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An Efficient Key Mismatch Attack on the NIST
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Abstract—Kyber is a KEM based their security on the Modular
Learning with Errors problem and was selected in the second
round of NIST Post-quantum standardization process. Before
we put Kyber into practical application, it is very important to
assess its security in hard practical conditions especially when the
Fujisaki-Okamoto transformations are neglected. In this paper,
we propose an efficient key mismatch attacks on Kyber, which can
recover one participant’s secret key if the public key is reused.
We first define the oracles in which the adversary is able to
launch the attacks. Then, we show that by accessing the oracle
multiple times, the adversary is able to recover the coefficients in
the secret key. Furthermore, we propose two strategies to reduce
the queries and time in recovering the secret key. It turns out that
it is actually much easier to use key mismatch attacks to break
Kyber than NewHope, another NIST second round candidate,
due to their different design structures. Our implementations
have demonstrated the efficiency of the proposed attacks and
verified our findings. Another interesting observation from the
attack is that in the most powerful Kyber-1024, it is easier to
recover each coefficient compared with that in Kyber-512 and
Kyber-768. Specifically, for Kyber-512 on average we recover each
coefficient with 2.7 queries, while in Kyber-1024 and 768, we only
need 2.4 queries. This demonstrates further that implementations
of LWE based schemes in practice is very delicate.

Index Terms—Modular-LWE, Kyber, key reuse attacks, secu-
rity analysis;

I. INTRODUCTION

Public key cryptographic algorithms such as public key
encryption (PKE), signatures and key exchange schemes have
played fundamental roles in securing communications over the
Internet. However, these widely used building blocks base their
security on difficult problems like big integer factorization and
discrete logarithms problems, which could be broken if there
come the quantum computers. With recently reported rapid
progresses in quantum technology [1], the transition from the
currently used public key cryptographic blocks to their post-
quantum counterparts has become urgent.

Since 2016 [2], the National Institute of Standards and
Technology (NIST) has began collecting post-quantum crypto-
graphic algorithms from all over the world. As pointed out in
their 2016 report (NISTIR 8015 [3]), the goal of post-quantum
cryptography is to establish cryptographic systems that are
secure against both quantum and classical computers, inte-
grating with existing communication protocols and networks.
On December 20, 2017, 69 algorithms were accepted as the
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first-round candidates, which also marked the beginning of
the NIST post-quantum cryptography standardization process.
On January 30, 2019, in the report (NISTIR 8240 [4]) NIST
announced the second round of candidates. In the past August
NIST hosted the second NIST PQC standardization confer-
ence.

The Key Encapsulation Mechanisms (KEMs), which allow
the communicating parties to obtain a shared key by using
a public key mechanism, have gained significant attention in
the competition. Among these 26 PKE/KEM candidates in
the second round of the NIST standardization process, 12
of them are based on lattice [4]. The advantages of lattice-
based constructions include strong security guarantees based
on worst-case hardness, as well as its high efficiency in
implementations. The main difficulty in constructing a lattice-
based Diffie-Hellman-like key exchange protocol is how to
effectively reconcile errors in order to negotiate a consistent
shared key. In [5], Ding, Xie, and Lin first proposed a “robust
extractor” to reconcile the errors, and one of the participants
needs to send an additional signal message to the other party,
so that the two participants can agree on a shared key. Ding,
Xie, and Lin’s schemes base their security on the Learning
with Errors (LWE) problem or Ring Learning with Errors
(R-LWE) problem. The latter can be seen as the polynomial
version of the former. On NIST’s second-round list, there are
LWE-based KEM Frodo, and R-LWE-based KEM NewHope.
Kyber is another candidate, whose security is based on the
Module Learning with Errors (M-LWE) problem. The M-LWE
problem can be viewed as the combination of the LWE and
R-LWE problems.

However, before we put these lattice-based KEMs into prac-
tical application, it is of great importance to assess their secu-
rity in hard practical conditions. From history we know that it
happens frequently that the important secure transformations
such as the Fujisaki-Okamoto transformation are neglected in
the implementation, either for the reason of efficiency or being
lazy to avoid the additional work. Therefore, in these cases we
should keep in mind how to deal with the key reuse attacks
against them. In PQCrypto 2019 [6], NIST defined the safety
targets of the PKE/KEM schemes, which require that these
schemes need to thwart the key reuse attacks. Reusing the key
may cause the leakage of private keys, but in some situations
the key must be reused, such as that in TLS 1.3 [7]. The 0-RTT
(Zero Round Trip Time) mode is a major innovation in TLS
1.3 that saves one round trip time for connections during the
handshake phase. This requires both the client and the server
to maintain a long-term public key.

In 2015, Kirkwood et al. from the US National Security A-



IEEE TRANSACTIONS ON , 2019 2

gency (NSA) announced that there may exist key reuse attacks
against the lattice-based post-quantum key exchange protocol,
without giving any details [8]. Later, Fluhrer showed in [9] that
if the public key of the R-LWE-based key exchange is reused,
then this protocol could be broken. In [10], Ding, Alsayigh and
Saraswathy first applied the signal leakage attack to the key
exchange protocol in [5] by using the leaked information about
the secret key from the signal messages. Then, Liu, Zheng and
Zou proposed another signal leakage attack [11] against the
reconciliation-based NewHope-Usenix key exchange protocol
[12]. Zhao and Gong proposed a small field attack for R-LWE-
Based one-pass authenticated key exchange using the algebraic
structure in R-LWE [13].

The idea of key mismatch attack was first proposed by
Ding, Fluhrer and Saraswathy [14], which is proposed against
a one pass case of the protocol in [5]. In a key mismatch
attack, a participant’s public key is reused and its private key is
recovered by comparing whether the shared keys between two
participants match or not. In [15], Bauer et al. proposed a key
mismatch attack against NewHope KEM [16]. Unfortunately,
there are some problems with the attack which cannot recover
all the private keys ranging from −6 to 4 as they wish. In [17],
Qin, Cheng and Ding proposed an improved and complete key
mismatch attack to recover all private keys ranging from −8
to 8 in NewHope KEM [16] with extremely high accuracy and
efficiency. In EUROCRYPT 2019, Băetu et al. gave a bound on
the queries needed in the key mismatch attack on the chosen
plaintext attack (CPA) versions of a number of postquantum
cyrptosystem, as well as a attack on the chosen ciphertext
attack (CCA) versions when they have quantum access to the
decryption oracle [18]. But they did not analysis the security of
Kyber under key mismatch attacks. Since Kyber is designed in
a different algebraic structure, it is appealing to assess Kyber’s
security when the public key is reused.

