
Scalable Wildcarded Identity-Based Encryption?

Jihye Kim1, Seunghwa Lee1, Jiwon Lee2, and Hyunok Oh2(�)

1 Kookmin University, Seoul, Korea,
{jihyek,ttyhgo}@kookmin.ac.kr

2 Hanyang University, Seoul, Korea,
{jiwonlee,hoh}@hanyang.ac.kr

Abstract. Wildcard identity-based encryption (WIBE) allows a sender
to simultaneously encrypt messages to a group of users matching a cer-
tain pattern, defined as a sequence of identifiers and wildcards. We
propose a novel scalable wildcarded identity-based encryption, called
SWIBE, which reduces the ciphertext size to be constant. To the best
of our knowledge, SWIBE is the first wildcard identity-based encryption
scheme that generates a constant size ciphertext regardless of the depth
of the identities with fast decryption. The proposed scheme improves
the decryption time. According to our experiment results, decryption of
the SWIBE scheme is 3, 10, and 650 times faster than existing WIBE,
WW-IBE, and CCP-ABE schemes. The SWIBE scheme also subsumes
the generalized key derivation naturally by allowing wildcards in the key
delegation process. We prove CPA security of the proposed scheme and
extend it to be CCA secure.

Keywords: wildcard identity based encryption, constant ciphertext, key dele-
gation, pattern

1 Introduction

The advanced information technology has increased the popularity and diversity
of embedded systems (or IoT devices) in a variety of applications such as smart
city, transport, smart grid, production control, medical, military, and so on. In
these distributed settings, messages often need to be securely delivered to a
specific group of devices or users for communication and management. Some
examples are as follows:

– The official commands or monitoring messages from a commander or sen-
sors deployed to jointly monitor malicious activity for city security must be
securely communicated to a specific group or user determined by its region,
role, class, function, etc.

? This paper is a full version of the conference paper with the same title that was pub-
lished in the Euuropean Symposium on Research in Computer Security (ESORICS),
2018

2 Jihye Kim, Seunghwa Lee, Jiwon Lee, and Hyunok Oh(�)

– Secure firmware updates in many systems including vehicles are crucial to
improve performance and provide fixes for defective software that can lead to
costly product recalls. The firmware, the intellectual property of a company,
must be distributed securely to a distinct group specified by the brand,
model, year, device type, version, etc.

– In the military, tactical communications such as real-time video and target-
ing data need to be securely transmitted according to the access structure
determined by the receiver’s class, mission, location, etc.

Related Works. Identity-based encryption (IBE) is one of most powerful build-
ing blocks to provide data confidentiality which can encrypt a message with-
out retrieving and verifying the public key separated from the identity. The
IBE scheme proposed by Shamir [Sha84] uses an actual user identity (e.g., al-
ice@cs.univ.edu) as a public key for encryption. The first practical IBE scheme
construction was presented by using bilinear maps [BF01, Wat05]. It has ad-
vanced to a hierarchical identity-based encryption (HIBE) scheme in [BBG05]
where an identity is defined by multiple identity strings in a hierarchy such that
keys for each identity string can be generated in a hierarchically distributed way:
users at level l can derive keys for their children at level l+ 1. The advantage of
HIBE is to reduce the burden of a trusted key distribution center by distributing
key derivation and solving a bottleneck problem. The technical intuition of the
key delegation in the HIBE system has been adapted to other various crypto-
graphic constructions, such as broadcast encryption [BGW05, LLWQ14, BH08].

Motivated by the fact that many email addresses correspond to groups of
users rather than single individuals, Abdalla et al. [ACD+06] extended HIBE
to wildcarded identity-based encryption (WIBE) by combining a concept called
wildcard (∗), which can be replaced by any identity string in a sequence of
identity strings. A pattern (or an identity) defined as a sequence of multiple
identity strings and wildcards efficiently determines a group of identities as well
as a single identity. WIBE engages a pattern as a public key for encryption,
meaning that a single ciphertext encrypted on a pattern (edu, univ, cs, ∗)
(corresponding to ∗@cs.univ.edu) can be simultaneously delivered to the mul-
tiple users with identities such as alice@cs.univ.edu and bob@cs.univ.edu.
Abdalla et al. proposed three different WIBE constructions by extending the
previous HIBE schemes; however, all constructions suffer from comparatively
larger ciphertext size which is at least O(L) where L denotes the maximum
depth of a pattern (i.e, the maximum number of identity strings). Later, Bir-
kett et al. [BDNS07] presented compilation techniques that convert any L-level
CPA-secure WIBE scheme into L-level CCA-secure identity-based key encap-
sulation mechanisms with wildcards (WIB-KEM). They constructed more effi-
cient CCA-secure WIBE variants by applying their compilation techniques to
the CPA-secure WIBE schemes from [ACD+06]. However, the ciphertext size
is still as large as that for the underlying WIBE schemes, i.e., at least O(L)
size ciphertext. In [ACP12], Abdalla et al. upgraded the WIBE notion to the
WW-IBE notion by combining the generalized key delegation notion in [AKN07].
Although key delegation is useful to minimize the key management overhead in

Scalable Wildcarded Identity-Based Encryption 3

the distributed setting, the non-scalable ciphertext size in [ACP12] has not been
improved and remained an obstacle so far.

There are attribute-based encryption schemes (ABE) that allow more ex-
pressive policies than WIBE. Ciphertext-policy attribute-based encryption (CP-
ABE) in [BSW07] associates to each ciphertext an access structure consisting of
a logical combination of attribute values using AND and OR gates. A decryption
key is given for a set of attributes and can only decrypt a ciphertext whose ac-
cess structure is satisfied by the set of its attributes. WIBE schemes are a special
case of CP-ABE schemes by mapping the identity vector (*, Tesla, *, Model
S) to the access structure (2||Tesla ∧ 4||Model S). The device with a set of
attributes (2018, Tesla, Powertrain, Model S) can decrypt the ciphertext.
However, its ciphertext size grows linearly with the number of attributes in the
access structure. The authors in [EMN+09] proposed a CP-ABE scheme with
constant ciphertext size, but, without supporting wildcards in its access policy.
Later, the ABE scheme was upgraded to support wildcards in [ZH10], however,
only with binary identities. When it is converted into the string-based identity
version, the number of attributes grows exponentially to cover all possible iden-
tities in a binary notation, which results in an exponential number of public
parameters. Otherwise, each attribute should be denoted in a binary format,
which increases the the maximum depth of a pattern by the binary string length
times.

Ciphertext Size. In general, the ciphertext size is an important issue because
the ciphertext is the actual payload that is transmitted via network in real
applications. However, the existing WIBE scheme [ACD+06] produces a non-
constant size ciphertext linearly increasing by the maximum depth of a pattern.
It is mainly because the ciphertext should include additional information for
each wildcard such that wildcards in a pattern can be transformed for every
matching key element in WIBE scheme. With the approach that the ciphertext
contains all information required to conversion, it is not clear how to construct
a WIBE with constant size ciphertext.

Using a generic construction described in [ACD+06], WIBE with a constant
size ciphertext can be constructed from a hierarchical identity based encryption
scheme (HIBE) with a constant sized ciphertext. However, this WIBE scheme
has a secret key size that is exponential in the depth of the pattern. Briefly, a user
stores secret keys for every possible matching pattern such that the user directly
decrypts a ciphertext with a suitable key. For example, given an identity pattern
(ID1, ID2), a user stores keys for all four matching patterns: (ID1, ID2), (∗,
ID2), (ID1, ∗), (∗, ∗). Thus, the secret key size is exploded up to 2L which is
impractical to be used in small embedded devices.

Intuitions. Our construction is based on the variant of the BBG-HIBE[BBG05].
The BBG-HIBE scheme has the advantage of constant-sized ciphertexts and
our WIBE scheme keeps this advantage while allowing wildcards in a pattern
in encryption. The WIBE scheme by Abdalla et al.[ACD+06] also modifies a
BBG-HIBE’s ciphertext generation to include some extra data related to each

4 Jihye Kim, Seunghwa Lee, Jiwon Lee, and Hyunok Oh(�)

wildcard. This extra data is used for each user to convert the ciphertext to
match their specific identity pattern. However, this approach seems to be dif-
ficult to avoid the message overhead required for each wildcard. In the WIBE
scheme[ACD+06], a pattern with w wildcards leads to a ciphertext with w + 3
group elements. Our approach reverses the method of Abdalla et al.’s: each user
converts the identity pattern of the secret key to match the ciphertext. In this
method, each user must store an extra data for each non-wildcard identity in or-
der to replace the identity by a wildcard. A pattern with l specific identity strings
leads to a secret key with l additional elements. The benefit of this approach is
that the extra values for each wildcard do not have to be separately delivered
as in [ACD+06] because they are not used for conversion of each correspond-
ing identity string any more. From this observation, our WIBE scheme reduces
the extra data values for each wildcard in the ciphertext as a single element.
The resulting scheme is secure under the same cryptographic assumption as the
BBG-HIBE scheme. The details of the construction are described in section 4.

Contributions. In this paper, we propose a new WIBE scheme with constant
size ciphertext and with polynomial overhead in every parameter. Our main
contributions are summarized as follows:

– We propose a novel scalable wildcarded identity based encryption scheme
called SWIBE. To the best of our knowledge, the proposed scheme is the
first WIBE scheme that generates a constant size ciphertext regardless of
the depth, i.e., the maximum number of attributes; the ciphertext consists
of just four group elements, which is comparable even to the HIBE scheme
[BBG05] that contains three group elements for its ciphertext.

– The proposed SWIBE also improves decryption performance of WIBE.
Much of the decryption overhead in the existing WIBE is in the conversion
operation of wildcards in a ciphertext into identity strings of a user’s secret
key. While the WIBE [ACD+06] converts a ciphertext to another cipher-
text for a specific matching identity strings, the proposed SWIBE replaces
any identity string by a wildcard; this method reduces point multiplications
(i.e., exponentiations) required in the previous WIBE and speeds up the
decryption.

– The proposed SWIBE allows wildcards in the key delegation process as well
as in the encryption procedure, naturally subsuming the generalized key
derivation of wicked-IBE [AKN07] and distributing the key management
overhead.

– We formally prove the selective CPA-security of the proposed SWIBE scheme
under the L-BDHE assumption. We also extend it to be a CCA secure
SWIBE scheme.

