcoin protocol, the honest pool mines on the longest branch in the
blockchain system and publishes a single block at a time. The selfish miners
in a pool emphasize on generating more revenue than its ratio of mining power
through creation of fork in the blockchain. The main focus of the selfish pool is
to force the honest pool to waste its computational power on the rotten blocks
in the public branch, where the rotten blocks are the blocks that are known to
the network but are not a part of the longest branch.
In the selfish mining strategy adopted by Eyal & Sirer [2], the selfish pool
generates the blocks and keeps them private, thus creating a private branch.
The selfish pool publishes its blocks parallel to the publishing of blocks by the
honest pool, so that it can result in the creation of a fork leading to the switching
of honest pool onto the selfish mined block. At the point of creation a fork, there
can be two possibilities; the first possibility being the addition of new block in
front of honest pool’s block invalidating the selfish pools lead and the second
being mining of the second block in front of selfish pool’s block which makes
the selfish pool’s block part of the longer branch.

5.2.1 Infiltration of Honest Pool

The first step of our proposed selfish mining attack is to place a selfish miner in
the honest pool. As in general, there is no restriction on joining a public pool,
this is feasible. We call the selfish miner present in the honest pool as a spy. As
all mining pools always reveal the whole block and not the intermediate stages,
the spy’s job is to leak out information regarding the mining of the individual
stages. It lets the selfish pool know which stage of which block is the honest
pool currently working on.

5.2.2 Attack on Sequential Mining

Let the time taken by the honest pool to mine a stage be T. Then, the selfish
pool mines a stage in time λT . Therefore, for every k stages mined by honest

pool, the selfish pool mines

⌊
k

λ

⌋
stages.

We now describe our strategy; Algorithm 1. The selfish pool follows Algo-
rithm 1 in order to maximize their profit in case of sequential mining.

Algorithm 1: Selfish Strategy for Sequential Mining (Cases 1 and 2)

1 on Init
2 public chain ←− publicly known blocks
3 private chain ←− publicly known blocks
4 n←− block number of the block whose stage 0 is currently getting

mined by honest pool
5 λ←− the ratio of hash power controlled by honest pool and selfish

pool.
6 k ←− number of stages in a block

7 if λ < k then // Case 1

8 λ′ = λ

9 on honest pool reveals stage sn+tλk−2 for some t inside the honest pool
// Known by the spy

10 reveal block Bn+tλ in the public chain

11 remove stage sn+tλi from private chain ∀ 0 ≤ i ≤ k − 1
12 while True do
13 k′ = 0
14 while k′ ≤ (k − 1) do
15 if k′ 6= 0 then

16 sn+λ
′

k′ = mine(sn+λ
′

k′−1 , Bn+λ′−k+k′)// Mine using previous

stage and kth previous block

17 else

18 sn+λ
′

0 = mine(Bn+λ′−k)// Mine using kth previous block

19 append sn+λ
′

k′ to private chain
20 k′ = k′ + 1

21 λ′ = λ′ + λ

22 else // Case 2

23 ξ = bk(k − 1)/λc
24 on honest pool reveals stage s

n+t(k−1)
ξ−2 for some t in honest pool

// Known by the spy

25 reveal ξ stages of block Bn+t(k−1) // with the help of spy

26 remove s
n+t(k−1)
i from private chain ∀ 0 ≤ i ≤ ξ − 1

27 while True do
28 k′ = 0
29 while k′ ≤ (ξ − 1) do
30 if k′ 6= 0 then

31 sn+k−1k′ = mine(sn+k−1k′−1 , Bn+k′−1)// Mine using previous

stage and kth previous block

32 else

33 sn+k−10 = mine(Bn−1)// Mine using kth previous block

34 append sn+k−1k′ to private chain
35 k′ = k′ + 1

36 n←− block number of the block currently getting mined by
honest pool

Public chain consists of stages that are mined and known to the blockchain
network while private chain consists of stages that are mined but are kept pri-
vate by the selfish pool. In Algorithm 1, initially, the private and the public
chain are the same.
We will divide our analysis into two cases, where the selfish pool’s strategy will
be different in both the cases.

Case 1: λ < k

Whenever, the honest pool works on block Bn(n ≥ k), the selfish pool will
work on block Bn+dλe. As λ < k, the selfish pool can work on block Bn+dλe
because the digest of block Bn+dλe−k is available.
When honest pool completely mines λ blocks, the selfish pool will be able to
mine the whole Bn+dλe block and the selfish pool keeps the block private. When
the honest pool starts mining on block Bn+dλe, the selfish pool starts mining
on block Bn+2dλe.

