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Abstract. Noncommutative cryptography is based on the applications of algebraic structures like 

noncommutative groups, semigroups and noncommutative rings. Its intersection with 

Multivariate cryptography contains  studies of  cryptographic applications of subsemigroups   

and subgroups of affine Cremona semigroups  defined over finite commutative ring K. We 

consider  special semigroups of transformations of the variety (K*)n, K=Fq or K=Zm  defined via 

multiplications of variables.  

 Efficiently computed homomorphisms between such subsemigroups  can be used in Post 

Quantum protocols schemes and their inverse versions when correspondents elaborate mutually 

inverse transformations of (K*)n. 

      The security of these schemes is based on a complexity of decomposition problem for 

element of the semigroup into product of given generators. So the proposed algorithms are strong 

candidates for their usage in postquantum technologies. 
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1 On Post Quantum, Multivariate Cryptography and Noncommutative Cryptography. 

   Post Quantum Cryptography serves for the research on asymmetrical cryptographic algorithms 

which can be potentially resistant against attacks based on the use of quantum computer. The 

security of currently popular algorithms are based on the complexity of the following  the three 

known hard problems: integer factorisation, discrete logarithm problem, discrete logarithm for 

elliptic curves. Each of these problems can be solved in polynomial time by Peter Shor's 

algorithm for theoretical quantum computer.  Cryptographers have  already started research on 

postquantum security. They have also counted on the new results of general complexity theory. 

Modern PQC is divided into several directions such as Multivariate Cryptography, 

Nonlinear Cryptography ,  Lattice based Cryptography,  Hash based Cryptography, Code based 

Cryptography, studies of isogenies for superelliptic curves. 

The oldest direction is Multivariate Cryptography (see [1], [2], [3]) which uses 

polynomial  maps of affine space K n defined over a finite commutative ring into itself as 

encryption tools. It exploits the complexity of finding a solution of a system of nonlinear 

equations from many variables. Multivariate cryptography uses as encryption tools  nonlinear 

polynomial transformations of kind 

),...,,(),...,...,,(),,...,,( 2121222111 nnnnn xxxfxxxxfxxxxfx   

transforming affine space Kn, where nixxxKf ni ,...,2,1],,...,,[: 21  are multivariate polynomials 

usually given in standard form, i. e. via a list of monomials in a chosen order.  

 We are going to present new cryptoalgorithms in the area of intersection of Multivariate 

Cryptography and Non-commutative cryptography which  appeared  with attempts  to apply 

Combinatorial group theory to Information Security.  



If G is noncommutative group then correspondents can use conjugations of elements involved in 

protocol, some algorithms of this kind were suggested in [4], [5], [6], [7], where group G is 

given with the usage of generators and relations. Security of such algorithms is connected to 

Conjugacy Search Problem (CSP) and Power Conjugacy Search Problem (PCSP), which 

combine CSP and Discrete Logarithm Problem and their generalizations. 

 The extension of group based cryptography is essentially wider direction of 

 Non-commutative cryptography which is an active  area of cryptology, where the 

cryptographic primitives and systems are based on algebraic structures like groups, semigroups 

and noncommutative rings (see  [8], [9], [10], [11], [12], [13], [14], [15], [16]). This direction of 

security research has very rapid development (see  [17], [18]} and further references in these 

publications). 

 One of the earliest applications of a non-commutative algebraic structure for cryptographic 

purposes was the use of braid groups to develop cryptographic protocols. Later several other 

non-commutative structures like Tompson groups and Grigorchuk groups have been been 

identified as potential candidates for cryptographic post quantum applications. The standard way 

of presentations of  groups and semigroups is the usage of generators and relations 

(Combinatorial Group Theory),  Semigroup based cryptography consists of general 

cryptographical schemes defined in terms of wide classes of semigroups and their 

implementations for chosen semigroup  families (so called platform semigroups). 

       In papers [19], [20] the author considers some modifications of Diffie-Hellman protocol 

when G is given as subgroup of affine Cremona semigroup S(Kn) over finite commutative ring K 

of all polynomial transformations. The author assumes that each element is given in its standard 

form of Multivariate Cryptography. To use semigroup operation one has to compute the 

composition of transformations. This was an attempt to combine methods of Non Commutative 

Cryptography and Multivariate Cryptography. 

