
Refresh When You Wake Up:
Proactive Threshold Wallets with Offline Devices∗

Yashvanth Kondi
ykondi@ccs.neu.edu

Northeastern University

Bernardo Magri
magri@cs.au.dk
Aarhus University

Claudio Orlandi
orlandi@cs.au.dk
Aarhus University

Omer Shlomovits
omer@ZenGo.com
KZen Research

November 18, 2019

Abstract
Proactive security is the notion of defending a distributed system against an attacker who compromises

different devices through its lifetime, but no more than a threshold number of them at any given time. The
emergence of threshold wallets for more secure cryptocurrency custody warrants an efficient proactivization
protocol tailored to this setting. While many proactivization protocols have been devised and studied
in the literature, none of them have communication patterns ideal for threshold wallets. In particular a
(t, n) threshold wallet is designed to have t parties jointly sign a transaction (of which only one may be
honest) whereas even the best current proactivization protocols require at least an additional t honest
parties to come online simultaneously to refresh the system.

In this work we formulate the notion of refresh with offline devices, where any t parties (no honest
majority) may proactivize the system at any time and the remaining n − t offline parties can non-
interactively “catch up” at their leisure. However due to the inherent unfairness of dishonest majority
MPC, many subtle issues arise in realizing this pattern. We discuss these challenges, yet give a highly
efficient protocol to upgrade a number of standard (2, n) threshold signature schemes to proactive security
with offline refresh. Our approach involves a threshold signature internal to the system itself, carefully
interleaved with the larger threshold signing. We design our protocols so that they can augment existing
implementations of threshold wallets for immediate use– we show that proactivization does not have to
interfere with their native mode of operation.

Our proactivization technique is compatible with Schnorr, EdDSA, and even sophisticated ECDSA
protocols, while requiring no extra assumptions. By implementation we show that proactivizing two
different recent (2, n) ECDSA protocols incurs only 14% and 24% computational overhead respectively,
less than 200 bytes, and no extra round of communication.

1 Introduction
Threshold Signatures as conceived by Desmedt [13] allow the ability to sign messages under a public key to
be delegated to a group of parties instead of a single one. In particular, a subset of these parties greater than
a certain threshold must collaborate in order to sign a message. This primitive finds application in many
scenarios, but more recently it has seen interest from the blockchain community as a method to manage
∗Research supported by: the Concordium Blockhain Research Center, Aarhus University, Denmark; the Carlsberg Foundation

under the Semper Ardens Research Project CF18-112 (BCM); the European Research Council (ERC) under the European
Unions’s Horizon 2020 research and innovation programme under grant agreement No 803096 (SPEC); the Danish Independent
Research Council under Grant-ID DFF-6108-00169 (FoCC);

1

private keys effectively. From multi-factor authentication to distribution of spending authority, threshold
signature schemes allow cryptocurrency wallets to build resilience against compromise of up to a threshold
number of devices. This is because threshold signature protocols never physically reconstruct the signing key
at a single location, and so an attacker who compromises fewer devices than the signing threshold learns no
useful information to forge signatures.

A long line of works has constructed threshold versions of common signature schemes [22, 1, 36]. Despite
the non-linearity of the ECDSA signing equation making its thresholdization challenging, recent works have
seen even threshold ECDSA schemes [21, 30, 15, 11] enter the realm of practicality. This has immediate
implications for users of the many cryptocurrencies (Bitcoin, Ethereum, etc.) that have adopted ECDSA as
their canonical signature algorithm. Besides ECDSA, Schnorr [35] and other Schnorr-like signature schemes
(eg. EdDSA [5]) are seeing an increase in interest from the cryptocurrency community, of which many employ
threshold-friendly signing equations.

However threshold signature schemes by themselves do not address a number of security concerns that
arise in real-world deployment. Indeed, all privacy/unforgeability guarantees of such a system are completely
and irreparably voided if an adversary breaks into even one device more than the threshold throughout the
lifetime of the system. A natural question to ask is instead of assuming that an adversary is threshold-limited
to the same devices essentially forever, whether it is meaningful to consider a threshold-limited adversary
with mobility across devices in time. In more detail an attacker may break into different devices in the system
(possibly all of them in its lifetime) however at any given point in time, not more than a threshold number
of them are compromised. This question was first considered by Ostrovsky and Yung [33] who devised the
notion of a mobile adversary, which may change which devices are compromised at marked epochs in time.
They found that the trick to thwarting such an adversary is to have each party proactively re-randomize its
secret state between epochs. This technique ensures that the views of different parties at different epochs in
time are independent, and can not be combined to reveal any meaniningful information about shared secrets
by a mobile attacker.

1.1 Proactivizing Threshold Signatures
Proactive Secret Sharing (PSS) as it has come to be known, has seen a number of realizations for different
ranges of parameters since the introduction of the mobile adversary model [33]. In fact, even proactive
signature schemes themselves have been studied directly [1, 19]. A naive adaptation of any off-the-shelf PSS
scheme to the threshold signature setting would in many cases yield proactive threshold signature schemes
immediately. However, heavy use of an honest majority by most PSS schemes would already rule out many
practical applications of such an approach. Moreover all such solutions will have communication patterns
that require every party in the system to be online at pre-defined times, at the close of every epoch, in order
to keep the system proactivized and moving forward.

To see why requiring all parties to be online simultaneously is not reasonable especially for threshold
wallets, consider the following scenarios:

• Cold storage: Alice splits her signing key between her smartphone and laptop and has them execute
a threshold signing protocol when a message is to be signed. However if for any number of operational
reasons one of the devices (say her smartphone) malfunctions, the secret key is lost forever and any
funds associated with the corresponding public key are rendered inaccessible. In order to avoid this
situation, Alice stores a third share of the signing key in a secure cold storage server. While this third
share does not by itself leak the signing key, along with the laptop it can aid in the restoration of the
smartphone’s key share when required. In this scenario it would be quite inconvenient (and also defeat
the purpose of two-party signing) if the cold storage server has to participate in the proactivization every
time the system needs to be re-randomized; it would be much more reasonable to have the smartphone
and laptop proactivize when required, and “mail” updates to the server.

• (2,3)-factor authentication: Alice now splits her signing key across her smartphone, laptop, and
tablet so that she must use any two of them to sign a message. Even in this simple use case, having all

2

of her devices online and active simultaneously (possibly multiple times a day) just so that they can
refresh would be cumbersome. Ideally every time she uses two of them to sign a message, they also
refresh their key shares and leave an update package for the offline device to catch up at its leisure.

• Concurrent use: Alice, Bob, Carol, and Dave are executives at a corporation, and at least two of
them must approve a purchase funded by the company account. This is enforced by giving each of them
a share of the signing key, so that any two may collaborate to approve a transaction. Requiring them
all to be online simultaneously is impractical given their schedules; it would be much more convenient
to have any two of them refresh the system when they meet to sign, and mail updates to the others.

• Correlated Risks: Beyond convenience, there are qualitative security implications for the current
de-facto pattern of proactivization. In particular, the validity of the assumption that an adversary
controls only up to a threshold number of devices hinges on the risk of compromise of each device being
independent. However having all devices in the system come online at frequent pre-specified points in
time and connect to each other to refresh may significantly correlate their risk of compromise. Instead
it would be preferable that only the minimal number of devices (i.e. the signing threshold) interact with
each other in the regular mode of operation, and enable the system to non-interactively refresh itself.

The ideal communication pattern alluded to in the above examples is the following: in a (2, n) proactive
threshold signature scheme, any two parties are able to jointly produce all the necessary components to
refresh the system, and mail the relevant information to offline parties. When an offline party wakes up, it
reads its mailbox and is able to “catch up” to the latest sharing of the secret.

1.2 Challenges in Realizing this Pattern
While this communication pattern sounds ideal, a whole host of subtle issues arise in potential realizations.
For instance, in the Cold Storage case, how does the server know that the updates it receives are “legitimate”?
An attacker controlling Alice’s smartphone could spoof an update message and trick the server into deleting
its key share and replacing it with junk.

Due to the inherent unfairness of two-party MPC protocols, an adversary can obtain the output of the
computation while depriving honest parties of it. In this spirit, the smartphone (acting for the attacker) could
work with the laptop until it obtains the “update” message to mail to the server, but abort the computation
before the laptop gets it. Now the attacker has the ability to convince the server to delete its old share by
using this message, whereas the laptop has no idea whether the attacker will actually do this (and therefore
doesn’t know whether to replace its own key share).

An approach where the server relies on messages received from both devices will quickly get complicated;
each device will have to prove to the other that it has mailed an update message to the server, and that this
message will allow the server to retrieve its new key share, while simultaneously hiding the payload of this
message itself so that only the server can decrypt it. Implicit in many of these scenarios is the problem of
safe deletion:

How can we design a proactivization protocol in which the adversary can not convince an honest
party to prematurely erase its secret key share?

In the (2, 2) case even a network adversary (who does not control either party) can induce premature deletion
by simply dropping a message in the protocol. Moreover is it possible to restrain such a proactivization
procedure to be minimally invasive to the threshold wallet? i.e. native to usage patterns and protocol
structures of threshold wallets.

1.3 Our Contributions
In this work we study the most fundamental setting for dishonest majority offline-refresh, i.e. (2, n) threshold
signature schemes as motivated by the applications discussed earlier. We show how to upgrade any (2, n)
threshold ECDSA or Schnorr-like signature scheme to proactive security tailored for use with a threshold

3

wallet. Our refresh protocol adds very little overhead as compared to running the threshold signature itself,
and exactly matches the ideal communication pattern outlined in the previous section.

While there are significant hurdles to overcome before achieving general (t, n) proactivization, the
techniques we introduce for (2, n) show how to solve a number of problems inherent in the offline-refresh
setting, and so can be seen as progress toward a general solution.

Defining Offline Refresh We formalize the notion of offline refresh for threshold protocols in the Universal
Composability (UC) framework [8]. Our starting point is the definition of Almansa et al. [1] which we build
on to capture that all parties need not be in agreement about which epoch they are in, and that an adversary
can change corruptions while other parties are offline. Intuitively previous definitions have had an inherent
synchrony in the progress of the system, which we remove in ours and show how to capture that parties may
refresh at different rates.

Fighting Unfairness We devise a novel approach to working around the fact that two-party computation is
inherently unfair, by using the fact that threshold wallets are already posting signatures to a public ledger (i.e.
signed transactions). We do not in any way modify the transactions posted on the ledger themselves. Instead
we carefully interleave the threshold protocol used to sign this transaction, with a proactivization of the
secret shares in such a way that each transaction that appears on the blockchain has the potential to trigger
a refresh. As fundamental results regarding dishonest majority MPC preclude guaranteed proactivization,
our approach is to make it impossible for an adversary to derive utility from the wallet without allowing it to
refresh.

