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Abstract

Ring signatures, introduced by [RST01], are a variant of digital signatures which certify that
one among a particular set of parties has endorsed a message while hiding which party in the
set was the signer. Ring signatures are designed to allow anyone to attach anyone else’s name
to a signature, as long as the signer’s own name is also attached.

But what guarantee do ring signatures provide if a purported signatory wishes to denounce
a signed message — or alternatively, if a signatory wishes to later come forward and claim
ownership of a signature? Prior security definitions for ring signatures do not give a conclusive
answer to this question: under most existing definitions, the guarantees could go either way.
That is, it is consistent with some standard definitions that a non-signer might be able to
repudiate a signature that he did not produce, or that this might be impossible. Similarly, a
signer might be able to later convincingly claim that a signature he produced is indeed his own,
or not. Any of these guarantees might be desirable. For instance, a whistleblower might have
reason to want to later claim an anonymously released signature, or a person falsely implicated
in a crime associated with a ring signature might wish to denounce the signature that is framing
them and damaging their reputation. In other circumstances, it might be desirable that even
under duress, a member of a ring cannot produce proof that he did or did not sign a particular
signature. In any case, a guarantee one way or the other seems highly desirable.

In this work, we formalize definitions and give constructions of the new notions of repudiable,
unrepudiable, claimable, and unclaimable ring signatures. Our repudiable construction is based
on VRFs, which are implied by several number-theoretic assumptions (including strong RSA
or bilinear maps); our claimable construction is a black-box transformation from any standard
ring signature scheme to a claimable one; and our unclaimable construction is derived from
the lattice-based ring signatures of [BK10], which rely on hardness of SIS. Our repudiable
construction also provides a new construction of standard ring signatures.

1 Introduction

Ring signatures, introduced by [RST01], are a variant of digital signatures which certify that one
among a particular set of parties has signed a particular message, without revealing which specific
party is the signer. This set is called a “ring.” Ring signatures can be useful, for example, to certify
that certain leaked information comes from a privileged set of government or company officials
without revealing the identity of the whistleblower, to issue important orders or directives without
setting up the signer to be a scapegoat for repercussions,1 or to enable untraceable transactions in

1When it comes to national security issues, for instance, there may be some reluctance among law-makers to “roll
back” existing laws or reduce checking or surveillance measures, which could be due in part to the risk of ending up
a scapegoat upon any future national security incident like a terrorist attack.
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cryptocurrencies (as in Monero [Mon]).
In a ring signature scheme, just as in a traditional digital signature scheme, any party can

create a key pair for signing and verification, and publish the verification key. Signers can produce
signatures that verify with respect to any set of verification keys that includes their own, and
unforgeability guarantees that no party can produce a valid signature with respect to a set of
verification keys without possessing a corresponding secret key.

But what guarantee does a ring signature scheme provide if a purported signatory wishes to
denounce a signed message — or alternatively, if a signatory wishes to later come forward and
claim ownership of a signature? Given the motivation of anonymity behind the notion of a ring
signature, a natural first intuition might be that parties should be able neither to denounce nor to
claim a signature in a convincing way. However, depending on the threat model, we believe that
the opposite guarantees — that is, to guarantee the ability to denounce or claim signatures — may
be useful too, as elaborated below. Furthermore, whatever one’s preference, a guarantee one way
or the other seems more desirable than no guarantee either way.

Prior security definitions for ring signatures do not conclusively provide these guarantees one
way or the other. That is, a non-signer might be able to repudiate a signature that he did not
produce (“repudiability”), or this might be impossible (“unrepudiability”). Similarly, a signer might
be able to later convincingly claim that a signature he produced is indeed his own (“claimability”),
or be unable to do so (“unclaimability”).

The most detailed taxonomy of security definitions for ring signatures was given by [BKM09],
which presents a series of anonymity guarantees of increasing strength. A natural anonymity
guarantee defined by [BKM09], called “anonymity against adversarially chosen keys,” is informally
described as follows: an adversary who controls all but t ≥ 2 parties in a ring, and who may produce
his own malformed key pairs as well as corrupt honest parties’ keys, must have negligible advantage
at guessing which of the t honest parties produced a given signature. This anonymity definition
might allow a party to ascertain whether a given signature was produced by her own signing key,
and perhaps also to convince others of this fact — but it does not guarantee or prohibit either of
these capabilities.

On the other hand, the strongest of the anonymity definitions of [BKM09] (called “anonymity
against full key exposure”) requires that even if an adversary compromises every single party in a
ring, the adversary cannot identify the signers of past signatures. It is relatively straightforward
to see that under such a strong anonymity guarantee, Alice would have no way to convince anyone
that she did not produce the objectionable message; indeed, she herself cannot tell the difference
between a signature produced using her own signing key and one produced using someone else’s.

The ability to identify whether one’s own signing key was used to produce a particular signature
can be a feature or a bug. To protect anonymity of past signatures against a very strong adversary
who might compromise all the secret keys in a ring, it seems desirable to prevent distinguishing
one’s own signatures from those generated by someone else. On the other hand, without the ability
to distinguish, it would be virtually impossible to tell if someone had stolen your signing key.
Moreover, as discussed below, it could be beneficial in certain circumstances for members of a ring
to have the ability to disown signatures of messages that they have strong reasons to denounce; and
conversely, in some circumstances the signer of a message might later wish to prove to the world
that he was the one who produced a particular signature in the past.

We have now identified four potentially useful notions for ring signatures: repudiability, unre-
pudiability, claimability, and unclaimability. The main contributions in this paper consist both of
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new definitions and constructions of each of these notions. Before diving into an overview of defini-
tion and constructions, we provide some discussion of why each of these notions — some of which
directly oppose each other — may be meaningful and desirable: the following scenarios explore a
few of the circumstances in which various of the above guarantees might be appropriate. Though
some of the scenarios are phrased somewhat whimsically, we believe that each scenario illustrates
a meaningful threat model motivating the definition concerned.

Scenario 1 (Repudiability) Let us consider a hypothetical tale, wherein two candidates Alice
and Bob are running for president in the land of Oz. Oz is notorious for its petty partisan politics
and its tendency to prefer whomever appears friendlier in a series of nationally televised grinning
contests between the main-party candidates. At the peak of election season, a disgruntled citizen
Eve decides to help out her preferred candidate Bob by publishing the following message, which
goes viral on the social networks of Bob supporters:

I created a notorious terrorist group and laundered lots of money!
Signed: Alice or Eve or Alice’s campaign chairman.

Of course, the virally publicized message does not actually incriminate Alice at all, since any
one of the signatories could have produced it. However, perhaps there is nothing that Alice can do
to allay the doubt in the minds of her suspicious detractors. As mentioned above, ring signatures
are deliberately designed to allow anyone to attach anyone else’s name to a signature, without the
latter’s knowledge or consent. Despite this, there could be realistic situations in which non-signing
members of a ring associated with a particular message could suffer serious consequences through
no fault of their own, perhaps due to the real signer adversarially trying to damage their reputation.
In light of this, perhaps it would be desirable in some contexts for the owner of a verification key
to be able to denounce messages, e.g., to clear her name of a crime or hate speech accusation that
might otherwise impact her life in terms of reputation, job prospects, or incarceration.

Scenario 2 (Claimability) Our next story concerns a talented brewery employee who developed
new statistical techniques to test the quality of beers. Naturally, his employer was protective of its
competitive advantage since other breweries at the time may not have been using similar statistical
methods. Yet, in the interest of science, they allowed him to publish his results — on condition of
anonymity.2 A credible way to prove authorship at a later date, after the need for anonymity has
ceased to exist, might be very useful — especially in case of competing claims by impostors. As we
see here, claiming authorship of an anonymous work may become appropriate after a passage of
time. The next example illustrates quite a different type of situation in which claimability at the
signer’s discretion may be valuable.

Consider an employee Emily who is concerned about unethical practices at her company, and
takes it upon herself to expose what is going on and publish a critical commentary. Concerned about
her job security and possible retribution, as well as the credibility of her allegations, she maintains
her anonymity using ring signatures. It emerges, in fact, that similar practices are prevalent across
the industry: related revelations drive a wider movement of reform. Some time later, after her
company has substantially reformed its practices and her fears of retribution have been allayed

2This is the true story of William Sealy Gosset’s invention of the Student’s t-test at Guinness Brewery in 1908
[Man00].
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— perhaps by her promotion, or by a change in leadership — Emily seeks to reveal her identity
and add her voice to the growing movement, providing her solidarity, legitimation, and follow-up
story. In addition, if following the reforms, those involved in the earlier unethical practices were
subject to stigma or even prosecution, claimability of her earlier ring signatures would allow Emily
to exculpate herself.

Scenario 3 (Unrepudiability and unclaimability) Let us return to the government of the
fictional country of Oz. The parliament of Oz is mired in partisan gridlock, with legislators from
each party ruthlessly voting down any bills, however reasonable, proposed by members of the
opposing party — preventing any laws at all from being enacted and effectively shutting down the
government, which is in no party’s interest. Suppose that instead of directly proposing a new law, a
legislator of Oz anonymously publishes the text of the proposed bill using a ring signature scheme:

Proposed: that free ice cream shall be provided every Tuesday.3

Signed: a member of the Parliament of Oz.

If the signer used an unclaimable ring signature scheme, then she could not decide to reveal her
identity upon a later change of heart, allowing legislators of both parties to support or oppose the
bill on its merits without worrying about purely political considerations.

Unclaimability and unrepudiability may be particularly useful guarantees in scenarios where
the placement of whole groups of people under duress is a substantial concern. For instance, in
circumstances where an employer or authoritarian government may coercively compel individuals
to provide a repudiation or proof of authorship (e.g. signing randomness) for a signature, the
provable inability to do so convincingly may be essential. Unrepudiability may also be desirable in
situations in which members of a ring are likely to have conflicting individual incentives but there
is a possibility of collective benefit in case of cooperation, as in a prisoner’s dilemma scenario.

Summary of technical contributions. We formalize repudiability, unrepudiability, claimabil-
ity, and unclaimability of ring signatures, as well as strengthened anonymity and unforgeability
definitions which are compatible with each of these notions. We show that unclaimability im-
plies unrepudiability (intuitively, because a failed repudiation can be used as a claim). Anonymity
against adversarially chosen keys is the strongest anonymity notion compatible with repudiabil-
ity and claimability, and anonymity against full key exposure is implied by unclaimability and
equivalent to unrepudiability.

We provide three constructions based on different assumptions, one for each of the three notions
of repudiability, claimability, and unclaimability. Perhaps the most surprising of these is unclaima-
bility, which guarantees that the signer cannot later credibly convince others that she produced a
particular signature. A natural first intuition is that meaningful notions of unclaimability might be
impossible to achieve, since a signer can always remember the signing randomness (and later present
it as “proof” of having produced a signature). The key insight for our definition and construction
of unclaimable ring signatures is that the signing randomness does not constitute a convincing
claim if anyone in the ring can also produce credible signing randomness for any signature in which
they are implicated. Our construction of unclaimable ring signatures is an augmentation of the

3Even if each party might support this legislation, they may be unwilling to do so if it were proposed by the other
party, decrying their respective opponents as either fiscally irresponsible or in the pocket of Big Ice Cream.
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lattice-based ring signature scheme of [BK10] that adds additional algorithms allowing anyone in
the ring to generate credible signing randomness; this capability is achieved via lattice trapdoors.

Our construction of repudiable ring signatures is based on verifiable random functions (VRFs),
which are implied by either the (strong) RSA assumption, assumptions on bilinear maps, or NIWIs
and commitments; see [Bit17; GHKW17] and references therein for more detailed discussion of
the assumptions that imply VRFs.4 Our construction does not use standard ring signatures as a
building block, and as such can also be viewed as a new construction of standard ring signatures.
Our construction of claimable ring signatures, on the other hand, is a simple and generic black-box
transformation from any standard ring signature scheme to a claimable one. We overview our
contributions in more detail below.

1.1 Definitional contributions

Repudiability. We define a repudiable ring signature scheme as a ring signature scheme that is
equipped with additional algorithms Repudiate and VerRepud as follows. Repudiate takes as input
a signing key sk, a ring signature σ, and a “ring” R (i.e., a set of verification keys), and outputs a
repudiation ξ. VerRepud takes as input a ring R, a signature σ, a repudiation ξ, and a verification
key vk, and outputs a a single bit indicating whether or not ξ is a valid repudiation attesting that
σ was not produced by vk. The two requirements for a ring signature scheme to be repudiable are,
informally, as follows.

1. Correctness: Any member of a ring must be able to produce valid repudiations of any signature
that he did not produce.

2. Soundness: A cheating signer must not be able to produce a valid signature with respect to a
ring, and also be able to produce valid repudiations of that signature under every verification
key in that ring that he owns.

Once a ring signature scheme is equipped with these additional repudiation algorithms, the
standard definitions of unforgeability and anonymity against adversarially chosen keys are insuf-
ficient to capture the natural guarantees that would be desired for a repudiable ring signature
scheme: we need the release of repudiations not to compromise the unforgeability or anonymity of
any future signatures. Accordingly, we modify the definitions of unforgeability and anonymity for
repudiable ring signatures (Definitions 3.4 and 3.5), by additionally giving the adversary access to
a repudiation oracle. This ensures that repudiations of past signatures do not affect the security
guarantees of future signatures. See Section 3.1 for formal definitions of repudiability.

Correction of an earlier version. As pointed out by Hao Lin and Mingqiang Wang [Lin19; LW19],
previous versions of this paper (including the conference version) had an error in the anonymity
definition for repudiable ring signatures (Definition 3.4).5 This has been corrected in the current
version. See Remark 7 in Section 3.1.1 for details.

Claimability. We define a claimable ring signature scheme as a ring signature scheme equipped
with additional algorithms Claim and VerClaim as follows. Claim takes as input a signing key sk, a
signature σ, and a ring R, and outputs a claim ζ. VerClaim takes a input a ring R, a verification

4Note that the ring signature construction of [BKM09] assumes the closely related assumption of NIZKs, which
are implied by VRFs and also imply VRFs if the NIZK is subexponentially hard under a standard derandomization
assumption; see [Bit17] for details.

5Specifically, the difference between the old and new definitions is in the details of puncturing an oracle in the
security game.

5



key vk, a signature σ, and a claim ζ, and outputs a single bit indicating whether or not ζ is a valid
claim attesting that σ was produced by vk. The three requirements for a claimable ring signature
scheme are, informally, as follows.

1. Correctness: Any honest signer must be able to produce a valid claim with respect to any
signature that he produced.

2. Soundness: No adversary can produce a valid claim with respect to a signature produced by an
honest signer, even if the adversary can choose the message and ring with respect to which the
signature is produced, and can insert malformed verification keys into the ring.

3. No framing: No adversary can produce a signature together with a valid claim of that signature
on behalf of an honest (non-signing) party.

As above, once a ring signature scheme is equipped with these additional claiming algorithms,
the standard definitions of unforgeability and anonymity against adversarially chosen keys are
insufficient. We modify the definitions of anonymity and unforgeability for claimable ring signatures
(Definitions 3.10 and 3.11), by additionally giving the adversary access to a claim oracle. See Section
3.3 for formal definitions of repudiability.

Repudiability and claimability are compatible, i.e., a ring signature scheme can be both repudi-
able and claimable. Indeed, our repudiable and claimable constructions together give rise to such a
scheme. Notably, the unforgeability and anonymity definitions corresponding to the natural notion
of a repudiable-and-claimable ring signature scheme are not the conjunction of unforgeability and
anonymity for repudiable ring signatures and for claimable ring signatures. Rather, the unforge-
ability and anonymity definitions for a repudiable-and-claimable ring signature scheme involve a
stronger adversary which is simultaneously given access to both a repudiation oracle and a claim
oracle. See Section 3.5 for further discussion on repudiable-and-claimable schemes.

Unclaimability We also introduce unclaimable ring signature schemes, in which the signer provably
cannot convincingly claim that she was the one who produced the signature. As briefly mentioned
above, while the signer can always save the signing randomness and reveal it along with her secret
key in an attempt to claim authorship of a signature, it is not always true that this constitutes a
convincing claim. In particular, such a claim is not credible if any member of the ring can take
a valid signature and produce fake randomness that produces the desired signature using her own
signing key.

The idea that a non-signer can adaptively produce fake randomness is reminiscent of deni-
able encryption [CDNO97], in which an encryptor and/or recipient is required to produce fake
randomness “explaining” that a particular ciphertext is an encryption of an adversarially chosen
message.

We define an unclaimable ring signature scheme to capture just this requirement: that is,
any member of the ring must be able to produce fake signing randomness for a signature that
is distributed indistinguishably from real signing randomness. Intuitively, the only information
potentially possessed by a signer but not by the other members of the ring is the signing randomness,
so non-signers that can generate convincing simulated signing randomness can also convincingly
simulate any additional information that might be released by the signer in an attempt to claim the
signature. We consider a strong flavor of this definition in which the indistinguishability property,
described informally below, is statistical.

1. Indistinguishability: Any member of a ring must be able to produce fake signing randomness
given a signature. The signature and fake signing randomness must be distributed statistically
close to an honestly generated signature and corresponding signing randomness used by that
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Repudiable VRF (Section 4)

Unrepudiable
RS anonymous against
FKE (Section 3.2)

Claimable
Transformation from
any RS (Section 5)

Unclaimable SIS (Section 6)

Claimable

Repudiable
Unrepudiable

Unclaimable

Figure 1: Summary of our results and assumptions relied on. VRF = verifiable random function,
RS = ring signature, FKE = full key exposure, SIS = short integer solution problem.

individual to sign the same message, even given all verification keys and signing keys.

We formally define unclaimability in Section 3.4.

Remark 1. Even under this definition, if the signer chooses a message to sign that corresponds to a
secret known only to herself, then she may still be able to convince others that she was the signer.
For instance, if the signed message is the output of a one-way function, she may be able to convince
others that she was the signer by subsequently revealing the preimage. Even more flagrantly, the
signed message could contain a signature using a standard (non-ring) signature scheme, directly
identifying the signer. This property is rather inherent: if knowledge of the contents of the message
itself at the time of signing are enough to identify the signer, then no security property on the
signature scheme can enforce that the signer remains hidden, since the identification of the signer
is unrelated to the signature and based only on the signed message.

Indeed, ring signatures were not designed to provide anonymity for signers who want to identify
themselves, but rather for those who desire anonymity. Similarly, our unclaimability definition
does not guarantee unclaimability for those who want to identify themselves, but rather provides
credibility for a signer who wants to later be able to claim (e.g., under duress) that she could
not convincingly claim the signature even if she wanted to. In particular, even an adversary with
unlimited computational power who obtains the secret keys belonging to every member of the ring
and a purported signing randomness from an alleged signer, he still will not be convinced of the
identity of the signer, since fake signing randomness from the right distribution can be produced
for every member of the ring.