Table 1 compares the HIBE scheme [BBG05] (that does not support wild-
cards as identities), the WIBE scheme [ACD+06], HIBE with the generalized key
delegation (wicked-IBE) [AKN07], WIBE scheme with generalized key delegation
(WW-IBE) [ACP12], constant-size ciphtertext policy attribute-based encryption
(CCP-ABE) [ZH10], and the proposed SWIBE scheme subsuming wildcards as

Scalable Wildcarded Identity-Based Encryption 5

Table 1: Comparison of HIBE, WIBE, wicked-IBE, WW-IBE, CCP-ABE, and
proposed SWIBE schemes. cf. e = time of scalar multiplication, p = time of
pairing, and L = hierarchy depth, IDi is represented using a q-bit string, size

indicates group elements, Enc = Encryption, and Der = Key derivation.
HIBE[BBG05] WIBE[ACD+06] wicked-IBE[AKN07] WW-IBE[ACP12] CCP-ABE[ZH10] SWIBE

pp size L + 4 L + 4 L + 2 2L + 2 2L2q + 1 L + 4

SK size L + 2 L + 2 L + 2 L + 1 3L2q + 1 2L + 3

CT size 3 L + 3 3 3L + 2 2 4

Enc time (L + 3)e + p (L + 3)e + p (L + 1)e + p (3L + 2)e 2L2qe + p (L + 3)e + p

Dec time 2p Le + 2p Le + 2p Le + (2L + 1)p 2L2qe + 4L2qp Le + 3p

Wildcard use None Enc Der Enc&Der Enc Enc&Der

identities as well as the generalized key delegation. The table shows the public
parameter size (pp size), the user secret key size (SK size), the ciphertext size,
the encryption time (Enc time), and the decryption time (Dec time) according
to the maximum depth of the pattern (L) where e and p denote the numbers of
scalar multiplications and pairings, respectively. It is assumed that each ID is
represented using a q-bit string maximally. For the wildcard use, the table spec-
ifies whether wildcards are used in an encryption (Enc) algorithm or in an key
derivation (Der) algorithm. Note that the SWIBE scheme has O(L) size of the
secret key, while it produces a constant-size ciphertext with allowing wildcards in
a ciphertext pattern. Note that if each bit in ID representation is regarded as an
attribute in CCP-ABE then pp size, SK size, the encryption, and the decryption
time are 2Lq+ 1, 3Lq+ 1, 2Lqe+ p, and 2Lqe+ 4Lqp, respectively. In WW-IBE
and CCP-ABE, the decryption time is a major hurdle to be used in practical
applications since the decryption requires pairing operations of which number
is proportional to the maximum depth level L. Especially, in CCP-ABE, the
number of pairing operations is dependent on the length of a bit string in each
ID, in addition. In experiment, the decryption time overheads in WW-IBE and
CCP-ABE are 10 times and 650 times compared with the proposed approach.

This paper is organized as follows: section 2 introduces the basic defini-
tions and complexity assumptions. In section 3, we formally define the wildcard
identity-based encryption as a universal primitive. In section 4 we explain the
main idea of the proposed scheme and how to construct it in details, along with
the security proof. Section 5 extends it to be CCA secure, and section 6 proposes
a new version of our scheme in composite order to obtain full security instead of
selective security. In section 7, we show the experimental results and in section 8,
we conclude.

2 Background

2.1 Identity-based Encryption

An identity-based encryption (IBE) scheme is a tuple of algorithm IBE =
(Setup,KeyDer,Enc,Dec) providing the following functionality. The trusted au-
thority runs Setup to generate a key pair (pp, msk). It publishes public parameter
pp and keeps master secret key msk privately. When a user with identity ID

6 Jihye Kim, Seunghwa Lee, Jiwon Lee, and Hyunok Oh(�)

wishes to become part of the system, the trusted authority generates a user

decryption key dID
$← KeyDer(msk, ID), and sends this key over a secure and

authenticated channel to the user. To send an encrypted message m to the user

with identity ID, the sender computes the ciphertext C
$← Enc(pp, ID,m), which

can be decrypted by the user as m← Dec(dID, C). We refer to [BF03] for details
on the security definitions for IBE schemes.

2.2 Hierarchical IBE

In a hierarchical IBE (HIBE) scheme, users are organized in a tree of depth L,
with the root being the master trusted authority. The identity of a user at level
0 ≤ l ≤ L in the tree is given by a vector ID = (P1, . . . , Pl) ∈ ({0, 1}q)l. A HIBE
scheme is a tuple of algorithms HIBE = (Setup, KeyDer, Enc, Dec) providing the
same functionality as in an IBE scheme, except that a user ID = (P1, . . . , Pl) at
level l can use its own secret key skID to generate a secret key for any of its chil-

dren ID′ = (P1, . . . , Pl, . . . , PL) via skID′
$← KeyDer(skID, ID

′). Note that by
interactively applying the KeyDer algorithm, user ID can derive secret keys for
any of its descendants ID′ = (P1, . . . , Pl+δ), δ ≥ 0. We use the overloaded nota-

tion skID′
$← KeyDer(skID, (Pl+1, . . . , PL+1)) to denote this process. The secret

key of the root identity at level 0 is skε = msk. Encryption and decryption are
the same as for IBE, but with vectors of bit strings as identities instead of ordi-
nary bit strings. We use the notation P|l−1 to denote vector (P1, . . . , Pl−1).We
refer to [BBG05] for details on the security definitions for HIBE schemes.

2.3 Bilinear Groups and Pairings

We briefly review the necessary facts about bilinear maps and bilinear map
groups. We use the following standard notation [Jou04, BF03].

1. G and G1 are two (multiplicative) cyclic groups of prime order p.

2. g is a generator of G.

3. e : G×G→ G1 is a bilinear map.

Let G and G1 be two groups as above. A bilinear map is a map e : G×G→ G1

with the following properties:

1. Bilinear: for all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab

2. Non-degenerate: e(g, g) 6= 1.

We say that G is a bilinear group if the group action in G can be computed
efficiently and there exist a group G1 and an efficiently computable bilinear map
e : G×G→ G1 as above.

Scalable Wildcarded Identity-Based Encryption 7

2.4 Computational Complexity Assumptions

Security of our system is based on a complexity assumption called the bilinear
Diffie-Hellman Exponent assumption (BDHE) used in [BBG05], which is a nat-
ural extension of bilinear-DHI assumption previously used in [BB11]. Let G be a
bilinear group of prime order p. The L-BDHE problem in G is stated as follows:
given a vector of 2L+ 1 elements

(h, g, gα, g(α
2), . . . , g(α

L), g(α
L+2), . . . , g(α

2L) ∈ G2L+1)

as input, output e(g, h)α
L+1 ∈ G1. As shorthand, once g and α are specified,

we use yi to denote yi = gα
i ∈ G. An algorithm A has advantage ε in solving

L-BDHE in G if

Pr[A(h, g, y1, . . . , yL, yL+2, . . . , y2L) = e(yL+1, h)] ≥ ε

where the probability is over the random choice of generators g, h in G, the
random choice of α in Zp, and the random bits used by A. The decisional
version of the L-BDHE problem in G is defined analogously. Let yg,α,L =
(y1, . . . , yL, yL+2, . . . , y2L). An algorithm B that outputs b ∈ {0, 1} has advan-
tage ε in solving decisional L-BDHE in G if

|Pr[B(g, h,yg,α,L,e(yL+1, h)) = 0]

−Pr[B(g, h,yg,α,L, T) = 0]| ≥ ε

where the probability is over the random choice of generators g, h in G, the
random choice of α in Zp, the random choice of T ∈ G1, and the random bits
consumed by B.

Definition 1. We say that the (decisional) (t, ε, L)-BDHE assumption holds in
G if no t-time algorithm has advantage at least ε in solving the (decisional)
L-BDHE problem in G.

Occasionally we omit the t and ε, and refer to the (decisional) L-BDHE in G.

3 Model

A scalable wildcarded identity based scheme (SWIBE) allows general key del-
egation and encryption to a group that is denoted by multiple identity strings
and wildcards. To make the further description simple and clear, we define the
following notations similarly to [ACD+06].

Definition 2. A pattern P is a vector (P1, . . . , PL) ∈ (Z∗p ∪{∗})L , where ∗ is a
special wildcard symbol, p is a q-bit prime number, and L is the maximal depth
of the SWIBE scheme.3

3 We denote pattern P as in (Z∗
p ∪ {∗})L instead of ({0, 1}q ∪ {∗})L, since {0, 1}q can

be easily mapped to Z∗
p with a hash function.

8 Jihye Kim, Seunghwa Lee, Jiwon Lee, and Hyunok Oh(�)

Definition 3. A pattern P ′ = (P ′1, . . . , P
′
L) belongs to P , denoted P ′ ∈∗ P , if

and only if ∀i ∈ {1, . . . , L}, (P ′i = Pi) ∨ (Pi = ∗).

Definition 4. A pattern P ′ = (P ′1, . . . , P
′
L) matches P , denoted P ′ ≈ P , if and

only if ∀i ∈ {1, . . . , L}, (P ′i = Pi) ∨ (Pi = ∗) ∨ (P ′i = ∗).

Notice that a set of matching patterns of P is a super set of belonging patterns
of P . For a pattern P = (P1, . . . , PL), we define W (P) is the set containing
all wildcard indices in P , i.e. the indices 1 ≤ i ≤ L such that Pi = ∗, and
W (P) is the complementary set containing all non-wildcard indices. Clearly,
W (P) ∩W (P) = ∅ and W (P) ∪W (P) = {1, . . . , L}.

Definition 5. W (P) is the set containing all wildcard indices in a pattern P .

Definition 6. W (P) is the complementary set containing all non-wildcard in-
dices in a pattern P .

A scalable wildcarded identity-based encryption SWIBE consists of four
algorithms:

Setup(L) takes as input the maximal hierarchy depth L. It outputs a public
parameter pp and master secret key msk.

KeyDer(skP , Pnew) takes as input a user secret key skP for a pattern P =
(P1, . . . , PL) and can derive a secret key for any pattern Pnew ∈∗ P . The
secret key of the root identity is msk = sk(∗,...,∗).

Encrypt(pp, P,m) takes as input pattern P = (P1, . . . , PL), message m ∈ {0, 1}∗
and public parameter pp. It outputs ciphertext C for pattern P .