Contributions. In this paper, we propose an efficient key
reuse attack on the Kyber KEM. The main contributions of
this paper include:

1) We precisely define the security oracle in which our
proposed attack succeeds;

2) We propose key mismatch attacks on the Kyber-KEM
with three security levels, i.e., the Kyber-512, Kyber-768,
and Kyber-1024. Furthermore, we propose two strategies,
to significantly reduce the needed queries and time in the
original attack.

3) The implementations have demonstrate the efficiency of
the proposed attacks. Our best record is that we can
recover one coefficient in the secret key in only 2 queries.
An interesting observation from the implementations is
that in the most powerful Kyber-1024, it is easier to
recover each coefficient compared with that in Kyber-512
and Kyber 768. Specifically, in Kyber-512 on average we
recover each coefficient in 2.7 queries, while in Kyber-
768 and 1024, we only need 2.4 queries.

Differences of key mismatch attacks on NewHope and
Kyber. We find that it is much easier to use key mismatch
attacks to break Kyber than that on NewHope, due to the
different design structures of Kyber and Newhope. First, both

Compress and Decompress functions are used in Kyber and
NewHope. But the additional Encode and Decode functions
used in NewHope, which process four coefficients at the
same time, bring challenges to the key mismatch attacks on
NewHope. Second, the ranges of coefficients in Kyber’s secret
key is from −2 to 2, while in NewHope it is from −8 to 8.
The smaller ranges of Kyber result in less queries to launch the
attack. Specifically, on average we only need 2,475 queries to
recover all the coefficients in Kyber-1024. While in Newhope-
1024, which achieves the same security as that in Kyber-
1024, on average we need 882, 794 queries. From another
perspective, in Kyber-1024 on average we need 2.4 queries
to recover each coefficient, while in Newhope-1024, 862.1
queries are needed.

Organization of this paper. In Section II, we introduce
the basic notations and the underlying hard problems, as well
as the Kyber KEM. Security analysis of Kyber with three
security levels are given in Section III, IV, and V, respectively.
In Section VI we go on proposing two improved attacks
that effectively reduce the needed time and queries in the
original attacks. The experiments in Section VII demonstrate
the efficiency of our proposed attacks, and the conclusion is
given in Section VIII.

II. PRELIMINARIES

A. Notations

Set Zq the ring with all elements are integers modulo q,
and Zq[x] the polynomial ring, where all the polynomials in
Zq[x] are with coefficients selected from Zq . Then, we further
define the polynomial ring Rq = Zq[x]/(xn+1), in which for
every polynomial f(x) = a0 + a1x + · · · + an−1x

n−1 ∈ Rq ,
each coefficient ai ∈ Zq (0 ≤ i ≤ n− 1) and the polynomial
additions and multiplications are operated modulo xn+1. All
polynomials are in bold-lower case, and we treat a polynomial
c ∈ Rq the same with its vector form (c[0], · · · , c[n − 1]),
here c[i] (0 ≤ i ≤ n − 1) represents the i-th coefficient of
the polynomial c. By default, all the vectors will be column
vectors. Bold upper-case letters represent matrices. For a ma-
trix A ∈ Rk×kq , we denote AT ∈ Rk×kq as its transpose. The
operation bxc represents the maximum integer not exceeding
x, and dxc is the rounding function, i.e. dxc = bx+ 1

2c.

B. LWE & R-LWE & M-LWE

In the groundbreaking work of Ajtai in 1996 [19], he point-
ed out that we can use lattice to build cryptosystems. In 2005,
Regev introduced the LWE problems [20] and a reduction from
solving the worst case problem in lattices to solving LWE
problem in the average case. But the matrices used in the
LWE problem incur heavy computation and communication
costs. In order to solve this problem, Lyubashesky, Peikert
and Regev in 2010 proposed the R-LWE problem, which is
to use the polynomials in the ring [21]. The hardness of R-
LWE is similar to LWE, which is based on a reduction from
solving the worst case problem in idea lattices to solving R-
LWE problem in the average case.

The Module-LWE can be viewed as a combination of the
LWE problem and Ring-LWE problem. Therefore, M-LWE
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enjoys the advantages of easy scalability in LWE problem
and the high efficiency in R-LWE problem. To be specific,
for a matrix A ∈ Rk×kq , s, e ∈ Bkη (Here Bη is a centered
binomial distribution), the M-LWE problem is to distinguish
(A,B = As + e) ∈ Rk×kq × Rkq from uniformly selected
(A,B) ∈ Rk×kq × Rkq . Kyber can change security levels by
simply changing the value of k, and the lattice used in Kyber
has less algebraic structure than that in Ring-LWE.

C. The Kyber KEM

TABLE I
PARAMETER CHOICES IN KYBER

n k q dPB
dvB Security

Kyber-512 256 2 3329 10 3 1 (AES-128)

Kyber-768 256 3 3329 10 4 3 (AES-192)

Kyber-1024 256 4 3329 11 5 5 (AES-256)

Kyber is an IND-CCA2-secure KEM, which is a part of the
Cryptographic Suite for Algebraic Cipher Suite (CRYSTALS)
[22–24]. Kyber’s security is based on the hardness of solving
the M-LWE problem, which makes Kyber different from
NewHope [16]. In Kyber, there is a public matrix A of size
k×k, and its elements are polynomials selected from Rq . The
secret key s and the errors e are k-dimensional vectors with
elements selecting from Bη . Here Bη is a centered binomial
distribution with η = 2, which can be simply calculated from
2∑
i=1

(bi− b′i), here bi and b′i are randomly selected from {0, 1}.
Specifically, the coefficients of the secret s are integers in the
range [−2, 2]. This has the advantage that the security level of
Kyber can be shifted by simply modifying k. More specifically,
there are three security levels in Kyber: Kyber-512, Kyber-768
and Kyber-1024, corresponding to k = 2 , k = 3, and k = 4,
respectively. Table I lists the parameters choices for different
security levels of Kyber. The parameter n is always set as 256
and q is always 3329.

In the following, we first give the definition of two func-
tions: Compressq(x, d) and Decompressq(x, d).

Definition 1: The Compression function: Zq → Z2d :

Compress(x, d)q =

⌈
2d

q
· x
⌋

(mod 2d). (1)

Definition 2: The Decompression function: Z2d → Zq:

Decompress(x, d)q =
⌈ q
2d
· x
⌋
. (2)

In the two functions, their input x is selected from Zq . When
the input is a polynomial, it means we will operate coefficients
of the polynomial one by one. Both equations (1) and (2) can
be extended to the polynomial f = f0+f1x+ · · ·+fn−1xn−1
as follows:

Compress(f , d)q =

(⌈
2d

q
· f0
⌋
(mod 2d),⌈

2d

q
· f1
⌋
(mod 2d), · · · ,

⌈
2d

q
· fn−1

⌋
(mod 2d) ) ,

(3)

Decompress(f, d)q =
(⌈ q

2d
· f0
⌋
,
⌈ q
2d
· f1
⌋
,

· · · ,
⌈ q
2d
· fn−1 c

)
.