Unrepudiability Unclaimability intuitively guarantees that no member of the ring can convinc-
ingly prove that she was the signer. A related, weaker notion that might be desirable in some
circumstances is that of unrepudiability, which guarantees that no member of the ring can convinc-
ingly prove that she was not the signer. Unrepudiability is equivalent to anonymity against full
key exposure and is implied by unclaimability.

1.2 Overview of our constructions

Our repudiable construction Our construction relies on ZAPs (two-round public-coin witness-
indistinguishable proofs) and verifiable random functions (VRFs) as building blocks.6 Our building
blocks have some overlap with those of the ring signature construction of [BKM09], which uses
ZAPs, public-key encryption (PKE), and a digital signature scheme. Both our scheme and theirs

6VRFs imply ZAPs, so it suffices to assume VRFs. [GO92; DN07]
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use ZAPs to achieve anonymity of the ring signatures, but with different approaches: the statements
proven by the ZAPs are quite unrelated in the two constructions. Moreover, in our scheme, we do
not need PKE or signature schemes, and instead use VRFs directly to achieve unforgeability and
repudiability. The structure of our construction is thus very different from that of [BKM09].

At a very high level, each signing key in our construction contains a tuple of four VRF keys.
A signature consists of the output of each of the signer’s VRFs on the message, along with a ZAP
proof that (several of) the VRF values in the signature are correct w.r.t. the VRF verification key
of some member of the ring. A repudiation for individual i consists of a ZAP proof that some of the
VRF values in the signature are different from the correct values for party i’s VRFs evaluated at the
message. One complication arises because we must guarantee that the release of a repudiation for
individual i on a message does not subsequently allow a different member of the ring to produce a
signature on the message that cannot be repudiated by individual i. We overcome this difficulty by
relying on the witness indistinguishability property of the ZAP and ensuring that the repudiation
does not reveal the actual VRF outputs of the repudiator; that is, the ZAP proof is produced
with the VRF proof as a witness. The specific statement proven by the ZAPs is that some specific
combination of at least two of the purported VRF outputs is correct. Although in the honest usage
of the scheme, all four are produced correctly, we design the specific structure of the statements
proved in order to allow a hybrid argument to argue indistinguishability between signatures of
different signers in a ring. This scheme of proving the correctness of VRF outputs turns out also to
imply unforgeability, not only repudiability, so we do not need to rely on any underlying signature
scheme as building block. (In other words, our scheme can also be seen as a new construction of
standard ring signatures based on VRFs.)

Our claimable construction We give a generic transformation from any standard ring signature
scheme RS to a claimable one. The transformation uses commitment schemes, standard signatures,
and PRFs (which are all achievable from one-way functions). The basic idea is to take a signature
σRS under RS and append to it a commitment c to (vk, σRS) where vk is the verification key of
the signer. The verification algorithm simply checks whether σRS verifies. The claim consists of a
decommitment revealing that c is a commitment to (vk, σRS). Intuitively, by the hiding property
of the commitment scheme, the identity of the signer is hidden until he chooses to publish a claim.

The simple transformation just described runs into a couple of problems when examined in
detail. First, what if a signer commits to (σRS, vk

′) where vk′ is not his own key but that of
someone else in the ring? This ability would violate equation (6) of Definition 3.9 (claimability).
To prevent such behavior, our construction actually commits to a standard (non-ring) signature
on (vk, σRS). The unforgeability property of standard signatures then guarantees, intuitively, that
a signer cannot convincingly make a claim with respect to any verification key unless he knows a
corresponding signing key.

A second issue encountered by the scheme thus far described is that the signer must remember
the commitment randomness in order to produce a claim. It is preferable that the signer not
be stateful between signing and claiming; indeed, Definition 3.9 requires this. To resolve this,
our construction derives commitment randomness from a PRF. For similar reasons, the signing
randomness for the standard (non-ring) signature in our construction is also derived from a PRF.

Remark 2. Among the constructions presented in this paper, claimability is by far the simplest.
Moreover, as a generic transformation, it has the advantage of adding minimal efficiency overhead
to the existing state of the art in ring signatures. The simplicity of achieving claimability is
perhaps unsurprising in light of the natural intuition that claiming should be possible simply by
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remembering the signing randomness. As evidenced by unclaimability, this intuition is not strictly
true in general, as in certain schemes, producing signing randomness may not prove authorship.
In a nutshell, our generic transformation ensures that signing randomness is indeed a convincing
proof of authorship in the resulting scheme, and moreover builds into the scheme a simple method
of efficiently recovering the signing randomness without storing it explicitly.

Our unclaimable construction Our construction of unclaimable ring signatures is an extension
of the SIS-based ring signature scheme of Brakerski and Kalai [BK10]. The construction is based
on trapdoor sampling. In this overview, we describe a simplified version of the scheme. The full
scheme is described in Section 6. The basic idea for obtaining unclaimability is that each identity
corresponds to a public matrix Ai ∈ Zn×mq sampled together with a secret trapdoor Ti. A signature
will consist of short vectors xi ∈ Zmq such that∑

i

Aixi = y,

where y is a target value. For this overview, we can think of y as the output of a random oracle on
the message; in the actual construction, y will be obtained as the sum of additional matrix-vector
products. In order to sign the message, signer i first samples short vectors xj for each j 6= i. Then,
using the lattice trapdoor Ti, he samples a short vector xi such that the equation

xi = y −
∑
j 6=i

Ajxj

is satisfied. The signature is the list of vectors σ = (xi)i. Using properties of lattice trapdoors, it
follows that the distribution over (xi)i can be made statistically close no matter which trapdoor
was used to produce the signature. Moreover, given a vector x∗ to be produced, we can sample
random coins that will yield that vector under either the ordinary sampling algorithm or the
trapdoor sampling algorithm. Consequently, we obtain an algorithm that can produce explanatory
randomness for a signature under any identity in the ring.

Removing the random oracle to obtain ring signatures in the plain model (and unclaimable ones)
requires several complications. [BK10] first describes a basic ring signature scheme with weaker
unforgeability properties, in which the target vector y is determined using additional matrix-vector
products for matrices that depend on the bits of the message. They then amplify the security
of the scheme through a sequence of transformations that ultimately yield a scheme with full
unforgeability. In Section 6, we first define an algorithm for producing explanatory randomness for
their basic scheme, and then describe how to modify this algorithm for each modification of the basic
scheme, ultimately yielding an unclaimable ring signature scheme based on the SIS assumption.

Remark 3. The idea that a non-signer of a given signature can adaptively produce fake signing
randomness is reminiscent of deniable encryption [CDNO97], in which an encryptor of a given
ciphertext can adaptively produce fake randomness consistent with it being an encryption of a
different message. In this context, it may seem somewhat surprising that our construction relies on
a relatively standard assumption (SIS) while many natural definitions of deniable encryption are
not known to be achievable without heavier assumptions such as indistinguishability obfuscation
[SW14; CPP18]. A subtle difference that is significant here is that a deniably encrypted message
must still be recoverable by the honest decryptor, while in the unclaimable ring signature setting,
the signer’s identity need not be recoverable by anyone.
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1.3 Other related work

Several constructions of ring signatures based on lattice assumptions have been proposed (e.g.,
[BK10; Mel+13; BLO18]). The only other construction of ring signatures based on ZAPs is
[BKM09], to our knowledge. Numerous other ring signature constructions have been proposed,
mostly based on various assumptions on bilinear maps, many but not all of which are in the ran-
dom oracle model (e.g., [Ngu05; SS10; Boo+15]).

Two additional works in the lattice trapdoor literature bear mentioning: the seminal [Ajt99],
and the more recent [MP12]. The latter is more recent than [GPV08], whose trapdoors our un-
claimable construction relies on (this reliance is carried over from the [BK10] construction).

Ring signatures with additional guarantees Since the original proposal of ring signatures
by [RST01], various variant definitions have been proposed. For example, linkable ring signatures
[LWW04] allow identification of signatures that were produced by the same signer, without compro-
mising the anonymity of the signer within the ring. An enhancement to this notion called designated
linkability [LSW06] does not allow linkability by default, but instead allows links to be revealed at
will by a designated party. A related notion is that of designated identity verifier ring signatures
[SP14], which allow identification of the signer by a special party who is publicly designated by the
signer at the time of signing. Another notion called traceable ring signatures [FS07] considers a
setting where signatures are generated with respect to “tags” and each member may sign at most
a single message (say, a vote) with respect to a particular tag, or else his identity will be revealed.
Accountable ring signatures [XY04; Boo+15] allow a signer to assign the power to de-anonymize
her signature to a specific publicly identified party.

It may seem that some of these variants of ring signature schemes have properties that would
be useful for constructing claimable ring signatures as introduced in this paper. This implication
is unsurprising in the context of our results: all of the above types of ring signature schemes in
fact imply claimable ring signatures, since our construction of claimable ring signatures is a generic
transformation from any ring signature scheme. It is unclear if leveraging the additional features
of variant schemes would be more desirable than applying our generic transformation, which has
very low overhead and moreover can be applied to a simpler, more efficient ring signature scheme
that may lack these additional properties.

Group signatures Group signatures [CH91] are a different type of signature that allow signing
w.r.t. a set of verification keys and provide anonymity of the signer within that set. This concept
differs most strikingly from ring signatures in that there is a central authority that (1) sets up the
group (i.e., set of signers) and issues keys to members of the group and (2) has the power to revoke
the anonymity of the signer of a signature. Notions such as (un)linkability, described above, have
been applied to the group signature setting as well. Notably, there has also been proposed a notion
of deniable group signatures [Ish+16], in which the group manager may issue proofs that a particular
group member did not sign a particular signature. This bears a little resemblance to our notion of
repudiability in ring signatures; however, the presence of a central authority in the group signature
setting means these problems are technically rather disparate. [LNWX17] construct lattice-based
deniable group signatures; however, their technique for deniability is very different from ours, and
relies on zero-knowledge proofs of plaintext inequality for LWE ciphertexts, which do not suffice in
our setting.
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2 Anonymity and unforgeability of ring signatures

This section overviews standard ring signature definitions: syntax, correctness, anonymity, and
unforgeability. We express the anonymity and unforgeability definitions differently from prior
work, as explained in their respective subsections. However, our definitions are equivalent to the
correspondingly named definitions from prior work. Throughout the paper, k denotes the security
parameter.

Definition 2.1 (Ring signature). A ring signature scheme is a triple of PPT algorithms RS =
(Gen,Sign,Verify), satisfying the three properties of correctness (Definition 2.2), anonymity (Defi-
nitions 2.5–2.6), and unforgeability (Definition 2.8). The syntax of Gen, Sign, and Verify follows.

• Gen(1k) takes k as input and outputs a verification key vk and a signing key sk.
• Sign(R, sk,m) takes as input a signing key sk, a message m, and a set of verification keys
R = {vk1, . . . , vkN}, and outputs a signature σ. The set R is also known as a “ring.”
• Verify(R, σ,m) takes as input a set R of verification keys, a signature σ, and a message m, and

outputs a single bit indicating whether or not σ is a valid signature on m w.r.t. R.

Where it may not be clear from context, we sometimes write RS.Gen,RS.Sign,RS.Verify to denote
the Gen,Sign,Verify algorithms belonging to RS.

Definition 2.2 (Correctness). A ring signature scheme RS = (Gen,Sign,Verify) satisfies cor-
rectness if there is a negligible function ε such that for any N = poly(k), any N key pairs
(vk1, sk1), . . . , (vkN , skN )← Gen(1k), any i ∈ [N ], and any message m,

Pr [Verify(R,Sign(R, ski,m),m) = 1] = 1− ε(k) , (1)

where R = {vk1, . . . , vkN}. RS satisfies perfect correctness if (1) holds for ε = 0.

Remark 4. Definition 2.2 considers only for honestly generated keys. One could also consider a
stronger requirement that verification be successful for honestly generated signatures with respect
to rings containing adversarial keys. Any scheme satisfying Definition 2.2 can be transformed into
one satisfying the stronger definition, by modifying original signature algorithm Sign to a new
algorithm Sign′ that operates as follows. On input R, sk,m, for a sufficiently large polynomial p:

1. σ ← Sign(R, sk,m)
2. b1, . . . , bp ← Verify(R, σ,m)
3. if ∀i ∈ [p], bi = 1, output σ; else, go back to step 1

2.1 Anonymity

Prior work, notably [RST01; BKM09], has presented a variety of anonymity definitions for ring
signatures. Two of the definitions from prior work are relevant to this paper: anonymity against
adversarially chosen keys, and anonymity against full key exposure.

This section presents a new, generalized anonymity definition which is parametrized by oracle
sets, and expresses the two relevant anonymity definitions as instantiations of the generalized
definition. This generalized definition is useful to consolidate the existing definitions and make
clear their relationship to one another; it captures not only the two definitions we rely on here,
but also others from prior work. Moreover, the generalized definition will be essential to concisely
express the new anonymity definitions that we introduce in later sections for anonymity of repudiable
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and claimable ring signature schemes (in Sections 3.1.1 and 3.3.1 respectively). In a nutshell, this
is because the new definitions need to allow the adversary access to additional oracles related to
repudiation and/or claiming.

The generalized definition follows. It is parametrized by sets of oracles O1,O2 and an additional
parameter α ∈ {0, 1, 2} that limits the adversary’s corruptions.

Definition 2.3 ((O1,O2, α)-anonymity). Let O1,O2 be sets of oracles, where each oracle in the
set is parametrized by a list of key-pairs. Define Corr(vk1,sk1),...,(vkN ,skN ) to take as input i ∈ [N ]

and output ωi ← Gen−1(vki, ski).
7

A ring signature scheme RS = (Gen,Sign,Verify) satisfies (O1,O2, α)-anonymity if for any PPT
adversary A and any polynomial N = poly(k), Pr[b′ = b] in the above game is negligibly close to
1/2. That is, formally, ∀ PPT A = (A1,A2), N = poly(k), there is a negligible function ε such that

Pr


(vk1, sk1), . . . , (vkN , skN )← Gen(1k)

((m∗, i∗0, i
∗
1, R

∗), s)← AO1,Corr
1 (vk1, . . . , vkN )

b← {0, 1}
σ ← Sign(R∗ ∪ {vki∗0 , vki∗1}, ski∗b ,m

∗)

b′ ← AO2,Corr
2 (s, σ)

: b′ = b ∧ |{i∗0, i∗1} ∩ I| ≤ α

 <
1

2
+ ε(k) ,

(2)
where I is the set of queries to the corruption oracle; and the notation AO,Corr means that for
each oracle O in O, A has oracle access to O(vk1,sk1),...,(vkN ,skN ), and A also has oracle access to
Corr(vk1,sk1),...,(vkN ,skN ).

Definitions 2.5 and 2.6 are instantiations of Definition 2.3. They are equivalent to the corre-
spondingly named definitions in [BKM09].

Definition 2.4 (Signing oracle OSign). For a ring signature scheme RS, the oracle OSign(vk1,sk1),...,(vkN ,skN )

is defined to take as set R, input i ∈ [N ], and a message m, and output RS.Sign(R∪ {vki}, ski,m).
When the oracle is invoked with respect to a single key pair (i.e., OSign(vk,sk)), we treat the oracle
as taking only two inputs, m and R, since i is superfluous in this case.

Definition 2.5 (Anonymity against adversarially chosen keys). A ring signature scheme RS =
(Gen,Sign,Verify) satisfies anonymity against adversarially chosen keys if it is ({OSign},∅, 0)-
anonymous. Moreover, RS satisfies adaptive anonymity against adversarially chosen keys if it
is ({OSign}, {OSign}, 0)-anonymous.

Definition 2.5 captures the guarantee that as long as there are at least two honest parties in a
ring (represented by i∗0, i

∗
1), even if all other parties in the ring are corrupted by an adversary, the

adversary cannot tell which of the honest parties produced a signature. One can also consider an
even stronger definition where the adversary may corrupt all but one or even all of the parties in
the ring, as in Definition 2.6.

7The function Gen−1 takes as input a verification key vk and signing key sk produced by Gen, and produces the
randomness used by Gen to produce this key pair. That is, it samples from the set {ω : Gen(1k;ω) = (vk, sk)}.
In practice we will only ever invoke Gen−1 on a key pair produced by Gen, so we could invert efficiently by simply
remembering the randomness used by Gen, but for the purposes of this definition we will describe it as a sampling
procedure. Upon the first invocation on an input i, Corr samples ωi ← Gen−1(vki, ski), stores it, and outputs it. If
Corr is queried twice on the same input i then it outputs the same ωi that was previously stored.

12



Definition 2.6 (Anonymity against full key exposure). A ring signature scheme RS = (Gen, Sign,Verify)
satisfies anonymity against full key exposure if it is ({OSign},∅, 2)-anonymous.

Remark 5. Adaptive variants of anonymity were not given or discussed in prior work. 8 In this
paper, we refer primarily to adaptive anonymity against adversarially chosen keys: this is the
strongest notion compatible with repudiability and claimability. To see this, observe that knowledge
of a single one (say, ski∗0) of the two challenge secret keys is sufficient to violate anonymity in a
repudiable or claimable scheme, since the challenge signature σ was produced by ski∗0 if and only
if repudiating (resp. claiming) σ using ski∗0 yields an invalid repudiation (resp. valid claim).

Definition 2.6 does not include an adaptive version because adaptivity does not give the adver-
sary any additional power when he can corrupt all the keys.9

2.2 Unforgeability

The first unforgeability definition that follows is parametrized by an oracle set, taking a similar
approach to our anonymity definitions above. In this section, we only give one instantiation of
the parametrized definition of unforgeability. We will give other instantiations of Definition 2.7
later in the paper, in defining unforgeability for repudiable and claimable ring signature schemes
(in Sections 3.1.1 and 3.3.1 respectively).

Definition 2.7 (O-unforgeability). Let O be a set of oracles, where each oracle in the set is
parametrized by a list of key-pairs. A ring signature scheme RS = (Gen, Sign,Verify) isO-unforgeable
if for any PPT A and any N = poly(k), there is a negligible function ε such that

Pr

 (vk1, sk1), . . . , (vkN , skN )← Gen(1k)
(R∗,m∗, σ∗)← AO,OSign,Corr(vk1, . . . , vkN )
b← Verify(R∗, σ∗,m∗)

:
b = 1 ∧R∗ ⊆ {vk1, . . . , vkN} \ I
∧Q ∩ {(·,m∗, R∗)} = ∅

 < ε(k) ,

where the notation AO,OSign,Corr is defined as in Definition 2.3, and I and Q are the sets of queries
made to the corruption and signing oracles respectively.

We refer to the event that the conditions on the right-hand side of the colon in the above
probability expression are met as a “successful forgery.”

Definition 2.8 (Unforgeability of ring signatures). A ring signature scheme RS = (Gen, Sign,Verify)
is unforgeable if it is ∅-unforgeable.10

8This notwithstanding, the prior constructions of [RST01; BKM09; BK10] all achieve adaptive anonymity. The
constructions of [RST01; BK10] achieve perfect/statistical anonymity, respectively — the former, in the random
oracle model — so adaptivity follows. The proof of anonymity of [BKM09] construction essentially suffices to prove
adaptive anonymity, though the argument was not made in that paper since there was no adaptive definition of
anonymity.