When honest pool completes k − 1th stage (second last stage) of block Bn+dλe,
the spy reveals all the stages of block Bn+dλe, thus wasting honest pool’s com-
putation on block Bn+dλe.

Case 2: λ ≥ k

In this strategy, the selfish pool knows that it cannot outrun honest pool since
λ > k. Therefore, selfish pool plans to mine a fixed number of stages of a block
rather than mining whole block.
When honest pool start working on block Bn, the selfish pool will start mining
the first stage of block Bn+k−1. The selfish pool will keep a threshold ξ on
number of stages of block Bn+k−1 it plans to mine. Once ξ stages are mined,
the selfish pool will move to block Bn+2k−2 and again start mining ξ stages. On
an average selfish pool can waste computations as well as consume reward of ξ
stages of the honest pool on the chosen block.

For every one stage mined by the selfish pool, the honest pool would have
mined λ stages. Therefore, for every ξ stages mined by the selfish pool, honest
pool would have mined ξ · λ stages. The selfish pool needs to make sure that
the honest pool do not outrun the selfish pool. Therefore,

ξλ

k
< k − 1

=⇒ ξ <
k(k − 1)

λ

In order to maximize the profit, ξ is chosen to be,

ξ =

⌊
k(k − 1)

λ

⌋

5.2.2.1 Revenue

Theorem 1. Let α be the hash power of the selfish pool and let k be the number
of stages in a block.
If λ < k, then algorithm 1 is profitable for selfish pool in case of sequential
mining if

1

2
> α >

1

k + 1

If λ ≥ k, then algorithm 1 is profitable for selfish pool in case of sequential
mining if

1

2
> α >

1

k(k − 1) + 1

Proof.
Case 1: λ < k
For every λ blocks mined by the honest pool, the selfish pool mines a single
block and keeps it private. Once the honest pool mines k − 1 stages of the
block held private by the selfish pool, the spy reveals all the stages of the block
wasting the honest pool’s computation on the k − 1 stages.
Let the reward of mining every stage is equal to 1. As the honest pool mines λ
blocks, each consisting of k stages,

rhonest = kλ · t for some t ∈ N

The selfish pool reveals a single block in the meantime. By the time the honest
pool works on k − 1 stages of the block held private by the selfish pool, selfish

pool would have mined
k − 1

λ
stages of other block. Thus,

rselfish = (k +
k − 1

λ
) · t for some t ∈ N

The relative revenue of selfish pool is:

Rselfish =
rselfish

rselfish + rhonest
=

k +
k − 1

λ

k +
k − 1

λ
+ kλ

=
k(λ+ 1)− 1

kλ2 + k(λ+ 1)− 1

When the selfish pool’s relative revenue is greater than its size; α, then the
attack is successful. Therefore,

k(λ+ 1)− 1

kλ2 + k(λ+ 1)− 1
> α

Putting λ =
1− α
α

and solving, we get,

k > 1

As λ < k,
1− α
α

< k

=⇒ α >
1

k + 1

As the selfish pool’s size cannot be greater than 50% of the network’s size,

1

2
> α >

1

k + 1

(a) The figure shows how α is dependent
on the k, the number of stages in a block.

(b) Pool revenue using the attack on
sequential mining for different k

Figure 6: Plots showing the results of analysis on attack on sequential mining
(Case 1)

Figure 6(a) shows the region in which α should lie so that Algorithm 1
(λ < k) is profitable. If α is above the curve, then the attack is profitable.
Figure 6(b) shows that algorithm 1 for case where λ < k is profitable for selfish
pool and the profit increases with an increase in the value of k.

Case 2: λ ≥ k
If honest pool is mining on block Bn, the selfish pool mines on block Bn+k−1.
When the honest pool completely mines block Bn+k−2, the selfish pool would
have mined ξ(ξ < k) stages of block Bn+k−1 and kept them private. The spy
present in the honest pool reveals the stages as soon the honest pool mines
(ξ − 1)th stage of block Bn+k−1.
As honest pool mines k − 1 blocks each consisting of k stages,

rhonest = k(k − 1) · t for some t ∈ N

The selfish pool reveals ξ stages and by the time the honest pool works on ξ− 1

stages of the block, selfish pool would have mined
ξ − 1

λ
stages of other block.