(4)

Similarly, if the input is a matrix, we deal with each
column one by one. For matrix MT ∈ Rk×kq =
(m0,m1, · · · ,mk−1)

T , equations (1) and (2) can be extended
to:

Compress(MT , d)q = (Compress(m0, d)q,

Compress(m1, d)q, · · · ,Compress(mk−1, d)q ) ,
(5)

and

Decompress(MT , d)q = (Decompress(m0, d)q,

Decompress(m1, d)q, · · · ,Decompress(mk−1, d)q).
(6)

The value of d is set as dPB
or dvB

in different security
levels of Kyber in Table I.

In Table II, we describe the details of the Kyber IND-CCA2-
secure KEM. To simplify the security analysis, we remove
the number theory transformation (NTT) that has nothing to
do with security and is only used to accelerate polynomial
multiplication in Table II. The three different functions G(·),
H(·) and KDF(·) in Table II use SHA3-256, SHA3-512 and
SHAKE-256, respectively. The Kyber KEM consists of three
parts:

(1) Alice first randomly chooses a 32-bit z and call Gen() to
generate its key pair. In Step 2 of Table II, Alice first generates
a matrix A ∈ Rk×kq , then she will select s′A and eA uniformly
at random from Bη to compute the public key PA = As′A +
eA. The resulted sA is computed as (s′A||PA||H(PA)||z). The
output (sA,PA) is the key pair and PA will be sent to Bob.t

(2) After receiving PA sent by Alice, Bob will first generate
m

$←− {0, 1}256 and (K, r) = G(H(PA),m). Then he will
use PA,m and r as input to call Enc(). In Step 6 of Table
II, we can see that, Bob will generate a matrix A ∈ Rk×kq

first. Subsequently, he will select sB , eB and e′B uniformly at
random, and compute a public key PB = AT sB + eB as well
as vB = PTAsB+e′B+Decompressq(m, 1). After this, Bob
will compress PB , vB to c1, c2, respectively. In the end, he
will send PB and (c1, c2) to Alice, and compute the shared
key kB .

(3) When Alice receives PB and (c1, c2) sent by Bob,
she will generate z $←− {0, 1}256 first. Then, she will use her
secret key sA and (c1, c2) as inputs to call Dec() to get m′.
According to Step 9 of Table II, Alice can obtain uA and
vA by decompressing c1 and c2, respectively. With the output
m′ = Compressq(vA − sTA · uA, 1), Alice will use it to
generate (K ′, r′). She then uses PA, (K

′, r′) as input to call
Enc() and get the returned (c′1, c

′
2). Finally, Alice calculates

her shared key kA after checking that (c1, c2) and (c′1, c
′
2) are

equal.
In the following, we will use the key mismatch attack to

assess the security of the Kyber KEM when the public key
PA is reused. Due to the different security parameters in the
Compress and Decompress functions, we need to propose our
attacks on these three security levels one by one.
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TABLE II
KYBER IND-CCA2-SECURE KEM

Alice Bob

1. z $←− {0, 1}32
2. .Gen()

2.1 Generate matrix A ∈ Rk×k
q

2.2 Sample s′A, eA ∈ Rk
q

2.3 PA = As′A + eA
2.4 Output (s′A,PA)

3. sA = (s′A||PA||H(PA)||z) PA−−−−→ 4. m $←− {0, 1}256
5. (K, r) = G(H(m,PA))
6. .Enc(PA,m, r)

6.1 Generate matrix A ∈ Rk×k
q

6.2 Sample sB , eB ∈ Rk
q

6.3 Sample e′B ∈ Rq

6.4 PB = AT sB + eB
6.5 vB = PT

AsB + e′B +Decompressq(m, 1)

6.6 c1 = Compressq(PB , dPB
)

6.7 c2 = Compressq(vB , dvB )

6.8 Output (c1, c2)

8. .Dec(sA, (c1, c2))
(c1,c2)←−−−−− 7. kB = KDF(K,H(c1, c2))

8.1 uA = Decompressq(c1, dPB
)

8.2 vA = Decompressq(c2, dvB )

8.3 m′ = Compressq(vA − sTA · uA, 1)

8.4 Output m′

9. (K′, r′) = G(H(m′,PA))
10. (c′1, c

′
2) = Enc(PA,m′, r′)

11. if (c1, c2) = (c′1, c
′
2)

kA = KDF(K′,H(c′1, c
′
2))

else
kA = KDF(z,H(c′1, c

′
2))

Algorithm 1: The Oracle O
Input: (c1, c2)
Output: 1 or 0

1 z
$←− {0, 1}256;

2 uA = Decompressq(c1, dPB
);

3 vA = Decompressq(c2, dvB );
4 m′ = Compressq(vA − sTA · uA, 1);
5 (K′, r′) = G(H(PA),m′);
6 (c′1, c

′
2) = Enc(PA,m′, r′);

7 if (c1, c2) = (c′1, c
′
2) then

8 kA = KDF(K′,H(c′1, c
′
2));

9 Return 1;
10 else
11 kA = KDF(z,H(c′1, c

′
2));

12 Return 0;
13 end

III. THE KEY MISMATCH ATTACK ON KYBER-1024

In this section, we will propose the key mismatch attack
on Kyber-1024. According to Table I, we have (dPB

, dvB
) =

(11, 5) in Kyber-1024. We will first introduce how to build key
mismatch Oracles and then describe the parameters choice of
the adversary.

A. Key Mismatch Oracles

We build an oracle O that simulates Alice in Table II. In
Algorithm 1 we describe how the oracle O works. The input
of O is (c1, c2) and its output is 1 or 0. To be specific, first, O
chooses a randomly selected 256-bit secret z. By receiving the

inputs (c1, c2), O will use c1 and c2 to calculate uA and vA,
separately. Then O uses these two values to calculate m′ and
(K ′, r′). Subsequently, it calls Enc() with inputs PA,m′, r′
to get (c′1, c

′
2), if (c1, c2) = (c′1, c

′
2) holds. If O outputs 1,

the shared keys kA and kB match, otherwise the shared keys
mismatch.