9An intermediate notion between Definitions 2.5 (which sets α = 0) and 2.6 (which sets α = 2) is anonymity
against attribution attacks, defined in [BKM09], which effectively sets α = 1. Adaptive anonymity against attribution
attacks is not equivalent to the non-adaptive variant of the same.

10This is the definition described as unforgeability with respect to insider corruption in [BKM09], and is the strongest
of the three unforgeability definitions considered therein.
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3 New definitions: (un)repudiability and (un)claimability

3.1 Repudiable ring signatures

Repudiability addresses the question of whether or not members of a ring can prove that they did
not sign a particular message (when they in fact did not sign it).

Definition 3.1 (Repudiable ring signature). A repudiable ring signature scheme is a ring signature
scheme with an additional pair of algorithms (Repudiate,VerRepud), satisfying the four properties
of correctness (Definition 2.2), repudiability (Definition 3.3), anonymity (Definition 3.4), and un-
forgeability (Definition 3.5). The syntax of Repudiate and VerRepud follows.

• Repudiate(R, sk, σ,m) takes as input a set of verification keys R = {vk1, . . . , vkN}, a signing key
sk, a ring signature σ, and a message m, and outputs a repudiation ξ.
• VerRepud(R, vk, σ,m, ξ) takes as input a set R of verification keys, an identity vk, a signature
σ, a message m, and a repudiation ξ, and outputs a single bit indicating whether or not ξ is a
valid repudiation of signature σ for identity vk.

Definition 3.2 (Repudiation oracle ORpd). For a repudiable ring signature scheme RS, the oracle
ORpd(vk1,sk1),...,(vkN ,skN ) is defined to take as input a set R, i ∈ [N ], a signature σ, and a message
m, and output RS.Repudiate(R ∪ {vki}, ski, σ,m). When the oracle is invoked with respect to a
single key pair (i.e., ORpd(vk,sk)), we treat the oracle as taking only three inputs, R, σ, and m,
since i is superfluous in this case.

Additionally, we define the oracle ORpd
〈R∗,m∗〉
(vk1,sk1),...,(vkN ,skN ) to output ⊥ when it receives both the

ringR∗ and messagem∗ as inputs, and otherwise to give the same response as ORpd(vk1,sk1),...,(vkN ,skN ).
We refer to this oracle as “punctured at R∗ and m∗.”

Repudiability requires two conditions, expressed by equations (3) and (4) below. Intuitively,
(3) captures the requirement “good people can repudiate,” i.e., that for any (possibly maliciously
generated) signature, an honest party who did not produce it should be able to successfully repudi-
ate. (4) captures the requirements that “bad people cannot repudiate a signature they produced,”
i.e., addressing the case where the malicious signature and repudiation are both produced using
the key being verified, and thus we want the signer to be unable to produce a valid repudiation.

Definition 3.3 (Repudiability). A ring signature scheme Σ = (Gen,Sign,Verify) satisfies repudia-
bility if equipped with algorithms (Repudiate,VerRepud) such that the following conditions hold.

1. (Non-signers can repudiate) Let O = {OSign}. For any (possibly adversarial) PPT signing
algorithm ASign, there exists a negligible function ε such that

Pr


(vk, sk)← Gen(1k)

(σ,m,R′)← AO,ORpd(vk,sk)
Sign (vk)

ξ ← Repudiate(R′, sk, σ,m)
b← VerRepud(R′, vk, σ,m, ξ)
b′ ← Verify(R′, σ,m)

:
b = 1 ∨ b′ = 0
∨Q ∩ {(·,m,R′)} 6= ∅

 > 1− ε(k) . (3)

2. (Signer cannot repudiate) For any (possibly adversarial) sign-and-repudiate algorithm AS&R,
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there is a negligible function ε such that for any N = poly(k),

Pr


(vk1, sk1), . . . , (vkN , skN )← Gen(1k)
(σ,R′,m, {ξvk}vk∈R′\R)← AOS&R(R)

∀vk ∈ R′ \R, bvk ← VerRepud(R′, vk, σ,m, ξvk)
b′ ← Verify(R′, σ,m)

:
R′ ∩R = ∅ ∨

∨
vk∈R′\R

bvk = 0

∨b′ = 0 ∨Q ∩ {(·,m,R′)} 6= ∅

 > 1− ε(k) ,

(4)
where R = {vk1, . . . , vkN}, O = {OSign,ORpd}, and Q is the set of queries to OSign.

Remark 6. Equation 4 guarantees that a party possessing a set of signing keys cannot repudiate
under all of these keys, as long as some key in the ring is honestly generated. If the adversary
generates all keys in the ring, then he may be able to produce a repudiation under every key in
the ring. However, this does not undermine the purpose of repudiability: indeed, if presented with
repudiations under every key in a ring, one can confidently conclude that all keys in the ring were
generated dishonestly, and thus that all parties in the ring effectively colluded to produce each
signature under that ring. Similarly, given repudiations for a subset of the identities in a ring, one
can conclude that either one of the remaining identities in the ring produced the signature or all of
the remaining identities in the ring colluded maliciously to produce the signature. That is, either
way, at least one of the remaining identities is responsible for the signature.

3.1.1 Anonymity and unforgeability of repudiable ring signatures

The definitions of anonymity and unforgeability need to be adapted for repudiable ring signature
schemes, to incorporate a repudiation oracle as described next.

Definition 3.4 (Anonymity of repudiable ring signatures). A repudiable ring signature scheme

(Gen, Sign,Verify, (Repudiate,VerRepud))

satisfies anonymity against adversarially chosen keys if (Gen,Sign,Verify) is ({OSign,ORpd},∅, 0)-
anonymous (Definition 2.3) Moreover, the repudiable ring signature satisfies adaptive anonymity
against adversarially chosen keys if (Gen,Sign,Verify) is ({OSign,ORpd}, {OSign,ORpd〈R∗,m∗〉}, 0)-
anonymous, where R∗ and m∗ are the challenge ring and message in the anonymity experiment
(Equation 2).11

Recall from Remark 5 that adaptive anonymity against adversarially chosen keys is the strongest
anonymity notion compatible with repudiability.

Definition 3.5 (Unforgeability of repudiable ring signatures). A repudiable ring signature scheme

(Gen, Sign,Verify, (Repudiate,VerRepud))

is unforgeable if (Gen, Sign,Verify) is {ORpd}-unforgeable (Definition 2.7).
11 One may ask whether the oracle ORpd in the second phase should be punctured more specifically only at the

challenge identities i∗0, i
∗
1, since signatures of the message m∗ by other parties in the ring R∗ seem like they should

be admissible repudiation queries. But puncturing at just the challenge identities is unnecessary: the adversary in
Definition 2.3 additionally receives a corruption oracle, so without loss of generality, the adversary can corrupt all
parties in the ring except for i∗0, i

∗
1, and can run the repudiation algorithm for these parties without invoking the

oracle. The repudiation oracle in the second phase is thus only necessary for repudiations with respect to the challenge
identities i∗0, i

∗
1.
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Remark 7. Some previous versions of this paper (including the conference version) presented a
slightly different definition of anonymity of repudiable ring signatures: puncturing the second
ORpd oracle at the challenge signature σ instead of at R∗,m∗. These previous versions erred
in presenting the same construction as the current one, R-RS, which in fact satisfies the current
definition but not the old one. Thanks to Hao Lin and Mingqiang Wang for pointing out this issue
and correction [Lin19; LW19].

It turns out that the old version of the definition implies that any repudiable ring signature
scheme must satisfy a strong and unintuitive non-malleability property: namely, it must be in-
feasible, given an honest party’s signature, to produce a different signature on the same message
(valid for the same honest party). In other words, the old version of the definition is undesirably
brittle in that any repudiable signature scheme can be generically transformed to a very similar
scheme which no longer technically satisfies repudiability under the old definition, by appending
a uniformly random bit to each signature: this yields an attack where the adversary simply flips
the last bit of the challenge signature and violates anonymity by querying the ORpd oracle on
the “flipped” signature and one of the challenge identities. In light of this, we believe the current
Definition 3.4 is the natural one.

3.2 Unrepudiable ring signatures

We next consider a notion where it is not possible for a party to prove to others that he did not
produce a particular signature. In fact, though it may not be immediately apparent, a natural
formalization of this notion is expressed by the definition of anonymity against full key exposure
(Definition 2.6): that is, the strongest of the anonymity definitions given in Section 2. The following
paragraphs justify this claim with detailed intuition.

Recall that anonymity against full key exposure (FKE) preserves signer anonymity even against
an adversary that obtains all of the secret keys of all members of a ring. A ring signature scheme
that satisfies repudiability could not also satisfy anonymity against FKE, because of the following
attack: the adversary obtains all secret keys in the ring, attempts to repudiate using each secret
key, and identifies as the signer the one secret key with respect to which the repudiation algorithm
does not produce a valid repudiation. With overwhelming probability, by definition of repudiability,
there is exactly one such secret key.

This informal argument establishes that anonymity against FKE must imply any reasonable
notion of unrepudiability. The question then arises: are the two notions equivalent? While there
arguably exist meaningful definitions of unrepudiability that are weaker than anonymity against
FKE, we believe anonymity against FKE is the most reasonable definition of unrepudiability, as
explained next.

Any reasonable definition of unrepudiability should capture the intuitive requirement that non-
signers cannot behave distinguishably from signers. A little more precisely, for any protocol that
could be executed by a non-signer Nancy with respect to a signature σ and her verification key vk′,
the signer Sigmund of that signature must be able to engage in the same protocol with respect to
his own verification key vk and behave indistinguishably from Nancy. In other words, we require
that if Nancy’s secret key were stolen, the thief would be unable to tell whether σ was produced by
Nancy or by someone else. Indeed, if Nancy were stateless and did not remember what signatures
she had produced in the past, or simply lent her secret key to someone else who used it to produce
signatures, then she herself would not be able to tell. The definition of anonymity against FKE
embodies almost exactly this requirement — but instead of requiring anonymity against the thief
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who steals just Nancy’s key, the definition makes the stronger requirement that anonymity must
hold even against a thief who has every secret key in the ring corresponding to σ.

Is a weaker definition, which only rules out unilateral repudiations by a single party, a meaningful
definition of unrepudiability? Perhaps. However, it is more in keeping with the intuitive goals and
standard properties of ring signatures to protect against adversaries that may have many or all
secret keys in a ring: that is, to rule out even the possibility of multiple ring members colluding to
produce a repudiation for some ring member. Thus we arrive at the following definition.

Definition 3.6 (Unrepudiable ring signature scheme). A ring signature scheme satisfies unrepudi-
ability if it satisfies anonymity against full key exposure (Definition 2.6).

3.3 Claimable ring signatures

Claimability addresses whether the actual signer can prove later that they were the signer, without
remembering the signing randomness.

Definition 3.7 (Claimable ring signature). A claimable ring signature scheme is a ring signa-
ture scheme with an additional pair of algorithms (Claim,VerClaim), satisfying the four properties
of correctness (Definition 2.2), claimability (Definition 3.9), anonymity (Definition 3.10), and un-
forgeability (Definition 3.11). The syntax of Claim and VerClaim follows.

• Claim(R, sk, σ) takes as input a signing key sk, a ring signature σ, and a set of verification keys
R = {vk1, . . . , vkN}, and outputs a claim ζ.12

• VerClaim(R, vk, σ, ζ) takes as input a set R of verification keys, a signature σ, a claim ζ, and an
identity vk, and outputs a single bit indicating whether or not ζ is a valid claim of signature σ
for identity vk.

Definition 3.8 (Claim oracle OClaim). For a claimable ring signature scheme RS, the oracle
OClaim(vk1,sk1),...,(vkN ,skN ) is defined to take as input i ∈ [n], a set R, and a signature σ, and output
RS.Claim(R, sk, σ). When the oracle is invoked with respect to a single key pair (i.e., OClaim(vk,sk)),
we treat the oracle as taking only two inputs, R and σ, since i is superfluous in this case.

Additionally, we define the oracle OClaim
〈σ∗〉
(vk1,sk1),...,(vkN ,skN ) to output ⊥ when it receives the

signature σ∗ as input, and otherwise to give the same response as OClaim(vk1,sk1),...,(vkN ,skN ).

Claimability requires three conditions, expressed by equations (5), (6), and (7) below. Infor-
mally, (5) requires that honest signers can successfully claim their signatures, (6) requires that
adversarial parties cannot successfully claim a signature that they did not produce, and (7) re-
quires that adversarial parties cannot produce a signature along with a claim that appears to be
produced by an honest party (that is, falsely framing the honest party as the signer).

Definition 3.9 (Claimability). A ring signature scheme (Gen,Sign,Verify) is claimable if equipped
with algorithms (Claim,VerClaim) such that the following conditions hold.

1. (Honest signer can claim) There exists a negligible function ε such that for any N = poly(k)
and (vk1, sk1), . . . , (vkN , skN )← Gen(1k) and any i ∈ [N ], it holds for any message m that

Pr [σ ← Sign(R, ski,m) : VerClaim(R, vki, σ,Claim(R, ski, σ)) = 1] > 1− ε(k), (5)

12Claim could also take the message m as an additional input (analogously to Repudiate). We omit m to simplify
notation, because our construction of Claim does not use m. However, definitionally speaking, m may be thought of
as an additional implicit input to Claim (which could be used in other constructions).
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where R = {vk1, . . . , vkN}.13

2. (Non-signers cannot claim) Let O = {OSign}. For any (possibly adversarial) PPT sampling-
and-claiming algorithm AClaim = (A1,A2), there exists a negligible function ε such that

Pr



(vk, sk)← Gen(1k)

(R′,m, s)← AO,OClaim(vk,sk)

1 (vk)
σ ← Sign(R′ ∪ {vk}, sk,m)

(ζ, vk′)← AO,OClaim(vk,sk)

2 (R′ ∪ {vk}, σ, s)
b← VerClaim(R′ ∪ {vk}, vk′, σ, ζ)
b′ ← Verify(R′ ∪ {vk}, σ,m)

:
b = 1 ∧ b′ = 1
∧vk′ 6= vk


< ε(k). (6)

3. (Malicious signer cannot frame an honest party) For any PPT adversary AS&C, there exists a
negligible function ε such that

Pr


(vk, sk)← Gen(1k)

(R′,m, σ, ζ)← AO,OClaim(vk,sk)

S&C (vk)
b← VerClaim(R′ ∪ {vk}, vk, σ, ζ)
b′ ← Verify(R′ ∪ {vk}, σ,m)

:
b = 1 ∧ b′ = 1
∧Q ∩ {(·, σ)} = ∅

 < ε(k). (7)

where O = {OSign} and Q is the set of queries made to oracle OClaimvk,sk.

Remark 8. Our definition and construction guarantee that all honestly generated signatures can
be claimed by the signer, and even malicious signers cannot frame non-signers. Our definition
does not guarantee that all signatures that verify can be claimed by someone; requiring this would
be a reasonable alternative definition, but we believe our claimability definition is reasonable and
sufficient in many settings. Since claimability is a notion designed for the signer’s benefit, it is not
an “attack” that the signer can choose to waive the ability to claim. If two ring members collude
to produce a signature, then they are effectively both signers; therefore, it is not an attack if two
signers collude to produce a signature claimable by one of them.

Our definition has a property that may be counterintuitive at first glance: namely, a single
party might be able to claim and repudiate the same signature. However, this possibility is in fact
fully consistent with our security guarantees, as follows. If the party does both actions, we (the
observers) know she is adversarial. If she claims, we know that she either signed or was part of an
adversarial group that signed. If she repudiates, we know that either she didn’t sign, or she was
part of an adversarial group of which another member must be unable to repudiate.

3.3.1 Anonymity and unforgeability of claimable ring signatures

The definitions of anonymity and unforgeability must be adapted for claimable ring signature
schemes, to allow the adversary a claim oracle as described next.

Definition 3.10 (Anonymity of claimable ring signatures). A claimable ring signature scheme
(Gen, Sign,Verify, (Claim,VerClaim)) satisfies anonymity against adversarially chosen keys if (Gen,Sign,Verify)
is ({OSign,OClaim},∅, 0)-anonymous (Definition 2.3). Moreover, the repudiable ring signature sat-
isfies adaptive anonymity against adversarially chosen keys if (Gen, Sign,Verify) is

({OSign,OClaim}, {OSign,OClaim〈σ〉}, 0)-anonymous ,

13Like Definition 2.2, Equation 5 considers only honestly generated keys. See Remark 4 for further discussion.
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where σ is the challenge signature in the anonymity experiment (Equation (2)).

Recall from Remark 5 that adaptive anonymity against adversarially chosen keys is the strongest
anonymity notion compatible with claimability.

Definition 3.11 (Unforgeability of claimable ring signatures). A claimable ring signature scheme
(Gen,Sign,Verify, (Claim,VerClaim)) is unforgeable if (Gen, Sign,Verify) is {OClaim}-unforgeable (Def-
inition 2.7).

3.4 Unclaimable ring signatures

An unclaimable ring signature scheme has the property that the signer cannot later convince
anyone of her identity. That is, for any function that the true signer can compute given the signing
randomness and the secret key, any other member of the ring can compute an indistinguishable
function. The result is that even an adversary holding all ring members under duress cannot figure
out who produced a given signature. This is true even if the ring members under duress attempt
to cooperate with the adversary.

To achieve this, it suffices for any member of the ring to be able to extract signing randomness
distributed indistinguishably from true signing randomness, that would produce the given signature
under their secret key. More formally, the following guarantee should hold.

Definition 3.12 (Unclaimable ring signatures). A unclaimable ring signature scheme is a ring
signature scheme augmented with an additional algorithm ExtractRandomness as follows.

• ExtractRandomness(R, sk, σ,m) takes as input a ring R, a secret key sk, a signature σ and a
message m. If sk is one of the secret keys for ring R, and σ is a signature on m with respect to
R, then it outputs randomness ρ.

ExtractRandomness must satisfy the following condition.

• (Statistical unclaimability) LetR be the distribution of signing randomness. For anyN = poly(k)
there is a negligible function ε such that the following holds. Let (vk1, sk1), (vk2, sk2)← Gen(1k).
For any message m and any vk3, . . . , vkN and sk3, . . . , skN , let R = {vk1, . . . , vkN} and S =
{(i, vki, ski)}i∈[N ]. Let ρ← R, σ1 ← Sign(R, sk1,m; ρ), and ρ1 ← ExtractRandomness(R, sk2, σ1,m).
Let ρ2 ← R and σ2 ← Sign(R, sk2,m; ρ2). Then

(S, ρ1, σ1) ≈ε (S, ρ2, σ2).

Definition 3.12 is unusual among the definitions in this paper, in that it gives a statistical rather
than a computational guarantee. We opted to give the statistical definition because it is simpler,
it is a stronger guarantee, and our construction in this case achieves the statistical guarantee. One
could also consider a computational definition.