Paper [21] suggests some usage of homomorphisms of subsemigroups of affine Cremona groups 

for protocols and cryptosystems which are not generalisations of Diffie-Hellman algorithm and 

its El Gamal type modifications. Some examples are given there, the implementations of these 

schemes with evaluation of densities of involved polynomial transformations are described in 

[22].  

       The aim of the current paper is to apply formal schemes of [21] to the case of 

transformations of variety( K*)n, where K*  is multiplicative group of commutative ring Kϵ{Zm, 

Fq | m>2,q>2}  

We present the new post quantum key exchange protocols and cryptosystems of El Gamal type 

of Non-commutative Cryptography which uses homomorphisms of two semigroups acting on 

(K*)n (3.1-3.6) and two straightforward algorithms without the usage of homomorphisms. Hope 

that some of presented algorithms will be used in Post Quantum future. 

2. On Eulerian semigroup and hard computational problem. 

 

Let K be a finite commutative ring with the multiplicative group K* of regular elements of the 

ring. We take Cartesian power nE(K) =(K*)n  and consider an Eulerian semigroup nES(K) of 

transformations of kind  

x1 → ϻ1x1 
a(1,1) x2 a(1,2) … xm 

a(1,n) ,  

x2 → ϻ2x1 
a(2,1) x2 a(2,2) … xm 

a(2,n) , 

… 

xm →ϻnx1 
a(n,1) x2 a(n,2) … xm 

a(n,n) , 

where a(i,j) are elements of arithmetic ring Zd, d=|K*|, ϻiϵK*. 

Let nEG(K) stand for Eulerian group of invertible transformations from nES(K). Simple example 

of element from nEG(K) is a  written above transformation where a(i,j)=1 for i ≠ j or  i=j=1, and 

a(j,j)=2 for j ≥2. It is easy to see that the group of monomial linear transformations  Mn  is a 



subgroup of nEG(K).  So semigroup nES(K) is a highly noncommutative algebraic system.  Each 

element from nES(K) can be considered  as transformation of a free module Kn.  

    Let π and δ be two permutations on the set {1,2,..., n}. Let us consider a transformation of 

(K*)n, K=Zm or K= Fq and d =|K*|. We define transformation AJG(π, δ), where A is triangular 

matrix with positive integer entries 0≤a(i,j)≤d, i≥d defined by the following closed formula. 

yπ(1)=ϻ1xδ(1)
a(1,1)

 

yπ(2)= ϻ2xδ(1)
a(2,1) xδ(2)

a(2,2)
  

… 

yπ(n)= ϻnxδ(1)
a(n,1) xδ(2)

a(n,2)
 …xδ(n)

a(n,n)   
where (a(1,1),d)=1, (a(2,2),d)=1,…,( a(n,n),d)=1. 

 

We refer to  AJG(π, δ) as Jordan transformations Gauss multiplicative transformation or simply 

JG element. It is an invertible element of  nES(K) with the inverse of kind  BJG(δ, π) such that 

a(i,i)b(i,i)=1 (mod d). Notice that in the case K= Zm  straightforward process of computation 

the inverse of JG element is connected with the factorization problem of integer m. If n=1 and 

m is a product of two large p[rimes p and q the complexity of the problem is used in RSA public 

key algorithm. The idea to use composition of JG elements or their generalisations with injective 

maps of  Kn into Kn was used in [23] (K=Zm) and [24](K= Fq.). 
 

   We say that   is tame Eulerian element over Zm or Fq.  if it is a composition of sevenEral 

Jordan Gauss multiplicative maps over commutative ring or field respectively.  It is clear that 

 sends variable xi to a certain monomial term. The decomposition of  into product of  Jordan 

Gauss  transformation allows us to find the solution of equations bx )( for x from n

mZ )( *  or 

(F*q) m .  So tame Eulerian transformations over Zm  or  Fq.  are special elements of nEG(Zm) or  
nEG(Fq) respectively. 

We refer to elements of  nES(K)  as multiplicative  Cremona element. Assume that the 

order of K is constant. As it follows from definition the computation of the value of element 

from nES(K) on the given element  of  Kn   is estimated by O(n2). The product of two 

multiplicative  Cremona elements can be computed in time O(n4). 

    

 We are not discussing here the complexity of computing the inverse for general element gϵ 

nEG(K) on Turing machine or Quantum computer  and problem  finding the inverse for tame 

Eulerian elements. 