Decrypt(skP , C, P
′) takes as input user secret key skP for pattern P = (P1, . . . , PL)

and ciphertext C for pattern P ′. Any user in possession of the secret key for
a pattern P that matches P ′ can decrypt the ciphertext using skP , and the
algorithm outputs message m.

Correctness requires that for all key pairs (pp, msk) output by Setup, all
messages m ∈ Z∗p , and all patterns P, P ′ ∈ (Z∗p ∪ {∗})L such that P ≈ P ′,
Decrypt(KeyDer(msk, P),Encrypt(pp, P ′,m), P ′) = m.

SECURITY. We define the security of a scalable wildcarded identity based en-
cryption scheme similar to [ACD+06], but additionally considering the key del-
egation property. An adversary is allowed to choose an arbitrary pattern and
query secret keys corresponding to the pattern. The adversary is not allowed
to query the key derivation oracle for any pattern matching with a challenge
pattern. The security is defined by an adversary A and a challenger C via the
following game. Both C and A are given the hierarchy depth L and the identity
bit-length q as input.

Setup: Challenger C runs Setup(L) to obtain public parameter pp and master
secret key msk. C gives A public parameter pp.

Scalable Wildcarded Identity-Based Encryption 9

Key derivation queries:1: Adversary A issues key derivation queries qK1
, . . . , qKm

in which a key derivation query consists of a pattern P ′ ∈ (Z∗p ∪ {∗})L, and

challenger C responds with skP ′
$← KeyDer(skP , P

′).

Query phase1: Adversary A issues decryption queries qD1 , . . . , qDn in which a
decryption query consists of a pattern P ′ ∈ (Z∗p ∪ {∗})L and ciphertext C,

next challenger C responds with a message M
$← Decrypt(C,P ′).

Challenge: A outputs two equal-length challenge messages m∗0,m
∗
1 ∈ Z∗p and a

challenge identity P ∗ = (P ∗1 , . . . , P
∗
L∗) s.t. P ∗ 6≈ P ′ for all queried P ′. C runs

algorithm C∗ ← Encrypt(pp, P ∗,m∗b) for random bit b and gives C∗ to A.

Key derivation queries:2: Attacker A continues to issue key derivation queries
qKm+1

, . . . , qqK same as Key derivation queries:1 where query pattern P ′ 6≈
P ∗. C responds as in key derivation query 1.

Query phase2: Attacker A continues to issue decryption queries qDn+1 , . . . , qqD
same as Query phase1. It should be satisfied that queried ciphertext C 6= C∗.
C responds as in query phase 1.

Guess: A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

Definition 7. A SWIBE is (t, qK , qD, ε, L) IND-ID-CCA-secure if all t-time
adversaries making at most qK queries to the key derivation oracle and at most
qD queries to the decryption oracle have at most advantage ε in the IND-ID-CCA
game described above.

We also define IND-ID-CPA-secure similar as IND-ID-CCA game except for-
bidden all decryption queries.

Definition 8. A SWIBE is (t, qK , 0, ε, L) IND-ID-CPA-secure if all t-time ad-
versaries making at most qK queries to the key derivation oracle have at most
advantage ε in the IND-ID-CPA game described above.

SELECTIVE-IDENTITY SECURITY. A weaker selective-identity (sID) security
notion IND-sID-CPA is defined analogously to the IND-ID-CPA one: every pro-
cedure is the same except that the adversary has to commit to the challenge
identity at the beginning of the game, before the public parameter is made
available.

4 The Proposed Scheme

In this section, we describe a new scalable wildcarded identity based encryption
scheme (SWIBE). Since our SWIBE is based on the BBG-HIBE scheme proposed
by Boneh et al.[BBG05], we first overview the BBG-HIBE protocol. And then
we explain our idea to allow wildcards as identities in encryption at the cost of
increasing the secret key size. Finally, we illustrate our SWIBE protocol.

10 Jihye Kim, Seunghwa Lee, Jiwon Lee, and Hyunok Oh(�)

4.1 Overview: BBG-HIBE and our idea

The BBG-HIBE scheme [BBG05] is described as follows:

Setup(L): L indicates the maximum hierarchy depth. Select a random integer
α ∈ Z∗p, and O(L) random group elements g, g2, g3, h1, h2, . . . , hL ∈ G, and
compute g1 = gα.

The public parameters and the master secret key are given by

pp = (g, g1, g2, g3, h1, h2, . . . , hL),msk = gα2 .

KeyDer(skP|l−1
, P): To compute the secret key skP for an identity P = (P1, . . . , Pl) ∈

(Z∗p)l where l ≤ L from the master secret key, a random r
$← Z∗p is chosen, then

secret key skP = (a1, a2, bl+1, · · · , bL) for P is constructed as

a1 = gα2 (g3 ·
∏

i∈[1,··· ,l]

hPii)r, a2 = gr, {bi = hri }i∈[l+1,··· ,L]

The private key for P can be generated incrementally, given a private key for
the parent identity P|l−1 = (P1, . . . , Pl−1) ∈ (Z∗p)l−1. Let skP|l−1

= (a′1, a
′
2, b
′
l, · · · , b′L)

be the private key for P|l−1. To generate skP , pick a random t ∈ Z∗p and output

a1 = a′1 · (b′l)Pl · (g3 ·
∏

i∈[1,··· ,l]

hPii)t, a2 = a′2 · gt,

{bi = b′i · hti}i∈[l+1,··· ,L]

Encrypt(pp, P , M): To encrypt a message m ∈ G1 to pattern P = (P1, . . . , Pl),

choose s
$← Z∗p, and compute

C = (gs, (g3 ·
∏

i∈[1,··· ,l]

hPii)s, M · e(g1, g2)s)

Decrypt(skP , C): Consider an identity pattern P = (P1, · · · , Pl). To decrypt a
given ciphertext C = (C1, C2, C3) with private key skP = (a1, a2, bl+1, · · · , bL),
output

C3 ·
e(a2, C2)

e(C1, a1)
= M

The BBG-HIBE scheme [BBG05] has the advantage of constant-sized cipher-
texts. The ciphertext consists of only three elements: (gs, (g3·hP1

1 · · ·h
Pl
l)s,M(g, g2)sα).

The secret key is composed of two types of keys for its purposes: decryption and
key delegation. To decrypt a ciphertext, two elements in the secret key are in-
volved with: (gα2 (g3 · hP1

1 · · ·h
Pl
l)r, gr). A pattern P = (P1, · · · , Pl) is combined

as a single element in the secret key. We observe that each identity string of a
pattern in the secret key can be replaced by another identity by multiplication
because it can be canceled by multiplying its inverse. For instance, it is possible

to compute gα2 (g3h
P ′1
1 · · ·h

Pl
l)r by multiplying h

(P ′1−P1)r
1 to gα2 (g3 · hP1

1 · · ·h
Pl
l)r.

Scalable Wildcarded Identity-Based Encryption 11

Assume that a wildcard ∗ is mapped to some element w ∈ Z∗p. In order to al-

low a pattern to include a wildcard, we consider a way to include ci = (hwi /h
Pi
i)r

for every identity string Pi in a secret key. Then each identity part (hPii)r can be
substituted by (hwi)r. The method, however, is not secure. From this extra secret
key ci and the values w and Pi, it is possible to compute hri = ci

1/(w−Pi); this
leads to extract the top level secret key gα2 g

r
3 from gα2 (g3h

P1
1 · · ·h

Pl
l)r because

(hP1
1 · · ·h

Pl
l)r can be generated from hr1, · · · , hrl .

To solve the problem, we randomize the wildcard part using an independent
random value t ∈ Zp. Thus, the extra key value is revised as ci = hwti /hPiri

and gt is additionally appended so that they can be canceled out correctly in
decryption. For example, the key gα2 (g3·hP1

1 hP2
2 hP3

3)r for (P1, P2, P3) is changed to
gα2 (g3 · hP2

2)r · (hw1 hw3)t for (∗, P2, ∗) by multiplying c1c3. The encryption needs
to be slightly changed to be compatible with this modification. To encrypt a
message to (∗, P2, ∗), the pattern must be divided into non-wildcard and wildcard
identity groups so that they can be treated as follows: the encryption for the non-
wildcard identities (·, P2, ·) is the same as the BBG-HIBE which generates three
elements: (gs, (g3 ·hP2

2)s,M ·e(g1, g2)s). The encryption for the wildcard identities
(∗, ·, ∗) is computed as (hw1 h

w
3)s. This additional element is used to cancel out the

wildcard part of the user’s secret key in decryption. As a result, the ciphertext
size increases by a single group element to support wildcards in the proposed
scheme. The key size increases linearly to the number of identity strings, which
is still polynomial to the maximum depth of a pattern.

The key delegation is orthogonal to the wildcard support for encryption and
our scheme follows the key delegation method of BBG-HIBE. Only difference is
that our key delegation is more flexible because it does not have to follow the
hierarchical order as in BBG-HIBE.

The complete scheme is described in the following section 4.2 with w = 1
and we prove the security of the proposed scheme in section 4.3.

4.2 SWIBE Construction

We present the SWIBE scheme with constant size ciphertexts and O(L) size
keys.

Setup(L): L indicates the maximum hierarchy depth. The generation of a random
initial set of keys proceeds as follows. Select a random integer α ∈ Z∗p, and O(L)
random group elements g, g2, g3, h1, h2, . . . , hL ∈ G, and compute g1 = gα.

The public parameter is given by

pp← (g, g1, g2, g3, h1, h2, . . . , hL).

A master secret key is defined as msk = gα2 .