Remark 9 (Claimability is not the opposite of unclaimability). According to these definitions, un-
claimability is not technically the opposite of claimability (even when ignoring the fact that the
formal definitions give a statistical guarantee for unclaimability but a computational guarantee for
claimability). Claimability requires the ability to “voluntarily claim” a signature without remem-
bering the signing randomness, whereas unclaimability rules out the ability to “claim under duress”
even given the signing randomness. For voluntary claims, the natural and stronger definition is to
guarantee the ability to claim adaptive, without “planning ahead” and without the storage require-
ment of remembering the signing randomness. In contrast, when considering attempts to claim
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under duress, the natural and stronger definition is to rule out the possibility of successful claims
even in the presence of the signing randomness.

Remark 10 (Unclaimability protects honest signers). An adversarial signer who wants to claim
can devise ways of credibly later claiming a ring signature, even when using an unclaimable ring
signature scheme.14 This does not decrease the utility of an unclaimable ring signaature scheme
for honest signers who want their signatures to be unclaimable.

Remark 11 (Secure erasure and rubber-hose adversaries). Our unclaimability definition does not
protect signers against adversaries that can unexpectedly compromise the internal state of ring
members, in the following sense: either the signer will have securely erased the signing randomness,
in which case the adversary will not be able to determine the signer’s identity; or she won’t have
erased the signing randomness, in which case the adversary will be able to distinguish the signer
from other ring members. In the first case, the signer’s anonymity comes from her diligent erasure,
rather than from unclaimability; and the first case is only possible assuming secure erasure is
feasible.

We believe our unclaimability definition still has twofold value. First, even assuming secure
erasure, a system is stronger if it eliminates reliance on users to erase diligently. Users often fail
to use systems as they are supposed to; this is a major source of real-world security failures. Our
definition’s security does not rely on any user actions beyond running the honest signing algorithm.

Secondly, unclaimability is useful beyond the context of such powerful, real-time adversaries.
Consider an honest signer who does not intend to claim at the time of signing, but later is corrupted
or changes her mind. Our definition guarantees that the signer’s intent at the time of signing is
what matters: if she intended unclaimability when signing, she cannot later claim that signature.

3.4.1 Unclaimability implies unrepudiability

Any unclaimable ring signature scheme is also unrepudiable. Recall that the definition of unclaima-
bility captures the idea that for any function that the true signer can compute given the signing
randomness and the secret key, any other member of the ring can compute an indistinguishable
function. Intuitively, the implication follows from the fact that repudiation would require a non-
signer to behave in a way that distinguishable from any possible behavior of the actual signer.

Theorem 3.13. Any unclaimable ring signature scheme is also unrepudiable.

Proof. Recall that unrepudiability (Definition 3.6) is defined as anonymity against full key exposure
(Definition 2.6), which is ({OSign},∅, 2)-anonymity under the framework of Definition 2.3. Thus,
a ring signature scheme is unrepudiable if for any adversary A = (A1,A2) and polynomial N , it
satisfies (2) of Definition 2.3 for (O1,O2, α) = ({OSign},∅, 2). Note that since α = 2, we can
consider without loss of generality only adversaries that use the corruption oracle to learn all N
secret keys in (2), and do not make any queries to the signing oracle (since the adversary can
produce signatures himself, using the secret keys).

To establish the theorem, it suffices to show that for any unclaimable ring signature scheme,
the view of the adversary A is indistinguishable between the cases b = 0 and b = 1. Unclaimability
(Definition 3.12) directly implies that these two views are indistinguishable. To see this, recall

14For example, an adversarial signer might use a PRG output as his signing randomness, or append it to his
message, and remember the preimage. If he later revealed the preimage, it would likely serve as a credible claim to
authorship of the signature.
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that the adversary’s inputs in (2) of Definition 2.3 are an honestly generated set of verification
keys vk1, . . . , vkN and a signature σ produced by the honest signing algorithm using a secret key
corresponding to some vki, i ∈ [N ]. The theorem follows.

Remark 12. It is unclear that the reverse implication holds even for a computational definition
of unclaimability. The main complication is that unclaimability must hold even if the signing
randomness is saved, while this is not an issue for unrepudiability. For instance, an algorithm that
appends a commitment to the signing randomness (or to a random nonce) could be unrepudiable,
but could be claimed by a signer who remembered the signing randomness.

3.5 Repudiable-and-claimable ring signatures

Suppose that (Gen,Sign,Verify) is a ring signature scheme, and there are algorithms Repudiate,
VerRepud, Claim, and VerClaim such that

(Gen,Sign,Verify, (Repudiate,VerRepud)) and (Gen, Sign,Verify, (Claim,VerClaim))

are a repudiable ring signature scheme and a claimable ring signature scheme respectively (Defini-
tions 3.1 and 3.7). The seven algorithms together do not necessarily satisfy the natural notion of
a “repudiable-and-claimable” ring signature scheme.

The reason, in a nutshell, is that Definition 3.1 (repudiability) does not allow the adversary a
claim oracle, and likewise Definition 3.7 (claimability) does not allow the adversary a repudiation
oracle. Indeed, it would not make sense even syntactically for the “other oracles” to be provided:
since each of Definitions 3.1 and 3.7 is defined with respect to a quintuple of algorithms either
containing Repudiate but not Claim, or vice versa, the concept of the “other oracle” is undefined
within the scope of each definition.

Thus, it could be that when an adversary has access to both a claim and a repudiation oracle,
the resulting scheme is no longer secure. Indeed, there are simple (though arguably unnatural)
examples of schemes where this happens, such as the following.

Example 1. Given any ring signature scheme, augment the signing key sk to a new signing key
sk′ = (sk, η0, η1) that additionally contains a pair η0, η1 such that η0 is sampled uniformly randomly
and η0 ⊕ η1 = sk. Sign works just as in the original scheme, using only sk and ignoring η0, η1.
Repudiate produces repudiations just as in the original scheme, but additionally appends η0 to every
repudiation. Claim produces claims just as in the original scheme, but additionally appends η1 to
every repudiation. This modified scheme would be repudiable if the original scheme was, and also
claimable if the original scheme was. However, an adversary that could see both a repudiation and
a claim would straightforwardly be able to recover sk and thereby forge signatures.

The natural security definition for a repudiable-and-claimable ring signature scheme is to in-
clude both repudiation and claim oracles throughout the repudiability, claimability, anonymity,
and unforgeability definitions. As the resulting formal definitions are somewhat repetitive, we
defer them to Appendix A.

4 Repudiable construction

4.1 Building blocks

ZAPs ZAPs are two-message public coin witness indistinguishable proofs [DN07].
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Definition 4.1 (ZAP). A ZAP for an NP language L with witness relation RL is a triple of
algorithms ZAPL = (ZAP.SetupL,ZAP.ProveL,ZAP.VerifyL), where ZAP.Setup and ZAP.Prove are
PPT and ZAP.Verify is polynomial-time and deterministic, satisfying the following properties.

Public coin. For some polynomial ` = `(k), ZAP.Setup is the algorithm that on input 1k, outputs
a uniformly random element of {0, 1}`.

Completeness. For (x,w) ∈ RL and any ρ ∈ {0, 1}`(k) we have

Pr
π←ZAP.Prove(ρ,x,w)

[ZAP.Verify(ρ, π, x) = 1] = 1.

Adaptive soundness. There exists a negligible function ε such that

Pr
ρ←ZAP.Setup(1k)

[∃(x, π) : x /∈ L ∧ ZAP.Verify(ρ, π, x)] ≤ ε(k).

Witness indistinguishability. For any sequences {ρk}k∈N, {xk}k∈N, {w0,k}k∈N, {w1,k}k∈N,
where for all k, ρk ∈ {0, 1}`(k), xk ∈ L and (xk, w0,k), (xk, w1,k) ∈ RL, the following pair of
ensembles is computationally indistinguishable:

{ZAP.Prove(ρk, xk, w0,k)}k∈N
c
≈ {ZAP.Prove(ρk, xk, w1,k)}k∈N .

In this work, for simplicity, we will assume use of a ZAP for some NP-complete language LNP

(with witness relation RLNP
) and for any L ∈ NP with witness relation RL, we define ZAP.ProveL

and ZAP.VerifyL as follows.

• ZAP.ProveL takes as input a triple (ρ, x, w). If (x,w) /∈ RL, then output ⊥. Otherwise, use an
NP reduction on (x,w) to get a pair (xNP, wNP) ∈ RLNP

, and output ZAP.Prove(ρ, x, w).
• ZAP.VerifyL takes as input a triple (ρ, π, x), uses the same NP reduction to obtain xNP (which

is in LNP iff x ∈ L), and outputs ZAP.Verify(ρ, π, x).

Verifiable random functions (VRFs) [MRV99] are another main building block of our construc-
tion. The important property of VRFs that we rely on is residual pseudorandomness, i.e., that
VRF outputs on inputs for which the adversary has not received proofs remain indistinguishable
from random.

Definition 4.2 (VRF). A verifiable random function (VRF) is a tuple of algorithms VRF =
(VRF.Gen,VRF.Eval,VRF.Prove,VRF.Verify), where Gen and Verify are PPT and Eval and Prove are
polynomial time and deterministic, satisfying:

Complete provability With probability at least 1 − 2−Ω(k) over (pk, sk) ← VRF.Gen(1k), we
have for all inputs x that

Pr[VRF.Verify(pk, x,VRF.Eval(sk, x),VRF.Prove(sk, x)) = 1] > 1− 2−Ω(k) .
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Unique provability For all pk, x, y1, y2, τ1, τ2 with y1 6= y2, for either i = 1 or i = 2 it holds that

Pr[VRF.Verify(pk, x, yi, τi) = 1] < 2−Ω(k).

Residual pseudorandomness Let A = (A1,A2) be a probabilistic polynomial-time adversary,
where both A1 and A2 get oracle access to the VRF evaluation and prove algorithms. Let
(pk, sk)← VRF.Gen(1k), and let

(x, s)← AVRF.Eval(sk,·),VRF.Prove(sk,·)
1 (1k, pk).

Let b ← {0, 1}, and let v be either VRF.Eval(sk, x) or uniformly random, depending on the
choice bit b. Let

b′ = AVRF.Eval(sk,·),VRF.Prove(sk,·)
2 (1k, v, s).

Then there is a negligible function ε such that Pr[b = b′ and x /∈ Q] < 1/2 + ε(k), where Q
is the set of oracle queries made by A to either oracle.

For simplicity, we assume that Eval takes inputs x of any length, i.e., x ∈ {0, 1}∗.

Definition 4.3. The verification failure probability of a VRF VRF is

Pr

[
(pk, sk)← VRF.Gen(1k)
b← VRF.Verify(pk, x,VRF.Eval(sk, x),VRF.Prove(sk, x))

: b = 0

]
.

The residual pseudorandomness property of the VRF still holds even if the adversary gets to
query many key pairs at once, and gets to adaptively choose to learn some of the secret keys (in
this case, residual pseudorandomness holds for the uncorrupted keys only).

Lemma 4.4 (Parallel VRF Game). Let VRF be a VRF. Then ∀ PPT A = (A1,A2) and all
N = poly(k), there is a negligible function ε such that

Pr



(pk1, sk1), . . . , (pkN , skN )← VRF.Gen(1k)

(m∗, s)← AV,Corr1 (vk1, . . . , vkN )
∀i ∈ [N ], yi,0 ← VRF.Eval(ski,m

∗)
∀i ∈ [N ], yi,1 ← $
b← {0, 1}
b′ ← AV〈m

∗〉
2 (s, (yi,b)i∈[N ]\C)

: b = b′ ∧ ∀i ∈ [N ] \ C, (i,m∗) /∈ Q


< 1/2+ε(k) ,

(8)
where V is an oracle that takes as input a pair (i,m) and outputs

(y, τ) = (VRF.Eval(ski,m),VRF.Prove(ski,m)) ,

V〈m∗〉 is the same oracle punctured at m = m∗ (i.e. on input (i,m), the oracle outputs ⊥ if m = m∗

and behaves the same as V if m 6= m∗) and Corr is an oracle that takes as input an index i ∈ [N ]
and outputs ski, and C denotes the set of queries made to the corruption oracle, and Q denotes the
set of the queries to V.

We will refer to the game described by (8) as the Parallel VRF Game.
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4.2 Construction

Construction 4.5. Our construction R-RS is parametrized by ZAP, VRF, and M , where

• ZAP is a ZAP;
• VRF is a VRF with input domain {0, 1}∗, whose Verify algorithm takes ν bits of randomness

and whose verification failure probability (Definition 4.3) is ε;15

• M is a polynomial satisfying M ≥ (ν + k)/ log2(1/ε).16

We first present the Gen algorithm of our ring signature scheme R-RS.

R-RS.Gen(1k)

1. (vk1
VRF, sk

1
VRF), . . . , (vk4

VRF, sk
4
VRF)← VRF.Gen(1k).

Let ~vkVRF = (vk1
VRF, . . . , vk

4
VRF) and ~skVRF = (sk1

VRF, . . . , sk
4
VRF).

2. ρ← ZAP.Setup(1k).
3. ~α = (α1, . . . , αM )← ({0, 1}ν)M .
4. Output vk = ( ~vkVRF, ρ, ~α) and sk = ( ~skVRF, vk).17

In the rest of the section, we (implicitly) use the following convention to parse a ring R.

Write R = {vk1, . . . , vkN}.

For each i ∈ [N ],write vki = ( ~vk
i

VRF = (vki,1VRF, . . . , vk
i,4
VRF), ρi, ~αi = (αi1, . . . , α

i
M )).

(9)

Definition 4.6. Let L be the following NP language.{(
R,m,ϕ, (y1, y2, y3, y4)

)
: ∃i∗, τ1, τ2, τ3, τ4, γ s.t. (b1 ∨ b2) ∧ (b3 ∨ b4)

where ∀η ∈ {1, 2, 3, 4}, bη =
∧

i∈[N ],j∈[M ]

VRF.Verify(vki
∗,η
VRF, (R,m,ϕ), yη, τη;α

i
j ⊕ γ)

}
.

We now present the Sign and Verify algorithms of our construction.

R-RS.Sign(R, sk,m)

1. Parse R as described above and sk = ((sk1
VRF, . . . , sk

4
VRF), vk).

2. If vk /∈ R output ⊥ and halt.
3. Define i∗ ∈ [N ] such that vki∗ = vk.
4. γ ← {0, 1}ν . (This is used as part of the ZAP witness in Step 6.)
5. ϕ← {0, 1}k. (This is used as a salt for the VRF input in Step 7, and output in Step 8.)
6. For η ∈ {1, 2, 3, 4}, let yη = VRF.Eval(skηVRF, (R,m,ϕ)) and τη = VRF.Prove(skηVRF, (R,m,ϕ)).

Let ~y = (y1, . . . , y4).
7. For each i ∈ [N ], let πi ← ZAP.ProveL(ρi, (R,m,ϕ, ~y), (i∗, τ1,⊥, τ3,⊥, γ)).

Let ~π = (π1, . . . , πN ).
8. Output σ = (~π, ~y, ϕ).

15ε need not be explicitly known, as discussed in footnote 16.
16This inequality is required in order to invoke Corollary 4.11. As explained in Remark 14, a satisfactory value of

M can be set even without knowledge of ε. If ε happens to be known, a smaller value of M can be chosen.
17We include the verification key in sk so that the Sign procedure can identify the verification key in the ring

corresponding to the signing key.
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R-RS.Verify(R, σ,m)

1. Parse R as above and σ = ((π1, · · · , πN ), ~y, ϕ).
2. Output

∧
i∈[N ] ZAP.VerifyL(ρi, πi, (R,m,ϕ, ~y)).

Now that we have described the main algorithms of R-RS, we proceed to describe the repudiation
algorithms for R-RS.

Definition 4.7. Let L′ be the following NP language:{(
R,m,ϕ, (y1, . . . , y4), vk = ( ~vkVRF, ρ, ~α)

)
: ∃i∗, y′1, . . . , y′4, τ ′1, . . . , τ ′4, γ s.t.((

b′1 ∧ b′2
)
∨
(
b′3 ∧ b′4

))
∧ vk = vki∗ , where ∀η ∈ {1, 2, 3, 4},

b′η =

(
y′η 6= yη ∧

∧
i∈[N ],j∈[M ]

VRF.Verify(vki
∗,η
VRF, (R,m,ϕ), y′η, τ

′
η;α

i
j ⊕ γ)

)}
.

R-RS.Repudiate(R, sk, σ,m)

1. If R-RS.Verify(R, σ,m) = 0 output ⊥ and halt.
2. Parse R as above, sk = ((sk1

VRF, . . . , sk
4
VRF), vk), and σ = (~π, ~y, ϕ).

3. If vk /∈ R output ⊥ and halt.
4. Define i∗ ∈ [N ] such that vki∗ = vk.
5. For η ∈ {1, 2}: let y′η = VRF.Eval(skηVRF, (R,m,ϕ)) and let τ ′η = VRF.Prove(skηVRF, (R,m,ϕ)).
6. γ ← {0, 1}ν . (This is used as part of the ZAP witness in Step 7.)
7. For each i ∈ [N ], let ξi ← ZAP.ProveL′(ρi, (R,m,ϕ, ~y, vk), (i∗, y′1, y

′
2,⊥,⊥, τ ′1, τ ′2,⊥,⊥, γ)).

8. Output ξ = (ξ1, . . . , ξN ).

R-RS.VerRepud(R, vk, σ,m, ξ)

1. Parse R as above. If vk 6∈ R, output 1 and halt.
2. Parse σ = (~π, ~y, ϕ), and ξ = (ξ1, . . . , ξN ).
3. Output

∧
i∈[N ] ZAP.VerifyL′(ρi, ξi, (R,m,ϕ, ~y, vk)).

Remark 13. As written, the size of the VRF input (R,m,ϕ) scales with the size of the ring R,
and we have assumed that the VRF has input domain {0, 1}∗, i.e., can take variable-length inputs.
When this is not the case, or when it is desirable for efficiency reasons to evaluate the VRF on a
smaller input, the scheme can be straightforwardly modified by employing a collision-resistant hash
function, and evaluating the VRF on the hash of (R,m,ϕ) rather than on (R,m,ϕ) directly. We
have presented the version of the scheme without the hash function, for simplicity of exposition.

4.3 Security proof

Theorem 4.8. Let VRF be a VRF and ZAP be a ZAP. Then R-RS is a repudiable ring signature
scheme.

Proof. Follows directly from Lemmata 4.9 (correctness), 4.12 (repudiability), 4.13 (unforgeability),
and 4.14 (anonymity).
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Lemma 4.9 (Correctness of R-RS). R-RS satisfies correctness (Definition 2.2).

Correctness is immediate so we omit the proof. Before presenting the proof of repudiability, we
establish the following supporting lemma and corollary, which proceed according to an argument
of [DN07].