Algorithm 2: The Oracle Om
Input: (c1, c2),m
Output: 1 or 0

1 uA = Decompressq(c1, dPB
);

2 vA = Decompressq(c2, dvB );
3 m′ = Compressq(vA − sTA · uA, 1);
4 if m′ = m then
5 Return 1;
6 else
7 Return 0;
8 end

According to Algorithm 1 , since (K, r) = G(H(PA),m)
and (K ′, r′) = G(H(PA),m′), if m = m′, then r = r′.
Notice that (c1, c2) and (c′1, c

′
2) are both generated by Enc(),

and their inputs are PA,m′, r′ and PA,m, r, respectively. It
is easy to verify that if m = m′, kA = kB , and the output of
O is 1. To propose our attack, we need to modify the Oracle
O in Algorithm 1. We refer to this Oracle as Om and the
main process is shown in Algorithm 2. The main difference
between the two oracles is that for the received m′, the Om
directly check whether m′ and m are equal or not. If so, O
will return 1 otherwise return 0.
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B. Parameter choices of the adversary

We assume that Alice’s public key PA is reused, and the
adversary A’s goal is to recover Alice’s secret key sA by
accessing Oracle Om multiple times. Therefore, the most
important thing for A is to properly select the input parameters
(c1, c2) and m in Om in a way such that these parameters
can be associated with the secret key sA and help A recover
it successfully.

First of all, A will select a 256-bit m as (1, 0, · · · , 0)
rather than choose it uniformly at random. In this case, except
m[0] = 1 all the other m[i] = 0 (i = 1, 2, . . . , 255).

Then, A will directly set c2 = h, and the range of h is from
0 to 31. This is because in Kyber-1024 dvB = 5 and c2 =

Compressq(vB , dvB ) = Compress(vB , 5)q =
⌈
32
q · vB

⌋
(mod 32).

Suppose that A wants to recover the k-th position in sTA
and k is an integer in [0,255]. A will choose PB carefully
rather than calculating it as PB = AT sB + eB . First he let
PB = 0, then in case k = 0, he set PB [0] =

⌈
q
32

⌋
, otherwise

he let PB [256 − k] = −
⌈
q
32

⌋
. Next, A will calculate c1 =

Compressq(PB , dPB
).

In the following we briefly explain why A sets PB in this
way. We have already known that when Om outputs 1 only
if m′ = m, that is m′[0] = m[0] = 1. Therefore, we only
need to consider the first position in m′. By calculating uA =
Decompressq(c1, dPB

), Om will get uA = PB and vA[0]
can be calculated as

vA[0] =Decompressq(c2[0], dvB )

=Decompressq(h, dvB )

=
⌈ q
25
h
⌋
=
⌈ q
32
h
⌋
.

Next we discuss the results of m′[0] in cases k = 0 and
k 6= 0, respectively.

1) If k = 0 and PB [0] =
⌈
q
32

⌋
, we have

m′[0] =Compressq((vA − sTAuA)[0], 1)
=Compressq(vA[0]− (sTAuA)[0], 1)

=

⌈
2

q

(
vA[0]− (sTAuA)[0]

)⌋
mod 2.

(7)

Since (sTAuA)[0] = sTA[0]uA[0] = sTA[0]
⌈
q
32

⌋
,

m′[0] =

⌈
2

q

(⌈ q
32
h
⌋
− sTA[0]

⌈ q
32

⌋)⌋
mod 2. (8)

When h ranges from 0 to 15, according to equation (8) we
can deduce that

m′[0] =

⌈
2

q

⌈ q
32

⌋
(h− sTA[0])

⌋
mod 2. (9)

2) If k = 1, 2, · · · , 255 and PB [256 − k] = −
⌈
q
32

⌋
, then

the constant term in sTAuA is

sTA[k]x
kuA[256− k]x256−k = sTA[k]

(
−
⌈ q
32

⌋)
x256

= sTA[k]
⌈ q
32

⌋
,

(10)

the last equation holds since x256 = −1 in Rq .

Then we have

m′[0] =

⌈
2

q

(⌈ q
32
h
⌋
− sTA[k]

⌈ q
32

⌋)⌋
mod 2. (11)

When h ranges from 0 to 15, according to equation (11) we
can conclude that

m′[0] =

⌈
2

q

⌈ q
32

⌋
(h− sTA[k])

⌋
mod 2. (12)

Since equations (9) and (12) are the same, in this way the
adversary A successfully associates his deliberately chosen
parameters m, c1 and c2 with m′ inOm. ThenA accessesOm
multiple times and get useful information from the feedbacks
to recover sA. It is worth noting that when h ranges from 16
to 31, equations (9) and (12) do not hold, but this will not
affect the recovery of the secret key.

C. The Proposed Attack

Algorithm 3: Key-recovery-Kyber-1024
Output: s′

1 Set m = {1, 0, · · · , 0}256;
2 for i := 0 to 3 do
3 for k := 0 to 255 do
4 PB = 0;
5 if k = 0 then
6 PB [0] =

⌈ q
32

⌋
;

7 else
8 PB [256− k] = −

⌈ q
32

⌋
;

9 c1 = Compressq(PB , dPB
);

10 for h := 0 to 31 do
11 c2 = 0 except c2[0] = h;
12 t = Oraclem((c1, c2),m);
13 if t = 1 then
14 break;
15 end
16 s′[i ∗ 256 + k] = Check(h);
17 end
18 end
19 Return s′

To launch the attack, the adversaryA deliberately selects the
parameters m, c1 and c2 as aforementioned. In the following,
we will briefly introduce our method to recover the exact value
of sA in an efficient way. The key mismatch attack includes
four steps:
Step 1: As we know, in Kyber-1024, sTA ∈ R4

q consists of
four 256-bit polynomials, and each polynomial is with 256
coefficients.t In this step, the adversary A chooses one of the
4 polynomials as the target. As shown in line 2 of Algorithm
3, i represents the i-th polynomial chosen by A.
Step 2: In this step, the adversary A also chooses a position
in the i-th polynomial of sTA, and he tries to recover the
value of the secret key corresponding to this position. More
specifically, k represents the coefficient in each polynomial,
which is shown in line 3 of Algorithm 3.
Step 3: In this step, the adversary A tries to find a proper
h by accessing the Oracle Om multiple times to help recover
the secret key.

Before accessing the Om, A chooses the parameters m, c1
and c2 as described previously. Then A sets PB [0] = 0 first,
if k = 0, PB [0] =

⌈
q
32

⌋
, otherwise PB [256 − k] = −

⌈
q
32

⌋
.

Next, we only analyze the case k = 0 in detail.
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When A accesses Om, it will return 0 or 1. The adversary
A starts from setting h = 0 to h = 31. When h = 0, according
to equation (9) we have

m′[0] =

⌈
2

q

⌈ q
32

⌋
(h− sTA[0])

⌋
mod 2

=

⌈
2

q

⌈ q
32

⌋
(−sTA[0])

⌋
mod 2.