KeyDer(pp, skP , P
′): To compute the secret key skP ′ for a pattern P ′ = (P ′1, . . . , P

′
L) ∈

(Z∗p ∪ {∗})L from the master secret key, first two randoms r, t
$← Z∗p are chosen,

12 Jihye Kim, Seunghwa Lee, Jiwon Lee, and Hyunok Oh(�)

then secret key skP ′ = (a′1, a
′
2, a
′
3, b
′, c′, d′) for P ′ is constructed as

a′1 = msk(g3 ·
∏

i∈W (P ′)

h
P ′i
i)r, a′2 = gr, a′3 = gt

b′ = {b′i = hri }i∈W (P ′) c′ = {c′i = hti}i∈W (P ′)

d′ = {d′i = hti/h
P ′ir
i }i∈W (P ′)

In order to generate secret key skP ′ for a pattern P ′ from secret key skP =
(a1, a2, a3, b, c) for a pattern P such that P ′ ∈∗ P , simply choose two randoms

r′, t′
$← Z∗q and output skP ′ = (a′1, a

′
2, a
′
3, b
′, c′, d′), where

a′1 = a1 · (
∏

i∈W (P ′)∩W (P)

b
P ′i
i) · (g3

∏
i∈W (P ′)

h
P ′i
i)r

′
,

a′2 = a2 · gr
′
, a′3 = a3 · gt

′

b′ = {b′i = bi · hr
′

i }i∈W (P ′), c
′ = {c′i = ci · ht

′

i }i∈W (P ′)

d′ = {d′i = di ·
ht
′

i

h
P ′ir
′

i

}i∈W (P ′)∩W (P)

∪ {d′i =
ci

b
P ′i
i

· ht
′

i

h
P ′ir
′

i

}i∈W (P ′)∩W (P)

Encrypt(pp, P , m): To encrypt a message m ∈ G1 to pattern P = (P1, . . . , PL)

under pp, choose s
$← Z∗p, and compute C = (C1, C2, C3, C4)

C1 = gs, C2 = (g3 ·
∏

i∈W (P)

hPii)s

C3 = m · e(g1, g2)s, C4 = (
∏

i∈W (P)

hi)
s

Decrypt(skP , C, P
′): Consider patterns P and P ′ ∈ (Z∗p ∪ {∗})L, where P is

a key pattern and P ′ is a ciphertext pattern. To decrypt a given ciphertext
C = (C1, C2, C3, C4) with private key skP = (a1, a2, a3, b, c, d), compute a′1 =

a1 ·
∏
i∈W (P ′)∩W (P) b

P ′i
i ·

∏
i∈W (P ′)∩W (P) ci ·

∏
i∈W (P ′)∩W (P) di and output

C3 ·
e(a2, C2) · e(a3, C4)

e(C1, a′1)
= m

The fact that decryption works can be seen as follows. We denote WP ′P =
W (P ′)∩W (P), WP

′
P = W (P ′)∩W (P), WP ′P = W (P ′)∩W (P), and WP

′
P =

W (P ′) ∩W (P) to simplify notations.

Scalable Wildcarded Identity-Based Encryption 13

Since a1 = gα2 (g3
∏
i∈W (P) h

Pi
i)r, bi = hri , ci = hti, and di =

hti
h
Pir

i

,

a′1 = a1 ·
∏

i∈W
P ′P

b
P ′i
i ·

∏
i∈WP ′P

ci ·
∏

i∈WP ′P

di

=gα2 (g3 ·
∏

i∈W (P)

hPii)r ·
∏

i∈W
P ′P

h
P ′ir
i ·

∏
i∈WP ′P

hti ·
∏

i∈WP ′P

hti
hPiri

=gα2 (g3 ·
∏

i∈W (P)

hPii ·
∏

i∈W
P ′P

h
P ′i
i ·

∏
i∈WP ′P

h−Pii)r

·
∏

i∈WP ′P

hti ·
∏

i∈WP ′P

hti.

Since WP ′P ∪WP
′
P =W (P) and WP ′P∩WP

′
P = ∅,

∏
i∈W (P) h

Pi
i ·

∏
i∈WP ′P

h−Pii

=
∏
i∈W

P ′P
hPii . Similarly, since WP ′P ∪WP ′P = W (P ′) and WP ′P ∩WP ′P = ∅,∏

i∈WP ′P
hti ·

∏
i∈WP ′P

hti =
∏
i∈W (P ′) h

t
i. Therefore,

a′1 = gα2 (g3 ·
∏

i∈W
P ′P

hPii ·
∏

i∈W
P ′P

h
P ′i
i)r ·

∏
i∈W (P ′)

hti.

Since P ≈ P ′, Pi = P ′i for i ∈WP
′
P .

a′1 = gα2 (g3 ·
∏

i∈W
P ′P

h
P ′i
i ·

∏
i∈W

P ′P

h
P ′i
i)r ·

∏
i∈W (P ′)

hti.

Since WP
′
P ∪WP

′
P =W (P ′) and WP

′
P ∩WP

′
P = ∅,

∏
i∈W

P ′P
h
P ′i
i ·

∏
i∈W

P ′P
h
P ′i
i

=
∏
i∈W (P ′) h

P ′i
i .

a′1 = gα2 (g3 ·
∏

i∈W (P ′)

h
P ′i
i)r ·

∏
i∈W (P ′)

hti.

e(a2, C2) · e(a3, C4)

e(C1, a′1)

=
e(gr, (g3 ·

∏
i∈W (P ′) h

P ′i
i)s) · e(gt, (

∏
i∈W (P ′) hi)

s)

e(gs, gα2 (g3 ·
∏
i∈W (P ′) h

P ′i
i)r ·

∏
i∈W (P ′) h

t
i)

=
1

e(g, g2)sα
=

1

e(g1, g2)s
.

4.3 Security Proof

In this section, we show an IND-sID-CPA-security of the SWIBE scheme in the
standard model.

14 Jihye Kim, Seunghwa Lee, Jiwon Lee, and Hyunok Oh(�)

Theorem 1. Let G be a bilinear group of prime order p. Suppose the decisional
(t, ε, L)-BDHE assumption holds in G. Then our SWIBE is (t′, qK , 0, ε, L) sID-
CPA secure for arbitrary L, and t′ < t−O(Le + p), where e is a time of scalar
multiplication and p is a time of pairing in G.

Proof. Suppose A has advantage ε in attacking the SWIBE scheme. Using A,
we build an algorithm B that solves the (decisional) L-BDHE problem in G.

For a generator g ∈ G and α ∈ Z∗p, let yi = gα
i ∈ G. Algorithm B is given as

input a random tuple (g, h, y1, . . . , yL, yL+2, . . . , y2L, T) that is either sampled

from PBDHE (where T = e(g, h)(α
L+1)) or from RBDHE (where T is uniform

and independent in G1). Algorithm B’s goal is to output 1 when the input tuple
is sampled from PBDHE and 0 otherwise. Algorithm B works by interacting with
A in a selective subset game as follows:

Init: The game begins withA first outputting an identity vector P ∗ = (P ∗1 , . . . , P
∗
L)

∈∗ (Z∗p ∪ {∗})L.

Setup: To generate a public parameter, algorithm B picks a random γ in Zp
and sets g1 = y1 = gα and g2 = yLg

γ = gγ+(αL). Next, B picks random
γi ∈ Z∗p for i = 1, . . . , L, and sets hi = gγi/yL−i+1 for i ∈W (P ∗) and hi =
gγi for i ∈W (P ∗). Algorithm B also picks a random δ in Z∗p and sets g3 =

gδ
∏L
i∈W (P∗) y

P∗i
L−i+1.

Key derivation queries: Suppose adversary B makes a key derivation query for
pattern P = (P1, . . . , PL) ∈∗ (Z∗p ∪ {∗})L. By the definition of the security
experiment, we know that P ∗ 6∈∗ P . That means that there exists an index k ∈
W (P) such that Pk 6= P ∗k . We define k to be the smallest one among all possible

indices. B picks two random r̃, t̃ ∈ Z∗p and (implicitly) sets r ← − αk

P∗k−Pk
+ r̃ and

t← r · P ∗k + t̃. Secret key skP = (a1, a2, a3, b, c, d) for P is constructed as

a1 = gα2 · (g3
∏

i∈W (P)h
Pi
i

)r; a2 = gr; a3 = gt

b = {bi = hri }i∈W (P)

c = {ci = hti}i∈W (P)

d = (di = hti/h
P∗i r
i)i∈W (P)

We have

(g3
∏

i∈W (P)

hPii)r = (gδ
∏

i∈W (P)

y
P∗i
L−i+1

∏
i∈W (P)

gγiPiy−PiL−i+1)r

=(gδ+
∑
i∈W (P) Piγi ·

∏
i∈W (P)\{k}

y
P∗i −Pi
L−i+1 · y

P∗k−Pk
L−k+1·

∏
i∈W (P)

y
P∗i
L−i+1)r

Scalable Wildcarded Identity-Based Encryption 15

We split this term up into two factors A · Z, where A = (y
P∗k−Pk
L−k+1)r is the

third product only. It can be checked that Z can be computed by A, i.e. the
terms yi only appear with indices i ∈ {1, . . . , L}. Term A can be expressed as

A = g
αL−k+1(P∗k−Pk)(− αk

P∗
k
−Pk

+r̃)
= y−1L+1 · y

(P∗k−Pk)r̃
L−k+1

Hence,

a1 =gα2 ·A · Z = yL+1y
γ
1 · y

−1
L+1y

(P∗k−Pk)r̃
L−k+1 · Z

=yγ1 · y
(P∗k−Pk)r̃
L−k+1 · Z

can be computed by A. Furthermore,

gr = g
− αk

P∗
k
−Pk

+r̃
= y
− 1
P∗
k
−Pk

k · gr̃

and for each i ∈W (P),

hri = (gγi/yL−i+1)
− αk

P∗
k
−Pk

+r̃

= y
− γi
P∗
k
−Pk

k y
1

P∗
k
−Pk

L+k−i+1 · g
γir̃ · y−r̃L−i+1

hti = (hi)
r·P∗k+t̃ = h

P∗k r
i · ht̃i

= y
− γiP

∗
k

P∗
k
−Pk

k y

P∗k
P∗
k
−Pk

L+k−i+1 · g
γi(r̃P

∗
k+t̃) · y−(r̃P

∗
k+t̃)

L−i+1

can be computed since k 6∈W (P).

And for each i ∈W (P),

hti/h
P∗i r
i = h

rP∗k+t̃
i /h

P∗i r
i = h

(P∗k−P
∗
i)r+t̃

i

=(gγi/yL−i+1)
(P∗k−P

∗
i)(− αk

P∗
k
−Pk

+r̃)+t̃

=(y
− γi
P∗
k
−Pk

k y
1

P∗
k
−Pk

L+k−i+1 · g
γir̃ · y−r̃L−i+1)(P

∗
k−P

∗
i)

· (gγi/yL−i+1)t̃.