Lemma 4.10. Let V be a randomized algorithm that takes ν bits of randomness and outputs one
bit. Let β ∈ {0, 1} be a bit, and let x be an input such that for some negligible ε,

Pr
[
V(1k, x) = β

]
≥ 1− ε . (10)

Let M be a polynomial such that M ≥ (ν + k)/ log2(1/ε). (Note that the right-hand side is at most
polynomial since the numerator is polynomial and the denominator is super-constant.) Then the
following probability is overwhelming:

Pr
(α1,...,αM )←({0,1}ν)M

[
∀γ ∈ {0, 1}ν , ∃i ∈ [M ] s.t. V(1k, x;αi ⊕ γ) = β

]
. (11)

Proof. Fix any γ ∈ {0, 1}ν . Let ψi,γ = αi ⊕ γ for each i ∈ [M ]. Since the αi are distributed
randomly and independently, the distribution of (ψi,γ)i∈[M ] is uniform over ({0, 1}ν)M even when
conditioned on γ. Therefore, conditioned on any given γ,

Pr
[
∀i ∈ [M ], V(1k, x, ;ψi,γ) 6= β

]
< εM .

There are 2ν possible values of γ, so by a union bound,

Pr
[
∃γ ∈ {0, 1}ν s.t. ∀i ∈ [M ], V(1k, x;ψi,γ) 6= β

]
< 2ν · εM .

Since M ≥ (ν + k)/ log2(1/ε) = logε(2
−(ν+k)) by assumption, the right-hand side is at most 2−k,

which is negligible. The lemma follows.

The next corollary states that the implication established in Lemma 4.10 in fact goes both ways.

Corollary 4.11. Let V be a randomized algorithm takes ν bits of randomness and outputs one
bit. Let β ∈ {0, 1} be a bit, and let ε be a negligible function. Let M be a polynomial such that
M ≥ (ν + k)/ log2(1/ε). Then (10) holds if and only if (11) is overwhelming.

Proof. Follows from applying Lemma 4.10 for both β = 0 and β = 1.

Remark 14. For all large enough k, Corollary 4.11 holds for any M ≥ ν+k. This is because if (10)
holds for some negligible ε, then for all large enough k, (10) also holds for ε = 1/2 (or indeed, any
constant ε). Substituting ε = 1/2 into M ≥ (ν + k)/ log2(1/ε) yields M ≥ ν + k. In particular,
this means that a satisfactory M can be chosen without knowledge of ε.

Next, we give the proof of repudiability of R-RS.

Lemma 4.12 (Repudiability of R-RS). R-RS is repudiable (Definition 3.3).
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Proof. Suppose, for contradiction, that R-RS is not repudiable. Then by Definition 3.3, it must be
that either (3) or (4) does not hold. We consider these two possibilities in turn.

Suppose first that (3) does not hold for R-RS. Then there is a PPT ASign that generates a valid
signature σ with respect to some ring R, so that σ is not repudiable by some honest party in the
ring. That is, the following probability is non-negligible:

Pr


(vk, sk)← Gen(1k)
(σ,m,R)← AOSign(vk)

ξ ← Repudiate(R, sk, σ,m)
b← VerRepud(R, vk, σ,m, ξ)
b′ ← Verify(R, σ,m)

:
b = 0 ∧ b′ = 1
∧Q ∩ {(·,m,R′)} = ∅

 , (12)

where Q is the set of queries to OSign.
Based on ASign, we build an adversary A for Parallel VRF Game (defined in Lemma 4.4), as

follows. A first invokes R-RS.Gen(1k) to obtain (vk, sk). The vk is a tuple ( ~vkVRF, ρ, ~α), where
~vkVRF can be parsed further as (vk1

VRF, . . . , vk
4
VRF).

A obtains two verification keys vk3,∗
VRF, vk

4,∗
VRF from the VRF challenger, and replaces vk3

VRF and
vk4

VRF with these keys, setting

vk′ = ((vk1
VRF, vk

2
VRF, vk

3,∗
VRF, vk

4,∗
VRF), ρ, ~α).

Let sk3,∗
VRF, sk

4,∗
VRF be the VRF secret keys corresponding to vk3,∗

VRF, vk
4,∗
VRF, respectively.18

Next, A runs ASign(vk′), answering ASign’s oracle queries as follows.

• On query (R′′,m′′) to OSign: A runs the honest signing algorithm R-RS.Sign on input (R′′ ∪
{vk′}, sk,m′′), with the following modification: in step 6, instead of using sk3

VRF and sk4
VRF to

generate y3, τ3, and y4, τ4, A invokes its VRF oracle.
• On query (R′′, σ′′,m′′) to ORpd: A runs the honest repudiation algorithm R-RS.Repudiate

on input (R′′ ∪ {vk′}, sk, σ′′,m′′). (Note that sk3
VRF and sk4

VRF are not used in algorithm
R-RS.Repudiate, so we don’t need to invoke the VRF oracle here.)

Let (σ,m,R) be the output of ASign. A parses σ = (~π, ~y, ϕ) and ~y = (y1, . . . , y4). Then A sends
(R,m,ϕ) to the VRF challenger, receiving responses y′3 and y′4. If y3 = y′3 or y4 = y′4, A outputs 0.
Otherwise, A outputs a random bit. Let us now consider A’s behavior in the two cases where the
VRF challenger’s bit b is equal to 0 and equal to 1.

Case b = 0 in Parallel VRF Game. In this case, the view of ASign is identical to the view in
(12), so by assumption ASign will win the game — i.e., produce a signature that verifies but is not
repudiable by an honest party — with non-negligible probability. Note that whenever ASign wins
the game, the condition Q ∩ {(·,m,R′)} 6= ∅ in (12) implies that A has not previously made an
oracle query on the VRF challenge message (R,m,ϕ) during the query phase. Let us suppose that
ASign wins the game described in (12), and consider the implications.

By definition, if R-RS.VerRepud rejects (with non-negligible probability) on an honestly gener-
ated repudiation ξ = (ξi)i∈[|R|] generated with respect to vk′, then

∃i ∈ [|R|] s.t. ZAP.VerifyL′(ρi, ξi, (R,m,ϕ, ~y, vk
′)) = 0 . (13)

By the completeness of the ZAP and the complete provability of the VRF, since ξ is honestly
generated with respect to vk′, the statement ¬b′3 ∨ ¬b′4 then holds with overwhelming probability,

18Note that sk3,∗VRF, sk
4,∗
VRF are generated by the VRF challenger and not accessible by A.
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where b′3, b
′
4 are as defined in Definition 4.7. Expanding the definition of b′3, b

′
4, and again using

that ξ is honestly generated, we have that

∃η ∈ {3, 4}, i′ ∈ [|R|], j′ ∈ [M ], γ s.t.

VRF.Verify(vkη,∗VRF, (R,m,ϕ), yη,VRF.Prove(sk
η,∗
VRF, (R,m,ϕ));αi

′
j′ ⊕ γ) = 0 .

(14)

Since vk′ ∈ R is honestly generated by assumption, we have that the ~α = (α1, . . . , αM ) within vk′

is distributed uniformly over ({0, 1}ν)M . Then applying Corollary 4.11 (setting the algorithm V to
be VRF.Verify): (14) implies either

∃η ∈ {3, 4} and τ s.t.

Pr
[
VRF.Verify(vkη,∗VRF, (R,m,ϕ), yη, τ) = 1

]
is overwhelming,

(15)

or a negligible probability event occurred. By the complete and unique provability of the VRF,
(15) implies that

y3 = VRF.Eval(sk3,∗
VRF, (R,m,ϕ)) or y4 = VRF.Eval(sk4,∗

VRF, (R,m,ϕ)) . (16)

Chaining together the implications, we conclude that (16) holds with all but negligible probability
conditioned on the non-negligible-probability event of ASign winning the game described in (12).

Finally, by definition of Parallel VRF Game, when b = 0,

y′3 = VRF.Eval(sk3,∗
VRF, (R,m,ϕ)) and y′4 = VRF.Eval(sk4,∗

VRF, (R,m,ϕ)) . (17)

From (16) and (17): when b = 0, there is a non-negligible probability that

y3 = y′3 or y4 = y′4 . (18)

Recall that (18) is the trigger condition for A to output 0. Therefore, when b = 0, A outputs 0
with non-negligible probability (and outputs a random bit the rest of the time).

Case b = 1 in Parallel VRF Game. In this case, y′3 and y′4 are uniformly random and inde-
pendent of the rest of the experiment, so they will be distinct from y3 and y4 with overwhelming
probability. Consequently, in this case, with all but negligible probability A outputs a random bit.

Thus, A wins Parallel VRF Game with non-negligible probability. This contradicts the security
of the VRF. Therefore, R-RS satisfies (3).

It remains to show that R-RS satisfies (4). The argument for this part of the proof follows a
somewhat similar outline to the argument already presented. The rest of the proof is deferred to
Appendix B.

Lemma 4.13 (Unforgeability of R-RS). R-RS is unforgeable (in the sense of Definition 3.5).

Proof. This proof is very similar to the second half of the proof of Lemma 4.12.
Suppose that this is not the case. Then there exists some N = poly(k) and some PPT B such

that the following probability is non-negligible, where I and Q are the sets of queries made to the
corruption and signing oracles respectively:

Pr

 (vk1, sk1), . . . , (vkN , skN )← Gen(1k)
(R∗,m∗, σ∗)← BOSign,ORpd,Corr(vk1, . . . , vkN )
b← Verify(R∗, σ∗,m∗)

:
b = 1 ∧R∗ ⊆ {vk1, . . . , vkN} \ I
∧Q ∩ {(·,m∗, R∗)} = ∅

 .

(19)
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We build an adversary A to the Parallel VRF Game of Lemma 4.4. A first samples

(vk1, sk1), . . . , (vkN , skN )← Gen(1k)

and parses each vki and ski as follows:

vki = ( ~vk
i

VRF = (vki,1VRF, vk
i,2
VRF, vk

i,3
VRF, vk

i,4
VRF), ρi, ~αi)

ski = ( ~sk
i

VRF = (ski,1VRF, sk
i,2
VRF, sk

i,3
VRF, sk

i,4
VRF), vki)

Then A chooses a random i∗ ← [N ], obtains a pair of verification keys vk∗,3VRF, vk
∗,4
VRF from the VRF

challenger, and lets

vk∗ = ( ~vk
i

VRF = (vki,1VRF, vk
i,2
VRF, vk

∗,3
VRF, vk

∗,4
VRF), ρi, ~αi).

Let sk∗,3VRF, sk
∗,4
VRF denote the VRF secret keys corresponding to vk∗,3VRF, vk

∗,4
VRF, respectively.

Let vk∗i∗ = vk∗ and let vk∗i = vki for every i 6= i∗. Let R∗ = {vk∗1, . . . , vk∗N}. A then runs B on
input R∗, answering B’s oracle queries as follows.

• On query (R′′, i′′,m′′) to OSign: A runs the honest signing algorithm R-RS.Sign on input (R′′ ∪
{vk∗i′′}, ski′′ ,m′′), with the following modification if i = i∗: in step 6, instead of using ski

∗,3
VRF and

ski
∗,4
VRF to generate y3, τ3, and y4, τ4, A invokes its VRF oracle.

• On query (R′′, i′′, σ′′,m′′) to ORpd: A runs the honest repudiation algorithm R-RS.Repudiate on
input (R′′ ∪ {vk∗i′′}, ski′′ , σ′′,m′′). (sk3

VRF and sk4
VRF are not used by R-RS.Repudiate, so A does

not need to invoke the VRF oracle here.)
• On each invocation of Corr on some index i ∈ [N ]: if i = i∗ then A outputs a random bit and

aborts; otherwise, A responds to B with ski.

Let (R′,m, σ) be the output of B. A parses σ = (~π, ~y, ϕ) and ~y = (y1, . . . , y4), and submits
(R′,m, ϕ) to the VRF challenger and then receive responses y′3 and y′4. If y′3 = y3 or y′4 = y4, A
outputs 0. Else, A outputs a random bit.

It remains to show that A distinguishes with non-negligible advantage, in the parallel VRF
security game, between VRF outputs and random values.

Let us consider the behavior of A in the two cases where the VRF challenger’s bit is equal to
0 and equal to 1.

Case b = 0 in Parallel VRF Game. In this case, the response that A receives to the challenge
(R′,m) consists of VRF outputs on input (R′,m) with respect to the keys vk∗,3VRF, vk

∗,4
VRF. In par-

ticular, whenever B does not query Corr on i∗, the view of B is identical to the view in (19). So,
conditioned on B not corrupting i∗, B will win the game — i.e., produce a valid signature — with
non-negligible probability, by assumption.

Let us consider the probability that B queries Corr for input i∗. Recall that this event causes A
to abort and output a random bit. The distribution of the view (i.e., verification keys and oracle
responses) of B is unaffected by A’s choice of i∗, until the point at which B submits an oracle query
to Corr for input i∗ (if at all). The condition R∗ ⊆ {vk1, . . . , vkN} \ I in (19) ensures that if B
wins the game with non-negligible probability, then B leaves one or more keys uncorrupted with at
least that non-negligible probability. Since i∗ is chosen at random by A, it follows that Pr[i∗ /∈ I]
is non-negligible.

Let E′ denote the event that A does not abort (i.e., i∗ /∈ I) and B’s output signature verifies
(i.e., R-RS.Verify(R′, σ,m) = 1). We have established that E′ occurs with non-negligible probability.
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Then, by the same argument given from (28) to (32) in the proof of Lemma 4.12, we have that
either

∃j∗ ∈ [|R′|], η ∈ {3, 4}, and τ s.t.

Pr
[
VRF.Verify(vkj

∗,η
VRF, (R

′,m, ϕ), yη, τ) = 1
]

is overwhelming,

or a negligible probability event occurred. When j∗ = i∗, this moreover implies

y3 = VRF.Eval(sk∗,3VRF, (R
′,m, ϕ)) or y4 = VRF.Eval(sk∗,3VRF, (R

′,m, ϕ)) . (20)

Let us consider the probability that j∗ = i∗. As also observed above, the distribution of the
view (i.e., verification keys and oracle responses) of B is unaffected by A’s choice of i∗, until the
point at which B submits an oracle query to Corr for input i∗ (if at all). Since i∗ is chosen at
random by A (and is thus independent of j∗), and i∗, j∗ ∈ [|R′|], Pr[i∗ = j∗] must be non-negligible.
Therefore, (20) holds with non-negligible probability.

Finally, by definition of the Parallel VRF Game, whenever the challenger’s bit b is 0,

y′3 = VRF.Eval(sk∗,3VRF, (R
′,m, ϕ)) or y′4 = VRF.Eval(sk∗,3VRF, (R

′,m, ϕ)) . (21)

From (20) and (21) we have that with non-negligible probability,

y3 = y′3 or y4 = y′4 . (22)

Recall that (22) is the trigger condition for A to output 0. We conclude that when the VRF
challenger’s bit b = 0, the trigger condition for A to output 0 is met with non-negligible probability;
and by construction, A outputs a random bit the rest of the time (i.e., when the trigger condition
is not met).

Case b = 1 in Parallel VRF Game. In this case, the response that A receives to the challenge
message (R,m,ϕ) consists of truly random strings instead of VRF outputs, and so Pr[y′3 = y3∨y′4 =
y4] is negligible. Thus, A outputs a random bit with overwhelming probability.

We have shown that A’s output is non-negligibly different depending on the VRF challenger’s
bit, and so A must win the Parallel VRF Game with non-negligible probability. This contradicts
the security of the VRF. Therefore, R-RS is unforgeable.

Lemma 4.14 (Anonymity of R-RS). R-RS satisfies adaptive anonymity against adversarially chosen
keys (Definition 3.4).

Proof sketch. The proof is a hybrid argument using the security of VRFs and ZAPs to change the
values y2 and y4 within the signature first to truly random values, then to VRF outputs w.r.t.
party i∗1 rather than i∗0. Then the same procedure is applied to y1 and y3, so that finally y1, . . . , y4

are all VRF outputs w.r.t. party i∗1. Details of the proof are in Appendix C.

5 Claimable transformation

In this section, we give a simple black-box transformation from any ring signature to a claimable
ring signature scheme. The transformation relies on one-way functions. If the original scheme was
repudiable, the resulting scheme is moreover claimable-and-repudiable.
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5.1 Building blocks

We assume familiarity with the standard notions of commitment schemes, standard signatures, and
PRFs, and simply establish syntax in this subsection.19 For simplicity, we denote a commitment
scheme by a single algorithm Com, and assume that the decommitment simply consists of the
commitment randomness.

Definition 5.1 (Commitment scheme). A commitment scheme Com has the following syntax: Com
takes as input a message µ and randomness r and outputs a commitment c. Sometimes we leave r
implicit and write Com(µ) instead of Com(µ; r). The decommitment of c is the randomness r.

A commitment scheme must satisfy the following properties.

• Hiding: For all PPT adversaries A = (A1,A2), ∃ negligible ε s.t. ∀k ∈ N,

Pr


(µ0, µ1, s)← A1(1k)
b← {0, 1}
c← Com(µb)
b′ ← A2(c, s)

: b′ = b

 ≤ 1/2 + ε(k) . (23)

• Binding: For all PPT adversaries A, ∃ negligible ε s.t. ∀k ∈ N,

Pr
[

(c, µ, r, µ′, r′)← A(1k) : µ 6= µ′ ∧ Com(µ; r) = c = Com(µ′; r′)
]
≤ ε(k) .

Definition 5.2 (Standard signature (syntax)). A signature scheme is a triple of PPT algorithms
Σ = (Σ.Gen,Σ.Sign,Σ.Verify) with the following syntax:

• Σ.Gen(1k) takes as input the security parameter k and outputs a verification key vk and a
signing key sk.
• Σ.Sign(sk,m) takes as input a signing key sk and a message m, and outputs a signature σ.
• Σ.Verify(vk, σ,m) takes as input a verification key vk, a signature σ, and a message m, and

outputs a single bit indicating whether or not σ is a valid signature on m w.r.t. vk.

Definition 5.3 (PRF (syntax)). A pseudorandom function (PRF) is a pair of algorithms PRF =
(PRF.Gen,PRF.Eval), where:

• PRF.Gen is a PPT algorithm that takes as input 1k and outputs a PRF key skPRF, and
• PRF.Eval is a polynomial-time deterministic algorithm that takes as input a PRF key skPRF and
x ∈ {0, 1}∗ and outputs a string r.

For simplicity, we assume PRFs that take arbitrary-length inputs (i.e., {0, 1}∗).

5.2 The transformation

Our transformation builds on any ring signature scheme, RS, to construct a claimable ring signature
scheme C-RS. The basic idea is to take a signature σRS under RS and append to it a commitment c
to (vk, σRS) where vk is the verification key of the signer. The verification algorithm simply checks
whether σRS verifies. The claim consists of a decommitment revealing that c is a commitment to
(vk, σRS). Intuitively, by the hiding property of the commitment scheme, the identity of the signer
is hidden until he chooses to publish a claim.