 

Remark. Let G be a subgroup of   nEG(K) , Kϵ{Zm., Fq}  generated by Jordan-Gauss elements  g1, 

g2, …, , gt. The word problem of finding the decomposition of  gϵG into product of generator gi is 

difficult, i. e. polynomial algorithms  to solve it with  Turing machine or Quantum Computer are 

unknown. If word problem is solved and the inverses of gi is computable then the inverse of g is 

determined.  Notice that if n=1,    K=Zm, , m=pq  where p and q are large primes and G is 

generated by  g1=ϻg1
a the problem is unsolvable with Turing machine but it can be solved with 

Quantum Computer. 

        Each element of the semigroup  nES(K) is written in the chosen basis e1, e2 ,…, en. 

 Let J={i(1), i(2),…, i(k)} be a subset of {1,2,..,n} and WJ= <ei(1), ei(2) ,…, ei(k)> be a 

corresponding  symplectic subspace .  We refer to totality nPJ (K) of maps  F ϵ nES(K)  

preserving   WJ  as parabolic semigroup  of nES(K) .  The map F from  nPJ (K) transforms tuple 

(xi(1), xi(2) , …, xi(n))  according to the  rule xi(1) →ϻi(1) xi(1)
a(1,1) xi(2)

a(1,2)… xi(k)
a(1,k) , 

xi(2) →ϻi(2) xi(1)
a(2,1) xi(2)

a(2,2)… xi(k)
a(2,k) ,…, xi(k) →ϻi(k) xi(1)

a(k,1) xi(2)
a(k,2)… xi(k)

a(2,k). 



Let  πJ be the restriction of element F from nPJ (K) onto WJ . The map  πJ  defines canonical 

homomorphism of  nPJ (K) onto kES(K).  If Q is extension of K we can 

consider semigroup nPJ,K (Q) of maps from nES(Q) transforming  (xi(1), xi(2) , …, xi(n))  

according to written above rule. The restriction of map Fϵ nPJ,K (Q)  on WJ defines 

homomorphism πJ,K from nPJ,K (Q)  onto kES(K).   

 3. Protocols and cryptosystems in terms of semigroup nES(K). 

Let us consider some protocols and cryptosystems based on the idea of a hidden  

canonical homomorphism. Notice that if commutative ring K’ is an extension of K then 

embedding of K into K’ defines canonical embedding of  nES(K) into nES(K’). Let nJG(K) stand 

for the totality of all Jordan-Gauss transformations from nES(K). 

 

 3.1 Tahoma protocol.  

Alice takes finite extensions Q and R of Kϵ{Zm., Fq}  and J of cardinality k 

and consider a zigzag diagram   

                 nPJ,K (Q) → nES(Q) 

                      ↓ 
             kES(R) ← kES (K)   

The horizontal arrows correspond to embeddings of semigroups, vertical arrow 

corresponds to πJ,K. We assume that K=Q=R in the case of K=Zm. 
 and R and Q are finite fields 

in the case of K= Fq .  Alice takes elements h1, h2 , …, hs from  kES(K) and creates  elements 

ext(hi) from their  πJ,K.reimages via adding  the  rules xj → ϻjx1 
a(j,1) x2 a(j,2) … xn 

a(j,n) 

where ϻjϵ Q* and j is not an element of J.  She selects set S= {g1, g2 , …, gt} of Jordan-Gauss 

elements gi, i=1,2, …,t  in nES(Q) and word in alphabet S to form 

 tame  element  w  of subgroup G =<S> of  nES(Q)  together with w-1. Similarly Alice 

takes  Jordan Gauss generators S’={u1, u2 , …, ur} in kES(R), selects word in alphabet S’  

and forms tame element uϵ<S’> and its inverse u-1. She forms pairs (ai =w-1ext(hi)w, bi =u-

1(hi)u), i=1, 2,…,s  and sends them to Bob. He takes formal alphabet  Z={z1, z2 , …, zs} and 

writes word  wB=v(z1, z2 , …, zs) in Z of length d, d>s and computes specialization zi=ai and 

zi=bi and takes resulting elements a=v(a1, a2 , …, as)ϵ
 nES(Q)  and b=v(b1, b2 , …, bs)ϵ

 kES(R) 

respectively.  Bob keeps b for himself and sends a to Alice. 