Proactive Multipliers Threshold ECDSA protocols are much more sophisticated than threshold Schnor-
r/EdDSA, requiring the use of more advanced cryptographic primitives that bring with them their own
persistent state that must be proactivized. As a stepping stone to proactivizing threshold ECDSA protocols,
we show how to proactivize oblivious tranfer (OT) based secure two party multiplication efficiently. We
design a refresh protocol which is “public coin” (i.e. randomness for refresh is public), which when plugged
into the infrastructure we build for delivering updates safely to offline parties, results in a fully proactivized
two-party multiplier.

Cost and assumptions Our refresh protocol requires only a few bytes to be exchanged by the online
refreshing parties and just as many to be mailed to offline parties, who are able to catch up almost instantly
upon waking up. The refresh protocol adds no additional assumptions (i.e. only Discrete Logarithm in the
same curve) while being compatible with all recent (2, n) threshold ECDSA protocols [21, 30, 15] and the
folklore threshold Schnorr protocol and its derivatives.

Proof-of-concept Implementation We provide a proof of concept implementation and we show through
experiments (Section 10) that the overhead incurred in computational time of our refresh procedure is roughly
24% for the ECDSA protocol of Doerner et al. [15] and 14% in the case of Gennaro and Goldfeder [21], while
the communication round overhead is zero in both cases.

1.4 On the Use of a Ledger
We note that given access to a ledger functionality, the theoretical feasibility of the task at hand is easy to
establish; any off-the-shelf proactivization protocol that simply runs on the ledger is likely to work. However,
the goal for our proactivization procedure is to augment a threshold wallet without interacting with its
context; this immediately rules out publishing any more content on the ledger than the wallet already does,
or even modifying the content that the wallet does send to the ledger. The reason behind this requirement is
to be compatible with essentially any threshold wallet– the only assumption we wish to make is that when
the system is not infected, the threshold protocol produces signatures which ultimately reach the ledger.

4

As our protocols adhere to this requirement, they can be used to augment existing implementations of
threshold wallets for standard cryptocurrencies. This would not be the case for a generic approach of simply
running a proactivization protocol on the ledger.

1.5 Our Approach
We take advantage of the fact that threshold wallets already rely on posting signatures to a public ledger in
order to coordinate refreshes. Let each party Pi own point f(i) on a shared polynomial f where f(0) = sk
(i.e. standard Shamir sharing of the secret key sk). We have parties generate a candidate refresh polynomial
f ′ when they sign a message, associate each signature with f ′, and “apply” the refresh (i.e. replace f(i) with
f ′(i)) when the corresponding signature appears on the blockchain. While this handles the coordination
part, the major issue of verifiably communicating f ′(j) to offline party Pj remains a challenge. To solve
this, we have the online refreshing parties jointly generate a local threshold signature authenticating f ′ when
communicated to each offline party; such a signature can only be produced by two parties working together,
so any candidate f ′ received in one’s mailbox must have been created with the approval of an honest party.

Working Around Unfairness Note that this approach is still vulnerable to attacks where the adversary
withholds the threshold signature from an honest party in the protocol; if an online signing protocol aborts,
how does an honest party know if its (possibly malicious) signing counterparty mailed f ′ and the corresponding
signature to offline parties? This is an issue that stems from the inherent unfairness of two-party computation.
While this is impossible to solve in general, we observe that most threshold ECDSA/Schnorr signature
protocols are simulatable so the signing nonce R is leaked, but the signature itself stays hidden until the final
round. We exploit this fact to bind each f ′ to R instead of the signature itself; so our proactive version of
threshold ECDSA/Schnorr will proceed as follows:

1. Run the first half of threshold ECDSA/Schnorr to obtain R.

2. Sample candidate f ′, bind it to R, threshold-sign these values and mail them to offline parties.

3. Continue with threshold ECDSA/Schnorr to produce the signature itself.

Correspondingly when any signature under R appears on the blockchain, each party searches for a bound f ′
that it can apply. With overwhelming probability there will never be two independently generated signatures
that share the same R nonce throughout the lifetime of the system.

Leaking the Difference Polynomial We observe that any proactivization protocol where an adversary
corrupts t parties has the following property: define fδ(i) = f ′(i)− f(i), i.e. the polynomial that encodes the
difference between old and new shares. Given f(i), f ′(i) for any t values of i (which the adversary has by
virtue of corrupting t parties) one can compute fδ(x) for any x. This is because fδ(0) = 0 (as f(0) = f ′(0))
and fδ is a degree t polynomial of which one now has t+ 1 points. We make use of this property by having
the sampling procedure for f ′ simply be a public sampling of fδ (since the adversary was going to learn this
value anyway). This is not an issue in the (2, n) setting as the adversary will ‘miss’ at least one sampling of
fδ when changing corruptions.

Threshold ECDSA and Multipliers Threshold ECDSA protocols require use of a secure two-party
multiplication functionality FMUL (or equivalent protocol) for this reason. Indeed, recent works [21, 30, 15]
have constructed practical threshold ECDSA protocols that make use of multipliers that can be instantiated
with either Oblivious Transfer or Paillier encryption. Using these multipliers is significantly more efficient in
the offline-online model where parties run some kind of preprocessing in parallel with key generation, and make
use of this preprocessed state for efficient FMUL invocation when signing a message (this is done by all cited
works). However as this preprocessed state is persistent across FMUL invocations, it becomes an additional
target to defend from a mobile adversary. We show how to efficiently re-randomize this preprocessed state
for OT-based instantiations of FMUL, and therefore get offline-refresh proactive security for (2, n) threshold

5

ECDSA in its entirety. Our proactivization of FMUL makes novel use of the classic technique of Beaver [4] to
preprocess oblivious transfer, in combination with the mechanism we build to deliver updates securely.

1.6 Organization
We first discuss related work in Section 2 and present the definitions we use in Section 3. The blockchain
model we assume is described in Section 4. We then give our formalization of mobile adversaries and offline
refresh in Section 5, following which we detail our threshold signature abstraction in Section 6. We begin by
introducing the protocol to coordinate simple (2,2) key refresh in Section 7, and then give the extension to
(2, n) proactive threshold signatures in Section 8. Following this, we show how to proactivize every component
of the more sophisticated recent ECDSA protocols in Section 9. Finally we demonstrate the practicality of
our protocols by implementation to augment two different ECDSA protocols, the results of which we present
in Section 10.

2 Related Work
The notion of mobile adversaries with a corresponding realization of proactive MPC was first introduced by
Ostrovsky and Yung [33]. Herzberg et al. [24] devise techniques for proactive secret sharing, subsequently
adapted for use in proactive signature schemes by Herberg et al. [23]. Cachin et al. [7] show how to achieve
proactive security for a shared secret over an asynchronous network. Maram et al. [31] construct a proactive
secret sharing scheme that supports dynamic committees, with a portion of the communication done through
a blockchain. For a more comprehensive survey, we refer the reader to the works of Maram et al. [31] and
Nikov and Nikova [32].

As discussed earlier, every previous work assumes an honest majority of parties collaborate in order to
proactivize the system (or that corruptions are passive). Additionally they require this honest majority of
parties to come online simultaneously at pre-specified points in time to run the refresh protocol. As the
entire premise of the (2, n) threshold signature setting is that only two parties need be online simultaneously
to use the system, we impose as a strict requirement that only two parties be sufficient to proactivize the
system. Consequently as it is meaningless to have an honest majority among two parties, we can not directly
apply techniques from previous works to our setting. To our knowledge the conceptual core of our protocol–
a threshold signature (internal to the system) interleaved with a threshold signature that appears on the
blockchain, is novel.

3 Preliminaries
Throughout this paper, we fix the corruption threshold as t = 1 and hence formulate all of our definitions
assuming one malicious adversarial corruption.

Network Model We assume a synchronous network, as already required by recent threshold signature
schemes [21, 30, 15]. For the blockchain model, we follow the synchronous functionality of Kiayias et al. [27].
In this functionality, the blockchain only progresses after all parties finish their current round, therefore parties
are always synchronized during the protocol run. We formally define the blockchain model in Section 4.

Additionally, we assume a functionality FMail that acts as a “mailbox” for anyone to leave messages for
offline parties. We give a formal description later in this section.

Protocol Input/Output Notation Most of the protocols in this paper are described for any pair of
parties indexed by i, j ∈ [n]. In particular, any two parties Pi, Pj out of a group of n parties ~P can run a
protocol π with private inputs xi, xj to get their private outputs yi, yj respectively. For ease of notation since

6

all of our protocols have the same instructions for each party, we choose to describe them as being run by Pb
with P1−b as the counterparty. The general format will be

yb ← π(1− b, xb)

to denote that Pb gets output yb by running protocol π with input xb and counterparty P1−b. For instance if
π is run between P2 and P6, the protocol as described from the point of view of P6 is interpreted with b ≡ 6
and 1− b ≡ 2.

Ideal Functionalities We assume access to a number of standard ideal functionalities: FCom (commit-
ment), FRDL

Com-ZK (commit proof of knowledge of discrete logarithm), FCoin (coin tossing), FMUL (two-party
multiplication) all which we describe here for completeness.

FMail This functionality is used to leave messages for offline parties to read upon waking up.

Functionality 1: FMail

This functionality is parameterized by the party count n.

1. For each i ∈ [n] initialize mailboxi = ∅
2. Upon receiving (send, i,msg) from party Pj , append msg to mailboxi
3. Upon receiving (read) from party Pi, respond with (mailboxi) and subsequently set mailboxi = ∅

The functionality FMail could be realized in any number of ways, for instance by a forward-secure messaging
service such as the Signal protocol [2].

FRDL
Com-ZK The commitment functionality allows a party Pi to commit to a value X ∈ G and reveal it to

parties {Pj} at a later point if desired, along with a proof that that Pi knows x ∈ Zq such that x ·G = X.

Functionality 2: FRDL
Com-ZK

The functionality is parameterized by the group G of order q generated by G, and runs with a group of parties ~P.

Commit Proof On receiving
(
commit-proof, idcom-zk, x,Xi

)
from Pi, where x ∈ Zq and Xi ∈ G, store(

idcom-zk, x,Xi
)
and send (committed, i) to all parties.

Decommit Proof On receiving
(
decom-proof, idcom-zk) from Pi,

1. If X = x ·G, send
(
decommitted, idcom-zk, i

)
to each Pj ∈ ~P

2. Otherwise send
(
fail, idcom-zk, i

)
to each Pj ∈ ~P

Note that multiple parties Pj may participate.

This is a standard functionality that can be instantiated in the random oracle model to obtain folklore
commitments, along with Schnorr’s sigma protocol plugged into either the Fiat-Shamir [17] or Fischlin [18]
transformations to obtain a non-interactive zero-knowledge proof of knowledge of discrete logarithm. It is
easy to see that the usual commitment functionality FCom can be obtained by ommitting a few components
of FRDL

Com-ZK.