(13)

Since 2
q

⌈
q
32

⌋
≈ 0.0624812, regardless of the value of sTA[0],

m′[0] is always 0. Since m[0] = 1, in the beginning the output
of Om is always 0. As h increases, the output may become 1 at
some point. The adversary A records the value of h when the
output of Om changes from 0 to 1. Later, A uses the recorded
h to recover the secret key.

The main process in this step is shown between lines 4 to
15 in the Algorithm 3.
Step 4: In this step, the adversary A wants to get the exact
value of the secret key based on h and Table III. In Table III,
sk represents the possible value of the coefficient in sTA[0].

TABLE III
THE RELATIONSHIP BETWEEN sk AND h IN KYBER-1024

sk 0 1 -1 2 -2

h 9 10 8 11 7

With the recorded h in Step 3, A is able to recover sk
corresponding to h in Table III. The process of looking up the
table according to the value of h is the Check(h) in the line
16 of Algorithm 3. For example, if h = 9, then the operation
of Check(h) is to find its corresponding sk = 0 according to
Table III.

In the following we show why we can recover the secret
key in this way.

According to equation (9) we have

m′[0] =

⌈
2

q

⌈ q
32

⌋
(h− sTA[0])

⌋
mod 2.

We set f = 2
q

⌈
q
32

⌋
(h − sTA[0]), then the above equation

becomes
m′[0] = dfc mod 2.

Since 2
q

⌈
q
32

⌋
≈ 0.0624812, we further have

f = 0.0624812(h− sTA[0]) (14)

and
m′[0] =

⌈
0.0624812(h− sTA[0])

⌋
mod 2. (15)

1) If the element in sTA we want to recover is 0, according
to equations (14) and (15), we have

f = 0.0624812 · h, (16)

and

m′[0] = dfc mod 2 = d0.0624812 · hc mod 2. (17)

At the beginning, h = 0, so f = 0 and m′[0] = 0. As h
increases, the value of m′[0] turns to 1. From equation
(16), we can check that when h = 9, f = 0.0624812·9 =
0.56233 and m′[0] becomes 1.

Therefore, if h = 9, we can recover the coefficient to be
0.

2) Suppose the coefficient in sTA we want to recover is ±1,
±2, ±3 or ±4. Since they are similar, we only consider
the case when the coefficient in sTA is ±1.
(1) If the the coefficient in sTA is 1, according to equations
(14) and (15), we have

f = 0.0624812(h− 1), (18)

and

m′[0] = dfc mod 2 = d0.0624812(h− 1)c mod 2.
(19)

When h = 0, we can get f = −0.0624812 and m′[0] =
0. As h increases, the value of m′[0] also changes to 1
when f ≥ 0.5. To be specific, when h = 10 in equation
(18), we can check that f = 0.0624812(10 − 1) =
0.0624812 · 9 = 0.56233 and m′[0] equals to 1.
So, if the recorded h = 10 we can determine that the
coefficient is 1.
(2) Suppose the coefficient in sTA is −1, according to
equations (14) and (15), we have

f = 0.0624812(h+ 1), (20)

and

m′[0] = dfc mod 2 = d0.0624812(h+ 1)c mod 2.
(21)

When h = 0, we can get f = 0.0624812 and m′[0] = 0.
As h increases, if f ≥ 0.5 the value of m′[0] will change
to 1. When h = 8 in equation (20), we can have f =
0.0624812(8 + 1) = 0.0624812 · 9 = 0.56233 and m′[0]
truns to 1.
Therefore, if h = 8, we conduce that the coefficient in
the secret key is −1.

IV. THE KEY MISMATCH ATTACK ON KYBER-768

In this section, we will analyze the security of the Kyber-768
and introduce the key mismatch attack if the public key PA is
reused. The main difference between Kyber-768 and Kyber-
1024 is that their parameter choice is different. According
to Table I, we know that (dPB

, dvB
) = (10, 4) in Kyber-

768. Specifically, this will change the range of c1 and c2,
so the adversary needs to reconsider the choice of these two
parameters, and the Check(h) also needs to be changed.

A. Parameters choices

We still use the same Oracle Om in Algorithm 1. At first,
A still selects m as {1, 0, · · · , 0} rather than choosing it
uniformly at random. In this case, except m[0] = 1 all the
other m[i] = 0 (i = 1, 2, . . . , 255).

Since dvB = 4 in Kyber-768, we have c2 =

Compressq(vB , dvB ) = Compress (vB , 4)q =
⌈
16
q · vB

⌋
(mod 16). So, A directly sets c2 as h, which ranges from 0
to 15.

Similarly, A directly sets PB = 0 first, then if k = 0,
PB [0] =

⌈
q
16

⌋
, otherwise PB [0] = −

⌈
q
16

⌋
. The resulted c1 is
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c1 = Compressq(PB , dPB
). Next, we also only analyze the

case k = 0.
By calculating uA = Decompressq(c1, dPB

), the Om has
uA = PB , and the resulted vA[0] is

vA[0] =Decompressq(c2[0], dvB )

=Decompressq(h, dvB )

=
⌈ q
24
h
⌋
=
⌈ q
16
h
⌋
.

We further have

m′[0] =Compressq((vA − sTAuA)[0], 1)
=Compressq(vA[0]− (sTAuA)[0], 1)

=

⌈
2

q

(
vA[0]− (sTAuA)[0]

)⌋
mod 2

=

⌈
2

q

(⌈ q
16
h
⌋
−
(

sTA[0]
⌈ q
16

⌋))⌋
mod 2.

(22)

When h ranges from 0 to 7, according to equation (22) we
can deduce

m′[0] =

⌈
2

q

⌈ q
16

⌋
(h− sTA[0])

⌋
mod 2. (23)

We also note that when h ranges from 8 to 15, the equation
(23) is not true. However, this has little impact on the recovery
of the secret key, which we will explain in the next subsection.

B. The Proposed Attack

Algorithm 4: Key-recovery-Kyber-768
Output: s′

1 Set m = {1, 0, · · · , 0}256;
2 for i := 0 to 2 do
3 for k := 0 to 255 do
4 PB = 0;
5 if k = 0 then
6 PB [0] =

⌈ q
16

⌋
;

7 else
8 PB [256− k] = −

⌈ q
16

⌋
;

9 c1 = Compressq(PB , dPB
);

10 for h := 0 to 31 do
11 c2 = 0 except c2[0] = h;
12 t = Oraclem((c1, c2),m);
13 if t = 1 then
14 break;
15 end
16 s′[i ∗Kyber N + k] = Check(h);
17 end
18 end
19 Return s′

The key mismatch attack on Kyber-768 is similar to that on
Kyber-1024, which also consists of four steps. Therefore, we
only present Step 3 and Step 4.
Step 3: In this step, the adversary A record the value of h by
accessing the Oracle Om multiple times to help him recover
the secret key.