Thus,

rselfish = (ξ +
ξ − 1

λ
) · t for some t ∈ N

The relative revenue of selfish pool is:

Rselfish =
rselfish

rselfish + rhonest
=

ξ +
ξ − 1

λ

k(k − 1) + ξ +
ξ − 1

λ

=
ξ(λ+ 1)− 1

kλ(k − 1) + ξ(λ+ 1)− 1

When the selfish pool’s relative revenue is greater than α, then the attack is
successful. Therefore,

ξ(λ+ 1)− 1

kλ(k − 1) + ξ(λ+ 1)− 1
> α

Putting λ =
1− α
α

, ξ =

⌊
k(k − 1)

λ

⌋
and solving, we get,

1

2
> α >

1

k(k − 1) + 1

(a) The figure shows how α is dependent
on the k

(b) Pool revenue using the attack on
sequential mining for different k

Figure 7: Plots showing the results of analysis on attack on sequential mining
(Case 2)

Figure 7(a) shows the region in which α should lie so that Algorithm 1
(λ < k) is profitable. If α is above the curve, then the attack is profitable.

Figure 7(b) shows that algorithm 1 for case where λ > k is profitable for selfish
pool of size greater than 0.33 for all values of k.

5.2.3 Attack on Pipelined Mining

Let the time taken by the honest pool to mine a stage be T. Then, the selfish
pool mines a stage in time λT . Therefore, for every k stages mined by honest

pool, the selfish pool mines

⌊
k

λ

⌋
stages.

Case 1: λ < k
The selfish strategy for pipelined mining (λ < k) is described in algorithm 2.

Algorithm 2: Selfish Strategy for Pipelined Mining (λ < k)

1 on Init
2 public chain ←− publicly known blocks
3 private chain ←− publicly known blocks
4 n←− block number of the block whose last stage is currently getting

mined by honest pool
5 λ←− the ratio of hash power controlled by honest pool and selfish

pool.
6 k ←− number of stages in a block

7 if λ < k then

8 on honest pool reveal stage s
n+t(k−1)
k−2 for some t in honest pool

// Known by the spy

9 reveal block Bn+t(k−1) in the public chain

10 remove stage s
n+t(k−1)
i from private chain ∀ 0 ≤ i ≤ k − 1

11 while True do
12 k′ = 0
13 while k′ ≤ (k − 1) do
14 if k′ 6= 0 then

15 sn+k−1k′ = mine(sn+k−1k′−1 , Bn+k′−1)// Mine using previous

stage and kth previous block

16 else

17 sn+k−10 = mine(Bn−1)// Mine using kth previous block

18 append sn+k−1k′ to private chain
19 k′ = k′ + 1

20 n←− block number of the block currently getting mined by
honest pool

We consider an assumption in order to ease our analysis.
Assumption: The honest pool distributes equally on all possible stages where
the miners could work at a particular point of time.

Consider block Bn (n ≥ k). All the honest pool works on first stage of block
Bn (sn0). Once the first stage is completed, the honest pool divide themselves
equally into 2 groups to work on second stage of block Bn (sn1) and first stage
of block Bn+1 (sn+1

0).
As, each group consists equal number of miners, both the stages will be mined
in the same amount of time.
After (sn1) and (sn+1

0) are mined, the honest pool divides into 3 equal groups to
work on (sn2), (sn+1

1), (sn+2
0).

Similarly, when honest pool finish its work on the n+ k− 1th block, the mining

power of honest pool working on kth stage of block Bn+k is
β

k
.

Once the block Bn is mined, the honest pool has
β

k
power unused and

β

k + 1
of the honest pool are working on stage k of block Bn+1. Also, the miners are
divided to work on k + 1 stages of different blocks. Therefore, the extra power
of honest pool will be divided into k + 1 stages.
The mining power of honest pool working on the kth stage of block Bn+1 is

β

k + 1
+

β

k(k + 1)
=
β

k

Therefore, always
β

k
of the honest pool are working on the last stage of a block

at any point of time.
The selfish pool is able to mine a stage ahead of honest pool with high probability
if

α >
β

k

=⇒ λ < k

Case 2: λ > k
The selfish strategy for pipelined mining (λ > k) is described in algorithm 3.

Algorithm 3: Selfish Strategy for Pipelined Mining (λ > k)

1 on Init
2 public chain ←− publicly known blocks
3 private chain ←− publicly known blocks
4 n←− block number of the block whose first stage is currently getting

mined by honest pool
5 λ←− the ratio of hash power controlled by honest pool and selfish

pool.
6 k ←− number of stages in a block
7 privateBranchLen←− 0
8 StageNumber ←− 0
9

10 on honest pool mines a stage // Known by the spy

11 StageNumber ← StageNumber + 1
12 φ← length(private chain) - length(public chain)
13 append new stage to private chain
14 privateBranchLen← privateBranchLen+ 1
15 if φ = 0 and privateBranchLen = 2 then
16 publish all of private chain
17 privateBranchLen← 0
18