If i = k, P ∗k − P ∗i = 0. So A can compute it. Otherwise also A can compute
it since i 6= k and yL+1 does not appear in the equation.

Challenge: To generate a challenge, B computes C1, C2, and C4 as h,
hδ+

∑
i∈W (P∗)(γiP

∗
i), and h

∑
i∈W (P∗) γi , respectively. It then randomly chooses a

bit b ∈ {0, 1} and sets C3 = mb · T · e(y1, h)γ . It gives C = (C1, C2, C3, C4) as

a challenge to A. We claim that when T = e(g, h)(α
L+1)(i.e. the input to B is

an L-BDHE tuple) then (C1, C2, C3, C4) is a valid challenge to A as in a real
attack. To see this, write h = gc for some (unknown) c ∈ Z∗p. Then

16 Jihye Kim, Seunghwa Lee, Jiwon Lee, and Hyunok Oh(�)

hδ+
∑
i∈W (P∗)(γiP

∗
i) = (gδ+

∑
i∈W (P∗)(γiP

∗
i))c

=(gδ ·
∏

i∈W (P∗)

y
P∗i
L−i+1

∏
i∈W (P∗)

(
gγi

yL−i+1
)P
∗
i)c

=(g3
∏

i∈W (P∗)

h
P∗i
i)c,

h
∑
i∈W (P∗) γi = (g

∑
i∈W (P∗) γi)c = (

∏
i∈W (P∗)

gγi)c

and
e(g, h)(α

L+1) · e(y1, h)γ

= e(y1, yL)c · e(y1, g)γ·c = e(y1, yLg
γ)c = e(g1, g2)c.

Therefore, by definition, e(yL+1, g)c = e(g, h)(α
L+1) = T and hence C =

(C1, C2, C3, C4) is a valid challenge to A. On the other hand, when T is random
in G1 (i.e. the input to B is a random tuple) then C3 is just a random independent
element in G1 to A.

Guess: Finally, A outputs a guess b′ ∈ {0, 1}. Algorithm B concludes its own
game by outputting a guess as follows. If b = b′ then B outputs 1 meaning

T = e(g, h)(α
L+1). Otherwise, it outputs 0 meaning T is random in G1.

When the input tuple is sampled from PBDHE (where T = e(g, h)(α
L+1))

then A’s view is identical to its view in a real attack game and therefore A
satisfies |Pr[b = b′] − 1/2| ≥ ε. When the input tuple is sampled from RBDHE
(where T is uniform in G1) then Pr[b = b′] = 1/2. Therefore, with g, h uniform
in G, α uniform in Zp, and T uniform in G1 we have that

|Pr[B(g, h,yg,α,L, e(g, h)(α
L+1)) = 0]

− Pr[B(g, h,yg,α,L, T) = 0]| ≥ |(1/2 + ε)− 1/2| = ε

as required, which completes the proof of the theorem.

5 Extension to CCA Security

We extend the semantically secure SWIBE scheme using the similar technique
in [CHK04] to obtain chosen ciphertext security. Given a strong one-time sig-
nature scheme (SigKeygen, Sign, V erify) with a verification key which is a
q-bit string, we enable construction of an L-level wildcard identity-based en-
cryption with constant size ciphertext Π = (Setup, KeyDer, Encrypt, Decrypt)
secure against chosen-ciphertext attacks using the (L + 1)-level Π ′ = (Setup′,
KeyDer′ Encrypt′, Decrypt′) semantically secure SWIBE. The intuition is that
P = (P1, · · · , PL) ∈ {Z∗p ∪ {∗}}L in Π is mapped to P ′ = (P1, · · · , PL, ∗)
∈ {Z∗p ∪ {∗}}L+1 in Π ′. Thus, the secret key skP for P in Π is the secret
key skP ′ in Π ′. Recall that sk′P ′ can generate secret keys of all descendants

Scalable Wildcarded Identity-Based Encryption 17

of node P ′. When encrypting a message m to PC = (PC1
, · · · , PCL) in Π, the

sender generates a q-bit verification key Vsig ∈ Z∗p and then encrypts m to the
P ′C = (PC1 , · · · , PCL , Vsig) using Π ′. L-level Π is constructed using (L+ 1)-level
Π ′ and a one-time signature scheme as follows:

Setup(L) runs Setup′(L+ 1) to obtain (pp′,msk′). Given pp′ ← (g, g1, g2, g3, h1,
· · · , hL+1) and msk′, the public parameter is pp← (g, g1, g2, g3, h1, · · · , hL) and
the master secret key is msk ← msk′.

KeyDer(pp, skP , Pnew) is the same as the KeyDer′ algorithm.

Encrypt(pp, P,m) runs SigKeyGen(1L) algorithm to obtain a signature signing
key Ksig and a verification key Vsig. For a given pattern P = (P1, · · · , PL),
encode P to P ′ = (P1, · · · , PL, Vsig), compute C ← Encrypt′(pp′, P ′,m) and
σ ← Sign(Ksig, C), and output CT = (C, σ, Vsig)

Decrypt(skP , CT, PC): Let CT = (C, σ, Vsig).

1. Verify that σ is the valid signature of C under the key Vsig. If invalid, output
⊥.

2. Otherwise, check P ≈ PC , generate skP ′ ← KeyDer′(skP , P ′) for P ′ =
(P1, · · · , PL, Vsig), and run Decrypt′ (skP ′ , C, PC) to extract the message.

Theorem 2. Let G be a bilinear group of prime order p. The above SWIBE
Π is (t, qK , qD, ε1 + ε2, L) CCA-secure assuming the SWIBE Π ′ is (t′, q′K ,
0, ε1, L+ 1) semantically secure in G and signature scheme is (t′′, ε2) strongly
existentially unforgeable with qK < q′K , t < t′ − (Le + 3p)qD − ts, where e is
exponential time, p is pairing time, and ts is sum of SigKeyGen, Sign and
V erify computation time.

Proof. Suppose there exists a t-time adversary, A, such that |AdvBrA,Π−1/2| >
ε1 + ε2. We build an algorithm B, that has advantage |AdvBrB,Π′ − 1/2| > ε1
in G. Algorithm B proceeds as follows.

Setup: B gets the public parameter pp of Π ′ and also gets secret keys sk′P ′ for
P ′ 6≈ S∗∗ from challenger C.

Since Π ′ can generate secret keys in a compressed way using ∗, wlog, P ′ can
be categorized into the following two formats:

1. P ′ = (P1, · · · , PL, ∗) for P 6∈∗ P ∗
2. P ′ = (P1, · · · , PL, Vsig) for P ∈∗ P ∗ and Vsig 6= V ∗sig.

B responds with pp and secret keys sk′P ′ of the first type of P ′. (Recall that
the secret key skP = sk′P ′ where P ′ = (P1, · · · , PL, ∗.) The secret keys sk′P ′ of
the second type of P ′ are used to respond to the decryption queries of A as
described in the below.

Query phase1: Algorithm A issues decryption queries. Let (P,CT) be a decryp-
tion query where P ∈∗ P ∗ and P ≈ PC where PC is a pattern of ciphertext. Let
CT = ((C1, C2, C3, C4), σ, Vsig). Algorithm B responds as follows:

18 Jihye Kim, Seunghwa Lee, Jiwon Lee, and Hyunok Oh(�)

1. Run V erify to check the signature σ on (C1, C2, C3, C4) using verification
key Vsig. If the signature is invalid B responds with ⊥.

2. If Vsig = V ∗sig, a forge event happens, algorithm B outputs a random bit

b
$← {0, 1}, and aborts the simulation.

3. Otherwise, B decrypts the ciphertext CT using the second type of secret keys.
Since Vsig 6= V ∗sig, B can query the key generation query for P ′ = (P1, · · · , PL,

Vsig) which is second type pattern. Using skP ′ , B can decrypt m← Decrypt′(
skP ′ , (C1, C2, C3, C4), P ′C) where P ′C = (P1, · · · , PL, Vsig) since P ′ = P ′C .

Challenge: A gives the challenge (m0,m1) to B. B gives the challenge (m0,m1)
to C and gets the challenge (CTb) from C. To generate challenge for A, algorithm
B computes C∗ as follows:

σ∗ ← Sign(CTb,K
∗
sig)

C∗ ← (CTb, σ
∗, V ∗sig)

B replies C∗ to A.

Query phase2: Same as in query phase1 except can not decrypt query for C*.

Guess: The A outputs a guess b ∈ {0, 1}. B outputs b.
We see that algorithm B can simulate all queries to run A. B’s success prob-

ability as follows:

|AdvBrB,Π′ −
1

2
| ≥ |AdvBrA,Π −

1

2
| − Pr[forge] > (ε1 + ε2)− Pr[forge]

To conclude the proof of Theorem 2 it remains to bound the probability
that B aborts the simulation as a result of forge. We claim that Pr[forge] < ε2.
Otherwise one can use A to forge signatures with probability at least ε2. Briefly,
we can construct another simulator that knows the private key, but receives K∗sig
as a challenge in an existential forgery game.

In the above experiment, A causes an abort by submitting a query that in-
cludes an existential forgery under K∗sig on some ciphertexts. Our simulator is
able to use this forgery to win the existential forgery game. Note that during the
game the adversary makes only one chosen message query to generate the sig-
nature needed for the challenge ciphertext. Thus, Pr[forge] < ε2. It now follows
that B’s advantage is at least ε1 as required.

6 Fully Secure Scheme

In this section, we present a new version of SWIBE based on composite order
bilinear groups, to obtain full security (IND-ID-CPA) instead of selective se-
curity (IND-sID-CPA). In the original SWIBE scheme (section 4), the security
proof was limited to the selective security, since the scheme was bound to a

Scalable Wildcarded Identity-Based Encryption 19

single group. In this case, if the challenge pattern is not committed before the
game, the reduction algorithm cannot simulate secret keys (without knowing
the secret factor α) for key queries from the adversary. To resolve this issue,
we now construct the scheme with parameters from multiple subgroups similar
to [ACP12], using the fact that it is difficult to determine from which group the
element came from. When using the subgroup assumptions, for each pattern, the
reduction can both simulate the secret key in one subgroup and embed the prob-
lem in another subgroup. Therefore, the full security can be achieved. We first
introduce the definition and features of composite order bilinear groups. Then
we show the decisional subgroup assumptions from Lewko and Waters (LW.1-
LW.3), and present our composite order (fully-secure) SWIBE which also has
a constant-size ciphertext. Finally, we prove the full security of our composite
order SWIBE based on LW assumptions.