Before A accesses Om he will chose the parameters m, c1
and c2 as previously described. That is, if k = 0, A sets
PB [0] =

⌈
q
16

⌋
, otherwise A sets PB [256− k] = −

⌈
q
16

⌋
.

The adversary A also starts from h = 0, according to
equation (23), it holds that

m′[0] =

⌈
2

q

⌈ q
16

⌋
(h− sTA[0])

⌋
mod 2

=

⌈
2

q

⌈ q
16

⌋
(−sTA[0])

⌋
mod 2.

(24)

Since 2
q

⌈
q
16

⌋
≈ 0.1249625, regardless the value of sTA[0],

m′[0] is always 0. Similarly, A increases h from 0 to 15,
and record the value of h when the output of Om changes
from 0 to 1.

The main process of this step is shown between line 4 to
line 15 in Algorithm 4.
Step 4: In this step, the adversary A wants to recover the
coefficient of the secret key based on h and Table IV.

TABLE IV
THE RELATIONSHIP BETWEEN sk AND h IN KYBER-768

sk 0 1 -1 2 -2

h 5 6 4 7 3

In Table IV, we demonstrate the relationship between sk
and h. By looking up the Table IV, we can efficiently recover
all the coefficients in the secret key.

V. THE KEY MISMATCH ATTACK ON KYBER-512

In this section, we assess the security of the Kyber-512
under the key mismatch attack. According to Table I, we know
(dPB

, dvB
) = (10, 3). The Oracle we use in this section is still

Om in Algorithm 1. Since the theoretical analysis is similar
as that in Kyber-768 and Kyber-1024, the rest of this section
only introduces A’s choice of parameters PB and c2, as well
as the check(h) in Algorithm 5.

A. Parameters choices

Similarly, A first selects a 256-bit m as {1, 0, · · · , 0}. Then
A directly sets c2 = h. Here the range of h is from 0 to 7,
since dvB

= 3 in Kyber-512. Subsequently, A directly set
PB = 0 first, then if k = 0, PB [0] =

⌈
q
8

⌋
and PB [256 −

k] = −
⌈
q
8

⌋
otherwise. The resulted c1 can be caclulated using

c1 = Compressq(PB , dPB
).

With the above parameters, Om needs to calculate uA =
Decompressq(c1, dPB

) and the result is uA = PB . Next,
Om goes on computing

vA[0] =Decompressq(c2[0], dvB )

=Decompressq(h, dvB )

=
⌈ q
23
h
⌋
=
⌈q
8
h
⌋
.

And this will result in

m′[0] =Compressq((vA − sTAuA)[0], 1)
=Compressq(vA[0]− (sTAuA)[0], 1)

=

⌈
2

q

(
vA[0]− (sTAuA)[0]

)⌋
mod 2

=

⌈
2

q

(⌈q
8
h
⌋
− sTA[0]

⌈q
8

⌋)⌋
mod 2.

(25)
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When h changes from 0 to 7, according to equation (25)
we can deduce that

m′[0] =

⌈
2

q

⌈q
8

⌋
(h− sTA[0])

⌋
mod 2. (26)

We could note that when h changes from 4 to 7, equation
(26) does not hold any more, which could affect the recovery
of the secret key.

B. The Proposed Attack

Algorithm 5: Key-recovery-Kyber-512
Output: s′

1 Set m = {1, 0, · · · , 0}256;
2 for i := 0 to 1 do
3 for k := 0 to 255 do
4 PB = 0;
5 if k = 0 then
6 PB [0] =

⌈ q
8

⌋
;

7 else
8 PB [256− k] = −

⌈ q
8

⌋
;

9 c1 = Compressq(PB , dPB
);

10 for h := 0 to 7 do
11 c2 = 0 except c2[0] = h;
12 t = Oraclem((c1, c2),m);
13 if t = 1 then
14 break;
15 end
16 s′[i ∗Kyber N + k] = Check(h);
17 end
18 end

The same as before, the key mismatch attack on Kyber-512
consists of four steps. We only briefly describe the changes in
Step 3 and Step 4, and explain how to deal with values of
Check(h) in the line 16 of Algorithm 5.
Step 3: In this step, the adversary A wants to find a value h by
accessing the Oracle Om multiple times to help him recover
the secret key, and he will choose the parameters m, c1 and
c2 as described previously.

When A accesses Om with h = 0, from (26) we further
have

m′[0] =

⌈
2

q

⌈q
8

⌋
(h− sTA[0])

⌋
mod 2

=

⌈
2

q

⌈q
8

⌋
(−sTA[0])

⌋
mod 2 = 0

(27)

since 2
q

⌈
q
8

⌋
≈ 0.249924. Therefore, when the output of Om

becomes 1, A uses the recorded h to recover the coefficient.
The main process in this step is shown in the Algorithm 5.

Step 4: In this step, the adversary A also recovers the
coefficients by simply looking up h inTable V.

TABLE V
THE RELATIONSHIP BETWEEN sk AND h, h1 ON KYBER-512

sk 0 -1 -2 1 2

h 3 2 1 4 4 5

h1 2 1 1

But there there are special cases we have to pay attention to.
When the integer h is in the interval [4, 7], the equation (26)
does not hold. So, we need additional information to further
decide the exact sk.

We first let PB [0] =
⌈
− q8
⌋
, if k = 0, and PB [256−k] =

⌈
q
8

⌋
otherwise. Then we repeat the processes from lines 9 to 15
in Algorithm 5 until the value of h1 is obtained. And next,
we can determine the exact value of sk based on h and h1 in
Table V. For example, if h = 4 and h1 = 2, we can determine
sk = 1, otherwise if h1 = 1, the value of sk is 2.

In sum, in this step, if h = 1, 2 or 3, we can directly recover
sk according to Table V. Otherwise, we will recover the value
of sk based on h and h1 in Table V.

VI. THE IMPROVED KEY MISMATCH ATTACK

In this Section, we propose our improved attack to reduce
the number of queries and improve efficiency in the previous
attacks.

In the previous sections we introduce the key mismatch
attacks on three security levels of Kyber. Our key observation
is that in the above three attacks all the hs start from h = 0,
which is not efficient. By analysing Tables III, IV and V,
we find that h is fixed within a certain range. Specifically,
in Kyber-1024 the recorded h ranges from 7 to 11, while in
Kyber-768 and Kyber-512, h ranges from 3 to 7 and 1 to 5,
respectively.

Therefore, in the improved attack we limit the range of h,
that is, h starts from 7 in Kyber-1024 and the range of h is
[7, 11]. We only need to modify the line 10 in Algorithm 3.
Similarly, in Kyber-768, we let h in Algorithm 4 in the range
[3, 7]. And the range of h in Kyber-512 is [1, 5]. We refer to
the improved attack as the Improved attack v1.