The simple transformation just described runs into a couple of problems when examined in
detail. First, what if a signer commits to (σRS, vk

′) where vk′ is not his own key but that of

19We refer to any standard textbook (e.g., [KL14]) for the relevant security definitions.
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someone else in the ring? This ability would violate equation (6) of Definition 3.9 (claimability).
To prevent such behavior, our construction actually commits to a standard (non-ring) signature
on (vk, σRS). The unforgeability property of standard signatures then guarantees, intuitively, that
a signer cannot convincingly make a claim with respect to any verification key unless he knows a
corresponding signing key.

A second hurdle encountered by the scheme thus far described is that the signer must remember
the commitment randomness in order to produce a claim. It is preferable that the signer need not
be stateful in between signing and claiming; and indeed, recall that Definition 3.9 formalizes this
property. To resolve this, our construction derives commitment randomness from a PRF. For
similar reasons, the signing randomness for the standard (non-ring) signature in our construction
is also derived from a PRF.

The formal description of the transformation follows.

Construction 5.4. Our transformation C-RS is parametrized by the following:

• RS, a ring signature scheme,
• Σ, a standard signature scheme,
• Com, a commitment scheme, and
• PRF, a PRF.

For convenience, and without loss of generality, we assume that the commitment randomness of
Com, the signing randomness of Σ, and the output of PRF.Eval all have the same length of ν bits.

C-RS.Gen(1k)

1. Let (vkRS, skRS)← RS.Gen(1k).
2. Let (vkΣ, skΣ)← Σ.Gen(1k).
3. Let skPRF ← PRF.Gen(1k).
4. Output vk = (vkRS, vkΣ) and sk = (vk, skRS, skΣ, skPRF).

In the rest of the construction, we implicitly parse verification keys and signing keys of C-RS as
vk = (vkRS, vkΣ) and sk = (vk, skRS, skΣ, skPRF) respectively. Also, for a ring

R =
(
vk1 = (vk1

RS, vk
1
Σ), . . . , vkN = (vkNRS, vk

N
Σ )
)
,

we write RS(R) to denote (vk1
RS, . . . , vk

N
RS).

C-RS.Sign(R, sk,m)

1. Let σRS ← RS.Sign(RS(R), skRS,m).
2. Let rΣ = PRF.Eval(skPRF, (vk, σRS, 0)).
3. Let σΣ = Σ.Sign(skΣ, (vk, σRS); rΣ).
4. Let rCom = PRF.Eval(skPRF, (vk, σRS, 1)).
5. Let c = Com((vk, σΣ); rCom).
6. Let σ = (σRS, c).
7. If C-RS.VerClaim(R, vk, σ,C-RS.Claim(R, sk, σ)) = 1, output σ.
8. Otherwise, output (⊥,⊥).

C-RS.Verify(R, σ = (σRS, c),m)

1. If σRS = ⊥, output 0.
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2. Otherwise, output RS.Verify(RS(R), σRS,m).

C-RS.Claim(R, sk, σ = (σRS, c))

1. Let r′Σ = PRF.Eval(skPRF, (vk, σRS, 0)).
2. Let r′Com = PRF.Eval(skPRF, (vk, σRS, 1)).
3. Let σ′Σ = Σ.Sign(skΣ, (vk, σRS); r′Σ).
4. If c 6= Com(σ′Σ, r

′
Com), output ζ = ⊥.

5. Otherwise, output ζ = (r′Com, σ
′
Σ).

C-RS.VerClaim(R, vk, σ = (σRS, c), ζ = (r′Com, σ
′
Σ))

1. Let c′ = Com((vk, σ′Σ); r′Com).
2. Output (c = c′) ∧ Σ.Verify(vkΣ, σ

′
Σ, (vk, σRS)).

If RS is a repudiable ring signature scheme equipped with algorithms (Repudiate,VerRepud),
then we additionally define C-RS.Repudiate and C-RS.VerRepud to simply run the Repudiate and
VerRepud algorithms of RS, as follows.

C-RS.Repudiate(R, sk, σ = (σRS, c),m)

1. Output RS.Repudiate(RS(R), sk, σRS,m).

C-RS.VerRepud(R, vk, σ = (σRS, c),m, ξ)

1. Output RS.VerRepud(RS(R), sk, σRS,m, ξ).

Theorem 5.5. C-RS is a claimable ring signature scheme (Theorem 5.6). Moreover, if RS is a
repudiable ring signature scheme, then C-RS is repudiable-and-claimable (Theorem 5.11).

Proof. Follows from Theorems 5.6 and 5.11.

Theorem 5.6 (Claimability of C-RS). C-RS is a claimable ring signature scheme.

Proof. Follows from Lemmata 5.7–5.10, which establish the properties of correctness, claimability,
unforgeability, and anonymity, respectively.

Lemma 5.7 (Correctness of C-RS). C-RS satisfies correctness (Definition 2.2).

Correctness is immediate, so we omit the proof.

Lemma 5.8 (Claimability of C-RS). C-RS is claimable (Definition 3.9).

Proof. We show that C-RS satisfies each of the three conditions of Definition 3.9. The first condition
is immediate by the correctness of the signature scheme Σ, since the use of the PRF ensures that
the values (r′Σ, r

′
Com, σ

′
Σ) computed in Claim are the same as the corresponding values computed in

Sign and that the commitments c, c′ match.
For the second condition, assume for contradiction that there exists some PPT malicious claim-

ing algorithm AClaim = (A1,A2) that is able to claim a signature produced by a different party.
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That is, that the following probability is non-negligible:

Pr



(vk, sk)← C-RS.Gen(1k)
(R′,m)← A O1 (vk)
σ ← C-RS.Sign(R′ ∪ {vk}, sk,m)
(ζ, vk′)← A O2 (R′ ∪ {vk}, σ)
b← C-RS.VerClaim(R′ ∪ {vk}, vk′, σ, ζ)
b′ ← C-RS.Verify(R′ ∪ {vk}, σ,m)

:
b = 1 ∧ b′ = 1
∧vk′ 6= vk

 , (24)

where O = {OSign,OClaimvk,sk}. We will produce an adversary B that breaks the binding property
of the commitment scheme. Let B first run the experiment in Equation 24, invoking the malicious
claiming algorithm AClaim and using its knowledge of the secret key sk to answer the oracle queries
of AClaim. Let B then compute ζ ′ = C-RS.Claim(R′ ∪ {vk}, sk, σ) and b′′ = C-RS.VerClaim(R′ ∪
{vk}, vk, σ, ζ ′). Since the signature verifies correctly with non-negligible probability, the check on
line 7 of C-RS.Sign must pass, and so we must have that b′′ = 1 whenever b′ = 1. Conseqently
with non-negligible probability we have that b = b′ = b′′ = 1 and vk 6= vk′. Conditioning on
this event, we have that σ = (σRS, c), ζ = (rCom, σΣ), and ζ ′ = (r′Com, σ

′
Σ) are such that c =

Com((vk, σΣ), rCom) = Com((vk′, σ′Σ), r′Com). But vk 6= vk′, so with non-negligible probability B
generates two different openings to the same commitment, breaking the binding property of the
commitment. This concludes the proof of the second property of Definition 3.9.

For the third condition, assume for contradiction that there exists some PPT malicious signing-
and-claiming algorithm AS&C that produces a signature and claims it on behalf of a different party.
That is, assume that the following probability is non-negligible:

Pr


(vk, sk)← C-RS.Gen(1k)

(R′,m, σ, ζ)← AO,OClaim(vk,sk)

S&C (vk)
b← C-RS.VerClaim(R′ ∪ {vk}, vk, σ, ζ)
b′ ← C-RS.Verify(R′ ∪ {vk}, σ,m)

:
b = 1 ∧ b′ = 1
∧Q ∩ {(·, σ)} = ∅

 , (25)

where O = {OSign} and Q is the set of queries made to the oracle OClaim(vk,sk). We will construct
an adversary B that breaks the unforgeability property of the signature scheme Σ. B first requests
a verification key vk∗Σ from the challenger for Σ. It samples keys (vk, sk) ← C-RS.Gen(1k) as in
the beginning of the experiment in Equation 25, but replaces vkΣ with vk∗Σ and skΣ with ⊥ in
vk and sk, respectively. It then invokes the adversary AS&C on inputs (1k, vk) to produce values
(R′,m, σ, ζ), using the challenger for the signature scheme Σ to respond to the oracle queries of
AS&C as follows:

• WhenAS&C queries oracle OSign on input (m,R), algorithm B first computes σRS as in C-RS.Sign.
It then invokes the challenger for Σ on message (vk, σRS), receiving signature σΣ. (If the chal-
lenger has already been queried on this message (vk, σRS) in a previous invocation of OSign, then
instead of querying the challenger again, use the same value σΣ sent by the challenger in the
previous invocation.) It then proceeds as in steps 4–8 of algorithm C-RS.Sign computing value
rCom and commitment c, testing whether C-RS.VerClaim succeeds (where in the inner invocation
of C-RS.Claim we set σ′Σ to be the challenger-produced signature σΣ instead of running Σ.Sign),
and returning σ = (σRS, c).
• When AS&C queries oracle OClaim(vk,sk) on input (R, σ), algorithm B first tests whether σ was

an output returned by a previous invocation of the oracle OSign. If not, it immediately returns
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⊥. If it is, then let σΣ be the signature returned by the challenger for Σ on that invocation of
OSign. Compute value rCom as in algorithm C-RS.Claim, and output ζ = (rCom, σΣ).

Finally, algorithm B parses ζ = (r′Com, σ
′
Σ) and outputs σ′Σ as its forgery.

We now outline a hybrid argument to show that this adversary B breaks the unforgeability
property of the signature scheme.

Hybrid 1. The experiment with adversary B as just described.

Hybrid 2. Instead of the signature scheme challenger using actual randomness to generate the
signatures in the oracle queries to OSign, use pseudorandomness obtained by a PRF invocation
rΣ = PRF.Eval(skPRF, (vk, σRS, 0))

Hybrid 3. Instead of responding to both types of oracle queries as above, use actual invocations of
C-RS.Sign and C-RS.Claim, using the secret key skΣ known to the challenger for the unforgeability
game.

Indistinguishability of Hybrids 1 and 2 follows from the pseudorandomness of the PRF. For
Hybrids 2 and 3, note first that the two experiments behave identically on invocations of the oracle
OSign. It remains to consider invocations of the oracle OClaim. By the binding property of the
commitment scheme and the pseudorandomness of the PRF, with all but negligible probability ad-
versary AS&C in Hybrid 3 will be unable to find an input to the oracle OClaim that does not yield
output ⊥, except for inputs that were previously produced as output to the oracle OSign. Conse-
quently, except with negligible probability, the oracle OClaim will behave identically in Hybrids 2
and 3. But Hybrid 3 is exactly the experiment in Equation 25, so with non-negligible probability
adversary AS&C in this experiment produces a signature σ = (σRS, c) and claim ζ = (r′Com, σ

′
Σ) such

that σ was not a query to oracle OClaim(vk,sk) and Σ.Verify(vkΣ, σ
′
Σ, (vk, σRS)) outputs 1, i.e. σ′Σ

verifies as a valid signature of the message (vk, σRS) under key vkΣ. By the hybrid argument, it
follows that with non-negligible probability, B successfully produces a valid signature for message
(vk, σRS).

It remains to argue that this signature is a valid forgery, i.e. that its message is distinct from each
of the signatures produced by the challenger. To achieve this, we will make a small modification
to the adversary B; call the new adversary B′. Let L = L(k) be a (polynomial) upper bound on
the number of queries made by B to the oracle OSign, and choose at random an index i∗ ∈ [L]
On the i∗th query to OSign, rather than invoking the ring signature challenger to obtain σΣ and
computing commitment c, instead choose a random string σ∗ and compute the commitment with
respect to that. By the hiding property of the commitment scheme, as long as the oracle OClaim
is not queried on this signature, the output of the modified adversary B′ is indistinguishable from
that of B. We already have by assumption that with non-negligible probability AS&C wins the
experiment in Equation 25, but moreover we have with non-negligible probability that in addition
either the signature σ produced by AS&C was never the output of oracle OSign (and that i∗ is
greater than the number of queries made to oracle OSign) or that it was the output of the i∗th
query to OSign (and no earlier query). In the latter event, since AS&C wins the experiment in
Equation 25, this signature cannot have been a query to oracle OClaim, and so in either case, the
behavior of B′ is indistinguishable from B. But in either case, the signature σ in the experiment with
B′ was not produced by invoking the challenger to the signature scheme, so it follows that (except
with negligible probability), the signature σ′Σ from the claim ζ was not produced by the signature
scheme challenger. Putting everything together, we have that with non-negligible probability, the
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adversary AS&C in the experiment with B′ produces a valid signature for a message distinct from
any message signed by the signature scheme challenger. This violates the unforgeability property
of the signature scheme and yields a contradiction, and so the third property of Definition 3.9 is
also satisfied.

Lemma 5.9 (Unforgeability of C-RS). C-RS is unforgeable (in the sense of Definition 3.11).

Proof. The proof is by reduction to the unforgeability of RS.20 Suppose, for contradiction, that
there is a PPT adversaryA that violates unforgeability of C-RS (Definition 3.11). Then we construct
another adversary B that violates unforgeability of RS without having access to a OClaim oracle.
On input (vk1, . . . , vkN ) which are verification keys of RS, B behaves as follows.

1. For each i ∈ [N ]:

• Sample (vkiΣ, sk
i
Σ)← Σ.Gen(1k).

• Sample skiPRF ← PRF.Gen(1k).
• Let vk∗i = (vki, vk

i
Σ) and sk∗i = (ski, sk

i
Σ, sk

i
PRF).

2. Run A on input (vk∗1, . . . , vk
∗
N ), answering A’s oracle queries as follows.

(a) For each query (i,m,R) to C-RS.OSign:

• Query RS.OSign on (i,m,R) and receive response σRS.
• Let rΣ = PRF.Eval(skiPRF, (vk

∗
i , σRS, 0)).

• Let σΣ = Σ.Sign(skiΣ, (vk
∗
i , σRS); rΣ).

• Let rCom = PRF.Eval(skiPRF, (vk
∗
i , σRS, 1)).

• Let c = Com(σΣ; rCom).
• Output σ = (σRS, c).

(b) For each query (i, R, σ) to C-RS.OClaim:

• Parse σ as (σRS, c).
• Let r′Σ = PRF.Eval(skiPRF, (vk

∗
i , σRS, 0)).

• Let r′Com = PRF.Eval(skiPRF, (vk
∗
i , σRS, 1)).

• Let σ′Σ = Σ.Sign(skiΣ, (vk
i
Σ, σRS); r′Σ).

• Output ζ = (r′Com, σ
′
Σ).

3. Upon receiving an output (R′,m′, σ′) from A: parse σ′ as (σ′RS, c
′), define R′′ = {vki : vk∗i ∈ R′},

and output (R′′,m′, σ′RS).

By construction of C-RS and B, whenever A successfully forges with respect to C-RS, B success-
fully forges with respect to RS. Moreover, B’s responses to A’s oracle queries are, by construction,
distributed identically to the oracle responses in the unforgeability experiment for C-RS. Therefore,
A’s probability of successful forgery is the same when B runs A in the above reduction, as in the
unforgeability experiment. By our supposition, A’s forging probability in the unforgeability exper-
iment is some non-negligible ε, so it follows that A’s forging probability in the above reduction is
also ε, and therefore B’s forging probability with respect to RS is in turn ε. This contradicts the
unforgeability of RS. The lemma follows.

20Note that the unforgeability guarantee we have on RS is standard unforgeability of ring signatures (Definition 2.8),
which does not give the adversary a OClaim oracle. If we had the stronger guarantee that RS were unforgeable in
the presence of a OClaim oracle, then the unforgeability of C-RS would follow immediately, since signatures of C-RS
contain signatures of RS.
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Lemma 5.10 (Anonymity of C-RS). If RS satisfies anonymity (resp., adaptive anonymity) against
adversarially chosen keys (Definition 2.5), then C-RS satisfies anonymity (resp., adaptive anonymity)
against adversarially chosen keys (Definition 3.10).

Proof. We give the proof that C-RS satisfies adaptive anonymity whenever RS satisfies adaptive
anonymity. The non-adaptive version of the statement has a slightly simpler proof: the proof
follows the same structure, but certain steps of the proof become unnecessary. In the rest of the
proof, we write “anonymity” to mean “adaptive anonymity against adversarially chosen keys.”

We begin with a hybrid argument. Recall the anonymity experiment (Definition 2.3) for
anonymity against adversarially chosen keys (Definition 3.10), shown below as “Hybrid 0.”

Anonymity experiment (Hybrid 0)

(vk1, sk1), . . . , (vkN , skN )← Gen(1k)

((m∗, i∗0, i
∗
1, R

∗), s)← AOSign,OClaim,Corr
1 (vk1, . . . , vkN )

b← {0, 1}
σ ← Sign(R∗ ∪ {vki∗0 , vki∗1}, ski∗b ,m

∗)

b′ ← AOSign,OClaim〈σ〉,Corr
2 (s, σ)

We now define two signing algorithms Sign1 and Sign2 which are slight variants of C-RS.Sign.
For ι ∈ {1, 2}, we define Hybrid ι to be the same as Hybrid 0 except that the invocation of Sign
in the fourth line of the experiment is replaced by an invocation of Signι. In the descriptions of
Sign1 and Sign2 below, changes from the preceding hybrid are marked in blue, and steps which are
entirely removed are “crossed out” and shown in red.

Sign1(R, sk,m)

1. Let σRS ← RS.Sign(RS(R), skRS,m).
2. Let rΣ = PRF.Eval(skPRF, (vk, σRS, 0)).
3. Let σΣ = Σ.Sign(skΣ, (vk, σRS); rΣ).
4. Let rCom ← {0, 1}ν .
5. Let c = Com(σΣ; rCom).
6. Output σ = (σRS, c).

Sign2(R, sk,m)

1. Let σRS ← RS.Sign(RS(R), skRS,m).
2. Let rΣ = PRF.Eval(skPRF, (vk, σRS, 0)).
3. Let σΣ = Σ.Sign(skΣ, (vk, σRS); rΣ).
4. Let rCom ← {0, 1}ν .
5. Let c = Com(0; rCom).
6. Output σ = (σRS, c).

Hybrid 1 is indistinguishable from Hybrid 0. This follows from PRF security as long as
there are no other variables in A’s view that are correlated with the PRF output in Hybrid 0,
namely, rCom = PRF.Eval(skPRF, (vk, σRS, 1)). Since PRF security guarantees that PRF outputs
on different inputs are computationally indistinguishable from uniform and independent strings,
it suffices to establish that nowhere else in the anonymity experiment is the PRF evaluated on
the specific input (vk, σRS, 1). The only PRF evaluations during the experiment are to compute
the rΣ and rCom values used by the OSign oracle when responding to oracle queries. The PRF
inputs used to compute rΣ values are distinct, by construction, by from those used to compute
rCom values (since the former end in 0 and the latter end in 1). The PRF inputs used to compute
rCom values for OSign queries are also, with overwhelming probability, distinct from the challenge
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input (vk, σRS, 1). Since each such PRF input is of the format (vk′, σ′RS, 1) where σ′RS is an honestly
generated signature under RS, this follows from the following two observations.