7

FCoin This is a coin tossing functionality, which allows any pair of parties to publicly sample a uniform Zq
element.

Functionality 3: FCoin

This functionality is run with two parties P0, P1.
On receiving (sample-element, idcoin, q) from both P0, P1, sample x← Zq uniformly and send (idcoin, x) to both
parties as adversarially delayed output.

Realizing this functionality is easy in the FCom-hybrid model: P0 samples x0 ← Zq and sends it to FCom,
following which P1 samples x1 ← Zq and sends it to P0. Finally P0 instructs FCom to release x0 and the
output is defined as x = x0 + x1.

FMUL Secure two party multiplication functionality, in simplified form.

Functionality 4: FMUL

This functionality is run with two parties P0, P1.
On receiving (input, idcoin, x0) from P0 and (input, idcoin, x1) from P1 such that x0, x1 ∈ Zq, sample a uniform
(t0, t1)← Z2

q conditioned on
t0 + t1 = x0 · x1

and send t0 to P0 and t1 to P1 as adversarially delayed output.

For a more nuanced functionality that can be efficiently instantiated, along with such an instantiation
based on Oblivious Transfer (which we describe how to proactivize in this work), we refer the reader to the
work of Doerner et al. [15].

Adversarial Model We prove our protocols secure in the Universal Composability (UC) framework of
Canetti [8]. We give the specifics of our modelling in Section 5.

3.1 Miscellaneous
We use (G, G, q) to denote a curve group; the curve G is generated by G and is of order q. Throughout the
paper we use multiplicative notation for curve group operations.

Lagrange Coefficients λji (x), λij(x) are the Lagrange coefficients for interpolating the value of a degree-1
polynomial f at location x using the evaluation of f at points i and j. In particular,

λji (x) · f(i) + λij(x) · f(j) = f(x) ∀x, i, j ∈ Zq

Each λji (x) is easy to compute once i, j, x are specified.

Signature format A signature under public key pk comprises of (R, σ) where R ∈ G and σ ∈ Zq. Note
that in practice, some ECDSA/Schnorr implementations will only contain the x-coordinate of R instead of
the whole value. This is only done for efficiency reasons with no implications for security, and does not affect
compatibility with our protocols.

8

4 Blockchain Model
In this section we detail the relevant aspects of the underlying blockchain system that is required for our
protocol.

4.1 A Transaction Ledger Functionality
A transaction ledger can be seen as a public bulletin board where users can post and read transactions
from the ledger. As it was shown in [20], a ledger functionality must intuitively guarantee the properties of
persistence and liveness, that we informally discuss next.

• Persistence: Once a honest user in the system announces a particular transaction as final, all of the
remaining users when queried will either report the transaction in the same position in the ledger or
will not report any other conflicting transaction as stable.

• Liveness: If any honest user in the system attempts to include a certain transaction into their ledger,
then after the passing of some time, all honest users when queried will report the transaction as being
stable.

The functionality GLedger is inspired by the functionality of [27] and for ease of presentation it is highly
synchronous. However, we note that partially synchronous [16] ledgers that take into account an unknown
network delay do exist [12, 10], and can be easily employed by our protocol with no changes due to how we
define the corruption model, where the adversary “waits” for a full refresh between changing corruptions.
Without loss of generality we assume that every transaction that is included in the chain becomes final and
therefore will not be rolled-back. For a more complete and detailed functionality we refer the reader to [3].
We give a formal definition of the ledger functionality below.

Functionality 5: GLedger

The functionality GLedger is globally available to all participants. The functionality is parameterized by a function
Blockify, a predicate Validate, a constant T, and variables chain, slot, clockTick and buffer, and a set of parties
P. Initially set chain := ε, buffer := ε, slot := 0 and clockTick := 0.

• Upon receiving (Register, sid) from a party P , set P := {P} ∪ P and if P was not registered before set
dP := 0. Send (Register, sid, P) to A.

• Upon receiving (ClockUpdate, sid) from some party Pi ∈ P set di := 1 and forward (ClockUpdate, sid, Pi)
to A. If dP = 1 for all P ∈ P then set clockTick := clockTick + 1, reset dP := 0 for all P ∈ P and execute
Chain extension.
• Upon receiving (Submit, sid, tx) from a party P , If Validate(chain, (buffer, tx)) = 1 then set buffer :=

buffer||tx.
• Upon receiving (Read, sid) from a party P ∈ {A ∪ P}, If P is honest then set b := chain else set
b := (chain, buffer). Then return the message (Read, sid, b) to party P .

• Upon receiving (Permute, sid, π) from A apply permutation π to the elements of buffer.

Chain extension: If |clockTick− (T · slot)| > T then set chain := chain||Blockify(slot, buffer) and buffer := ε, and
subsequently send (ChainExtended, sid) to A.

The functionality GLedger is parameterised by a set P of participants P ; for a new participant to join
the protocol it must send a message Register to the GLedger functionality. We parameterise GLedger by a
constant T that denotes the gap in clock tick units between two subsequent slots in the ledger. Without loss
of generality, one could assume the existence of a function Tick2Time that maps clock ticks to physical time,
in the same spirits of [27]. For concreteness, in such a case, the value of T would be 10 minutes in Bitcoin.

9

The functionality GLedger is synchronous, and the clockTick variable is incremented only after all the
parties send a message ClockUpdate to GLedger. A new block is created and appended to the chain only after
T clock ticks have elapsed since the last block creation; in the meantime, parties can submit new transactions
to the ledger with the message Submit, and read all the contents of the ledger with the message Read. The
adversary A can permute the contents of the current transaction buffer, which translates to rearranging the
order of the transactions that will be included in the next block.

We define the predicate Validate that validates the transactions contents and format against the current
chain before including it in the transactions buffer. In existing systems such as Bitcoin, the Validate predicate
checks the signature of the user spending funds. The function Blockify, as in [27], handles the processing of
the transaction buffer and “packs” it nicely into blocks.

Global Functionality The simulator for our protocol will not be able to act on behalf of GLedger. In
particular the simulator is only able to use the functionality with the same priviliges as a party running the
real protocol.

5 Formalizing Mobile Adversaries and the Offline Refresh Setting
We build on the definition of Almansa et al. [1] to a notion of mobile adversaries that accommodates ‘offline’
parties. We do this by having each party maintain a counter epoch written on a special tape, and define
the state of the system relative to these epoch values. While in our definition the adversary Z may choose
to activate parties in sequences that leave them in different epochs, the definition of Almansa et al. does
not permit this. In particular their definition requires all honest parties to first agree that they have all
successfully reached the latest epoch before the adversary is permitted to change corruptions.

Epochs Each party has a special “epoch tape” on which it writes an integer epoch. At the start of the
protocol, this tape contains the value 0 for all honest parties. We use the term “system epoch” to refer to the
largest epoch value written on any honest party’s tape.

Operations There are two kinds of commands that the environment Z can send to a party: operate and
refresh. Intuitively operate corresponds to use of the system’s service, and refresh the rerandomization of
parties’ private state. The operate command will be issued to two parties simultaneously (in any realization
this will require them to interact) and refresh will be non-interactive in its realization.

Non-degeneracy Upon being given the refresh command, an honest party must write the current system
epoch on its epoch tape. In order to rule out degenerate realizations, we also require that if any two honest
parties are given the operate command, the next refresh command sent to an honest party P will result in
the system epoch being incremented.

Corruptions At any given time, there can be only one party controlled by Z (i.e. one malicious corruption)1.
Mobility of corruptions must adhere to the following rule: Z may decide to “uncorrupt” a party P at any
time, however before corrupting a new party P ′ ∈ ~P it must first “leave” P , then send operate to any two
parties, and finally refresh to P ′ before being given its internal state (and full control over subsequent
actions). Note that omitting this final refresh message (i.e. allowing Z to corrupt P ′ before it has refreshed)
will give Z the views of both P and P ′ from the same system epoch, in which case the system will be fully
compromised. This is implied by any standard definition of proactive security. In fact, our revised definition
grants Z more power than that of Almansa et al. [1], as here not every party need refresh before Z changes
corruptions.

1We let the adversary corrupt only one party in this definition for ease of exposition as this paper focuses on the (2, n) setting.
However it is easy to generalize this definition to t corruptions.

10

Crucially we allow the system epoch to be pushed forward by any two parties, i.e. consecutive epoch
increments may be enabled by completely non-overlapping pairs of parties. This captures our notion of
“offline refresh” where not all parties in the system need be online to move the system forward; any two
parties can keep the epoch counter progressing while the others catch up at their own speed.

Offline-refresh must be non-interactive A direct implication of our definition is that one can not wait
for offline parties to respond before incrementing the epoch counter. This inherently rules out standard
verifiable secret sharing (VSS) approaches where parties ‘complain’ if an adversary tries to cheat them.
Previous proactive secret sharing protocols can be viewed as implementing such a VSS between epochs
(either explicitly by complaints against misbehaviour, or implicitly by voting for ‘good’ sharings), and so a
fundamentally different approach is required for the offline-refresh setting.

Mappings in our protocol In our protocols we map the operate command issued to a pair of parties
Pi, Pj to the command (sign,m, i, j), i.e. parties Pi and Pj are instructed to collaborate to sign a message
m. Our protocols in fact achieve an even stronger notion than non-degeneracy, which is meaningful for
the threshold signature setting. Specifically when Z sends (sign,m, i, j) to Pi where the counterparty Pj
is malicious and m has not previously been signed, even if Pi receives no output, if Z is able to output a
signature σ on m, then the system epoch will progress upon the next refresh command. Put differently, if
Z would like a new message signed then it must allow the system to refresh itself, even if it makes Pj cheat
arbitrarily in the signing protocol. Note that regular non-degeneracy guarantees nothing in the case that Pj
is corrupt.

6 Threshold Signature Abstraction
A threshold signature scheme [13] allows the power of producing a digital signature to be delegated to multiple
parties, so that a threshold number of them must work together in order to produce a signature. Specifically
a (t, n) signature scheme is a system in which n parties hold shares of the signing key, of which any t must
collaborate to sign a message. In this work we focus on (2, n) threshold versions of the ECDSA [28] and
Schnorr [35] Signature schemes. As our techniques are general and not specific to any one threshold signature
scheme, we use an abstraction of such protocols for ease of exposition.

6.1 Abstraction
We assume that a (2, n) threshold signature over group (G, G, q) can be decomposed in a triple of algorithms
(πDKG

Setup,πR
Sign,πσSign) of the following formats:

• (ski ∈ Zq, pk ∈ G)← πDKG
Setup(κ)

This protocol is run with n parties and has each honest party Pi obtain public output pk and private
output ski. In addition to this, there must exist a degree-1 polynomial f over Zq such that ∀i ∈ [n],
ski = f(i).