19 on selfish pool mines a stage
20 StageNumber ← StageNumber + 1
21 φ← length(private chain) - length(public chain)
22 append new stage to private chain
23 if φ = 0 then
24 private chain ← public chain
25 privateBranchLen← 0
26 else if φ = 1 then
27 publish last block of the private chain
28 else if φ = 2 then
29 publish all of the private chain
30 privateBranchLen← 0
31 else
32 publish first unpublished block in private block
33 StageNumber ← 0

In this case (λ > k), the selfish pool cannot mine ahead of honest pool as by
the time selfish pool could mine a stage of a block, the honest pool would have
already mined it.
Therefore, in this case, the selfish pool tries to apply a strategy similar to Eyal
and Sirer’s Selfish-Mine strategy [2] but on stages of a single block.
In the selfish mining strategy, the selfish pool mines on stages and keeps them

private, thus creating a private branch. The spy present in the honest pool
publishes its stages parallel to the stages mined by the honest pool, so that
it can result in the creation of a fork leading to the switching of honest pool
onto the selfish mined stage. At the point of creation a fork, there can be two
possibilities; the first possibility being the creation of new stage by the honest
pool invalidating the spys lead and the second being mining of the second stage
by the spy and carry on with its lead against the honest pool.

5.2.3.1 Revenue

Theorem 2. Let α be the hash power of the selfish pool and let k be the number
of stages in a block.
If λ < k,then Algorithm 2 is profitable for selfish pool in case of pipelined mining
(λ < k) if

1

2
> α >

1

k + 1

Proof. Once a block is completely mined in case of pipelined mining, every sub-
sequent block is mined in time T , where T is the average time to mine a stage.
In time T , honest pool works on k stages simultaneously of k different blocks.

As
β

k
of the honest pool works on the last stage of a block at any point of time,

by the time the honest pool completes mining one stage, selfish pool will mine
k

λ
stages. Therefore, if honest pool mines λ stages, the selfish pool will mine k

stages and completely mine a block. Also, as
β

k
of the honest pool work on the

last stage of a block, the honest pool mining λ stages is equivalent to say that
the honest pool mines λ blocks.

If honest pool is mining on last stage of block Bn, then the selfish pool starts
mining on block Bn+k−1. When the honest pool mines λ stages/blocks, the
selfish pool completely mines the block Bn−k+1 and keeps it private. Then, the
selfish pool will move to mine first stage of block Bn+bλc+k−1.
By the time the honest pool reaches block Bn+k−1 (mines k − λ blocks), the

selfish pool would have mined
k(k − λ)

λ
. Once honest pool reaches last stage of

block Bn+k−1, the spy reveals the block wasting the computation of honest pool.

As honest pool gets reward for k − 1 blocks,

rhonest = k(k − 1) · t for some t ∈ N

As in the meantime, the selfish pool gets reward for the block Bn+k−1 and
k(k − λ)

λ
stages of block Bn+bλc+k−1

rselfish = (k +
k(k − λ)

λ
) · t for some t ∈ N

The relative revenue of the selfish pool is:

Rselfish =
rselfish

rselfish + rhonest
=

k +
k(k − λ)

λ

k +
k(k − λ)

λ
+ k(k − 1)

=
k

k + λ(k − 1)

Putting λ =
1− α
α

, we get

Rselfish =
αk

k + α− 1

When the selfish pools relative revenue is greater than, then the attack is suc-
cessful. Therefore,

Rselfish =
αk

k + α− 1
> α

=⇒ α < 1

which is always true. Therefore, the attack is profitable if

α >
β

k

=⇒ α >
1

k + 1

(a) The figure shows how α is dependent
on the k, the number of stages in a block

(b) Pool revenue using the attack on
pipelined mining for different k

Figure 8: Plots showing the results of analysis on attack on pipelined mining
(Case 1)

Figure 8(a) shows the region in which α should lie so that Algorithm 2 is
profitable. If α is above the curve, then the attack is profitable.

Figure 8(b) shows that algorithm 2 is profitable for the selfish pool and the
profit decreases with an increase in the value of k.