1. The anonymity of RS implies that multiple honestly generated signatures under the same key
pair must be distinct with overwhelming probability. (Otherwise, the adversary could break
anonymity by querying a signature under every key in the ring on many messages, and then
checking the challenge signature for equality with any of the preceding signatures.)

2. The unforgeability of RS implies that honestly generated signatures under an honestly generated
key pair (vk, sk) are distinct from honestly generated signatures under any other — possibly
adversarially generated21 — key pair.

Hybrid 2 is indistinguishable from Hybrid 1. This follows from the hiding property of the
commitment, since all that has changed from Hybrid 1 is the value committed to by c.

The rest of the proof gives a reduction between Hybrid 2 and the anonymity of RS. Note that
the anonymity guarantee we have on RS is anonymity of standard ring signatures (Definition 2.8),
which does not give the adversary a OClaim oracle.

Suppose, for contradiction, that there is a PPT adversary A = (A1,A2) that violates anonymity
of C-RS (Definition 3.10). Then we construct another adversary B = (B1,B2) that violates
anonymity of RS without having access to a OClaim oracle. On input (vk1, . . . , vkN ) which are
verification keys of RS, B1 behaves as follows.

1. For each i ∈ [N ], construct vk∗i = (vki, vk
i
Σ) and sk∗i = (ski, sk

i
Σ, sk

i
PRF) exactly as described in

Step 1 in the proof of Lemma 5.9.
2. Run A on input (vk∗1, . . . , vk

∗
N ), answering A’s oracle queries exactly as described in Step 2 in

the proof of Lemma 5.9.
3. Upon receiving an output ((m′, i′0, i

′
1, R

′), s′) from A: define R′′ = {vki : vk∗i ∈ R′}, let s′′ be all
of B’s internal state, and output ((m′, i′0, i

′
1, R

′′), s′′).

Then, on input (s′′, σRS), B2 behaves as follows.

1. Let c = Com(0; r) for truly random r.
2. Let σ = (σRS, c).
3. Run A2 to obtain b′ ← A2(s′, σ).
4. Output b′.

A’s view between the reduction run by B is identically distributed to A’s view in the exper-
iment of Hybrid 2. Moreover, by construction, B2’s guess is correct exactly when A2 guesses b′

correctly. Therefore, B’s success probability in the anonymity experiment of RS is negligibly close
to A’s success probability in the anonymity experiment of C-RS. By supposition, the latter proba-
bility is non-negligibly greater than 1/2. It follows that B violates the anonymity of RS, which is
contradiction. The lemma follows.

Theorem 5.11 (Repudiability-and-claimability of C-RS). If RS is repudiable, then C-RS is a
repudiable-and-claimable ring signature scheme. (Definition A.1).

Proof sketch. Suppose RS is repudiable. We need to prove that C-RS satisfies the definitions (which
are given in Appendix A) of repudiability, claimability, anonymity, and unforgeability of repudiable-
and-claimable ring signature schemes.

21With knowledge of vk but not sk.
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The proofs of anonymity and unforgeability are essentially identical to the proofs of Lem-
mata 5.10 and 5.9, respectively. Those proofs reduce the anonymity/unforgeability of C-RS to
the anonymity/unforgeability of RS (as defined in Section 2), respectively, under the assumption
that RS is a standard (i.e., not necessarily repudiable) ring signature scheme. The same proof
structure suffices to argue that in the case that RS is a repudiable ring signature scheme, that the
anonymity/unforgeability of C-RS reduces to the anonymity/unforgeability notions for repudiable
ring signature schemes (as defined in Section 3.1), which by assumption are satisfed by RS.

It remains to prove repudiability and claimability of C-RS, according to Definitions A.2 and
A.3, respectively.

Repudiability We reduce the repudiability of C-RS to the repudiability of RS. Suppose, for
contradiction, that C-RS did not satisfy Definition A.2. Then the repudiability of RS could be
violated by an adversary A that instantiates its own commitment and signature schemes and PRF,
and runs the adversary B that breaks the repudiability of C-RS, while:

• augmenting each signature under RS with a corresponding commitment so that it appears in-
distinguishable from a signature under C-RS in B’s view; and
• remembering the commitment randomness for any such commitments; and
• answering oracle calls to OClaim by producing the appropriate decommitments (using the re-

membered commitment randomness); and
• answering oracle calls to ORpd by passing them to its own ORpd oracle for RS.

Claimability The proof structure for claimability is very similar to that of Lemma 5.8, which
argues that C-RS satisfies each of the three conditions of Definition 3.9 in turn.

• The argument for the first condition (i.e., that honest claims are validated by VerClaim) goes
through unchanged.
• The argument for the second condition (i.e., that non-signers cannot successfully claim) also

goes through unchanged: the adversary B constructed in the proof of Lemma 5.8 has knowledge
of the secret key sk, which it can use to answer ORpd queries using the honest repudiation
algorithm.
• The argument for the third condition needs to be augmented with a description of how B

responds to oracle queries to ORpd that are made by A. Just as above, B answers these oracle
queries by running the honest repudiation algorithm.

6 Unclaimable construction

In this section we show how to construct unclaimable ring signatures from lattice assumptions. The
scheme is exactly the SIS-based ring signature scheme of Brakerski and Kalai [BK10], augmented
with an additional algorithm ExtractRandomness.

We first give a very brief summary of necessary background on lattice trapdoors; see [GPV08]
and Appendix D for details.

6.1 Lattice trapdoor sampling

Let q ∈ N, m′ ∈ N, and β ∈ Z be functions of security parameter n. The (inhomogeneous, average-
case) short integer solution (SISq,m,β) assumption states that given A ← Zn×m′q , v ← Znq , it is
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computationally hard to find x ∈ Zm′q such that Ax = v and ‖x‖ ≤ β. For polynomial m′, β and
prime q ≥ β · ω(

√
n log n), the SIS problem is known to be as hard as approximating worst-case

lattice problems, in particular the Shortest Independent Vectors Problem (SIVP), to within a factor
of β · Õ(

√
n) [MR07; GPV08].

Let DΛ,s,c denote the discrete Gaussian distribution over n-dimensional lattice Λ, centered at
c ∈ Rn and with parameter s. We note the existence of the following algorithms, described in
[GPV08]22:

• There is an algorithm TrapdoorSamp that on input a security parameter 1n produces a matrix
A ∈ Znq and a trapdoor T , where A is statistically close to uniform and T is a short basis for

the lattice Λ⊥(A).
• There is an algorithm SampleDist sampling from the discrete Gaussian distribution DZm′ ,s,0.
• There is an algorithm SampleCond that on input a matrix A, trapdoor T , parameter s and

vector u, produces a sample x distributed statistically close to the discrete Gaussian distribution
DZm′ ,s,0 conditioned on Ax = u. We have that ‖x‖2 ≤ s

√
n with probability 1.

We will also require additional algorithms that given output values of the algorithms SampleDist
and SampleCond, respectively, sample randomness under which the algorithm produces the desired
output.

• There is an algorithm ExplainDist that on input an image vector x and parameter s, samples
randomness ρ that yields output x under algorithm SampleDist, i.e. samples from the distribution
{ρ|SampleDist(s; ρ) = x}.
• There is an algorithm ExplainCond that on input matrix A, trapdoor T , parameter s, vector u

and image vector x, samples randomness ρ that yields output x under algorithm SampleCond
with inputs (A, T, s, u), i.e. samples from the distribution {ρ|SampleCond(A, T, s, u; ρ) = x}.

We describe the algorithms ExplainDist and ExplainCond in Appendix D. We will use a slight mod-
ification of the SampleCond algorithm of [GPV08] that uses the basis randomization technique
of [CHKP10]. We need the following lemma.

Lemma 6.1. Let (A1, T1) and (A2, T2) be sampled from TrapdoorSamp, let y ∈ Znq , and let

s ≥ max(‖T̃1‖, ‖T̃2‖) · ω(
√

log n), where the tilde denotes Gram-Schmidt orthogonalization. Sam-
ple vectors x1 and x′2 from SampleDist. Let x2 ← SampleCond(A2, T2, s, y − A1x1), and let x′1 ←
SampleCond(A1, T1, s, y−A2x

′
2). Then the distributions (A1, T1, A2, T2, x1, x2) and (A1, T1, A2, T2, x

′
1, x
′
2)

are statistically close.

Intuitively, this lemma says that the sampled vectors are distributed the same independently of
which of the two trapdoors was used. This follows immediately from Lemma 3.3 of [CHKP10].

6.2 The basic construction of [BK10]

We now describe the construction of [BK10].23 Brakerski and Kalai first construct a base version of
their scheme that satisfies a weaker security notion, and augment it to fully secure ring signatures
in a series of steps.

22These are given by thealgorithms TrapGen, SampleD and SampleISIS in [GPV08].
23The original presentation of [BK10] introduces an abstraction they call ring trapdoor functions, and instantiates

this abstraction from biliear group assumptions as well as the SIS assumption. We present their SIS-based construction
more explicitly, without the additional layer of abstraction, in order to make the role of the SIS trapdoor more
apparent.
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Let the message space be {0, 1}`, and let X = {x ∈ Zm′q : ‖x‖2 ≤ s
√
m′} for some s =

ω(
√
n log n log q) be the set of “short” vectors.

The key generation algorithm samples a matrix with an SIS trapdoor, and an additional set of
2` matrices, two corresponding to each bit of the message. It additionally samples a target vector y,
and outputs the matrices and target vector as the verification key and the trapdoor as the signing
key.

BK-RS.Gen(1k)

1. Let (A, T )← TrapdoorSamp(1k).
2. For (i, b) ∈ [`]× {0, 1}, let Ai,b ← Zn×m′q .
3. Let y ← Znq .
4. Output vk = (A, (Aj,b)(j,b)∈[`]×{0,1}, y) and sk = (vk, T ).

The signing algorithm proceeds as follows. A target vector y is selected from the lexicograph-
ically first verification key. For each identity in the ring, short vectors are sampled for matrices
corresponding to each bit of the message to be signed, as well as the additional matrix. Finally,
the trapdoor in the signing key is used to obtain a short vector, which is sampled from the same
distribution conditioned on having a particular product with the matrix Ai∗ corresponding to the
signer, i.e., conditioned on Equation 26 being satisfied. The signature consists of the list of short
vectors for each identity and each index of the message.

BK-RS.Sign(R, sk,m; ρ)

1. Parse R = (vk1, . . . , vkN ) and sk = (vk, T ).

2. For i ∈ [N ], parse vki = (Ai, (A
(i)
j,b)(j,b)∈[`×{0,1}, yi).

3. Let y = yi, where i ∈ [N ] is the index for which vki is lexicographically first.
4. If vk 6∈ R, output ⊥ and halt.
5. Define i∗ ∈ [N ] be such that vki∗ = vk.

6. Using the trapdoor TA for Ai∗ , we can sample (x
(i)
j )i∈[N ],j∈{0}∪[`] such that∑

i∈[N ]

Aix
(i)
0 +

∑
i∈[N ]

j∈[`]

A
(i)
j,mj

x
(i)
j = y. (26)

That is, for (i, j) ∈ [N ]×{0}∪[`] other than the pair (i∗, 0), we invoke algorithm SampleDist

to sample x
(i)
j ∈ independently from the discrete Gaussian distribution X . Finally, we

invoke algorithm SampleCond use the trapdoor T for Ai∗ to sample x
(i∗)
0 from a distribution

statistically close to the distribution X conditioned on Equation 26 being satisfied.

7. Output σ = (x
(i)
j )i∈[N ],j∈{0}∪[`].

The verification procedure simply checks that each vector in the signature has short entries and
that Equation 26 is satisfied.

BK-RS.Verify(R, σ,m)

1. Parse R = (vk1, . . . , vkN ).

2. For i ∈ [N ], parse vki = (Ai, (A
(i)
j,b)(j,b)∈[`×{0,1}, yi).
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3. Parse σ = (x
(i)
j )i∈[N ],j∈{0}∪[`].

4. For each x
(i)
j for i ∈ [N ], j ∈ {0} ∪ [`], if x

(i)
j /∈ X then immediately reject.

5. Let y = yi, where i ∈ [N ] is the index for which Ai∗ is lexicographically first.
6. Accept if Equation 26 above is satisfied, and otherwise reject.

Thus far we have simply described the basic ring signature scheme of [BK10]. We augment
this scheme by providing an ExtractRandomness algorithm. In order to do so, we must produce
“explaining randomness” that maps to the desired output vector under the algorithms SampleDist
and SampleCond. We do this using algorithms ExplainDist and ExplainCond, as described in Ap-
pendix D.

BK-RS.ExtractRandomness(R, sk, σ,m)

1. Parse R = (vk1, . . . , vkN ) and sk = (vk, T ).

2. For i ∈ [N ], parse vki = (Ai, (A
(i)
j,b)(j,b)∈[`×{0,1}, yi).

3. Parse σ = (x
(i)
j )i∈[N ],j∈{0}∪[`].

4. If vk 6∈ R, output ⊥ and halt.
5. Define i∗ ∈ [N ] be such that vki∗ = vk.
6. For (i, j) ∈ [N ] × {0} ∪ [`] other than the pair (i∗, 0), invoke algorithm ExplainDist to

sample random coins ρ
(i)
j that produce output x

(i)
j under the discrete Gaussian sampling

algorithm.

7. Invoke algorithm ExplainCond to sample random coins ρ
(i∗)
0 that produce output x

(i∗)
0

under the conditional random sampling algorithm using trapdoor T .

8. Output (ρ
(i)
j ).

Theorem 6.2. Under the SISq,m′,β assumption, BK-RS is a unclaimable ring signature scheme sat-
isfying a weak notion of unforgeability in which the challenge is sampled at random at the beginning
of the experiment.

Proof sketch. Completeness, anonymity and unforgeability are proven in [BK10]. It remains to
show that the scheme is unclaimable. Consider the experiment described in Definition 3.12. The
components of the signature corresponding to matrices with no trapdoor are distributed identically
on the two sides of the experiment. By the correctness of algorithm ExplainDist, the components
of ρ1 and ρ2 corresponding to identities other than vk1, vk2 are distributed statistically close,
jointly with S and the corresponding components of the signature. It remains to consider the
portions of the signature corresponding to identities vk1 and vk2. But Lemma 6.1 implies that the

distribution of vectors (x
(1)
0 , x

(2)
0 ) is statistically close, regardless of which trapdoor was used to

sample. By the correctness of algorithm ExplainCond, the corresponding components of ρ1 and ρ2

are also statistically close, even conditioned on the other values in the experiment. The conclusion
follows.

6.3 Unclaimability for the full ring signature scheme of [BK10]

The ring signature scheme just described satisfies a weak notion of unforgeability, in which the
message on which a signature must be forged is sampled at random by the challenger and sent
to the forger in the beginning of the experiment. To achieve full unforgeability, [BK10] proceed
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through a sequence of four reductions to construct schemes satsifying successively stronger notions
of unforgeability. We now provide a brief overview of these reductions and describe how to modify
the ExtractRandomness algorithm for each scheme.

The first modified scheme appends a description of the ring to the message to be signed. This
only affects that message, so the ExtractRandomness algorithm is unchanged and is simply invoked
on a different message.

The second modification is the most complicated, and introduces a variant of chameleon hash
functions. A chameleon hash function h is sampled during Gen and is included as part of the
verification key vk. During the Sign algorithm, randomness r is sampled from some distribution,24

and a value y = h(m, r) is computed, where m is the message to be signed and h is the hash function
corresponding to the lexicographically first identity in the ring. The previous signature scheme is
invoked on message y, and the signature is augmented to include the randomness r as well. Observe
that the only randomness to explain is the choice of r and the randomness used in the invocation
of the previous signature scheme. Consequently the only modification to ExtractRandomness is that
it now must also provide random coins resulting in a particular choice of the vector r, which is
straightforward.

The third modification simply computes a signature under the previous scheme of every prefix
of the message to be signed, and outputs a list of these |m| signatures as its signature. We can
invoke the previous ExtractRandomness algorithm for the previous scheme on each of these |m|
messages. The final modification produces a random pad α as part of the Gen algorithm, and
computes the signature on the exclusive or of the original message with the pad corresponding to
the lexicographically first identity in the ring. This is the full ring signature scheme of [BK10]. As
above, this only affects the message to be signed, and so the ExtractRandomness algorithm is simply
invoked on a different message.

Given the ExtractRandomness algorithm for the weakly-unforgeable ring signature scheme in the
previous section, the modifications we have just described yield a ExtractRandomness algorithm for
the fully-unforgeable ring signature scheme of [BK10]. It is not difficult to see that this scheme
satisfies Definition 3.12 and is an unclaimable ring signature scheme. Consequently, we obtain the
following theorem.

Theorem 6.3. Under the SISq,m′,β assumption, the ring signature scheme of [BK10] combined with
the ExtractRandomness algorithm described above is an unclaimable ring signature scheme.
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′
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A Definitions for repudiable-and-claimable ring signatures

Definition A.1 (Repudiable-and-claimable ring signature). A repudiable-and-claimable ring sig-
nature scheme is a ring signature scheme with an additional quadruple of algorithms

(Repudiate,VerRepud,Claim,VerClaim) ,

satisfying the five properties of correctness (Definition 2.2), repudiability (Definition A.2) claima-
bility (Definition A.3), anonymity (Definition A.4), and unforgeability (Definition A.5).

The syntax of (Repudiate,VerRepud) and (Claim,VerClaim) are as defined in Definitions 3.3 and
3.9 respectively.

Definition A.2 (Repudiability of repudiable-and-claimable ring signatures). A ring signature
scheme Σ = (Gen,Sign,Verify) satisfies repudiability if equipped with algorithms

(Repudiate,VerRepud,Claim,VerClaim)

such that for any (possibly adversarial) PPT signing algorithm ASign, there exists a negligible
function ε such that (3) and (4) (from Definition 3.3) are satisfied whenO = {OSign,ORpd,OClaim}.

Definition A.3 (Claimability of repudiable-and-claimable ring signatures). A ring signature scheme
Σ = (Gen, Sign,Verify) satisfies claimability if equipped with algorithms

(Repudiate,VerRepud,Claim,VerClaim)

such that conditions 1, 2, and 3 of Definition 3.9 hold when O = {OSign,ORpd}.

Definition A.4 (Anonymity of repudiable-and-claimable ring signatures). A repudiable-and-claimable
ring signature scheme

(Gen, Sign,Verify, (Repudiate,VerRepud,Claim,VerClaim))

satisfies anonymity against

{adversarially chosen keys, attribution attacks, full key exposure}

if (Gen, Sign,Verify) is ({OSign,ORpd,OClaim},∅, α)-anonymous (Definition 2.3) for, respectively,

α ∈ {2, 1, 0} .