6.1 Composite Order Bilinear Groups

We describe the composite order bilinear groups as in [ACP12]. We use groups
whose order is a product of three primes and a generator G which takes as input
security parameter λ and outputs a description G = (N = p1p2p3,G,GT , e)
where p1, p2, p3 are distinct primes of Θ(λ) bits, G and GT are cyclic groups of
order N . For a, b, c ∈ {1, p1, p2, p3}, we denote by Gabc the subgroup of order abc.
From the fact that the group is cyclic, it is simple to verify that if g and h are
group elements of different order (and thus belonging to different subgroups),
then e(g, h) = 1.

6.2 Complexity Assumptions

We first restate the complexity assumptions we use, which was originally intro-
duced by Lewko and Waters in [LW10] and used in [ACP12]. All these assump-
tions can be seen as variants of the decisional subgroup assumption.

Assumption LW.1: For a generator G of bilinear settings, first pick a bilinear

setting G $← G(1λ) and then pick g1, T1
$← Gp1 , g3

$← Gp3 , T2
$← Gp1p2 and

set D = (G, g1, g3). We define the advantage of an algorithm A in breaking
Assumption 1 to be: AdvALW.1(λ) = |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Assumption LW.2: For a generator G of bilinear settings, first pick a bilin-

ear setting G $← G(1λ) and then pick g1, X1
$← Gp1 , X2, Y2

$← Gp2 , g3, X3
$←

Gp3 , T1
$← Gp1p3 , T2

$← Gp1p2p3 and set D = (G, g1, g3, X1X2, Y2X3). We define

the advantage of an algorithm A in breaking Assumption 2 to be: AdvALW.2(λ) =
|Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Assumption LW.3: For a generator G of bilinear settings, first pick a bilinear

setting G $← G(1λ) and then pick α, δ, s
$←

ZN , g1
$← Gp1 , g2, X2, Y2

$← Gp2 , g3
$← Gp3 , T2

$← GT and set T1 = e(g1, g
δ
1)αs

20 Jihye Kim, Seunghwa Lee, Jiwon Lee, and Hyunok Oh(�)

and D = (G, g1, g2, g3, gα1X2, g
δ
1, g

s
1Y2). We define the advantage of an algo-

rithm A in breaking Assumption 3 to be: AdvALW.1(λ) = |Pr[A(D,T1) = 1] −
Pr[A(D,T2) = 1]|.

6.3 Fully-Secure SWIBE Construction

We present the fully-secure SWIBE with constant size ciphertexts and O(L) size
keys, which is based on the composite order bilinear group (N = p1p2p3). Note
that W from subgroup Gp3 is only a blinding factor, to be eliminated when
computed in a pairing operation (due to the orthogonal property of composite
order bilinear groups).

Setup(L): L indicates the maximum hierarchy depth. Choose a description of a

bilinear group G $← G(1λ) with known factorization and g1, k1
$← Gp1 , g3

$← Gp3 .

Choose α
$← ZN and {hi

$← Gp1}i∈[L], and compute γ = gα1 .

The public parameter is given by

pp← (N, g1, γ, k1, g3, h1, h2, . . . , hL).

A master secret key is defined as msk = kα1 .

KeyDer(pp, skP , P
′): To compute the secret key skP ′ for a pattern P ′ = (P ′1, . . . , P

′
L) ∈

(Z∗p ∪ {∗})L from the master secret key, first two randoms r, t
$← ZN are cho-

sen. Then random blinding factors from different subgroup W1,W2,W3
$← Gp3 ,

{Wa,i,Wd,i
$← Gp3}i∈W (P), and {Wb,i,Wc,i

$← Gp3}i∈W (P) are chosen. Secret

key skP ′ = (a′1, a
′
2, a
′
3, b
′, c′, d′) for P ′ is constructed as

a′1 = msk ·
∏

i∈W (P ′)

(h
P ′i
i ·Wa,i)

r ·W1

a′2 = gr1 ·W2

a′3 = gt1 ·W3

b′ = {b′i = hri ·Wb,i}i∈W (P ′)

c′ = {c′i = hti ·Wc,i}i∈W (P ′)

d′ = {d′i = hti/h
P ′i r
i ·Wd,i}i∈W (P ′)

In order to generate secret key skP ′ for a pattern P ′ from secret key skP =
(a1, a2, a3, b, c) for a pattern P such that P ′ ∈∗ P , simply choose two randoms

r′, t′
$← ZN , and blinding randoms W ′1,W

′
2,W

′
3

$← Gp3 , {W ′a,i,W ′d,i}i∈W (P ′), and

{W ′b,i,W ′c,i}i∈W (P ′) and output skP ′ = (a′1, a
′
2, a
′
3, b
′, c′, d′), where

Scalable Wildcarded Identity-Based Encryption 21

a′1 = a1 · (
∏

i∈W (P ′)∩W (P)

b
P ′i
i) ·

∏
i∈W (P ′)

(h
P ′i
i ·W

′
a,i)

r′ ,

a′2 = a2 · gr
′

1

a′3 = a3 · gt
′

1

b′ = {b′i = bi · hr
′

i ·W ′b,i}i∈W (P ′)

c′ = {c′i = ci · ht
′

i ·W ′c,i}i∈W (P ′)

d′ = {d′i = di ·
ht
′

i

h
P ′ir
′

i

·W ′d,i}i∈W (P ′)∩W (P)

∪ {d′i =
ci

b
P ′i
i

· ht
′

i

h
P ′ir
′

i

·W ′d,i}i∈W (P ′)∩W (P)

Encrypt(pp, P , m): To encrypt a message m ∈ G to pattern P = (P1, . . . , PL)

under pp, choose s
$← Z∗p, and compute C = (C1, C2, C3, C4)

C1 = gs1, C2 = (
∏

i∈W (P)

hPii)s

C3 = m · e(γ, k1)s, C4 = (
∏

i∈W (P)

hi)
s

Decrypt(skP , C, P
′): The decryption is similar to the decryption in section 4.2,

since the elements in Gp1 will work in an equivalent way compared to the original
SWIBE construction. Consider patterns P and P ′ ∈ (Z∗p ∪ {∗})L, where P is
a key pattern and P ′ is a ciphertext pattern. To decrypt a given ciphertext
C = (C1, C2, C3, C4) with private key skP = (a1, a2, a3, b, c, d), compute a′1 =

a1 ·
∏
i∈W (P ′)∩W (P) b

P ′i
i ·

∏
i∈W (P ′)∩W (P) ci ·

∏
i∈W (P ′)∩W (P) di and output

C3 ·
e(a2, C2) · e(a3, C4)

e(C1, a′1)
= m

The fact that decryption works is similar to the decryption of original SWIBE
construction in section 4.2. Note that the blinding factors W from subgroup Gp3
make no difference, since they will be eliminated in the pairing operations due
to the orthogonal property in 6.1.

6.4 Security Proof

In this section, we prove that our fully-secure SWIBE scheme in 6.3 is IND-ID-
CPA-secure under the Lewko and Waters assumptions (LW.1-LW.3) in 6.2. The
security proof is based on the hybrid games.

Before presenting hybrid games, we define two additional structures used in
the proofs of security similar to [LW10, ACP12]:

22 Jihye Kim, Seunghwa Lee, Jiwon Lee, and Hyunok Oh(�)

Semi-Functional (SF) Ciphertext. Let g2 denote a generator of Gp2 . An SF
ciphertext is created as follows: first, we use the encryption algorithm to form a

normal ciphertext C ′ ← [C ′1, C
′
2, C

′
3, C

′
4]. We choose random exponents x

$← ZN
and zc2, zc4

$← ZN . Then we set: C1 = C ′1 · gx2 , C2 = C ′2 · g
x·zc2
2 , C3 = C ′3, C4 =

C ′4 · g
x·zc4
2 .

Semi-Functional (SF) Keys. To create a SF key, a normal secret key (a′1, a
′
2, a
′
3, b
′, c′, d′)

is first created, using the key derivation algorithm with pp, msk, and pattern

P . Then randoms are chosen: y, zk1, zk2, zk3
$← ZN , (zkb,i, zkc,i

$← ZN)i∈W (P),

and (zkd,i
$← ZN)i∈W (P). Then the SF secret key is constructed as follows.

a1 = a′1 · g
y·zk1
2 , b = {bi = b′i · g

y·zkb,i
2 }i∈W (P)

a2 = a′2 · g
y·zk2
2 , c = {ci = c′i · g

y·zkc,i
2 }i∈W (P)

a3 = a′3 · g
y·zk3
2 , d = {di = d′i · g

y·zkd,i
2 }i∈W (P)

Notice that SF ciphertexts can still be decrypted by normal secret keys and
SF secret keys can still be used to decrypt normal ciphertext. But an SF cipher-
text, for pattern P ′, and an SF secret key, for pattern P , lead to a random de-
cryption with high probability. In fact the decryption algorithm will compute the
blinding factor multiplied by the additional term e(g2, g2)xy·(zk2·zc2+zk3·zc4−zk1).
If zk2 · zc2 + zk3 · zc4 = zk1, decryption will still work. Such ciphertexts and
secret keys are defined as nominally SF. This concept is used during the security
proofs, and the nominality is hidden even to an unbounded adversary under the
constraints of the security game.

Theorem 3. If Assumptions LW.1, LW.2, and LW.3 hold, then our fully-secure
SWIBE scheme is IND-ID-CPA (or IND-WWID-CPA [ACP12]) secure.

Proof. We prove the security via sets of hybrid games, and by showing that two
games are computationally indistinguishable in each step. For the sketch of our
proof, we first define the series of games. Let us assume PPT adversary A with q
key queries. Then we define q+5 games between A and a challenger C as follows.

– Gamereal : It is the real IND-ID-CPA (or IND-WWID-CPA [ACP12]) se-
curity game.

– Gamegen : This game is same as Gamereal, except the fact that all key
queries from the adversary is answered by fresh key generation algorithm.
In the security proof, we use the term key generation for the key delegation
from msk, which is equivalent.