• (R ∈ G, stateb ∈ {0, 1}∗)← πR
Sign(pk, skb, 1− b,m)

Run by party Pb with P1−b as counterparty, to sign message m. Both parties output the same R when
honest, with private state stateb.

• (σ ∈ Zq)← πσSign(stateb)
Completes the signature started by πR

Sign when both parties are honest, i.e. σ verifies as a signature on
message m with R as the public nonce and pk as the public key.

Note that πDKG
Setup captures a specific kind of secret sharing, i.e. the kind where the signing key is Shamir-

shared among the parties. Multiplicative shares for instance are not captured by this abstraction. The (2,2)
threshold ECDSA protocols of Lindell [29] and Castagnos et al. [9] are not captured by our abstraction for

11

this reason. Additionally signature schemes that do not have randomized signing algorithms such as BLS [6]
can not be decomposed as per this abstraction.

Finally these protocols must realize the relevant threshold signature functionality. In particular let
Sign ∈ {SignHECDSA,SignHSchnorr} where

SignHECDSA(sk, k,m) = H(m) + sk · rx
k

SignHSchnorr(sk, k,m) = H(R||m) · sk + k

where rx is the x-coordinate of k ·G in the ECDSA signing equation. We therefore define functionality Fn,2Sign
to work as follows:

Functionality 6: Fn,2Sign

This functionality is parameterized by the party count n, the elliptic curve (G, G, q), a hash function H, and
a signing algorithm Sign. The setup phase runs once with n parties, and the signing phase may be run many
times between (varying) subgroups of parties indexed by i, j ∈ [n].

Setup On receiving (init) from all parties,
1. Sample and store the joint secret key,

sk← Zq

2. Compute and store the joint public key,
pk := sk ·G

3. Send (public-key, pk) to all parties.
4. Store (ready) in memory.

Signing On receiving (sign, idsig, (i, j),m) from both parties indexed by i, j ∈ [n] (i 6= j), if (ready) exists in
memory but (complete, idsig) does not exist in memory, then

1. Sample k ← Zq and store it as the instance key.
2. Wait for (get-instance-key, idsig) from both parties Pi, Pj .
3. Compute

R := k ·G
and send (instance-key, idsig, R) to parties Pi, Pj . Let (rx, ry) = R.

4. Wait for (proceed, idsig) from both parties Pi, Pj .
5. Compute

σ := SignH(sk, k,m)

6. Send (signature, idsig, σ) to both parties Pi, Pj as adversarially-delayed private output.
7. Store (complete, idsig) in memory.

To make concrete the role of each protocol (πDKG
Setup,πR

Sign,πσSign), we restrict access of their corresponding
simulators (SDKG

Setup,SR
Sign,SσSign) to Fn,2Sign. Specifically SDKG

Setup can only send (init) on behalf of a corrupt party
and receive (public-key, pk) in response. The messages (sign, idsig, (i, j),m) and (get-instance-key, idsig)
can be sent and (instance-key, idsig, R) received only by SR

Sign. Finally (proceed, idsig) can be sent and
(signature, idsig, σ) received only by SσSign.

An implication of this restriction is that πR
Sign has to be simulatable without the signature σ, therefore it

cannot leak any information about this value. (The approach of splitting the simulator into several simulators

12

to limit what kind of information can be leaked in different stages of the protocol has been used before e.g.,
in secret-sharing based MPC protocols to claim that the protocol does not leak any information about the
output until the reconstruction phase performed in the last round of the protocol). This abstraction was
chosen deliberately to enforce this property; one of our key techniques in this work (Section 8) relies on πR

Sign
keeping σ hidden.

Threshold Schnorr We recall a folklore instantiation of Fn,2Sign for SignSchnorr in Appendix A (note that
this also works for EdDSA).

Threshold ECDSA We note that the recent protocols of Gennaro and Goldfeder [21] if required. However
due to the non-linearity of SignECDSA the corresponding realization of Fn,2ECDSA requires use of a multiplication
functionality FMUL (or equivalent protocol). Since FMUL is expensive to instantiate for one-time use, these
threshold ECDSA protocols run some preprocessing for FMUL in parallel with πDKG

Setup and make use of this
preprocessed state for more efficient online computation. As this adds additional persistent state to be
protected against a mobile adversary, we need to deal with it carefully. We discuss this in further detail and
give an efficient solution to this problem in Section 9.

7 Coordinating Two Party Refresh
As the final protocol combines two independent concepts: using the blockchain for synchronization, and
authenticating communication to offline parties, we first present a base protocol for the former for a (2, 2)
access structure and augment it with the latter to obtain a (2, n) protocol.

In this section, we describe the malicious secure protocol for two parties to coordinate an authenticated
refresh of the secret key shares.

The (2, 2) protocol is described with Shamir secret shares (points on a polynomial) rather than just
additive shares so as to allow for a smoother transition to the (2, n) setting.

Intuition The two parties begin by running the first half of the threshold signing protocol πR
Sign to obtain

the signing nonce R that will be used for the subsequent threshold signature itself. They then sample a new
candidate (shared) polynomial f ′ by publicly sampling the difference polynomial fδ and store their local
share sk′b = f ′(b) tagged with R and the epoch number epoch in a list rpool. Specifically rpool is a list of
(R, sk′b, epoch) values that are indexed by R as the unique identifying element. Following this, they complete
the threshold signing by running πσSign and a designated party sends the resulting signature (and message) to
GLedger, i.e. posts them to the public ledger.

Protocol 1: π(2,2)
ρ-sign

Parameters: Elliptic Curve Group (G, G, q)
Parties: Pb, P1−b (recall b ∈ {1, 2} is the index of the current party and 1− b is a shorthand for the index of
the counterparty)
Ideal Oracles: FRDLCom-ZK, GLedger
Inputs:
• Common: Message to be signed m ∈ {0, 1}∗, public key pk ∈ G, each party’s share in the exponent

pkb = λ1−b
b (0) · F (b) where F is the polynomial over G passing through (0, pk) and (b, f(b) · G), epoch

index epoch ∈ Z+

• Private: Each party Pb has private input skb = λ1−b
b (0) · f(b) ∈ Zq

1. Tag R from Threshold Signature:

i. Run the first half of the threshold signing protocol

(R, stateb)← πR
Sign (skb, 1− b,m)

13

2. Sample New Polynomial:

i. Send (sample-element, idcoin, q) to FCoin and wait for response (idcoin, δ)
ii. Define degree-1 polynomial fδ over Zq such that

fδ(0) = 0 and fδ(1) = δ

iii. Compute
sk′b = skb + fδ(b)

3. Store Tagged Refresh:

i. Retrieve Epoch index epoch
ii. Append (R, sk′b, epoch) to rpool

4. Complete the threshold signature protocol by running σ ← πσSign

5. If σ 6= ⊥ then set tx = (m,R, σ) and send (Submit, sid, tx) to GLedger

Note that in Step 5 it is sufficient for only one party to send the transaction tx to the ledger.
While the above protocol generates candidate refresh polynomials, choosing which one to use from rpool

(and when to delete old shares) is done separately. The idea is that when a new block is obtained from GLedger
the parties each scan it to find signatures under their shared public key pk. The signatures are cross-referenced
with rpool tuples stored in memory by matching R (no two signatures will have the same R) and the ones
without corresponding tuples are ignored. If any such signatures are found, the one occurring first in the
block is chosen to signal the next refresh; in particular the corresponding sk′b overwrites skb stored in memory,
rpool is erased, and the epoch counter is incremented.

Protocol 2: π(2,2)
ρ-update

Parameters: Elliptic Curve Group (G, G, q)
Parties: Pi (local refresh protocol)
Ideal Oracles: GLedger
Inputs: Epoch counter epoch, a list rpool = {(epoch, sk′i, R)}, private key share ski.

1. Send (Read) to GLedger and receive (Read, b). Set BLK to be the latest block occurring in b
2. Search for the first signature (σ,R) occurring in BLK under pk such that ∃(R, sk′i, epoch) ∈ rpool
3. Overwrite ski = sk′i and erase rpool
4. Set epoch = epoch + 1

It is clear that this protocol achieves all desired properties when both parties are honest. We give a proof
of the extended (2, n) protocol directly in the next section. However we make a few observations at this point
that will aid in building the proof for the extended protocol.

Before and after a refresh the view of an adversary corrupting Pb when epoch = x is completely
independent of the view when corrupting P1−b after epoch = x+ 1. This is clear as polynomials f and f ′ are
independently distributed, and so skb = f(b) can not be meaningfully combined with sk′1−b = f ′(1− b).

No two entries in rpool will have the same R by virtue of each R being chosen uniformly for each
entry, the likelihood of there being two entries with the same R value in rpool is negligible, with about q/2
signatures having to be generated before a collision occurs.

14

8 (2, n) Refresh With Two Online
In this section, we give the malicious secure protocol for two online parties to coordinate an authenticated
refresh of the secret key for arbitrarily many offline parties.

We now describe how to ensure that offline parties can get up to speed upon waking up, crucially in a
way that every party is in agreement about which polynomial to use so that ski erasures are always safe.

Goal Observe that if every party is in agreement about rpool, then the rest of the refresh procedure is
deterministic and straightforward. Therefore it suffices to construct a mechanism to ensure that for each
(R, sk′b, epoch) tuple an online party Pb appends to its rpool, each offline party Pi is able to append a consistent
value (R, sk′i, epoch) to its own rpool. Here ‘consistent’ means that the points (0, sk), (b, sk′b), (i, sk′i) are
collinear.

An Attempt at a Solution We first note that since either one of the online parties Pb may be malicious
and therefore unreliable, it simplifies matters to design the refresh protocol so that they both mail the same
message to an offline Pi. The message itself should deliver fδ(i) (so that Pi can compute sk′i) along with R.
Simultaneously it must be ensured that a malicious party is unable to spoof such a message and confuse Pi.

In order to solve this problem, we take advantage of the fact that the parties already share a distributed
key setup; as any two parties must be able to sign a message in a (2, n) threshold signature scheme, we
take advantage of this feature to authenticate mailed messages with threshold signatures internal to the
protocol. In particular, when any Pb, P1−b agree on an entry (R, skb) to add to rpool, they also produce a
threshold signature z under the shared public key pk authenticating this entry. Each Pb is instructed to mail
the new rpool entry accompanied by its signature z to every offline party. If at least one of Pb, P1−b follows
the protocol (note that only one may be corrupt), every offline party will find the new rpool entry in its
mailbox when it wakes up. Additionally due to the same reason that (2, n) signatures are unforgeable by an
adversary corrupting a single party, such an adversary will be unable to convince any offline Pi to add an
entry to rpool that was not approved by an honest party. An implication of this unforgeability feature is that
an offline party can safely ignore messages in its mailbox that are malformed.