Theorem 3. Let α be the hash power of the selfish pool and let γ be the per-
centage of number of miners of honest pool mining in front of the selfish pool’s
block in case of a fork. Then, Algorithm 3 is profitable for selfish pool in case
of pipelined mining (λ > k) if

1− γ
3− 2γ

< α <
1

2

Proof. Let us assume, H to be the honest pool and S to be a selfish pool; γ be
the percentage of number of miners of H mining on selfish pool’s block in case
of a fork. We assume that value of γ remains same for every fork that takes
place in the Blockchain network.
Figure 2 represents the progression of the system as a state machine, where the
lead of the selfish pool is illustrated by the states of the system. Each number on
the state diagrammatic representation shows the difference between the length
of private and public branch.
In this state machine diagram, 0, 0′ represents no forked branch and two-forked
branch respectively.
When S mines a stage with the frequency α and state s = 0, 1, 2,..., the lead
gets increased to (s+1); when the H mines a stage with frequency β and state
s = 3, 4,..., the lead gets decreased by one to (s-1). If S has a lead of two and
H mines a stage, S publishes its private branch and the system falls down from
state 2 to state 0. The possible transitional frequencies have been shown in
between the different states in the state machine diagram.

0 1 2 3 4

0′

.α

β

β

α α

β

α

β β

α,
γβ,

(1− γ)β

Figure 2: The diagrammatic representation of a state machine as a progression
system

We can find out the state probabilities from the state machine diagram using

P [state = x] = Px =
∑
k

(Pk × ω)

where transition from state k with frequency ω goes to state x. The following
equations are obtained by calculating the probability distribution from the state
machine. 

P0 = [α+ βγ + (1− γ)β]P0′ + βP0 + βP2

P1 = αP0

P0′ = βP1

∀k ≥ j ≥ 2, Pj = αPj−1 + βPj+1∑k
j=0(Pj) + P0′ = 1

(1)

After solving equation (1) , we obtain

P0 =
(1− 2α)

2α3 − 4α2 + 1
(2)

P1 =
α(1− 2α)

2α3 − 4α2 + 1
(3)

P0′ =
βα(1− 2α)

2α3 − 4α2 + 1
(4)

Pj [j ≥ 2] = (
α

1− α
)j−1 · α(1− 2α)

2α3 − 4α2 + 1
(5)

We calculate the revenue of both selfish and honest pool using state probabilities
and transitional frequencies,

rselfish = 2 · αP0′ + 1 · γβP0′ + 2 · βP2 + 1 · βP [i > 2] (6)

rhonest = 1 · γβP0′ + 1 · βP0 + 2 · (1− γ)βP0′ (7)

In order to calculate the selfish pools revenue, we substitute the probabilities
from equation (2) to (5) in the revenue equation of (6) and (7).

Rselfish =
rselfish

rselfish + rhonest

=
α(1− α)(1− 2α)(2α+ γ(1− α)) + 2α2(1− 2α) + α3

α3 − 2α2 − α+ 1

(8)

When the selfish pools relative revenue is greater than, then the attack is
successful. Therefore,

Rselfish =
α(1− α)(1− 2α)(2α+ γ(1− α)) + 2α2(1− 2α) + α3

α3 − 2α2 − α+ 1
> α

=⇒ 1− γ
3− 2γ

< α <
1

2

(a) The figure shows how α is dependent
on the k, the number of stages in a block

(b) Pool revenue using the attack on
pipelined mining for different γ

Figure 9: Plots showing the results of analysis on attack on pipelined mining
(Case 2)

Figure 9(a) shows the region in which α should lie so that Algorithm 3 is
profitable. If α is above the curve, then the attack is profitable.
We observe that Rselfish is independent of k. Figure 9 shows that algorithm
3 increases the profit of selfish pool with an increase in the value of γ. Also,
higher value of γ helps a small sized selfish pool to enjoy the profit.

The result we obtain for the selfish revenue is similar to the result obtained
in [2] as the selfish attack proceeds similarly as [2] but on stages rather than
blocks.

5.2.4 Attack on Parallel Mining

The selfish strategy for parallel mining is described in algorithm 4.

Algorithm 4: Parallel Approach

1 on Init
2 public chain ←− publicly known blocks
3 private chain ←− publicly known blocks
4 n←− block number of the block whose stage 0 is currently getting

mined by honest pool
5 δ ←− Number of blocks that the honest pool work on simultaneously
6 k ←− number of stages in a block

7 if δ < k − 1 then
8 δ′ = δ

9 on honest pool reveals stage sn+tδk−2 for some t in honest pool // Known

by the spy

10 reveal block Bn+tδ in the public chain

11 remove stage sn+tδi from private chain ∀ 0 ≤ i ≤ k − 1
12 while True do
13 k′ = 0
14 while k′ ≤ (k − 1) do
15 if k′ 6= 0 then

16 sn+δ
′

k′ = mine(sn+δ
′

k′−1, Bn+δ′−k+k′)// Mine using previous

stage and kth previous block

17 else

18 sn+δ
′

0 = mine(Bn+δ′−k)// Mine using kth previous block

19 append sn+δ
′

k′ to private chain

20 δ′ = δ′ + δ

Suppose, that the honest pool divides itself into δ groups to work on δ blocks
at the same time.
Therefore, the amount of hash power of honest pool working on a stage of single

block is
β

δ
.