– Gamepre : It is a same game as Gamegen, except the fact that the adversary
cannot query for keys if the pattern is a prefix of the challenge pattern mod
p2. We say that the pattern P is a prefix of P ∗ mod p2 if there exists i s.t.
Pi 6= P ∗i mod N and Pi = P ∗i mod p2.

– Game0 : It is a same game as Gamepre, except the fact that the challenge
ciphertext C1 ∼ C4 is given as a SF ciphertext.

Scalable Wildcarded Identity-Based Encryption 23

– Game1∼q : For k from 1 to q, Gamek is same as Game0 except the fact that
the first k keys are given as SF keys. The other keys are given as normal
keys from the key generation algorithm.

– Gamerand : This game is same as Gameq, but where C3 of challenge ci-
phertext has a random element in GT . Since C3 is distorted with a random
element, the ciphertext is now independent from the message and the adver-
sary can have no advantage.

With the defined games above, we now introduce the outline of our hybrid
games as follows.

1. Gamereal = Gamegen. Since the key generation algorithm has an identi-
cal distribution, it is exactly the same to call key delegation or fresh key
generation from the adversary’s view.

2. Gamegen ≈ Gamepre. We require that the adversary cannot obtain the key
for prefix pattern of challenge ciphertext, to prevent the adversary to find
the nominality in SF randoms. We prove the hybrid game by showing that
prefix query itself can break the Assumption LW.2.

3. Gamepre ≈ Game0. We construct algorithm B which breaks Assumption
LW.1 with a help of SWIBE CPA distinguisher A. The nature of the chal-
lenge ciphertext (normal or SF) is decided by T given from the Assumption
LW.1, which indicates that two games are indistinguishable from the adver-
sary’s view.

4. Gamek−1 ≈ Gamek. We construct algorithm B which breaks Assumption
LW.2 with a help of SWIBE CPA distinguisher A. The nature of the k-th
key (normal or SF) is decided by T given from the Assumption LW.2, which
indicates that two games are indistinguishable from the adversary’s view.

5. Gameq ≈ Gamerand. We construct algorithm B which breaks Assumption
LW.3 with a help of SWIBE CPA distinguisher A. The nature of the ci-
phertext (SF or random) is decided by T given from the Assumption LW.3,
which indicates that two games are indistinguishable from the adversary’s
view. This concludes the proof, since the adversary can have no advantage
in the final game.

We now give formal proofs for each hybrid game stated above.

1) Gamereal = Gamegen.
The delegated key from the key delegation algorithm has an identical distribution
as the freshly generated key from the key generation algorithm. Therefore, it is
straightforward that it is exactly the same whether to provide the key with
delegating the previous key or to provide the key from a fresh call to the key
generation algorithm.

2) Gamegen ≈ Gamepre.
We define that pattern P = (P1, · · · , Pk) is a prefix of pattern P ∗ = (P ∗1 , · · · , P ∗j)
modulo p2, if there exists Pi and P ∗i such that Pi 6= P ∗i mod N and Pi = P ∗i
mod p2. In this case, p2 divides Pi − P ∗i , and therefore a = gcd(Pi − P ∗i , N) is a

24 Jihye Kim, Seunghwa Lee, Jiwon Lee, and Hyunok Oh(�)

nontrivial factor of N . Since p2 divides a, let us set b = N/a. There are two cases:
(1) b is in ord(g1), or (2) b is not in ord(g1) but in ord(g3). Suppose that case 1
has probability of at least ε/2. We describe algorithm B that breaks Assumption
LW.2. B receives (G, g1, g3, X1X2, Y2X3) and T and constructs pp and msk by

choosing α, δ
$← ZN and ηi

$← ZNi∈[L], and setting pp ← (N, g1, γ = gα1 , k1 =

gδ1, g3, {hi = gηi1 }i∈[L]) and msk ← kα1 . Then B runs A on input pp and uses
knowledge of msk to answer A’s queries. At the end of the game, B computes
a = gcd(Pi − P ∗i , N), for all P s which are patterns for the key queries that A
has asked, and for P ∗ which is the challenge pattern. If e((X1X2)a, Y2X3) is the
identity element of GT , B tests if e(T b, X1x2) is also the identity element of GT .
When the second test is successful, B declares T ∈ Gp1p3 . Otherwise, B declares
T ∈ Gp1p2p3 . It is from the simple fact that p2 divides a and p1 = ord(g1) divides
b. For case 2, B can break Assumption LW.2 in the same way by exchanging the
roles of Gp1 and Gp3 , i.e., p1 and p3.

3) Gamepre ≈ Game0.
We construct algorithm B that breaks Assumption LW.1 with the help of SWIBE
CPA distinguisher A. B first receives (G, g1, g3) and T from LW.1. Then B starts
the IND-ID-CPA game with A and simulates Gamepre or Game0 depending on
the nature of T .

Setup: B chooses α, δ
$← ZN , (ηi

$← ZN)i∈[L], then set pp ← (g1, γ = gα1 , k1 =

gδ1, g3, {hi = gηi1 }i∈[L]) and msk ← kα1 .

Key derivation queries: B can answer all key generation queries from A since B
knows msk.

Challenge: A sends B challenge message m0,m1 ∈ {0, 1}∗ and a challenge pattern
P = (P1, · · · , Pl) where 0 ≤ l ≤ L. B flips a coin ζ ← {0, 1} and computes the
challenge ciphertext C as follows:

C1 = T, C2 =
∏

i∈W (P)

T ηi·Pi

C3 = m · e(γ, T δ), C4 =
∏

i∈W (P)

T ηi

Notice that if T ∈ Gp1 , then T can be written as gs1 and C is a normal
ciphertext with randomness s. Instead, if T ∈ Gp1p2 , then T can be written as
gs1g

x
2 and C is SF with randomness s, x, zc2 = ηi · Pi, zc4 = ηi.

4) Gamek−1 ≈ Gamek.
We construct algorithm B that breaks Assumption LW.2 with the help of SWIBE
CPA distinguisher A. B first receives (G, g1, g3, X1X2, Y2X3) and T from LW.2.
Then B starts the IND-ID-CPA game with A and simulates Gamek−1 or Gamek
depending on the nature of T .

Setup: B chooses α, δ
$← ZN , (ηi

$← ZN)i∈[L], then set pp ← (g1, γ = gα1 , k1 =

gδ1, g3, {hi = gηi1 }i∈[L]) and msk ← kα1 .

Scalable Wildcarded Identity-Based Encryption 25

Key derivation queries: There are three cases for the i-th key query with pattern
P .

i) case 1: i < k. Choose SF randoms zk1, zk2, zk3
$← ZN , and (zkb,i, zkc,i

$←
ZN)i∈W (P), and (zkd,i

$← ZN)i∈W (P). Then choose random r, t
$← ZN ,W1,W2,W3

$←

Gp3 , {Wa,i,Wd,i
$← Gp3}i∈W (P), and {Wb,i,Wc,i

$← Gp3}i∈W (P). Then we set the
skP as follows:

a1 = msk ·
∏

i∈W (P ′)

(hPii ·Wa,i)
r · (Y2X3)zk1 ·W1

a2 = gr1 · (Y2X3)zk2 ·W2

a3 = gt1 · (Y2X3)zk3 ·W3

b = {bi = hri · (Y2X3)zkb,i ·Wb,i}i∈W (P)

c = {ci = hti · (Y2X3)zkc,i ·Wc,i}i∈W (P)

d = {di = hti/h
P ′ir
i · (Y2X3)zkd,i ·Wd,i}i∈W (P)

By writing Y2 as gy2 , we have that this is a properly distributed SF key with
randomness y, zk1∼3, zkb∼d.

ii) case 2: i > k. B runs key generation algorithm using msk.

iii) case 3: i = k. To answer the k-th key query, B chooses r′, t′
$← ZN ,

W1,W2,W3
$← Gp3 , {Wa,i,Wd,i

$← Gp3}i∈W (P), and {Wb,i,Wc,i
$← Gp3}i∈W (P).

Then the skP is constructed as follows:

a1 = msk ·
∏

i∈W (P ′)

(T ηi·Pi ·Wa,i)
r′ ·W1

a2 = T r
′
·W2

a3 = T t
′
·W3

b = {bi = T ηi·r
′
·Wb,i}i∈W (P)

c = {ci = T ηi·t
′
·Wc,i}i∈W (P)

d = {di = T ηi(t
′−Pir′) ·Wd,i}i∈W (P)

Notice that, if T ∈ Gp1p3 , T can be written as gr1g
w
3 and the k-th secret key

is a normal key with randomness rr′, rt′. Otherwise, if T ∈ Gp1p2p3 , T can be
written as gr1g

y
2g
w
3 and the k-th secret key is SF with randomness rr′, rt′, y, zk1 =∑

i∈W (P) ηiPi, zk2 = r′, zk3 = t′, zkb,i = ηir
′, zkc,i = ηit

′, zkd,i = ηi(t
′ − Pir′).

Challenge: A sends B challenge message m0,m1 ∈ {0, 1}∗ and a challenge pattern
P = (P1, · · · , Pl) where 0 ≤ l ≤ L. B flips a coin ζ ← {0, 1} and computes the
challenge ciphertext C as follows:

26 Jihye Kim, Seunghwa Lee, Jiwon Lee, and Hyunok Oh(�)

C1 = X1X2, C2 =
∏

i∈W (P)

(X1X2)ηi·Pi

C3 = m · e(γ, (X1X2)δ), C4 =
∏

i∈W (P)

(X1X2)ηi

Notice that T can be written as gs1, and therefore this is a proper SF cipher-
text with randomness s, x, zc2 =

∑
i∈W (P) xηiPi, zc4 =

∑
i∈W (P) xηi.

Since the k-th secret key pattern is not a prefix of the challenge pattern mod
p2, we have that zk set and zc set are independent and randomly distributed.
If B attempts to test whether the k-th key is SF by using the above procedure
(to create an SF ciphertext for k-th secret key pattern), then we will have zk2 ·
zc2 + zk3 · zc4 = zk1, which is nominally SF, and thus decryption always works
(independently of T).

5) Gameq ≈ Gamerand.
We construct algorithm B that breaks Assumption LW.3 with the help of SWIBE
CPA distinguisher A. B first receives (G, g1, g2, g3, gα1X2, g

δ
1, g

s
1Y2) and T from

LW.3. Then B starts the IND-ID-CPA game with A and simulates Gameq or
Gamerand depending on the nature of T .