A Subtle Attack Again the inherent unfairness of two-party computation stands in the way of achieving a
consistent rpool. In particular an adversary corrupting P ∗b may choose to abort the computation the moment
she receives the internal threshold signature z, denying the online honest party P1−b this value and therefore
removing its ability to convince its offline friends to add the new rpool entry. This is a dangerous situation, as
P ∗b now has the power to control whether the offline parties update rpool or not, i.e. by choosing whether or
not to mail the new rpool entry (which it can convince offline parties to use as it has z). While this will not
immediately constitute a breach of privacy, the fact that honest parties do not agree on rpool could induce
unsafe deletion; at best this requires all honest parties to come online to re-share the secret, and at worst
this could mean that the secret key is lost forever (e.g. in the (2,3) cold storage use case).

Our Solution This is where it is crucial that the first half of the threshold signing protocol (πR
Sign) is

simulatable without the signature σ itself; in fact it is the entire reason for this choice of abstraction. Assume
that P1−b updates its rpool with the new value before even producing z. Following this, P1−b will refuse to
instruct Fn,2Sign to reveal the signature σ until it is in possession of the local threshold signature z to mail to
offline parties. There are now two choices that P ∗b has when executing the attack described above:

• Update rpool of offline parties: i.e. the adversary chooses to add (R, fδ) to the rpool of some/all
offline parties. In this case, in order to actually exploit the inconsistency between rpool of different
honest parties, the adversary must trigger a refresh that produces different outcomes for different rpool.
Specifically, the signature σ under public key pk and the nonce R must appear on the blockchain;
i.e. the same R that Pb interrupted signing with P1−b but mailed to offline parties. However since
protocol πR

Sign by itself keeps σ completely hidden and P1−b does not continue with πσSign, the task of

15

the adversary is essentially to produce σ under a specific uniformly chosen R (of unknown discrete
logarithm). We show that this amounts to solving the discrete logarithm problem in the curve G.

• Do not update rpool of offline parties: All honest parties have the same rpool anyway, and there is
no point of concern.

Therefore instead of using complicated mechanisms (eg. forcing everyone to come online, extra messages
on the blockchain, etc.) to ensure that every honest party agrees on the same rpool, we design our protocol
so that any inconsistencies in rpool are inconsequential.

We present the protocol below, which includes some optimizations and notation omitted from the above
explanation.

Protocol 3: π(2,n)
ρ-sign

Parameters: Elliptic Curve Group (G, G, q)
Parties: Pb for b ∈ [n]
Ideal Oracles: FRDLCom-ZK, GLedger, random oracle RO
Inputs:
• Common: Message to be signed m ∈ {0, 1}∗, public key pk ∈ G, each party’s share in the exponent

pkb = λ1−b
b (0) · F (b) where F is the polynomial over G passing through (0, pk) and (b, f(b) · G), epoch

index epoch ∈ Z+

• Private: Each party Pb has private input skb = λ1−b
b (0) · f(b) ∈ Zq

1. Tag R from Threshold Signature: (identical to π(2,2)
ρ-sign)

2. Sample New Polynomial: (identical to π(2,2)
ρ-sign)

3. Store Tagged Refresh:

i. Append (R, sk′b, epoch) to rpool
ii. Establish common nonce K ∈ G along with an additive sharing of its discrete logarithm:

a. Sample kb ← Zq, set Kb = kb ·G and send (com-proof, idcom-zk
b , kb,Kb) to FRDLCom-ZK

b. Upon receiving (committed, 1− b, idcom-zk
1−b) from FRDLCom-ZK, send (open, idcom-zk

b) to FRDLCom-ZK

c. Wait to receive (decommitted, 1− b, idcom-zk
1−b ,K1−b ∈ G) from FRDLCom-ZK

d. Set K = Kb +K1−b

iii. Compute

e = RO(R||K||δ||epoch)
zb = e · skb + kb

iv. Send zb to P1−b and wait for z1−b, upon receipt verifying that

z1−b ·G = e · pk1−b +K1−b

and compute z = zb + z1−b

v. Set msg = (R, epoch, δ,K, z)
vi. For each i ∈ [n] \ {b, 1− b}, send (send, i,msg) to FMail

4. Complete the threshold signature protocol by running σ ← πσSign

5. If σ 6= ⊥ then set tx = (m,R, σ) and send (Submit, sid, tx) to GLedger

We now specify the refresh procedure for a party Pi to read its mailbox, reconstruct rpool, and shift to
the latest shared polynomial. This refresh procedure is general so that parties who were offline for a number
of epochs can catch up.

16

Protocol 4: π(2,n)
ρ-update

Parameters: Elliptic Curve Group (G, G, q)
Parties: Pi (local refresh protocol)
Ideal Oracles: GLedger
Inputs: Epoch counter epoch, a list rpool = {(epoch, sk′i, R)}, public key pk, private key share ski (define
pki = ski ·G).

1. For each unique msg received from FMail do the following:

i. Parse (R, epoch′, δ,K, z)← msg and if epoch′ < epoch ignore this msg
ii. Compute e = RO(R||K||δ||epoch′) and verify that

z ·G = e · pk +K

iii. Define degree-1 polynomial fδ over Zq such that

fδ(0) = 0 and fδ(1) = δ

and interpolate δi = fδ(i)
iv. If epoch′ = epoch, compute

sk′i = ski + δi

and append (R, sk′i, epoch) to rpool
v. Otherwise epoch′ > epoch so append (epoch′, δi, R) to fpool

2. Send (Read) to GLedger and receive (Read, b) in response. Set BLK to be the latest blocks occurring in b
since last awake, and in sequence from the earliest block, for each (σ,R) under pk encountered do the
following:

i. Find (R, sk′i, epoch) ∈ rpool (match by R), ignore σ if not found
ii. Overwrite ski = sk′i, set epoch = epoch + 1, and set rpool = ∅
iii. For each (epoch, δi, R) ∈ fpool (i.e. matching current epoch) do:

(i) Set sk′i = ski + δi

(ii) Append (R, sk′i, epoch) to rpool
(iii) Remove this entry from fpool

In the above refresh protocol π(2,n)
ρ-update, the set rpool will always be consistent across honest parties (except

for inconsequential differences) and fpool will be empty by the end. This is due to the fact that fpool contains
candidate refresh values intended for epoch values further than the one “caught up with” so far; no honest
party will approve a candidate with a higher epoch counter than its own, and every honest party reaches the
same epoch value upon refresh. Further details can be found in the section addressing non-degeneracy of the
protocol in the proof that follows.

Theorem 8.1. If (πDKG
Setup, π

R
Sign, π

σ
Sign) is a threshold signature scheme for signing equation Sign, and the discrete

logarithm problem is hard in G, then (πDKG
Setup, π

(2,n)
ρ-update) UC-realizes Fn,2Sign in the (GLedger,FRDL

Com-ZK,FMail)-hybrid
model in the presence of a mobile adversary corrupting one party, with offline refresh.

Proof. (Sketch) The protocol πDKG
Setup can be simulated the standard way, with the corrupt party Pi’s key share

ski remembered as output. We now describe the simulator S(2,n)
ρ-signfor protocol π(2,n)

ρ-sign. This simulator is given
ski as input, and outputs (R, sk′i).

17

Simulator 1: S(2,n)
ρ-sign

Parameters: Elliptic Curve Group (G, G, q)
Ideal Oracles Controlled: FRDLCom-ZK, random oracle RO
Ideal Oracles Not Controlled: GLedger
Inputs:
• Common: Message to be signed m ∈ {0, 1}∗, public key pk ∈ G, each party’s share in the exponent
F (b) = f(b) ·G, epoch index epoch ∈ Z+

• Private: Pb’s key share skb = f(b) ∈ Zq

1. Tag R from Threshold Signature:

i. Simulate the first half of the threshold signing protocol

(R, stateb)← SR
Sign (skb, 1− b,m)

relaying (get-instance-key, idsig) and (instance-key, idsig, R) between SR
Sign and Fn,2Sign when required.

2. Sample New Polynomial: (identical to π(2,2)
ρ-sign)

i. Sample δ ← Zq and send (idcoin, δ) to Pb on behalf of FCoin

ii. Define degree-1 polynomial fδ over Zq such that

fδ(0) = 0 and fδ(1) = δ

iii. Compute
sk′b = skb + fδ(b)

3. Store Tagged Refresh:

i. Simulate a signature R, δ, epoch under pk1−b:
a. Sample z1−b ← Zq and e← Zq uniformly at random
b. Compute

K = z ·G− e · pk1−b

c. Program RO(R||K||δ||epoch) = e

ii. Establish common nonce K ∈ G:
a. Send (committed, 1− b, idcom-zk

1−b) to P ∗b on behalf of FRDLCom-ZK

b. Receive (com-proof, idcom-zk
b , kb,Kb) on behalf of FRDLCom-ZK

c. Set K1−b = K −Kb

d. Send (decommitted, 1− b, idcom-zk
1−b ,K1−b ∈ G) to P ∗b on behalf of FRDLCom-ZK

e. Wait for (open, idcom-zk) from Pb, upon receipt sending z1−b in response
iii. Wait for zb, upon receipt verifying that

zb = e · skb + kb

4. Simulate the rest of the threshold signature protocol by running SσSign(stateb) relaying (proceed, idsig) and
(signature, idsig, σ) between P ∗b and Fn,2Sign as necessary.

5. If P ∗b asks Fn,2Sign to release σ to P1−b, then set tx = (m,R, σ) and send (Submit, sid, tx) to GLedger

6. Output (R, sk′b)

Simulating π(2,n)
ρ-updateis simple: every time the adversary Z sends a (sign,m, i, j) command to a pair

of honest parties, the simulator obtains a signature R, σ from Fn,2Sign, samples δ ← Zq, and simulates a
local signature z under pk to authenticate R, δ, epoch just as in Step i. of Simulator S(2,n)

ρ-signabove. It sets

18

msg = (R, epoch, δ,K, z) and makes msg available to the corrupt party upon its next query to FMail.
We now sketch an argument that the distribution of the real protocol is computationally indistinguishable

from the ideal one.
We can progressively substitute each instance of π(2,n)

ρ-signrun with honest parties belonging to an epoch with
S(2,n)
ρ-signrun with Fn,2Sign. The distinguishing advantage of Z at each step is bounded by the advantage of a PPT

adversary distinguishing (πDKG
Setup,πR

Sign,πσSign) from the corresponding ideal executions with Fn,2Sign as produced by
simulators (SDKG

Setup,SR
Sign,SσSign), which is assumed to be negligible. In order to extend this strategy to a mobile

adversary, it suffices to argue that the polynomials f, f ′ used to share sk appear independently distributed
before and after a refresh. This follows immediately from the fact that an adversary who jumps from party
Pi to Pj is given f(i) and f ′(j) but does not see the difference fδ between f, f ′, just as discussed in the (2,2)
case in Section 7.