   Alice computes 1a=wa w-1. She takes 2a=πJ,K.(
 1a ) and obtains collision element b as  

u- 1( 2a )u. 

 

3.2 Inverse Tahoma protocol. 

 As in previous protocol Alice works with presented above zigzag diagram. She selects sets 

of Jordan Gauss generators  S in nES(Q)  and S’ in kES(R)  to construct pairs of tame 

elements  w, w-1  and u, u-1. Now she takes set  1S of Jordan Gauss  elements over R from 
kES(K)∩kJG(R) and forms elements  h1, h2 , …, hs from <1S > and their inverses h1

-1 h2 -1, …, hs
-

1 in  kEG(R).  Notice that elements hi
-1, i=1,2,…,s are elements of kES(K) and  larger semigroups 

kES(R) and kES(Q). 

Alice forms ext(hi) in nES(Q). In the new algorithm she computes pairs  (ai =w-1ext(hi)w, bi =u-

1(hi
-1)u), i=1, 2,…,s  and sends them to Bob.    

        He takes formal alphabet  Z={z1, z2 , …, zs} and writes word  wB=v(z1, z2 , …, zs)= 

(u1, u2 , …, ud ) in Z of length d, d>s together with the reverse word Rev(wB)=(ud, ud-1 , …, u1 ).  

Bob  computes the specialization zi=ai  of word wB and zi=bi  of word Rev(wB) and takes 

resulting elements a=v(a1, a2 , …, as)ϵ
 nES(Q)  and b=v(b1, b2 , …, bs)ϵ

 kES(R) respectively 



Notice that bϵ kEG(R). He sends a to Alice and keeps b for himself. Alice computes 1a=wa w-1. 

She takes 2a=πJ,K.(
 1a ) and obtains element b-1 as u- 1( 2a )u. 

 

Remark. Alice and Bob can securely communicate in the following way. Alice writes message 

as a string of characters (p1, p2 , …, pk )  in alphabet R*  encrypts it by application of  b-1.   Bob 

decrypts it with his transformation b. 

    Similarly Bob uses b for the encryption of his message from the plainspace (R*)k and Alice 

decrypts it with b-1.  

 

3. 4. Group enveloped Diffie- Hellman key exchange protocol. 

  

As in the inverse protocol of the previous unit Alice works with presented above zigzag diagram. 

She selects sets. For simplicity assume that Q=K=R.  Alice selects sets 

of Jordan Gauss generators  S in nES(K)  and S’ in kES(K)  to construct pairs of tame 

elements  w, w-1  and u, u-1. Now she takes set 1S of Jordan Gauss elements over K from 
kES(K)  and forms elements  h1, h2 , …, hs from <1S > and their inverses h1

-1 h2 -1, …, hs
-1 in  

kEG(K).  Alice takes gϵ kES(K) and positive integer parameter kA .  Alice  creates  elements 

ext(hi),  ext( hi
-1) and ext(g) from their  πJ .reimages via adding  the  rules xj → ϻjx1 

a(j,1) x2 
a(j,2) … xn 

a(j,n) where ϻjϵ K* and j is not an element of J.  She forms pairs (ai =w-1ext(hi)w,  

bi =u-1(hi) u), i=1, 2,…,s  and sends them to Bob together with pairs (ai
-1, bi

-1) ,   gA = u-1gl u , l= 

kA and  g’=w-1ext(g)w.  

         Bob takes formal alphabet  Z={z1, z2 , …, zs} and writes word  wB=v(z1, z2 , …, zs)= (u1, 

u2 , …, ud ) in Z of length d, d>s together with the reverse word Rev(wB)=(ud, ud-1 , …, u1 ).  

Bob  computes the specialization zi=ai  of word wB  and zi = ai
-1 of Rev(wB) and writes resulting 

elements a and a-1 from nES(K). Similarly he creates b and  b-1  via specialization zi=bi  of  wB  

and specialization  and zi=bi 
-1   of word Rev(wB) in the group  kEG(K)  respectively.  Bob takes 

his natural integer kB.  He computes Bg=a-1 gda, d=kB and sends it to Alice and keeps the 

collision map c=b-1gA 
db, d=kB. Alice computes collision map  as  u-1(πJ (w

 Bg w-1)) l u, l= kA. 