Setup: B chooses (ηi
$← ZN)i∈[L], then set pp← (g1, γ = gα1X2, k1 = gδ1, g3, {hi =

gηi1 }i∈[L]).

Key derivation queries: For pattern P = (P1, · · · , Pl) where 0 ≤ l ≤ L, B chooses

zk′1, zk
′
2, zk

′
3

$← ZN , and (zk′b,i, zk
′
c,i

$← ZN)i∈W (P), and (zk′d,i
$← ZN)i∈W (P).

Next it chooses r, t
$← ZN , W1,W2,W3

$← Gp3 , {Wa,i,Wd,i
$← Gp3}i∈W (P), and

{Wb,i,Wc,i
$← Gp3}i∈W (P). Then it creates a SF secret key by setting:

a1 = (gα1X2) ·
∏

i∈W (P)

(hPii ·Wa,i)
r · gzk

′
1

2 ·W1

a2 = gr1 · g
zk′2
2 ·W2

a3 = gt1 · g
zk′3
2 ·W3

b = {bi = hri · g
zk′b,i
2 ·Wb,i}i∈W (P)

c = {ci = hti · g
zk′c,i
2 ·Wc,i}i∈W (P)

d = {di = hti/h
P ′ir
i · gzk

′
d,i

2 ·Wd,i}i∈W (P)

Challenge: A sends B challenge message m0,m1 ∈ {0, 1}∗ and a challenge pattern
P = (P1, · · · , Pl) where 0 ≤ l ≤ L. B flips a coin ζ ← {0, 1} and computes the
challenge ciphertext C as follows:

Scalable Wildcarded Identity-Based Encryption 27

C1 = gs1Y2, C2 =
∏

i∈W (P)

(gs1Y2)ηi·Pi

C3 = m · T, C4 =
∏

i∈W (P)

(gs1Y2)ηi

This sets zc2 =
∑
i∈W (P) ηiPi, zc4 =

∑
i∈W (P) ηi. We note that gηi1 are el-

ements of Gp1 , so when ηi are randomly chosen from ZN , their value mod p1
and mod p2 are random and independent. We observe that, if T = e(g1, g

δ
1)αs,

then the challenge ciphertext is a properly distributed SF with message mζ .

Otherwise, if T
$← GT , then the ciphertext is an SF with a random message.

Since the adversary has no advantage in Gamerand (where ζ is information-
theoretically hidden), and by hybrid game Gamerand is indistinguishable from
GameReal, we conclude that the adversary in GameReal has a negligible advan-
tage.

7 Experiment

In this section, we measure the execution times of encryption and decryption
of the proposed SWIBE, WIBE [ACD+06], wicked-IBE [AKN07], WW-IBE
[ACP12], and CCP-ABE [ZH10]. We have implemented the algorithms based
on the PBC (pairing based cryptography) library a param and executed them
on Intel Edison with a 32-bit Atom processor 500 MHz and ublinux 3.10.17.

5 10 15 20
10−1

100

101

102

The maximal depth (L) of a pattern

T
im

e
(s

)

SWIBE-enc

WIBE-enc

CCP-ABE-enc

SWIBE-dec

WIBE-dec

CCP-ABE-dec

Fig. 1: Encryption and decryption time in SWIBE, WIBE, and CCP-ABE

Figure 1 illustrates encryption and decryption times of SWIBE, WIBE, and
CCP-ABE by varying the maximal hierarchy depth (L) from 5 to 20. Note that
in WIBE and CCP-ABE, only a ciphertext can include wildcards, while the

28 Jihye Kim, Seunghwa Lee, Jiwon Lee, and Hyunok Oh(�)

proposed SWIBE allows wildcards in both key and ciphertext. While WIBE
performs point multiplications to convert a ciphertext to another ciphertext for
a specific matching ID, SWIBE computes point additions to replace any ID by a
wildcard. In CCP-ABE, each bit in an ID is regarded as an attribute where each
pattern (ID) is 32 bit. Since the decryption requires pairing operations of which
number is proportional to the number of attributes in CCP-ABE, the decryption
is very slow. On the other hand, since point additions is negligible compared with
a pairing operation, decryption time of SWIBE remains as constant. SWIBE
improves decryption performance by up to 3 times and 650 times compared
with WIBE and CCP-ABE.

5 10 15 20

0.2

0.4

0.6

0.8

1

The maximal depth (L) of a pattern

T
im

e
(s

)

SWIBE-enc

wicked-IBE-enc

SWIBE-dec

wicked-IBE-dec

Fig. 2: Encryption and decryption time in SWIBE and wicked-IBE

Figure 2 compares encryption and decryption performance between SWIBE
and wicked-IBE. In this case, a private key may include wildcards but no wild-
card is allowed in a ciphertext in wicked-IBE. Since a point multiplication is
required to decrypt a ciphertext in both SWIBE and wicked-IBE, both schemes
show similar encryption and decryption performance even though SWIBE allows
wildcards in a ciphertext which is prohibited in wicked-IBE.

Figure 3 compares encryption and decryption performance between SWIBE
and WW-IBE. Both SWIBE and WW-IBE allow wildcards in a key and a cipher-
text. While a point multiplication is required to decrypt a ciphertext in SWIBE,
2L number of pairing operations are required in WW-IBE. SWIBE improves
decryption performance by 10 times compared with WW-IBE.

8 Conclusion

In this paper, we propose a new wildcard identity-based encryption called SWIBE,
define appropriate security notions for SWIBE, and provide an efficient provably
secure SWIBE construction with constant size ciphertext. Our SWIBE scheme

Scalable Wildcarded Identity-Based Encryption 29

5 10 15 20

0

2

4

6

The maximal depth (L) of a pattern

T
im

e
(s

)

SWIBE-enc

WW-IBE-enc

SWIBE-dec

WW-IBE-dec

Fig. 3: Encryption and decryption time in SWIBE and WW-IBE

allows wildcards for both key derivation and encryption, and it is the first suc-
cess on constructing a constant-size ciphertext in a wildcarded identity-based
encryption (WIBE) with fast decryption. We prove that our scheme is semanti-
cally secure based on L-BDHE assumption. In addition, we extend it to be CCA
secure. Experimental results show that the proposed SWIBE improves the de-
cryption performance by 3, 10, and 650 times compared with WIBE, WW-IBE,
and CCP-ABE, respectively. It is our future work to construct a fully secure
efficient scheme with a decent reduction loss factor in the standard model by
considering a different setting such as a composite order group.

References

ACD+06. Michel Abdalla, Dario Catalano, Alexander W. Dent, John Malone-Lee,
Gregory Neven, and Nigel P. Smart. Identity-based encryption gone wild.
In International Colloquium on Automata, Languages, and Programming,
pages 300–311. Springer, 2006.

ACP12. Michel Abdalla, Angelo D. Caro, and Duong H. Phan. Generalized key del-
egation for wildcarded Identity-Based and Inner-Product encryption. IEEE
Trans. Information Forensics and Security, 7(6):1695–1706, 2012.

AKN07. Michel Abdalla, Eike Kiltz, and Gregory Neven. Generalized key delega-
tion for hierarchical identity-based encryption. In European Symposium on
Research in Computer Security, pages 139–154. Springer, 2007.

BB11. Dan Boneh and Xavier Boyen. Efficient selective Identity-Based encryption
without random oracles. J. Cryptology, 24(4):659–693, 2011.

BBG05. Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based
encryption with constant size ciphertext. In Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, pages
440–456. Springer, 2005.

BDNS07. James Birkett, Alexander W. Dent, Gregory Neven, and Jacob C. N.
Schuldt. Efficient chosen-ciphertext secure identity-based encryption with

30 Jihye Kim, Seunghwa Lee, Jiwon Lee, and Hyunok Oh(�)

wildcards. In Australasian Conference on Information Security and Privacy,
pages 274–292. Springer, 2007.

BF01. Dan Boneh and Matt Franklin. Identity-based encryption from the weil
pairing. In Annual International Cryptology Conference, pages 213–229.
Springer, 2001.

BF03. Dan Boneh and Matthew Franklin. Identity-based encryption from the weil
pairing. SIAM journal on computing, 32(3):586–615, 2003.

BGW05. Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast
encryption with short ciphertexts and private keys. In Annual International
Cryptology Conference, pages 258–275. Springer, 2005.

BH08. Dan Boneh and Michael Hamburg. Generalized identity based and broad-
cast encryption schemes. In International Conference on the Theory and Ap-
plication of Cryptology and Information Security, pages 455–470. Springer,
2008.

BSW07. John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-Policy
Attribute-Based Encryption. pages 321–334. IEEE Computer Society, 2007.

CHK04. Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security
from identity-based encryption. In International Conference on the The-
ory and Applications of Cryptographic Techniques, pages 207–222. Springer,
2004.

EMN+09. Keita Emura, Atsuko Miyaji, Akito Nomura, Kazumasa Omote, and
Masakazu Soshi. A Ciphertext-Policy Attribute-Based encryption scheme
with constant ciphertext length. In Information Security Practice and Ex-
perience, 5th International Conference, ISPEC, pages 13–23, 2009.

Jou04. Antoine Joux. Multicollisions in iterated hash functions. application to
cascaded constructions. In Annual International Cryptology Conference,
pages 306–316. Springer, 2004.

LLWQ14. Weiran Liu, Jianwei Liu, Qianhong Wu, and Bo Qin. Hierarchical Identity-
Based broadcast encryption. In ACISP, volume 14, pages 242–257. Springer,
2014.

LW10. Allison Lewko and Brent Waters. New techniques for dual system encryption
and fully secure HIBE with short ciphertexts. In Theory of Cryptography
Conference, pages 455–479. Springer, 2010.

Sha84. Adi Shamir. Identity-based cryptosystems and signature schemes. In Work-
shop on the Theory and Application of Cryptographic Techniques, pages 47–
53. Springer, 1984.

Wat05. Brent Waters. Efficient identity-based encryption without random ora-
cles. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 114–127. Springer, 2005.

ZH10. Zhibin Zhou and Dijiang Huang. On efficient ciphertext-policy attribute
based encryption and broadcast encryption: extended abstract. In Pro-
ceedings of the 17th ACM Conference on Computer and Communications
Security, CCS, pages 753–755, 2010.

	Scalable Wildcarded Identity-Based Encryption