The selfish pool has an advantage in this case if

α >
β

δ

=⇒ λ < δ

=⇒ α >
1

δ + 1
[β = 1− α]

If the honest pool works on blocks Bn, Bn+1, ..., Bn+δ−1, the selfish pool will
work on block Bn+δ.
Therefore, for every δ blocks mined by the honest pool, the selfish pool mines 1

block and keeps it private. When the honest pool completes second last stage of
block Bn+δ, the selfish pool reveals the block wasting honest pool’s computation.

If λ > δ, then the selfish pool follows Algorithm 3 to generate a profit because
it could never outrun the honest pool.

5.2.4.1 Revenue

Theorem 4. Let α be the hash power of the selfish pool and let k be the number
of stages in a block.
If λ < δ, then Algorithm 4 is profitable for the selfish pool in case of parallel
mining if

2k

(k + 1) + δ(2k − 1)
> α >

1

δ + 1

Proof. Suppose α >
1

δ + 1
. Then, the time in which honest pools mines k − 1

stages of block Bn+δ+1, the selfish pool might have completed another block.
Therefore,

rhonest = (kδ + (k − 1)(δ − 1)) · t for some t ∈ N

rselfish = (k + k) · t = (2k) · t for some t ∈ N

. The relative revenue of selfish pool is:

Rselfish =
rselfish

rselfish + rhonest
=

2k

2k + kδ + (k − 1)(δ − 1)

=
2k

(k + 1) + δ(2k − 1)

When the selfish pool’s relative revenue is greater than α, then the attack is
profitable.

2k

(k + 1) + δ(2k − 1)
> α >

1

δ + 1

Figure 10: The figures shows the region of possible values of α for which the
attack is profitable for different values of k.

From figure 10, we can observe that the feasible region for α becomes nar-
rower as the value of k increases. Therefore, the selfish mining attack in case of
parallel mining becomes less feasible as the number of stages of a block increases.

6 Crypto-Stamped Multi-Stage Blockchain

6.1 Architecture

From the above analysis, we can conclude that a selfish pool’s strategy is to
exploit the fact that there is no cross dependency on the timestamp of the block
whose hash value is used to mine current stage of the current block. Hence, the
selfish pool can store mined stages or blocks privately indefinitely. We introduce
a tuple, crypto-stamp; which establishes a relationship between the timestamp
of the current mined stage and the timestamp of the mined block whose hash

value is currently being used; thereby forcing each miner to release the mined
stages as soon as possible else face the risk of getting their mined stages rejected
by the network.
We have also updated the validation constraints so as to incorporate our new
approach. In the subsequent sections we present the updated architecture of
[3], such that no selfish mining is possible.

6.1.1 Blockchain

The blockchain is of the form:

B0 ← B1 ← ...← Bk−1 ← Bk ← Bk+1 ← ...

where Bi ← Bi+1 means that Bi+1 is dependent on Bi i.e Bi+1 cannot be mined
if Bi is not already mined.
Blocks B0, B1,...,Bk−1 are genesis blocks while the blocks Bk, Bk+1,... are
general blocks.

6.1.2 General Block

We add an extra parameter to the general block data structure, called the
crypto-stamp. The crypto-stamp is a tuple containing a hash value of block
and the corresponding time stamp of the generation of that hash value. Hence,
the updated block consists of the following information:

Bn

tn,k−1, ηn,k−1, τn,k−1, an,k−1, cn,k−1, (g′n,k−1, τ
′
n,k−1)

.

.

.
tn,1, ηn,1, τn,1, an,1, cn,1, (g′n,1, τ

′
n,1)

tn,0, ηn,0, τn,0, an,0, cn,0, (g′n,0, τ
′
n,0)

Ln
bdigestn

n

where,

• n is the block number.

• bdigestn is the block digest.

• Ln is the list of transactions in the block.

• for nth block and 0 ≤ j ≤ k − 1,

– tn,j is the target for stage j.

– ηn,j is the nonce corresponding to the proof-of-work for stage j.

– τn,j is the timestamp for the completion (when the block is revealed
to the network) of stage j.

– an,j is the address to which the reward for completing stage j is to
be assigned.

– cn,j is the reward given to an,j for completing stage j.

– g′n,j is the hash value (random value) of the most recent stage mined.
It is needed to mine stage j of block bn.