It remains to be argued that the protocol is not degenerate. The non-degeneracy property is achieved by
fulfilling two important requirements:

System Epoch Increments When the parties executing π(2,n)
ρ-signare honest, the system epoch will always

increment upon the next refresh command, i.e. if π(2,n)
ρ-signis run by honest parties with counter epoch, then

every subsequent execution of π(2,n)
ρ-updateby any party in the system will result in a local epoch counter of at

least epoch + 1. This is easy to see for this protocol, as honest parties executing π(2,n)
ρ-signwill always produce a

signature σ which will subsequently appear on the blockchain (after delay T as per GLedger). Simultaneously
every party will find a corresponding update to rpool in its mailbox, which will be applied by π(2,n)

ρ-updatewhen σ
appears on the blockchain.

Consistency Every honest party outputs the same epoch counter upon executing π(2,n)
ρ-updatesimultaneously.

As alluded to earlier in Section 8 proving this amounts to showing that the state of rpool maintained by
each honest party differs inconsequentially. In particular, let Pi and Pj be honest parties maintaining rpooli
and rpoolj respectively such that ∃(R, sk′i, epoch) ∈ rpooli but @(R, sk′j , epoch) ∈ rpoolj . First we claim that
(R, sk′i, epoch) can be traced to a unique execution of π(2,n)

ρ-signbetween a corrupt party P ∗b and honest party
P1−b. There are only two alternative events: (1) that there is a collision in R values generated by two protocol
instances (occurs with probability |~m|2/2q where |~m| is the number of messages signed), or (2) Pi received z
authenticating this entry without any honest party’s help in its creation; the exact same technique to prove
(threshold) Schnorr signatures secure can be employed here to construct a reduction to the Discrete Logarithm
problem in curve G (if this event occurs with probability ε then there is a reduction to DLog successful with
probability ε/|~m|). Given that (R, sk′i, epoch) can be traced to a unique execution of π(2,n)

ρ-signbetween P ∗b and
P1−b it must be the case that P ∗b aborted the comptation at Step iv., i.e. P ∗b received z to authenticate this
entry but withheld this value from P1−b (or else Pj would have received this entry in its mailbox as well due
to P1−b). Observe that this inconsistency in rpooli, rpoolj is consequential only if (σ,R) appears on GLedger,
despite the fact that P1−b will not execute πσSignto produce this value. We show that if this event happens
with probability ε then there is an adversary for the DLog problem successful with probability ε/|~m|. This is
because R is chosen uniformly in π(2,n)

ρ-sign(ie. internally by πR
Sign as it realizes Fn,2Sign) and the task of Z is to

produce σ that verifies under uniformly chosen nonce R and public key pk. We can use such a Z to solve the
DLog problem in G as follows:

1. Receive X ∈ G from the DLog challenger.

2. Choose sk← Zq, set pk = sk ·G

3. Run SDKG
Setup for Z with pk programmed to be the public key.

4. For each message m ∈ ~m except one, run S(2,n)
ρ-sign as required to simulate π(2,n)

ρ-signwhile also acting on behalf
of Fn,2Sign

5. For one randomly chosen instance of π(2,n)
ρ-sign, use SR

Sign to program X as the signing nonce R.

19

6. If the correct instance of π(2,n)
ρ-signis chosen, P ∗b will abort this protocol before the corresponding σ has to

be released, and yet σ still appears on GLedger

7. If σ is obtained from GLedger, solve for x such that x ·G = X as a function of σ, sk as per the signing
equation Sign. This is dependent on the equation Sign itself, but it is straightforward how to retrieve
the instance key x given the secret key sk and signature σ as per SignECDSA and SignECDSA.

The above reduction succeeds when Z induces this event (probability ε) and the correct instance of π(2,n)
ρ-signis

chosen (probability 1/|~m|) bringing the total success probability to ε/|~m|.
As the simulated distribution is indistinguishable from the execution of the real protocol and the protocol

is non-degenerate, this proves the theorem.

An Optimization We note that one can save a query to FCoin and a Zq element from being mailed by
defining δ = RO(R||K||epoch) instead of computing it separately from the internal threshold signature z. As
the input to the random oracle has at least κ bits of entropy in each instantiation of the protocol (thanks to
R,K) the resulting value of δ will be distributed uniformly just as it is currently.

9 Proactive Threshold ECDSA
Computing (2, n) ECDSA signatures is significantly more difficult than Schnorr, due to the non-linear nature
of the ECDSA signing equation. As a result, all such recent threshold ECDSA protocols [21, 30, 14, 15] make
use of a secure multiplication functionality (or equivalent protocol) FMUL in their signing phases. If FMUL
were to be instantiated independently for each threshold ECDSA signature produced, we could just use the
same strategy as in the previous section, since the πR

Sign protocol would take only key shares as arguments.
However FMUL is expensive to realize for individual invocations, and given that threshold signature protocols
already need a “preprocessing” phase for key generation (ie. πDKG

Setup), all the cited works make use of this
phase to also run some preprocessing for FMUL to make its invocation during signing cheaper. Therefore, we
also need to change how we deal with proactively refreshing the shares. In a nutshell, the main technical
challenge we address in this section is that now the parties, on top of their key shares, also include in their
persistent storage some state information for the FMUL protocol and that this state is a new target for a
mobile adversary. Therefore, the state needs to be refreshed as well.

We start by abstracting the two-party multiplication protocol (πSetup
MUL ,πOnline

MUL) used within ECDSA threshold
protocols. The protocols are run by party Pi with Pj as the counterparty as follows,

• (statei,jMUL ∈ {0, 1}∗)← πSetup
MUL (j)

• (ti ∈ Zq)← πOnline
MUL

(
statei,jMUL, xj

)
The pair of protocols (πSetup

MUL ,πOnline
MUL) must realize FMUL. As per the functionality specification, ti+ tj = xi ·xj

after πOnline
MUL is run, and this can be done arbitrarily many times for different inputs. Every pair of parties in

the system shares an instantiation of FMUL, and so Pi maintains statei,jMUL for each j ∈ [n] \ i. Therefore in
our abstraction for threshold ECDSA protocols (πDKG

Setup, π
Setup
MUL , π

R
ECDSA, π

σ
ECDSA) we include the state required

by Pi for multiplication with Pj as an argument for online signing.
In particular, we assume the following threshold signature abstraction for threshold ECDSA protocols:

• (ski ∈ Zq, pk ∈ G)← πDKG
Setup(κ) (Unchanged from Section 6)

• (statei,jMUL ∈ {0, 1}∗)← πSetup
MUL

There should exist a corresponding πOnline
MUL such that (πSetup

MUL ,πOnline
MUL) realizes FMUL.

20

• The first part of the signing protocol

(R ∈ G, stateb ∈ {0, 1}∗)← πR
Sign(pk, skb, 1− b, stateb,1−bMUL ,m)

is run by party Pb with P1−b as counterparty, to sign message m. Both parties output the same R when
honest, with private state stateb. Note that here, Pb also takes as input stateb,1−bMUL for its instantiation
of FMUL with P1−b.

• (σ ∈ Zq)← πσSign(stateb) (Unchanged from Section 6)

The same restrictions on the simulators for these protocols hold, see Section 6 for details. It is not hard
to show that the recent protocols of Lindell et al. [30], Gennaro and Goldfeder [21], and Doerner et al. [15]
fit these characterizations. The inclusion of {statei,jMUL}j∈[n] as persistent state that parties must maintain
across signatures creates an additional target that must be defended from a mobile adversary. We show how
here to refresh {statei,jMUL}j∈[n] required by the OT-based instantiation of FMUL (as in Doerner et al. [15]) and
consequently upgrade compatible threshold ECDSA protocols [15, 21, 30] to proactive security.

Approach The setup used by the multiplier of Doerner et al. consists of a number of base OTs which are
“extended” for use online [26]. These base OTs are the only component of their multiplier which requires
each party to keep private state. Therefore re-randomizing these OTs in the interval between an adversary’s
jump from one party to the other is sufficient to maintain security. The central idea to implement this
re-randomization is to apply the approach introduced by Beaver [4] of “adjusting” preprocessed OTs once
inputs are known online.

9.1 Proactive Secure Multiplication
We begin by describing how two parties can re-randomize OT itself, and then describe how to apply this
technique to re-randomize OT Extensions.

Re-randomizing Oblivious Transfer Assume that Alice has two uniform κ-bit strings r0, r1, and Bob
has a bit b and correspondingly the string rb. Let rand← {0, 1}2κ+1 be a uniformly chosen string that is
parsed into chunks r′0, r′1 ∈ {0, 1}κ and b′ ∈ {0, 1} by both parties. The re-randomization process for Alice
(Refresh_OTA) and Bob (Refresh_OTB) is non-interactive (given rand) and proceeds as follows:

1. Refresh_OTA ((r0, r1), rand): output r′′0 = rb′ ⊕ r′0 and r′′1 = r1−b′ ⊕ r′1
2. Refresh_OTB ((b, rb), rand): output b′′ = b⊕ b′ and r′′b′′ = rb ⊕ r′b′′

3. Alice now holds (r′′0 , r′′1) and Bob holds b′′, r′′b′′

It is clear to see that Alice and Bob learn nothing of each other’s private values, only the offsets r′0, r′1, b′
between the new and old ones. Consider the view of a mobile adversary that jumps from one party to the
other.

• Alice → Bob: (r0, r1) before the refresh, and (b′′, r′′b′′) after the refresh.

• Bob → Alice: (b, rb) before the refresh, and (r′′0 , r′′1) after the refresh.

Assuming that r′0, r′1, b′ are hidden and that these values are uniformly chosen, in both the above cases the
adversary’s view before and after the refresh are completely independent.

Re-randomizing OT Extensions The persistent state maintained by OT Extension protocols based on
that of Ishai et al. [25] consists of the result of a number of OTs performed during a preprocessing phase.
Re-randomizing this state can be done by simply repeating the above protocol for each preprocessed OT
instance. Indeed, the instantiation of OT Extension implemented by Doerner et al. is the protocol of Keller
et al. [26] which is captured by this framework.

21

Re-randomizing multipliers There is no further persistent state maintained across FMUL invocations by
the protocol of Doerner et al. [15], and so we leave implicit the construction of stateMUL

′ ← Refresh_MUL(stateMUL,
rand). The only missing piece is how rand is chosen; in the context of the multipliers in isolation, this value
can be thought of coming from a coin-tossing protocol that is invisible to the adversary (when neither party
is corrupt).

9.2 Multiplier Refresh in (2, n) ECDSA
The previous subsection describes how to realize FMUL with proactive security when a mechanism to agree on
when/which rand to use is available. Fortunately the protocol described in Section 8 provides exactly such
a mechanism for the (2, n) threshold signature setting. We briefly describe how to augment Protocol 8 to
produce the randomness rand required to proactivize multipliers in addition to the distributed key shares.