Moreover, the claimable ring signature satisfies the adaptive variants of the above anonymity defini-
tions if (Gen,Sign,Verify) is ({OSign,ORpd,OClaim}, {OSign,ORpd〈R∗,m∗〉,OClaim}, α)-anonymous
for α ∈ {2, 1, 0} respectively.

Definition A.5 (Unforgeability of repudiable-and-claimable ring signatures). A repudiable-and-
claimable ring signature scheme

(Gen, Sign,Verify, (Repudiate,VerRepud,Claim,VerClaim))

is unforgeable if (Gen,Sign,Verify) is {ORpd,OClaim}-unforgeable (Definition 2.7).
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B Completing the proof of Lemma 4.12

Proof (continued). It remains to show that R-RS satisfies (4). Suppose not, for the sake of contra-
diction. Then there is a PPT algorithm AS&R such that the following probability is non-negligible:

Pr


(vk1, sk1), . . . , (vkN , skN )← Gen(1k)
(σ,R′,m, {ξvk}vk∈R′\R)← AOS&R(R)

∀vk ∈ R′ \R, bvk ← VerRepud(R′, vk, σ,m, ξvk)
b′ ← Verify(R′, σ,m)

:
R′ ∩R 6= ∅ ∧

∧
vk∈R′\R

bvk = 1

∧b′ = 1 ∧Q ∩ {(·,m,R′)} = ∅


(27)

where R = {vk1, . . . , vkN}, O = {OSign,ORpd}, and Q is the set of queries made to oracle OSign.
Based on AS&R, we construct another adversary A′ to Parallel VRF Game for 2N keys, as

follows. A′ first samples
(vk1, sk1), . . . , (vkN , skN )← Gen(1k)

and parses each vki as

vki = ( ~vk
i

VRF = (vki,1VRF, vk
i,2
VRF, vk

i,3
VRF, vk

i,4
VRF), ρi, ~αi) .

Next, A′ obtains 2N verification keys from the VRF challenger. For notational convenience in
the rest of the proof, let these 2N keys be denoted by {vki,3,∗VRF , vk

i,4,∗
VRF}i∈[N ]. Let the corresponding

2N secret keys be denoted by {ski,3,∗VRF , sk
i,4,∗
VRF}i∈[N ].

25

Define vk∗i as

vk∗i = ( ~vk
i

VRF = (vki,1VRF, vk
i,2
VRF, vk

i,3,∗
VRF , vk

i,4,∗
VRF), ρi, ~αi) .

That is, vk∗i is identical to vki except that vki,3VRF and vki,4VRF are replaced by vki,3,∗VRF , vk
i,4,∗
VRF .

Let R∗ = {vk∗1, . . . , vk∗N}. A′ then runs AS&R on input R∗, answering its oracle queries as
follows.

• On query (R′′, i′′,m′′) to OSign: A′ runs the honest signing algorithm R-RS.Sign on input (R′′ ∪
{vk∗i′′}, ski′′ ,m′′), with the following modification: in step 6, instead of using ski′′ to generate

y3, τ3, and y4, τ4, A′ invokes the corresponding VRF oracle for keys vki
′′,3,∗
VRF , vki

′′,4,∗
VRF .

• On query (R′′, i′′, σ′′,m′′) to ORpd: A′ runs the honest repudiation algorithm R-RS.Repudiate on
input (R′′ ∪ {vk∗i′′}, ski′′ , σ′′,m′′). (As noted above, sk3

VRF and sk4
VRF are not used in algorithm

R-RS.Repudiate, so A′ does not need to invoke the VRF oracle here.)

Let (σ, ξ,m,R′) be the output of AS&R. A′ parses σ = (~π, ~y, ϕ) and ~y = (y1, . . . , y4), then
submits (R′,m, ϕ) to the VRF challenger and, for each i ∈ [N ], receives responses y3,i, y4,i. If there
exists any index i ∈ [N ] such that y3,i = y3 or y4,i = y4, A′ outputs 0. Otherwise, A′ outputs a
random bit. Let us now consider the behavior of A′ in the two cases where the VRF challenger’s
bit b is equal to 0 and equal to 1.

Case b = 0. In this case, the view of AS&R is identical to the view in (27), so by assumption AS&R

wins the game described in (27) with non-negligible probability. Note that whenever AS&R wins
the game, the condition Q ∩ {(·,m,R′)} 6= ∅ in (27) implies that A has not previously made an
oracle query on the VRF challenge message (R′,m, ϕ) during the query phase. Let us suppose that
AS&R wins the game described in (27) and consider the implications.

25Note that {ski,3,∗VRF , sk
i,4,∗
VRF }i∈[N ] are generated by the VRF challenger and not accessible by A′.
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By definition, if R-RS.Verify accepts (with non-negligible probability) on input (R′, σ,m), then

∀i ∈ [|R′|], ZAP.VerifyL(ρi, πi, (R
′,m, ϕ, ~y)) = 1 . (28)

R′ ∩ R 6= ∅ from our assumption that AS&R wins the game described in (27), and therefore we
have that at least one ρi′ corresponding to some vki′ ∈ R′ ∩ R is honestly generated. Thus, the
soundness of the ZAP holds w.r.t. this ρi′ , and (28) implies that (R′,m, ϕ, ~y) ∈ L. Moreover, by
the definition of L,

(R′,m, ϕ, ~y) ∈ L⇒ (b3 ∨ b4), (29)

where b3, b4 are as defined in Definition 4.6. Expanding the definitions of b3, b4, we have that the
right-hand side of (29) implies:

∃η ∈ {3, 4}, i∗ ∈ [|R′|], τ1, . . . , τ4, γ s.t. ∀i′ ∈ [|R′|], j′ ∈ [M ],

VRF.Verify(vki
∗,η,∗
VRF , (R′,m, ϕ), yη, τη;α

i′
j′ ⊕ γ) = 1 .

(30)

Then applying Corollary 4.11 (again setting the algorithm V to be VRF.Verify): (30) implies either

∃η ∈ {3, 4} and τ s.t.

Pr
[
VRF.Verify(vki

∗,η,∗
VRF , (R′,m, ϕ), yη, τ) = 1

]
is overwhelming,

(31)

or a negligible probability event occurred. By the complete and unique provability of the VRF,
(31) implies that

y3 = VRF.Eval(ski,3,∗VRF , (R
′,m, ϕ)) or y4 = VRF.Eval(ski,4,∗VRF , (R

′,m, ϕ)) . (32)

Chaining together the implications, we obtain that (32) holds with all but negligible probability
conditonioned on the non-negligible-probability event of AS&R winning the game described in (27).

Finally, by definition of Parallel VRF Game, when b = 0, for all i ∈ [N ],

y3,i = VRF.Eval(ski,3,∗VRF , (R
′,m, ϕ)) and y4,i = VRF.Eval(ski,4,∗VRF , (R

′,m, ϕ)) .

It follows that conditioned on b = 0, there is a non-negligible probability that

∃i∗ ∈ [N ] s.t. y3 = y3,i∗ or y4 = y4,i∗ . (33)

Recall that (33) is the trigger condition for A′ to output 0. Therefore, when b = 0, A′ outputs 0
with non-negligible probability (and outputs a random bit the rest of the time).

Case b = 1. In this case, y′3 and y′4 are uniformly random and independent of the rest of the
experiment, so with overwhelming probability, they will be distinct from y3,i and y4,i for every
i ∈ [N ]. Consequently, in this case, with all but negligible probability A outputs a random bit.

Thus, A′ wins Parallel VRF Game with non-negligible probability. This contradicts the security
of the VRF. We therefore conclude that R-RS satisfies (4). The lemma follows.
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C Anonymity of R-RS

Lemma 4.14. R-RS satisfies adaptive anonymity against adversarially chosen keys (Definition 3.4).

Proof. Suppose that this is not the case. Then there exists some N = poly(k) and PPT A =
(A1,A2) such that the following probability is non-negligibly greater than 1/2, where I is the set
of queries to the corruption oracle, O1 = {OSign,ORpd}, and O2 = {OSign,ORpd〈R∗,m∗〉}:

Pr


(vk1, sk1), . . . , (vkN , skN )← Gen(1k)

((m∗, i∗0, i
∗
1, R

∗), s)← AO1,Corr
1 (vk1, . . . , vkN )

b← {0, 1}
σ ← Sign(R∗ ∪ {vki∗0 , vki∗1}, ski∗b ,m

∗)

b′ ← AO2
2 (s, σ)

: b′ = b ∧ {i∗0, i∗1} ∩ I = ∅

 . (34)

Note that unlike (2), the second part of the adversary in (34) does not have a corruption oracle.
This is because when α = 0 (where α is defined as in Definition 2.3), as here, all corruptions can
be performed by A1 without loss of generality. We proceed via a sequence of hybrids.

Hybrid 1. The honest experiment (as described in (34)), with b = 0.

Hybrid 2. Identical to the above, but in the generation of signature σ = (~π, (y1, . . . , y4), ϕ), y2

and y4 are generated at random while y1 and y3 are still generated using the VRFs for party i∗0.

To prove that Hybrid 1 is indistinguishable from Hybrid 2, we want to rely on the security
of the VRF, but we can’t invoke VRF security immediately because the OSign and ORpd oracles
contain the VRF secret key. In order to use VRF security and show indistinguishability, it suffices
to prove that with overwhelming probability, these oracles cannot be used to learn VRF outputs
(for VRFs corresponding to identities i∗0, i

∗
1) on the challenge value (R∗,m∗, ϕ). Any oracle queries

that reveal other VRF outputs can be submitted to the VRF challenger in the security reduction:
that is, supposing an adversary that distinguishes Hybrids 1 and 2, we can build an adversary that
wins the Parallel VRF game while making only legal VRF queries to the challenger.

The following three points complete the proof of indistinguishability, addressing each category
of oracle access in turn: (1) queries to OSign, (2) queries by A1 to ORpd, and (3) queries by A2 to
ORpd.

1. Each time the oracle OSign is queried it will choose a random salt, so with overwhelming prob-
ability it will also never output the same salt ϕ as the challenge.

2. The salt ϕ is not sampled until after the first part A1 of the adversary completes, so since A1

can make only polynomially many oracle queries and the salt is sampled from {0, 1}k, A1 makes
no oracle queries to ORpd with the same salt value ϕ as the challenge, except with negligible
probability.

3. It remains to consider the oracle queries made by A2 to the punctured repudiation oracle
ORpd〈R

∗,m∗〉. But this oracle is punctured at the challenge ring and message, so it cannot
be used to query the VRF at the challenge value.

Consequently, even though the oracles contain the VRF secret key, with overwhelming prob-
ability they cannot be used to learn the VRF output on the challenge value. Thus, the residual
pseudorandomness property of VRF security ensures pseudorandomness of the VRF output on the
challenge value even in the presence of the oracles.
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Hybrid 3. Identical to the above, but in the generation of signature σ = (~π, (y1, . . . , y4), ϕ),
y2 and y4 are generated using the VRFs for party i∗1 rather than i∗0. That is, parsing ski∗1 =

((sk
i∗1,1
VRF, . . . , sk

i∗1,4
VRF), vki∗1), we set

y2 = VRF.Eval(sk
i∗1,2
VRF, (R,m,ϕ)) and y4 = VRF.Eval(sk

i∗1,4
VRF, (R,m,ϕ)) .

Hybrid 3 is indistinguishable from Hybrid 2 by the security of the VRF, using an essentially
identical argument to the previous pair of hybrids (i.e., arguing residual pseudorandomness for the
challenge value even in the presence of oracles OSign and ORpd).

Hybrid 4. Identical to the above, but in the generation of signature σ, the ZAPs in the Sign pro-
cedure are proven with respect to the witnesses for party i∗1 rather than i∗0. That is, parsing ski∗1 =

((sk
i∗1,1
VRF, . . . , sk

i∗1,4
VRF), vki∗1), in the invocation of Sign to generate σ, let τ ′2 = VRF.Prove(sk

i∗1,2
VRF, (R,m,ϕ))

and τ ′4 = VRF.Prove(sk
i∗1,4
VRF, (R,m,ϕ)). For each i ∈ [N ], in step 7 of Sign, generate πi by invoking

ZAP.Prove(ρi, stmt, (i∗1,⊥, τ ′2,⊥, τ ′4, γ))

instead of using the witness for i∗0.

By the witness indistinguishability of the ZAP, Hybrid 4 is indistinguishable from Hybrid 3.

Hybrid 5. Identical to the above, but in the generation of signature σ = (~π, (y1, . . . , y4), ϕ), y1

and y3 are generated at random while y2 and y4 are still generated using the VRFs for party i∗1.

Hybrid 5 is indistinguishable from Hybrid 4 by the security of the VRF, using an essentially
identical argument to that used to argue indistinguishability of Hybrids 1 and 2.

Hybrid 6. Identical to the above, but in the generation of signature σ = (~π, (y1, . . . , y4), ϕ), y1

and y3 (as well as y2 and y4) are now generated using the VRFs for party i∗1.

Hybrid 6 is indistinguishable from Hybrid 5, by the security of the VRF, using an essentially
identical argument to that used to argue indistinguishability of Hybrids 1 and 2.

Hybrid 7. The honest experiment, with b = 1.

By the witness indistinguishability of the ZAP, Hybrid 7 is indistinguishable from Hybrid 6.

D Explaining randomness of discrete Gaussian samples

Our construction requires “explaining” algorithms ExplainDist and ExplainCond. ExplainDist must,
on input (x, y), output ρ distributed according to the conditional distribution{

ρ
∣∣ SampleDist(x; ρ) = y

}
.

Similarly, ExplainCond must, on input (x, y), output ρ distributed according to{
ρ
∣∣ SampleCond(x; ρ) = y

}
.

In this appendix, we outline how this “explaining randomness” is able to be efficiently computed
according to the required distribution.

In our underlying instantiation, as in the original construction of [BK10]:
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• SampleDist is instantiated by the function SampleD(B, s, c) defined in [GPV07, §4.2].26

• SampleCond is instantiated by the function SampleISIS(A, T, s, u) defined in [GPV07, §5.3.2].

We first recall the basis randomization technique of [CHKP10]. In the following, tildes denote
Gram-Schmidt orthogonalization.

Lemma D.1 (Lemma 3.3 in [CHKP10]). There exists a probabilistic polynomial-time algorithm
RandBasis(T, s) that takes as input a basis T of an m′-dimensional integer lattice and a parameter
s ≥ ‖T̃‖ · ω(

√
log n), and outputs a basis T ′ for the same lattice, such that:

1. With overwhelming probability, ‖RandBasis(T, s)‖ ≤ s ·
√
m′

2. For any pair of bases T1, T2 for the same lattice and any s ≥ max(‖T̃1‖, ‖T̃2‖) · ω(
√

log n), the
outputs of RandBasis(T1, s) and RandBasis(T2, s) have negligible statistical distance.

We now describe the relatively simple algorithms SampleD and SampleISIS in order to outline
how one can efficiently compute randomness to explain any particular output. SampleISIS in-
vokes SampleD, and SampleD in turn invokes a simpler algorithm SampleZ which is also defined in
[GPV07]. We describe these three algorithms in the order they are listed in the preceding sentence.

Definition D.2. SampleISIS takes as input (A, T, s, u) where A and T are matrices, s is a Gaussian
parameter, and u is a vector.

1. Let T ′ ← RandBasis(T, s).
2. By Gaussian elimination, choose an arbitrary t such that At = u (mod q).
3. Sample v ← SampleD(T ′, s,−t).
4. Output e = t+ v.

Claim D.3. There is an efficient algorithm for ExplainCond if there is an efficient algorithm for
ExplainDist.

Proof. Essentially, the claim follows from the fact that Step 3 is the only randomized step in
SampleISIS. Recall that ExplainCond needs to correctly sample the randomness distribution of
SampleCond (i.e., SampleISIS) conditioned on a particular input and output. Given the input, t
(Step 2) can be computed deterministically. Finally, given the output e and t, it remains only to
explain the randomness of SampleD conditioned on input (T, s,−t) and output e− t.

Definition D.4. SampleD takes as input (B, s, c) where B = (b1, . . . , bn) is a matrix describing a
lattice basis, s is a Gaussian parameter, and c is a vector.

1. Let vn := 0 (the zero vector) and cn := c. For i = n, . . . , 1:

(a) Let c′i := 〈ci, b̃i〉/〈b̃i, b̃i〉 ∈ R and s′i = s/‖b̃i‖2 > 0.
(b) Sample zi ← SampleZ(s′i, c

′
i).

(c) Let ci−1 := ci − zibi and let vi−1 := vi + zibi.

2. Output v0.

Claim D.5. There is an efficient algorithm for ExplainDist if there is an efficient algorithm to
“explain SampleZ” — i.e., an efficient algorithm that, on input (s, c, x), samples from the following
distribution: {

ρ
∣∣ SampleZ(s, c; ρ) = x

}
. (35)

26We cite the full version here for the detailed description of the function; the conference version is [GPV08].
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Proof (sketch). Each output of SampleDist on a given input induces a unique set of zis — in other
words, as noted in [GPV07], there is a bijective correspondence between the random choices of
the zis and the output. After recovering these zis, it remains only to explain the randomness of
SampleZ conditioned on inputs (s′i, c

′
i) and outputs zi for each i.

Definition D.6. SampleZ takes input (s, c) where s is a Gaussian parameter and c ∈ R. In
the following, t(n) ∈ ω(

√
log(n)) is some fixed function, say, t(n) = log(n); Ber(p) denotes the

Bernoulli distribution with probability p of outputting 1; and ρs(·) is the Gaussian measure, defined
as ρs(x) = exp(−π‖x‖22/s2).

1. Let X = Z ∩ [c− s · t(n), c+ s · t(n)] and sample uniformly x← X.
2. Sample b← Ber(ρs(x− c)).
3. If b = 1, output x. Else, go back to step 1.

Claim D.7. There is an efficient algorithm that, on input (s, c, x), samples from the distribution
described in (35).

Proof (sketch). SampleZ consists of rejection sampling based on a biased coinflip, where the bias
depends on the present sample x. The randomness ρ to explain a particular output of SampleZ
can be thought to consist of a series of “rejected” samples x1, . . . , x`−1 followed by the “accepted”
sample x` (which must be equal to x). The length ` of this sequence follows a geometric distribution
parametrized by the expected bias β over the entire domain X. That is,

β =
1

|X|
∑
x∈X

ρs(x− c) .

Once a value of ` is sampled from the appropriately parametrized geometric distribution, it remains
only to sample the “failed attempts” x1, . . . , x`−1. This can be done by the following procedure.
For each i ∈ [`− 1]:

1. Sample uniformly x′ ← X.
2. Sample b← Ber(ρs(x

′ − c)).
3. If b = 0, then set xi := x′ and continue. Else, go back to Step 1.
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