– τ ′n,j is the timestamp for the completion (when revealed to the net-

work) of the most recent stage mined. It is needed to mine jth stage
of nth block.

6.1.3 Genesis Block

There is no change in the structure of the genesis block. Therefore, for 0 ≤ n ≤
k − 1,

Bn

tn, ηn, τn, an, cn

bdigestn

n

The block digests are defined as follows

bdigest0 = H0(0, t0, a0, c0, τ0, η0)

bdigestn = Hi(bdigestn−1, n, tn, an, cn, τn, ηn)

∀ 0 < n < k

The verification condition is
bdigestn < tn

6.1.4 Proof of Work

The proof of work of various stages are defined as follows,

gn,0 = H0(bdigestn−k, n,RH(Ln), tn,0, an,0, cn,0, τn,0, ηn,0, (g
′
n,0, τ

′
n,0))

gn,j = Hj(bdigestn−k+j , gn,j−1, tn,j , an,j , cn,j , τn,j , ηn,j , (g
′
n,j , τ

′
n,j))

∀ 0 < j < k

Finally, bdigestn is set equal to gn,k−1.

The verification conditions are:
gn,j < tn,j

|τn,j − τ ′n,j | < T

(g′n,j , τ
′
n,j) is a correct pair

where 0 ≤ j < k and T is the average time of completion of a stage.
A pair (g′i+k,j , τ

′
i+k,j) is called correct if g′i+k,j is computed using τ ′i+k,j as the

input.

6.1.5 Sub-Routine to Find Most Recent Stage

Before mining a stage, the miner needs to know the hash and the timestamp of
the most recent stage mined. Let T be the time to find the most recent stage.
As the most recent stage mined will be at the top of network, T is a very small
value.
There are various block exploring services [22] which could be used to fetch the
most recent stage.
Whenever a mining pool distributes work to the miners, it queries via the block
exploring service and gives the information of the most recent stage along with
the proof of work to the miners working in the pool. This way, the number
of queries to the block exploring service will decrease drastically and therefore,
there won’t be any delay in obtaining the output from the service.

7 Defence Mechanism

In this section, we show how our proposed structure of multi-stage blockchain
doesn’t allow the selfish pool to proceed with selfish mining.

One of the verification condition of proof of work of a stage includes:

|τj − τ ′j | < T

where

• τj is the timestamp of the completion of proof of work of the stage.

• τ ′j is the timestamp of the completion of proof of work of the stage that
is most recently revealed.

• T is the average time of mining a stage.

Hence, the selfish pool cannot withhold mined blocks and reveal them later.
Because if he does, then the verification condition wouldn’t hold true. Therefore,
the proof of work will be discarded and the hash power of the selfish pool will
be wasted.
Therefore, the selfish pool is forced to reveal the proof of work of a stage as
soon as it mines it in order to get a reward for it. Thus, selfish mining is not
possible.

8 Handling Forking

In the proposed Crpyto-Stamped Blockchain, to maintain the time of comple-
tion of one block to be ten minutes just like in Bitcoin, the time to complete
each stage will be less than ten minutes. This increases the chance of fork within
stages due to network latency. The following strategy could be adopted to re-
solve the forking and minimize network partitioning due to forking.

In case of a fork, we would have multiple digests (output of proof of work
for each stage) which satisfy the verification conditions.
Suppose g1, g2, ..., gn be different hashes such that

gi < tn,j for all i = 1...n

where tn,j is the target value of stage j of nth block.
To resolve the fork, we choose min1≤i≤n gi as the main branch and therefore the
miners will choose min1≤i≤n gi to mine the next stage. The remaining hashes
are discarded.

The above strategy doesn’t give an adversary any advantage as creating a fork
wouldn’t generally be in the adversary’s favour. If the adversary tries to create
a fork with a previously mined stage, then the proof of work is discarded due to
failure of second verification condition. Therefore, an adversary cannot reveal
an alternating long branch and expect it to be the main branch.

9 Conclusion

We have shown that how we can perform successful selfish mining attack on
multi-stage blockchain by introducing a malicious user called the spy, inside an
honest pool. The task of the spy is merely to leak the information regarding
the stage completion in the honest pool. This leaked information is used by the
selfish pool to waste computation power of honest pool and influence rewards.
We proposed the selfish mining attack algorithms and analysed them on the
three different types of mining strategies. Our results shows that selfish min-
ing attack is still feasible on the Multi-Stage Blockchain [3] irrespective of the
mining strategy the honest pool adopts. Hence, through our analysis we prove
that multi-stage blockchain is not secure from selfish mining attack as claimed
by the author.
We also proposed a modification in the Multi-Stage Blockchain by introduc-
ing an extra parameter to the general block data structure, called the crypto-
stamp. The crypto-stamp prevents a pool/miner to keep blocks/stages private
and this modification makes the selfish mining attack infeasible on Crpyto-
Stamped Multi-Stage Blockchain.