(2,n) Offline Refresh The two online parties Pb, P1−b engage in a coin-tossing protocol in the Sample
New Polynomial phase to produce a uniform κ-bit value seed. In the Store Tagged Refresh phase they
include seed to be stored in rpool along with corresponding epoch, sk′b, R (and communicate seed to offline
parties along with these values). If the signature using R is used to signal a refresh, then seed is expanded by
every pair of parties to produce rand as necessary.

We give the full proactive ECDSA protocol below. It shares many similarities with π(2,n)
ρ-signand so we

underline changes in this protocol.

Protocol 5: π(2,n)
ρ-ECDSA

Parameters: Elliptic Curve Group (G, G, q)
Parties: Pb for b ∈ [n]
Ideal Oracles: FRDLCom-ZK, GLedger, random oracle RO
Inputs:
• Common: Message to be signed m ∈ {0, 1}∗, public key pk ∈ G, each party’s share in the exponent

pkb = λ1−b
b (0) · F (b) where F is the polynomial over G passing through (0, pk) and (b, f(b) · G), epoch

index epoch ∈ Z+

• Private: Each party Pb has private input skb = λ1−b
b (0) · f(b) ∈ Zq

1. Tag R from Threshold Signature:

i. Run the first half of the threshold signing protocol

(R, stateb)← πR
Sign

(
skb, 1− b, stateb,1−bMUL ,m

)
2. Sample New Polynomial:

i. Send (sample-element, idcoin
1 , q) and (sample-element, idcoin

2 , q) to FCoin and wait for responses (idcoin
1 ,

δ) and (idcoin
2 , seed) respectively

ii. Define degree-1 polynomial fδ over Zq such that

fδ(0) = 0 and fδ(1) = δ

iii. Compute
sk′b = skb + fδ(b)

3. Store Tagged Refresh:

i. Append (R, sk′b, seed, epoch) to rpool
ii. Establish common nonce K ∈ G along with an additive sharing of its discrete logarithm:

a. Sample kb ← Zq, set Kb = kb ·G and send (com-proof, idcom-zk
b , kb,Kb) to FRDLCom-ZK

22

b. Upon receiving (committed, 1− b, idcom-zk
1−b) from FRDLCom-ZK, send (open, idcom-zk

b) to FRDLCom-ZK

c. Wait to receive (decommitted, 1− b, idcom-zk
1−b ,K1−b ∈ G) from FRDLCom-ZK

d. Set K = Kb +K1−b

iii. Compute

e = RO(R||K||seed||δ||epoch)
zb = e · skb + kb

iv. Send zb to P1−b and wait for z1−b, upon receipt verifying that

z1−b ·G = e · pk1−b +K1−b

and compute z = zb + z1−b

v. Set msg = (R, epoch, δ, seed,K, z)
vi. For each i ∈ [n] \ {b, 1− b}, send (send, i,msg) to FMail

4. Complete the threshold signature protocol by running σ ← πσSign

5. If σ 6= ⊥ then set tx = (m,R, σ) and send (Submit, sid, tx) to GLedger

Update:
1. For each unique msg received from FMail do the following:

i. Parse (R, epoch′, δ, seed,K, z)← msg and if epoch′ < epoch ignore this msg
ii. Compute e = RO(R||K||seed||δ||epoch′) and verify that

z ·G = e · pk +K

iii. Define degree-1 polynomial fδ over Zq such that

fδ(0) = 0 and fδ(1) = δ

and interpolate δi = fδ(i)
iv. If epoch′ = epoch, compute

sk′i = ski + δi

and append (R, sk′i, seed, epoch) to rpool
v. Otherwise epoch′ > epoch so append (epoch′, δi, seed, R) to fpool

2. Send (Read) to GLedger and receive (Read, b) in response. Set BLK to be the latest blocks occurring in b
since last awake, and in sequence from the earliest block, for each (σ,R) under pk encountered do the
following:

i. Find (R, sk′i, seed, epoch) ∈ rpool (match by R), ignore σ if not found
ii. Overwrite ski = sk′i, set epoch = epoch + 1, and set rpool = ∅
iii. For each j ∈ [n] \ i compute

randij = RO(i, j, seed)
and overwrite

stateMULij = Refresh_MUL(stateMULij , randij)

iv. For each (epoch, δi, seed, R) ∈ fpool (i.e. matching current epoch) do:
(i) Set sk′i = ski + δi

(ii) Append (R, sk′i, seed, epoch) to rpool
(iii) Remove this entry from fpool

23

10 Performance and Implementation
We discuss here the concrete overhead our refresh protocol adds to existing state of the art threshold ECDSA
schemes, as most cryptocurrencies today (Bitcoin, Ethereum, etc.) use ECDSA as their canonical signature
scheme. As at this point we are discussing specific protocols, we make the following observation: In the
protocols of Lindell et al. [30], Doerner et al. [15], and Gennaro and Goldfeder [21] the extra messages added
by π(2,n)

ρ-signcan be sent in parallel with the main ECDSA protocols. In particular, each πR
ECDSA has at least two

rounds which can be used to generate K and δ in parallel, and each πσECDSAhas at least one round before σ
is released during which z can be constructed and verified.

10.1 Cost Analysis
In Table 1 we recall the costs of the (πR

ECDSA,πσECDSA) combined protocols of Doerner et al. [15] and Lindell
et al. [30] (OT-based) for perspective, and then give the overhead induced by π(2,n)

ρ-sign.

Protocol Rounds EC Mult.s Comm.
Lindell et al. [30] 8 239 195 KiB
Doerner et al. [15] 7 6 118 KiB
π(2,n)
ρ-signoverhead 0 6 192 Bytes

Table 1: Overhead of applying π(2,n)
ρ-signto proactivize (2, n) ECDSA protocols instantiated with 256-bit curves.

Figures are per-party and do not include cost of implementing forward-secure channels (i.e. FMail) to
communicate 160 bytes to each offline party every refresh.

Finally the update procedure π(2,n)
ρ-updatefirst requires reading the blockchain and scanning for signatures

under the common public key since last awake– essentially the same operation as required to update balance of
funds available in a wallet. Additionally one has to read one’s mailbox and perform two curve multiplications
for each refresh missed.

10.2 Implementation
In order to demonstrate the compatibility and efficiency of our refresh procedure, we implemented it to
augment two different recent threshold ECDSA protocols; specifically those of Doerner et al. [15] and Gennaro
and Goldfeder [21]. We present the results in this section.

We ran both sets of experiments on Amazon’s AWS EC2 using a pair of t3.small machines located in the
same datacenter for uniformity. However as the implementations of the base threshold ECDSA protocols
came from different codebases, we stress that the important metric is the overhead added by our protocol in
each case, and that comparison of the concrete times across the ECDSA protocols is not meaningful.

10.2.1 Proactivizing Doerner et al. [15]

As Doerner et al. natively utilize OT based multipliers, augmenting their threshold ECDSA signing with
our refresh procedure yields a fully proactivized ECDSA wallet. We ran three experiments, during which
we measured wall-clock time, including latency costs, collecting 100,000 samples and averaging them. We
first ran their signing protocol unmodified, which took an average of 5.303ms to produce a signature. We
then ran the same protocol augmented with our refresh generation procedure (i.e. π(2,n)

ρ-sign) and found it to
take an average of 6.587ms, i.e. a 24.2% increase. Finally we measured the cost of applying an update upon
waking up (i.e. π(2,n)

ρ-update) to be 0.381ms. Note that this figure does not account for the costs of reading FMail
or GLedger (which is done anyway to update one’s balance); the point of this benchmark is to demonstrate the
efficiency of applying updates in isolation.

24

10.2.2 Gennaro and Goldfeder [21]

In order to understand the overhead added by the refresh procedure to the communication pattern of a different
(2, n) ECDSA based wallet, we implemented the protocol of Gennaro and Goldfeder [21] and augmented it
with our refresh procedure during signing. Note their protocol makes use of a Paillier-based multiplier which
we do not proactivize, and the cost of proactivizing an OT-based multiplier is negligible (0.381ms as shown
previously). This is representative of the (2, 3) cold storage application where the multipliers need not be
offline-refreshed. We refer to the original (πR

ECDSA,πσECDSA) as GG and the augmented π(2,n)
ρ-signas GG’.

We did not implement forward secure channels for FMail, we instead simulated it with reads from disk. We
collected twenty samples for each configuration and found the average execution time of GG to be 1.433s and
that of GG’ to be 1.635s. In particular, π(2,n)

ρ-signincurs a 14.09% overhead in computation. Note that this figure
does not include network latency, but in the LAN setting the measurements were within margin of error.

Experiment Mean (s) Std. deviation (s)
GG 1.433 0.023
GG’ 1.635 0.031

Table 2: Computational overhead of proactivizing 256-bit key shares in the (2, n) ECDSA protocol of Gennaro
and Goldfeder [21], found to be about 14%

Finally we find that it costs roughly 100ms to process each missed update, which we report in Figure 1.

Figure 1: Cost of π(2,n)
ρ-updateafter having missed a number of refreshes

We note that the cost of π(2,n)
ρ-signand π(2,n)

ρ-updatewill not go up with n (the number of parties). The only extra
cost is that for each additional offline party, an online party must send an extra 160 bytes through FMail.

The code can be found in https://github.com/KZen-networks/multi-party-ecdsa/tree/gg_pss

11 Conclusion and Open Problems
With the increasing adoption of threshold wallets comes the need to defend them against mobile attackers.
We define an “offline refresh” model for proactivizing threshold wallets, and point out that this optimal
communication pattern is not realized by any of the works in the literature. Indeed we show that it is difficult
to realize due to many subtle issues that stem from the inherent unfairness of dishonest majority MPC.
Despite this we give an efficient protocol to proactivize many standard (2, n) signature schemes with offline
refresh, and implement it to show that it adds little overhead in practice.

A problem we leave open is extending our techniques to unique threshold signature schemes such as
BLS [6]. Our protocol relies heavily on each threshold signing instance generating a unique nonce which will
accompany the signature that appears on the blockchain. This poses a problem for threshold BLS, which
does not even use a nonce.

We also leave open the problem of extending our scheme to proactivize (t, n) threshold signatures for any
choice of t ≤ n. Our current techniques do not yield such a protocol immediately, for the following intuitive
reason: our protocol allows any previous state of a party to be retrieved as a linear combination of all update

25

https://github.com/KZen-networks/multi-party-ecdsa/tree/gg_pss

messages and current state. As there may be only one honest party among the t who are online, the entire
update message that has to be mailed to offline parties must be accessible to a single party. In the (2, n)
case the adversary must “miss” an update message to change corruptions so this is not an issue, but in the
general (t, n) case the adversary can always keep one party corrupt in the signing group to observe all update
messages. However our technique of binding each refresh to a nonce (which will later accompany a signature
on the ledger) is not inherent to the (2, n) setting, and may form the conceptual core of even a general (t, n)
solution.