Remark. Adversary has to decompose Bg into ai  and g’. After that he/she has to substitute 

gA instead of g’ and bi instead of ai. 

 

3. 5. The inverse version of group enveloped Diffie-Hellman key exchange protocol. 

 Assume that K=R=Q and Alice works with the simplified zigzag diagram  kES(R)= kES(K). 

She forms the same data as in the case of 3.4 but   gϵkES(K) has to be invertible. So Alice takes 

additional set 2S of Jordan-Gauss elements from kEG(K) and forms pair of kind (g, g-1),  gϵ<2S>. 

 She sends to Bob pairs (ai
-1, bi

-1) ,   gA = u-1gl u , l= kA and  g*=w-1ext(g-1)w instead of g’ of 3.4.  

  

Bob uses word in the alphabet of formal variables and generates  elements a and a-1 from nEG(K)  

and  b ,  b-1 ϵ kEG(K)   in the same way with  the case of 3.4  and takes his natural integer kB.  

Now he computes Bg=a-1 g*da, d=kB and sends it to Alice and keeps the map f=b-1gA 
db, d=kB. 

Alice computes the inverse map for f as  u-1(πJ (w
 Bg w-1)) l u, l= kA. 

 

Remark.  Alice and Bob have bijective transformations f and f-1 of the variety K*. So they can 

exchange messages written in alphabet. 

 

3.6. Inverse two wheeled Diffie-Hellman protocol. 

 



Alice takes semigroup nES(K) and some partition  J1  , J2  of N={1.2,…,n}, | J1|=t and | J2 |=d, 

t+d=n. So the intersection of J1  and J2 is an empty set and the union of these sets equals N. 

She takes  nPJ1 (K)∩nPJ2(K) which is direct product of semigroups E1 =tES(K)  and E2 =dES(K). 

 

Alice selects set S of Jordan Gauss elements g1, g2,…, gr of  nEG(K) , computes their inverses 

and generates tame element g ϵ G, G= < g1, g2,…, gr > .    

She takes parameter k A, computes gl , l= k A together with  g-1. Alice selects Jordan-Gauss 

elements e1, e2,…, es of  E1  and forms  elements u and u-1 of E1 . She sends gA = u-1glu and  u-1g 
-1u =g’ to Bob together with partition J1 , J2 . 

       Bob selects Jordan Gauss elements f1, f2,…, fp . He generates pair v, v-1  of tame 

elements from E2.  Bob choses his parameter  kB.  He creates gB= v-1g’1v , l=kB and sends it to 

Alice, but keeps for himself   Bg=v-1gA
1v. Alice computes the inverse Ag for Bg  as  u-1 gB

1u, l=kA. 

 

3. 7. Two wheeled Diffie-Hellman protocol. 

      Alice and Bob share the subgroup   nES(K) together with the partition  J1, J2. She has a free 

choice to take  any  g from nES(K). Alice and Bob form invertible  elements u and v from E1 and 

E2  similarly to previous algorithm and their positive integers kA and kB. 

      The scheme is simple . Alice and Bob exchange  gA = u-1gl u, l= kA and  gB == v-1gt v, t= kB. 

After that she computes collision element as Ag = u-1 gB
tl u and he compute this element as  Bg = 

v-1 gA lt v. 

 

Remark. Adversary has to find  a decomposition of  gB   into the  triple of kind 

x-1gy x, x ϵ E1 (or decompose gA  into the  triple of kind x-1gy x , x ϵ E2) 

We can take platform nES(K) and consider the following known key exchange scheme. 

3. 8. Twisted Diffie-Hellman protocol. 

Alice and Bob share element gϵ nES(K) and pair of tame elements h, h -1from nEG(K). 

Alice takes positive integer t= kA and  d= rA and forms h-dgthd= gA. Bob takes s= kB and  p= rB. 

and forms h-pgshp= gB. They exchange gA and gB and compute collision element as Ag= h-dgB
thd 

and Bg= h-pgB
ths hp respectively.  

 

3. 8. Inverse twisted Diffie-Hellman protocol.  

 

Correspondents follow the scheme 3.8 with the tame element gϵ nEG(K) and Alice sends 

h-dg-thd= gA to Bob and  she gets  h-pgshp= gB from him. They use the same formulae for  Ag 

and Bg. But in the new version these elements are mutual inverses. 
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