References

[1] Satoshi Nakamoto. Bitcoin: A peer to peer electronic cash system
https://bitcoin.org/bitcoin.pdf, 2009

[2] Ittay Eyal, Emin Gün Sirer. Majority is not Enough: Bitcoin Mining is
Vulnerable, 2013

[3] Palash Sarkar. Multi-Stage Proof-of-work Blockchain, 2019

[4] Jianyu Niu, Chen Feng. Selfish Mining in Ethereum, 2019

[5] Fabian Ritz, Alf Zugenmaier. The Impact of Uncle Rewards on Selfish Min-
ing in Etrhereum, 2018

[6] Qianlan Bai, Xinyan Zhou, Xing Wang, Yuedong Xu, Xin Wang, Qingsheng
Kong. A Deep Dive into Blockchain Selfish Mining, 2018

[7] Muhammad Saad, Laurent Njilla, Charles Kamhoua, Aziz Mohaisen. Coun-
tering Selfish Mining in Blockchains, 2018

[8] Daniel Fullmer, A. S. Morse. Analysis of Difficulty Control in Bitcoin and
Proof-of-Work Blockchains, 2018

[9] Alejandro Baldominos, Yago Saez. Coin.AI: A Proof-of-Useful-Work Scheme
for Blockchain-based Distributed Deep Learning, 2019

[10] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, Pramod
Viswanath. Deconstructing the Blockchain to Approach Physical Limits,
2018

[11] R. Bowden, H.P. Keeler, A.E. Krzesinski, P.G. Taylor. Block arrivals in the
Bitcoin blockchain, 2018

[12] Ben Kaiser, Mireya Jurado, Alex Ledger. The Looming Threat of China:
An Analysis of Chinese Influence on Bitcoin, 2018

[13] Nick Arnosti, S. Matthew Weinberg. Bitcoin: A Natural Oligopoly, 2018

[14] Nikolai Zaitsev. Empirical forward price distribution from Bitcoin option
prices, 2019

[15] Istvn Andrs Seres, Lszl Gulys, Dniel A. Nagy, Pter Burcsi, Topological
Analysis of Bitcoin’s Lightning Network, 2019

[16] Andrew Chi-Chih Yao. An Incentive Analysis of some Bitcoin Fee Designs,
2018

[17] Evangelos Georgiadis, Doron Zeilberger. A Combinatorial-Probabilistic
Analysis of Bitcoin Attacks, 2018

[18] Alexandre Bovet, Carlo Campajola, Jorge F. Lazo, Francesco Mottes, Ia-
copo Pozzana, Valerio Restocchi, Pietro Saggese, Nicol Vallarano, Tiziano
Squartini, Claudio J. Tessone. Network-based indicators of Bitcoin bubbles,
2018

[19] Cuneyt Akcora, Matthew Dixon, Yulia Gel, Murat Kantarcioglu. Bitcoin
Risk Modeling with Blockchain Graphs, 2018

[20] Dorit Ron, Adi Shamir. Quantitative Analysis of the Full Bitcoin Transac-
tion Graph. 2013

[21] Simon Barber, Xavier Boyen, Elaine Shi, Ersin Uzun. Bitter to Better -
How to Make Bitcoin a Better Currency, 2012

[22] Block Explorers
https://www.blockchain.com/explorer

https://blockexplorer.com/

[23] RISC Pipeline
https://en.wikipedia.org/wiki/Classic_RISC_pipeline

https://en.wikipedia.org/wiki/Classic_RISC_pipeline

	Introduction
	Preliminaries
	Multi-Stage Blockchain
	Architecture
	Blockchain
	Block
	Proof of Work

	Block Mining in Multi-Stage Blockchain
	Ways of Mining
	Honest Pool Withholding Stages
	Sequential Mining
	Parallel Mining
	Pipelined Mining
	Random Mining

	Analysis of Multi-Stage Blockchain
	Notations
	Possible Selfish Mining Attacks
	Infiltration of Honest Pool
	Attack on Sequential Mining
	Attack on Pipelined Mining
	Attack on Parallel Mining

	Crypto-Stamped Multi-Stage Blockchain
	Architecture
	Blockchain
	General Block
	Genesis Block
	Proof of Work
	Sub-Routine to Find Most Recent Stage

	Defence Mechanism
	Handling Forking
	Conclusion