Can we further reduce the needed queries? In the following,
we introduce our Improved attack v2. Our key idea here is to
use the information about the distribution of the coefficients in
the secret key. As we know, the coefficients in the secret key
obey the centered binomial distribution. That is, the probability
of the occurrence of 0 in sk is the largest, followed by ±1,±2.
So when recovering sk, we first determine if it is 0, if not
we go on verifying whether it is ±1 or ±2. The specific
key mismatch attacks are shown in Algorithms 6, 7 and 8,
respectively.

A. The Improved attack v2 on Kyber-1024

In this subsection, we take sk = 0 and sk = −1 as examples
to explain our idea. The specific details of this attack are shown
in Table VI and Algorithm VI.

TABLE VI
THE RELATIONSHIP BETWEEN sk & h & Om IN KYBER-1024

sk 0 -1 -2 1 2

h 9 8 9 8 7 9 8 7 6 9 10 9 11 10

Om 1 0 1 0 1 0 1 1 0

According to Table III we can see that, if sk = 0, when
h increase to 9, the output of the Oracle becomes 1, but if
h = 8, Oracle’s output is still 0. Therefore, we can determine
sk = 0 using only 2 queries:

1) We set h = 9 and the output of Oracle is 1;
2) If 1) holds, we let h = 8 and Oracle returns 0.
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Algorithm 6: Key-recovery-Kyber-1024-v2
Output: s′

1 Set m = {1, 0, · · · , 0}256;
2 for i := 0 to 3 do
3 for k := 0 to 255 do
4 PB = 0;
5 if k = 0 then
6 PB [0] =

⌈ q
32

⌋
;

7 else
8 PB [256− k] = −

⌈ q
32

⌋
;

9 c1 = Compressq(PB , dPB
); c2 = 0 ;

10 if c2[0] = 9 and Om((c1, c2),m) = 1 then
11 if c2[0] = 8 and Om((c1, c2),m) = 0 then
12 s′[i ∗ 256 + k] = 0;
13 else if c2[0] = 7 and Om((c1, c2),m) = 0 then
14 s′[i ∗ 256 + k] = −1;
15 else
16 s′[i ∗ 256 + k] = −2;
17 else if c2[0] = 9 and Om((c1, c2),m) = 0 then
18 if c2[0] = 10 and Om((c1, c2),m) = 1 then
19 s′[i ∗ 256 + k] = 1;
20 else
21 s′[i ∗ 256 + k] = 2;
22 end
23 end
24 end

The purpose of the second query is to confirm that the output
of the Oracle becomes 1 when h = 9 instead of h = 8.

Similarly, if we want to determine sk = −1, then only 3
queries are needed:

1) We set h = 9 and the output of the Oracle is 1;
2) If 1) holds, then we set h = 8 and the output of the

Oracle is still 1;
3) If 2) holds, then we go on setting h = 7 and the Oracle

returns 0.

B. The Improved attack v2 on Kyber-768

The improved key mismatch attack v2 on Kyber-768 is the
same as that in Kyber-1024, except the relationship between h
and sk. The specific sk recovery process is shown in Appendix
7. And the relationship between sk and h, Om is given in
Algorithm VII.

TABLE VII
THE RELATIONSHIP BETWEEN sk & h & Om IN KYBER-768

sk 0 -1 -2 1 2

h 5 4 5 4 3 5 4 3 2 5 6 5 6 7

Om 1 0 1 0 1 0 0 1 0 1

C. The Improved attack v2 on Kyber-512

The improved attack v2 on Kyber-512, in which we need to
use another h1 to collect enough information, differs from the
attacks against Kyber-1024 and Kyber-768. Specifically, in the
improved attack v2 on Kyber-512, we can recover sk = 0,−1
and −2 with h, but sk = 1 and 2 with h and h1. If the sk we
want to recover is 2, we can determine it through 4 queries:

1) We set h = 3 and the output of the Oracle is 0;
2) If 1) holds, then we set h = 4 and the output of the

Oracle is 0;
3) If 2) holds, then we let h = 5 and Oracle will return 1;

4) If 3) holds, we will reset PB and h1 = 0, the Oracle
returns 0.

TABLE VIII
THE RELATIONSHIP BETWEEN sk & h & h1& Om IN KYBER-512

sk 0 -1 -2 1 2 2

h 3 2 3 2 1 3 2 1 0 3 4 3 4 5 3 4

Om 1 0 1 0 1 0 0 1 0 1 0 1

h1 1 0 1

Om 0 0 1

Similarly, we can determine sk = 2 as follows:
1) We set h = 3 and the output of the Oracle is 0;
2) If 1) holds, then we set h = 4 and the output of the

Oracle becomes 1;
3) If 2) holds, we reset PB and let h1 = 1, the Oracle

returns 1.

Algorithm 7: Key-recovery-Kyber-768-v2
Output: s′

1 Set m = {1, 0, · · · , 0}256;
2 for i := 0 to 2 do
3 for k := 0 to 255 do
4 PB = 0;
5 if k = 0 then
6 PB [0] =

⌈
q
16

⌋
;

7 else
8 PB [256− k] = −

⌈
q
16

⌋
;

9 c1 = Compressq(PB , dPB );
10 c2 = 0 ;
11 if c2[0] = 5 and Om((c1, c2),m) = 1 then
12 if c2[0] = 4 and Om((c1, c2),m) = 0 then
13 s′[i ∗ 256 + k] = 0;
14 else if c2[0] = 3 and Om((c1, c2),m) = 0 then
15 s′[i ∗ 256 + k] = −1;
16 else
17 s′[i ∗ 256 + k] = −2;
18 else if c2[0] = 5 and Om((c1, c2),m) = 0 then
19 if c2[0] = 6 and Om((c1, c2),m) = 1 then
20 s′[i ∗ 256 + k] = 1;
21 else
22 s′[i ∗ 256 + k] = 2;
23 end
24 end
25 end

The relationship between sk and h, h1 is shown in Table
VIII and the specific sk recovery process is shown in Algo-
rithm 8.