12 Acknowledgements
The authors would like to thank Jack Doerner for augmenting the Threshold ECDSA implementation from
Doerner et al. [15] with our refresh procedure, and providing us with the benchmarks for that protocol
reported in this paper.

References
[1] Jesús F. Almansa, Ivan Damgård, and Jesper Buus Nielsen. Simplified threshold rsa with adaptive and

proactive security. In EUROCRYPT ’06, pages 593–611, 2006.

[2] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The double ratchet: Security notions, proofs, and
modularization for the signal protocol. In EUROCRYPT 2019, pages 129–158, 2019.

[3] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a transaction ledger:
A composable treatment. In CRYPTO 2017, pages 324–356, 2017.

[4] Donald Beaver. Precomputing oblivious transfer. In CRYPTO ’95, pages 97–109, 1995.

[5] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-security
signatures. Journal of Cryptographic Engineering, 2(2):77–89, Sep 2012.

[6] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. J. Cryptology,
17(4):297–319, 2004.

[7] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. Asynchronous verifiable secret
sharing and proactive cryptosystems. In Proceedings of the 9th ACM Conference on Computer and
Communications Security, CCS 2002, Washington, DC, USA, November 18-22, 2002, pages 88–97, 2002.

[8] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS,
2001.

[9] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker. Two-party
ECDSA from hash proof systems and efficient instantiations. In Advances in Cryptology - CRYPTO
2019 - 39th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019,
Proceedings, Part III, pages 191–221, 2019.

[10] Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theor. Comput. Sci.,
777:155–183, 2019.

[11] Anders Dalskov, Marcel Keller, Claudio Orlandi, Kris Shrishak, and Haya Shulman. Securing dnssec
keys via threshold ecdsa from generic mpc. Cryptology ePrint Archive, Report 2019/889, 2019. https:
//eprint.iacr.org/2019/889.

[12] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In EUROCRYPT 2018, pages 66–98, 2018.

26

https://eprint.iacr.org/2019/889
https://eprint.iacr.org/2019/889

[13] Yvo Desmedt. Society and group oriented cryptography: A new concept. In CRYPTO, 1987.

[14] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Secure two-party threshold ecdsa from ecdsa
assumptions. In IEEE S&P, 2018.

[15] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Threshold ecdsa from ecdsa assumptions:
The multiparty case. In IEEE S&P, 2019.

[16] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, 1988.

[17] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In CRYPTO, 1986.

[18] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with online extractors. In
CRYPTO, 2005.

[19] Yair Frankel, Peter Gemmell, Philip D. MacKenzie, and Moti Yung. Proactive rsa. In Burton S. Kaliski,
editor, CRYPTO ’97, 1997.

[20] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and
applications. In EUROCRYPT 2015, pages 281–310, 2015.

[21] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with fast trustless setup. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS
2018, Toronto, ON, Canada, October 15-19, 2018, pages 1179–1194, 2018.

[22] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust threshold DSS signatures.
Inf. Comput., 164(1):54–84, 2001.

[23] Amir Herzberg, Markus Jakobsson, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proactive public
key and signature systems. In CCS ’97, Proceedings of the 4th ACM Conference on Computer and
Communications Security, Zurich, Switzerland, April 1-4, 1997., pages 100–110, 1997.

[24] Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proactive secret sharing or: How
to cope with perpetual leakage. In Advances in Cryptology - CRYPTO ’95, 15th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 27-31, 1995, Proceedings, pages 339–352,
1995.

[25] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently. In
CRYPTO ’03, pages 145–161, 2003.

[26] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with optimal overhead.
In CRYPTO, 2015.

[27] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party computation using a
global transaction ledger. In EUROCRYPT 2016, pages 705–734, 2016.

[28] D.W. Kravitz. Digital signature algorithm, jul 1993. US Patent 5,231,668.

[29] Yehuda Lindell. Fast secure two-party ecdsa signing. In CRYPTO, 2017.

[30] Yehuda Lindell, Ariel Nof, and Samuel Ranellucci. Fast secure multiparty ECDSA with practical
distributed key generation and applications to cryptocurrency custody. IACR Cryptology ePrint Archive,
2018:987, 2018.

27

[31] Sai Krishna Deepak Maram, Fan Zhang, Lun Wang, Andrew Low, Yupeng Zhang, Ari Juels, and Dawn
Song. CHURP: dynamic-committee proactive secret sharing. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2019, London, UK, November 11-15, 2019,
pages 2369–2386, 2019.

[32] Ventzislav Nikov and Svetla Nikova. On proactive secret sharing schemes. In Helena Handschuh and
M. Anwar Hasan, editors, Selected Areas in Cryptography, pages 308–325, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[33] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks (extended abstract). In PODC
’91, 1991.

[34] Torben Pryds Pedersen. A threshold cryptosystem without a trusted party. In EUROCRYPT ’91, pages
522–526, 1991.

[35] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In CRYPTO, 1989.

[36] Victor Shoup. Practical threshold signatures. In Proceedings of the 19th International Conference
on Theory and Application of Cryptographic Techniques, EUROCRYPT’00, pages 207–220, Berlin,
Heidelberg, 2000. Springer-Verlag.

A Realizing Fn,2
Sign for Schnorr

We recall below the folklore instantiation of threshold Schnorr signatures.

Protocol 6: πDKG
Setup

Parameters: Elliptic Curve Group (G, G, q)
Parties: Pi for i ∈ [n]
Ideal Oracles: FRDLCom-ZK
Outputs:
• Common: Public key pk ∈ G

• Private: Secret key share ski

1. Each party Pi samples a random degree-1 polynomial fi over Zq

2. For all pairs of parties Pi and Pj , Pi sends fi(j) to Pj and receives fj(i) in return.
3. Each party Pi computes its point

f(i) :=
∑
j∈[1,n]

fj(i)

4. Each Pi computes
Ti := f(i) ·G

and sends (com-proof, idcom-zk
i , f(i), Ti) to FRDLCom-ZK, using a fresh, unique value for idcom-zk

i .
5. Upon being notified of all other parties’ commitments, each party Pi releases its proof by sending

(decom-proof, idcom-zk
i) to FRDLCom-ZK.

6. Each party Pi receives (accept, idcom-zk
j , Tj) from FRDLCom-ZK for each j ∈ [1, n] \ {i} if Pj ’s proof of knowledge

is valid. Pi aborts if it receives (fail, idcom-zk
j) instead for any proof, or if there exists an index x ∈ [3, n]

such that
λ2

1(x) · T1 + λ1
2(x) · T2 6= Tx

7. The parties compute the shared public key as

pk := λ2
1(0) · T1 + λ1

2(0) · T2

28

The above protocol is a reproduction of the distributed key generation protocol of Pedersen [34], adjusted
for context.

Protocol 7: πR
Schnorr(pk, skb, 1− b,m)

Parameters: Elliptic Curve Group (G, G, q)
Parties: Pb, P1−b for b, 1− b ∈ [n]
Ideal Oracles: FRDLCom-ZK
Inputs:
• Common: Message to be signed m ∈ {0, 1}∗, public key pk ∈ G, each party’s share in the exponent

pkb = λ1−b
b (0) · F (b) where F is the polynomial over G passing through (0, pk) and (b, f(b) ·G)

• Private: Each party Pb has private input skb = λ1−b
b (0) · f(b) ∈ Zq

Outputs:
• Common: Signing nonce R ∈ G

• Private: Each party Pb has private output stateb ∈ Zq

1. Include all inputs in staten
2. Sample kb ← Zq and send (commit, kb, Rb = kb ·G) to FRDLCom-ZK with fresh identifier idcom-zk

b

3. Upon receiving (committed, 1− b, idcom
1−b) from FRDLCom-ZK, instruct FRDLCom-ZK to release Rb

4. Upon receiving (decommitted, 1− b, idcom
1−b, R1−b) from FRDLCom-ZK if R1−b ∈ G then compute

R = Rb +R1−b

5. Include kb in stateb
6. Output stateb, R

Protocol 8: πσSchnorr(stateb)

Parameters: Elliptic Curve Group (G, G, q)
Parties: Pb, P1−b for b, 1− b ∈ [n]
Ideal Oracles: FRDLCom-ZK
Inputs: (Encoded in stateb)
• Common: Message to be signed m ∈ {0, 1}∗, public key pk ∈ G

• Private: Each party Pb has private input skb = λ1−b
b (0) · f(b) ∈ Zq

1. Parse kb,m, skb ← stateb
2. Compute

σb = H(R||m) · skb + kb

and send σb to P1−b

3. Upon receiving σ1−b ∈ Zq from P1−b compute

σ = σb + σ1−b

and if (σ,R) is a valid Schnorr signature under public key pk then output σ

29

By the linearity of the Schnorr signing equation, it is easy to verify correctness as

σ = σb + σ1−b

=
(
H(R||m) · λ1−b

b (0) · skb + kb
)

+
(
H(R||m) · λb1−b(0) · sk1−b + k1−b

)
= H(R||m) ·

(
λ1−b
b (0) · skb + λb1−b(0) · sk1−b

)
+ (kb + k1−b)

= H(R||m) · sk + k

Theorem A.1. (Informal) The protocol (πDKG
Setup, π

R
Schnorr, π

σ
Schnorr) UC-realizes Fn,2Sign for Sign = SignSchnorr

in the FCom,FRDL
Com-ZK-hybrid model.

The simulation strategy is straightforward: SR
Schnorr upon receiving R from the functionality sends

R1−b = R−Rb to Pb (on behalf of FRDL
Com-ZK). The simulator SσSchnorr upon receiving σ from the functionality

sends σ1−b = σ − σb to Pb on behalf of P1−b. Note here that σb is computed by the simulator as instructed
by Step 2 of πσSchnorr using the value kb received on behalf of FRDL

Com-ZK in Step 2 of πR
Schnorr.

30

	Introduction
	Proactivizing Threshold Signatures
	Challenges in Realizing this Pattern
	Our Contributions
	On the Use of a Ledger
	Our Approach
	Organization

	Related Work
	Preliminaries
	Miscellaneous

	Blockchain Model
	A Transaction Ledger Functionality

	Formalizing Mobile Adversaries and the Offline Refresh Setting
	Threshold Signature Abstraction
	Abstraction

	Coordinating Two Party Refresh
	(2,n) Refresh With Two Online
	Proactive Threshold ECDSA
	Proactive Secure Multiplication
	Multiplier Refresh in (2,n) ECDSA

	Performance and Implementation
	Cost Analysis
	Implementation
	Proactivizing Doerner et al. DKLs19
	Gennaro and Goldfeder GG18

	Conclusion and Open Problems
	Acknowledgements
	Realizing [fun:sig]F[b]n,2[t]Sign for Schnorr