VII. EXPERIMENTS

In our experiments, we use a 2.7 GHz Intel Core i7
processor with an 8 GB RAM and run it in the macOS High
Sierra with version 10.13.6. All experiments are in C and
compiled with gcc version 4.2.1. We implement the proposed
key mismatch attacks on Kyber’s source code submitted to
NIST, and then compile it with the same makefile in the source
code. We first analyzed Kyber’s source code for three different
security levels that are submitted to NIST, namely the Kyber-
512, Kyber-768 and Kyber-1024. We implemented three sets
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TABLE IX
AVERAGE QUERIES & TIME

Kyber-512 Kyber-768 Kyber-1024

Original Improved Improved Original Improved Improved Original Improved Improved

Attack Attack v1 Attack v2 Attack Attack v1 Attack v2 Attack Attack v1 Attack v2

Average 2, 596 2, 086 1, 401 4, 654 2, 351 1, 855 10, 303 3, 132 2, 475
Queries

Average 4.5 3.61 2.2 11.7 5.88 4.3 31.3 9.51 7.5
Time (s)

Algorithm 8: Key-recovery-Kyber-512-v2
Output: s′

1 Set m = {1, 0, · · · , 0}256;
2 for i := 0 to 1 do
3 for k := 0 to 255 do
4 PB = 0;
5 if k = 0 then
6 PB [0] =

⌈ q
8

⌋
;

7 else
8 PB [256− k] = −

⌈ q
8

⌋
;

9 c1 = Compressq(PB , dPB
);

10 c2 = 0 ;
11 if c2[0] = 3 and Om((c1, c2),m) = 1 then
12 if c2[0] = 2 and Om((c1, c2),m) = 0 then
13 s′[i ∗ 256 + k] = 0;
14 else if c2[0] = 1 and Om((c1, c2),m) = 0 then
15 s′[i ∗ 256 + k] = −1;
16 else
17 s′[i ∗ 256 + k] = −2;
18 else if c2[0] = 3 and Om((c1, c2),m) = 0 then
19 if c2[0] = 4 and Om((c1, c2),m) = 1 then
20 if k = 0 then
21 PB [0] = −

⌈ q
8

⌋
;

22 else
23 PB [256− k] =

⌈ q
8

⌋
;

24 if c2[0] = 1 and Om((c1, c2),m) = 0 then
25 s′[i ∗ 256 + k] = 1;
26 else if c2[0] = 1 and Om((c1, c2),m) = 1 then
27 s′[i ∗ 256 + k] = 2;
28 else if c2[0] = 5 and Om((c1, c2),m) = 1 then
29 if k = 0 then
30 PB [0] = −

⌈ q
8

⌋
;

31 else
32 PB [256− k] =

⌈ q
8

⌋
;

33 if c2[0] = 0 and Om((c1, c2),m) = 0 then
34 s′[i ∗ 256 + k] = 2;
35 end
36 end
37 end
38 end

Fig. 1. The Average Time (s)
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of experiments. The first set is the original attack described in
Sections III, IV, and V. The second is the Improved attack v1
introduced in Section VI. The difference between the Original
Attack and the Improved attack v1 is that in the Original
Attack h starts from h = 0. The third set corresponds to
Algorithms 6, 7 and 8 in the Improved attack v2 described
in Section VI. In this attack, we redesign the recovery strategy,
applying information on distribution probability of coefficients
in the secret key.

In our experiments, we first use Kyber’s source code to
generate 100 secret keys. We evaluate the performance of these
three attacks on both queries and time. Whenever the adversary
accesses Oracle once, the number of quires increases by one.
The number of average queries is reported by counting the
number of queries the adversary needs to recover a whole
secret key. For example, in the attack on Kyber-1024, we count
the number of queries the adversary needs to recover 1024
coefficients in each secret key. Each attack is repeated 100
times and then the number is averaged.

The reported time in the experiments starts from the initial
generation of the secret key sA by Alice, to the recovery of
the whole secret key by accessing the Oracle multiple times.
The average time refers to recording the whole time required
for the adversary to recovering a complete sA 100 times and
taking an average. The comparison of time spending in the
three sets of experiments is given in Figure 1. We can conclude
that the Improved attack v2 is the fastest, which is nearly
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twice as fast as that in the Original Attack.
The comparison of the queries of the three sets of experi-

ments is shown in Figure 2. We can see that the average num-
ber of queries is significantly reduced in Improved attack v1
and Improved attack v2, compared with that in the O-
riginal Attack. For example, in the Improved attack v1,
the average number of queries on Kyber-1024 is reduced to
30% of the Original Attack. Comparing the results of the
Improved attack v2 and the Original Attack, the average
number of queries in Kyber-512 is reduced by a half, and the
queries in Kyber-768 and Kyber-1024 occupy only 40% and
a quarter of that in the Original Attack, respectively.

In Table IX, we illustrate the queries and time needed in
recovering the whole key. From the experiments, an interesting
observation is that as Kyber’s security level increases, the key
mismatch attack becomes even simpler. Specifically, in Kyber-
512 on average we recover each coefficient in 2.7 queries,
while in Kyber-1024 and 768, we only need 2.4 queries. The
reason is that in Kyber-1024 and Kyber-768, all the coefficients
can be recovered directly using h. But in Kyber-512 the key
mismatch attacks require calculating both h and h1, and then
recover sk with the recorded h and h1.

In [17], we propose our key mismatch attacks on another
NIST second-round candidate NewHope. Comparing these
two attacks, we conclude that it is much easier to use key
mismatch attacks to break Kyber than that on NewHope. To be
specific, in Kyber-1024, we need an average of 2, 475 queries
to recover all the coefficients in a key. While in NewHope-
1024 we need 882, 794 queries. The number of queries for
NewHope-1024 is 356.7 times larger than that of Kyber-1024.
From another perspective, in Kyber-1024 on average we need
2.4 queries to recover each coefficient, while in Newhope-
1024, 862.1 queries are needed.

The main reason of the differences of key mismatch attacks
on NewHope and Kyber comes from their different design
structures. First, in Kyber only Compress and Decompress
functions are used to process coefficients one by one. But in
NewHope, additional Encode and Decode functions are used,
which operate on a quadruple of coefficients at a time, and
this makes the attack on NewHope particularly complicated.
Second, the ranges of coefficients in Kyber are much smaller
than that in NewHope. To be specific, in NewHope the
parameter η of the centered binomial distribution Bη is set
as 8, while in Kyber η = 2. Equivalently, the coefficients
of the secret key in NewHope ranges from −8 to 8, while in
Kyber the range is from −2 to 2. The smaller ranges of Kyber
result in less queries to launch the attack. In addition, while
recovering the secret key in NewHope, we need to find 50
favorable cases, which also incurs a lot of additional queries.

VIII. CONCLUSION

In this paper, we have proposed key mismatch attacks
on the Kyber KEM with three security levels. We need to
emphasize that the CCA2-secure Kyber KEM is still secure,
but if we implement it in a wrong way, here comes the
attacks. To show the efficiency of the proposed attacks, we
have implemented them using Kyber’s source code. From

the experiments, an interesting observation is that as Kyber’s
security level increases, the key mismatch attack becomes
even simpler. We hope that our proposed attack may help in
assessing the security of Kyber, reminding us not to implement
Kyber in the wrong way.
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